1
|
Cebrian-Silla A, Nascimento MA, Mancia W, Gonzalez-Granero S, Romero-Rodriguez R, Obernier K, Steffen DM, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Neural stem cell relay from B1 to B2 cells in the adult mouse ventricular-subventricular zone. Cell Rep 2025; 44:115264. [PMID: 40019835 PMCID: PMC11979704 DOI: 10.1016/j.celrep.2025.115264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Neurogenesis and gliogenesis continue in the ventricular-subventricular zone (V-SVZ) of the adult rodent brain. V-SVZ astroglial cells with apical contact with the ventricle (B1 cells) function as neural stem cells (NSCs). B1 cells sharply decline during early postnatal life; in contrast, neurogenesis decreases at a slower rate. Here, we show that a second population of astroglia (B2 cells) that do not contact the ventricle also function as NSCs in the adult mouse brain. B2 cell numbers increase postnatally, are sustained in adults, and decrease with aging. We reveal the transcriptomic profile of B1 and B2 cells and show that, like B1 cells, B2 cells can be quiescent or activated. Transplantation and lineage tracing of B2 cells demonstrate their function as primary progenitors for adult neurogenesis. This study reveals that NSC function is progressively relayed from B1 to B2 progenitors helping explain how neurogenesis is maintained into adult life.
Collapse
Affiliation(s)
- Arantxa Cebrian-Silla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Marcos Assis Nascimento
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Walter Mancia
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Susana Gonzalez-Granero
- BTELab, Research Foundation of the General University Hospital of Valencia, Valencia 46014, Spain
| | - Ricardo Romero-Rodriguez
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kirsten Obernier
- Quantitative Biosciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - David M Steffen
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel A Lim
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, Paterna, 46980 Valencia, Spain
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
2
|
Marymonchyk A, Rodriguez-Aller R, Willis A, Beaupré F, Warsi S, Snapyan M, Clavet-Fournier V, Lavoie-Cardinal F, Kaplan DR, Miller FD, Saghatelyan A. Neural stem cell quiescence and activation dynamics are regulated by feedback input from their progeny under homeostatic and regenerative conditions. Cell Stem Cell 2025; 32:445-462.e9. [PMID: 39919748 DOI: 10.1016/j.stem.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/03/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025]
Abstract
Life-long maintenance of stem cells implies that feedback mechanisms from the niche regulate their quiescence/activation dynamics. Here, in the mouse adult subventricular neural stem cell (NSC) niche, we charted a precise spatiotemporal map of functional responses in NSCs induced by multiple niche cells and used machine learning to predict NSC interactions with specific niche cell types. We revealed a feedback mechanism whereby the NSC proliferative state is directly repressed by transient amplifying cells (TAPs), their rapidly dividing progeny. NSC processes wrap around TAPs and display hotspots of Ca2+ activity at their points of contact, mediated by ephrin (Efn) signaling. The modulation of Efn signaling or TAP ablation altered the Ca2+ signature of NSCs, leading to their activation. In vivo optogenetic modulation of Ca2+ dynamics abrogated NSC activation and prevented niche replenishment. Thus, TAP-to-NSC feedback signaling controls stem cell quiescence and activation, providing a mechanism to maintain stem cell pools throughout life.
Collapse
Affiliation(s)
- Alina Marymonchyk
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Université Laval, Quebec City, QC, Canada
| | - Raquel Rodriguez-Aller
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Université Laval, Quebec City, QC, Canada
| | - Ashleigh Willis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Frédéric Beaupré
- Université Laval, Quebec City, QC, Canada; CERVO Brain Research Center, Quebec City, QC, Canada
| | - Sareen Warsi
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marina Snapyan
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Valérie Clavet-Fournier
- Université Laval, Quebec City, QC, Canada; CERVO Brain Research Center, Quebec City, QC, Canada
| | - Flavie Lavoie-Cardinal
- Université Laval, Quebec City, QC, Canada; CERVO Brain Research Center, Quebec City, QC, Canada
| | - David R Kaplan
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Freda D Miller
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Armen Saghatelyan
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Bocchi R, Thorwirth M, Simon-Ebert T, Koupourtidou C, Clavreul S, Kolf K, Della Vecchia P, Bottes S, Jessberger S, Zhou J, Wani G, Pilz GA, Ninkovic J, Buffo A, Sirko S, Götz M, Fischer-Sternjak J. Astrocyte heterogeneity reveals region-specific astrogenesis in the white matter. Nat Neurosci 2025; 28:457-469. [PMID: 39994409 PMCID: PMC11893471 DOI: 10.1038/s41593-025-01878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/20/2024] [Indexed: 02/26/2025]
Abstract
Astrocyte heterogeneity has been well explored, but our understanding of white matter (WM) astrocytes and their distinctions from gray matter (GM) astrocytes remains limited. Here, we compared astrocytes from cortical GM and WM/corpus callosum (WM/CC) using single-cell RNA sequencing and spatial transcriptomics of the murine forebrain. The comparison revealed similarities but also significant differences between WM and GM astrocytes, including cytoskeletal and metabolic hallmarks specific to WM astrocytes with molecular properties also shared with human WM astrocytes. When we compared murine astrocytes from two different WM regions, the cortex and cerebellum, we found that they exhibited distinct, region-specific molecular properties, with the cerebellum lacking, for example, a specific cluster of WM astrocytes expressing progenitor and proliferation genes. Functional experiments confirmed astrocyte proliferation in the WM/CC, but not in the cerebellar WM, suggesting that the WM/CC may be a source of continued astrogenesis.
Collapse
Affiliation(s)
- Riccardo Bocchi
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| | - Manja Thorwirth
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tatiana Simon-Ebert
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christina Koupourtidou
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Solène Clavreul
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Keegan Kolf
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Patrizia Della Vecchia
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sara Bottes
- Laboratory of Neural Plasticity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Jiafeng Zhou
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Gulzar Wani
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gregor-Alexander Pilz
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Swetlana Sirko
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Magdalena Götz
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- Excellence Cluster of Systems Neurology (SyNergy), Munich, Germany.
| | - Judith Fischer-Sternjak
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
4
|
Ivanov MN, Stoyanov DS, Veleva LV, Mladenov AM, Pavlov SP, Yamashima T, Tonchev AB. TNC and GJA1 Are Putative Progenitor Markers That Are Localized in the Perivascular Adventitia of the Adult Monkey Brain Subventricular Niche. Int J Mol Sci 2025; 26:1397. [PMID: 40003865 PMCID: PMC11855557 DOI: 10.3390/ijms26041397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The largest area in the adult mammalian brain that contains stem and progenitor cells at different stages of differentiation is the subventricular zone located along the lateral wall of the lateral ventricle. We have previously shown in adult monkeys that transient global cerebral ischemia upregulates the expression of hundreds of genes in this zone, including genes known to be related to stemness in the rodent brain. Here, we analyzed the immunophenotype of two of these genes, TNC and GJA1, by co-expression experiments, applying a panel of known stem/progenitor-cell-related markers. We found that both TNC and GJA1 were expressed in the perivascular region. They were localized not to the endothelial cells but to the periendothelial adventitial cells, which was consistent with our previous electron-microscopic data suggesting periendothelial cells as a source of progenitors. We report that the expression of GJA1 was high in quiescent progenitors, while TNC was mostly present in progenitors in the transition from a quiescent to an active state. Our data suggest that TNC and GJA1 can be used as markers for stem/progenitor cells in the largest stem cell area of the adult primate brain.
Collapse
Affiliation(s)
- Martin N. Ivanov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
- Department of Stem Cell Biology, Research Institute, Medical University, 9000 Varna, Bulgaria
| | - Dimo S. Stoyanov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
| | - Lora V. Veleva
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
| | - Andon M. Mladenov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
| | - Stoyan P. Pavlov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
| | - Tetsumori Yamashima
- Department of Neurosurgery, Division of Neuroscience, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan;
| | - Anton B. Tonchev
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
- Department of Stem Cell Biology, Research Institute, Medical University, 9000 Varna, Bulgaria
| |
Collapse
|
5
|
Willis A, Jeong D, Liu Y, Lithopoulos MA, Yuzwa SA, Frankland PW, Kaplan DR, Miller FD. Single cell approaches define neural stem cell niches and identify microglial ligands that can enhance precursor-mediated oligodendrogenesis. Cell Rep 2025; 44:115194. [PMID: 39823226 DOI: 10.1016/j.celrep.2024.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche. We modeled ligand-receptor interactions within this changing niche and identified two remyelination-associated microglial ligands, insulin growth factor 1 and oncostatin M, that promote precursor proliferation and oligodendrogenesis in culture. Infusion of either ligand into the lateral ventricles also enhanced oligodendrogenesis, even in the lateral V-SVZ, where NSCs normally make neuroblasts. These data support a model where gliogenesis versus neurogenesis is determined by the local NSC neighborhood and where injury-induced niche alterations promote NSC activation, local oligodendrogenesis, and likely contribute to myelin repair.
Collapse
Affiliation(s)
- Ashleigh Willis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Danielle Jeong
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yunlong Liu
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Marissa A Lithopoulos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Scott A Yuzwa
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David R Kaplan
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Freda D Miller
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
Martín-Suárez S. Isolation of Adult Hippocampal Neural Stem Cells. Methods Mol Biol 2025; 2899:21-34. [PMID: 40067614 DOI: 10.1007/978-1-0716-4386-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Neural stem cells (NSCs) are essential for the generation of new neurons and also exert regulatory functions within their niche. NSCs are altered in many pathological conditions, and their role as a therapeutic target is being increasingly studied. Isolating a pure population of NSCs from the brain is challenging due to the lack of unique biomarkers. The development of transgenic mouse lines in which NSCs express fluorescent proteins has been greatly helpful, but these resources are sometimes unavailable to many research groups worldwide. Herein, we detail protocols for isolating NSCs from the adult brain using fluorescence-activated cell sorting (FACS) from both transgenic and non-transgenic mice. By utilizing fluorescence-conjugated antibodies targeting unique cell surface markers, a flow cytometer can distinguish different cell types based on their characteristic fluorescence profiles. This method enables precise sorting of cells according to their phenotype, facilitating in-depth exploration of cellular diversity and functionality.
Collapse
|
7
|
Rosa F, Dray N, Bedu S, Bally-Cuif L. Non-apoptotic caspase events and Atf3 expression underlie direct neuronal differentiation of adult neural stem cells. Development 2024; 151:dev204381. [PMID: 39565097 DOI: 10.1242/dev.204381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Neural stem cells (NSCs) generate neurons over a lifetime in adult vertebrate brains. In the adult zebrafish pallium, NSCs persist long term through balanced fate decisions. These decisions include direct neuronal conversions, i.e. delamination and neurogenesis without a division. To characterize this process, we reanalyze intravital imaging data of adult pallial NSCs, and observe shared delamination dynamics between NSCs and committed neuronal progenitors. Searching for mechanisms predicting direct NSC conversions, we build an NSC-specific genetic tracer of Caspase3/7 activation (Cas3*/Cas7*) in vivo. We show that non-apoptotic Cas3*/7* events occur in adult NSCs and are biased towards lineage termination under physiological conditions, with a predominant generation of single neurons. We further identify the transcription factor Atf3 as necessary for this bias. Finally, we show that the Cas3*/7* pathway is engaged by NSCs upon parenchymal lesion and correlates with NSCs more prone to lineage termination and neuron formation. These results provide evidence for non-apoptotic caspase events occurring in vertebrate adult NSCs and link these events with the NSC fate decision of direct conversion, which is important for long-term NSC population homeostasis.
Collapse
Affiliation(s)
- Frédéric Rosa
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| | - Nicolas Dray
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| | - Sébastien Bedu
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| | - Laure Bally-Cuif
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| |
Collapse
|
8
|
Yoshida R, Mori T. Morphological classification of radial glia-like cells in the postnatal mouse subventricular zone. Eur J Neurosci 2024; 60:5156-5168. [PMID: 39126378 DOI: 10.1111/ejn.16503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/04/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
The subventricular zone (SVZ) is one of the neurogenic regions of the adult mammalian brain. Neural stem cells (NSCs) in the SVZ have certain key features: they express glial fibrillary acidic protein (GFAP), proliferate slowly, have a radial glia-like (RG-L) morphology, and are in contact with the cerebrospinal fluid (CSF). NSCs have been isolated by FACS to analyse them, but their morphology has not been systematically examined. To address this knowledge gap, we sparsely labelled RG-L cells in the SVZ of neonatal mice by introducing via electroporation a plasmid expressing fluorescent protein under the control of the GFAP promoter. We then classified RG-L cells into three types (RG-L1, 2, and 3) based on their morphologies. RG-L1 cells had a basal process with some branches and numerous fine processes. RG-L2 cells had a basal process, but fewer branches and fine processes than RG-L1 cells. RG-L3 cells had one basal process that was almost free of branches and fine processes. Importantly, regardless of the cell type, about half of their somata resided on the basal side of the SVZ. Based on changes in their proportions during postnatal development and their expression of GFAP and cell proliferation markers at the adult stage, we speculated that NSCs change their morphologies during development/maturation and not all NSCs must always be in the apical SVZ or in contact with the CSF. Our results indicate that in addition to expression of markers for NSCs, the morphology is a critical feature to identify NSCs.
Collapse
Affiliation(s)
- Ryota Yoshida
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tetsuji Mori
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
9
|
Cebrian-Silla A, Assis Nascimento M, Mancia W, Gonzalez-Granero S, Romero-Rodriguez R, Obernier K, Steffen DM, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Neural Stem Cell Relay from B1 to B2 cells in the adult mouse Ventricular-Subventricular Zone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.600695. [PMID: 39005355 PMCID: PMC11244865 DOI: 10.1101/2024.06.28.600695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Neurogenesis and gliogenesis continue in the Ventricular-Subventricular Zone (V-SVZ) of the adult rodent brain. B1 cells are astroglial cells derived from radial glia that function as primary progenitors or neural stem cells (NSCs) in the V-SVZ. B1 cells, which have a small apical contact with the ventricle, decline in numbers during early postnatal life, yet neurogenesis continues into adulthood. Here we found that a second population of V-SVZ astroglial cells (B2 cells), that do not contact the ventricle, function as NSCs in the adult brain. B2 cell numbers increase postnatally, remain constant in 12-month-old mice and decrease by 18 months. Transcriptomic analysis of ventricular-contacting and non-contacting B cells revealed key molecular differences to distinguish B1 from B2 cells. Transplantation and lineage tracing of B2 cells demonstrate their function as primary progenitors for adult neurogenesis. This study reveals how NSC function is relayed from B1 to B2 progenitors to maintain adult neurogenesis.
Collapse
|
10
|
Hernández-Ortega K, Canul-Euan AA, Solis-Paredes JM, Borboa-Olivares H, Reyes-Muñoz E, Estrada-Gutierrez G, Camacho-Arroyo I. S100B actions on glial and neuronal cells in the developing brain: an overview. Front Neurosci 2024; 18:1425525. [PMID: 39027325 PMCID: PMC11256909 DOI: 10.3389/fnins.2024.1425525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The S100B is a member of the S100 family of "E" helix-loop- "F" helix structure (EF) hand calcium-binding proteins expressed in diverse glial, selected neuronal, and various peripheral cells, exerting differential effects. In particular, this review compiles descriptions of the detection of S100B in different brain cells localized in specific regions during the development of humans, mice, and rats. Then, it summarizes S100B's actions on the differentiation, growth, and maturation of glial and neuronal cells in humans and rodents. Particular emphasis is placed on S100B regulation of the differentiation and maturation of astrocytes, oligodendrocytes (OL), and the stimulation of dendritic development in serotoninergic and cerebellar neurons during embryogenesis. We also summarized reports that associate morphological alterations (impaired neurite outgrowth, neuronal migration, altered radial glial cell morphology) of specific neural cell groups during neurodevelopment and functional disturbances (slower rate of weight gain, impaired spatial learning) with changes in the expression of S100B caused by different conditions and stimuli as exposure to stress, ethanol, cocaine and congenital conditions such as Down's Syndrome. Taken together, this evidence highlights the impact of the expression and early actions of S100B in astrocytes, OL, and neurons during brain development, which is reflected in the alterations in differentiation, growth, and maturation of these cells. This allows the integration of a spatiotemporal panorama of S100B actions in glial and neuronal cells in the developing brain.
Collapse
Affiliation(s)
- Karina Hernández-Ortega
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
| | - Arturo Alejandro Canul-Euan
- Department of Developmental Neurobiology, National Institute of Perinatology Isidro Espinosa de los Reyes (INPer), Mexico City, Mexico
| | | | | | | | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
11
|
Baur K, Şan Ş, Hölzl-Wenig G, Mandl C, Hellwig A, Ciccolini F. GDF15 controls primary cilia morphology and function thereby affecting progenitor proliferation. Life Sci Alliance 2024; 7:e202302384. [PMID: 38719753 PMCID: PMC11077589 DOI: 10.26508/lsa.202302384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
We recently reported that growth/differentiation factor 15 (GDF15) and its receptor GDNF family receptor alpha-like (GFRAL) are expressed in the periventricular germinal epithelium thereby regulating apical progenitor proliferation. However, the mechanisms are unknown. We now found GFRAL in primary cilia and altered cilia morphology upon GDF15 ablation. Mutant progenitors also displayed increased histone deacetylase 6 (Hdac6) and ciliary adenylate cyclase 3 (Adcy3) transcript levels. Consistently, microtubule acetylation, endogenous sonic hedgehog (SHH) activation and ciliary ADCY3 were all affected in this group. Application of exogenous GDF15 or pharmacological antagonists of either HDAC6 or ADCY3 similarly normalized ciliary morphology, proliferation and SHH signalling. Notably, Gdf15 ablation affected Hdac6 expression and cilia length only in the mutant periventricular niche, in concomitance with ciliary localization of GFRAL. In contrast, in the hippocampus, where GFRAL was not expressed in the cilium, progenitors displayed altered Adcy3 expression and SHH signalling, but Hdac6 expression, cilia morphology and ciliary ADCY3 levels remained unchanged. Thus, ciliary signalling underlies the effect of GDF15 on primary cilia elongation and proliferation in apical progenitors.
Collapse
Affiliation(s)
- Katja Baur
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Şeydanur Şan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
- Sorbonne University, Paris, France
| | - Gabriele Hölzl-Wenig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Claudia Mandl
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Francesca Ciccolini
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
González-Iglesias A, Arcas A, Domingo-Muelas A, Mancini E, Galcerán J, Valcárcel J, Fariñas I, Nieto MA. Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche. Nat Commun 2024; 15:2837. [PMID: 38565566 PMCID: PMC10987655 DOI: 10.1038/s41467-024-47092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The adult mammalian brain retains some capacity to replenish neurons and glia, holding promise for brain regeneration. Thus, understanding the mechanisms controlling adult neural stem cell (NSC) differentiation is crucial. Paradoxically, adult NSCs in the subependymal zone transcribe genes associated with both multipotency maintenance and neural differentiation, but the mechanism that prevents conflicts in fate decisions due to these opposing transcriptional programmes is unknown. Here we describe intron detention as such control mechanism. In NSCs, while multiple mRNAs from stemness genes are spliced and exported to the cytoplasm, transcripts from differentiation genes remain unspliced and detained in the nucleus, and the opposite is true under neural differentiation conditions. We also show that m6A methylation is the mechanism that releases intron detention and triggers nuclear export, enabling rapid and synchronized responses. m6A RNA methylation operates as an on/off switch for transcripts with antagonistic functions, tightly controlling the timing of NSCs commitment to differentiation.
Collapse
Affiliation(s)
| | - Aida Arcas
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, 03550, Spain
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain
| | - Ana Domingo-Muelas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and Instituto de Biotecnología y Biomedicina, Universidad de Valencia, Burjassot, 46100, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029, Madrid, Spain
- Carlos Simon Foundation, 46980, Paterna, Valencia, Spain
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Igenomix Foundation, 46980, Paterna, Valencia, Spain
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Joan Galcerán
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, 03550, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and Instituto de Biotecnología y Biomedicina, Universidad de Valencia, Burjassot, 46100, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029, Madrid, Spain
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, 03550, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), 28029, Madrid, Spain.
| |
Collapse
|
13
|
Müller T, Reichlmeir M, Hau AC, Wittig I, Schulte D. The neuronal transcription factor MEIS2 is a calpain-2 protease target. J Cell Sci 2024; 137:jcs261482. [PMID: 38305737 PMCID: PMC10941658 DOI: 10.1242/jcs.261482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
Tight control over transcription factor activity is necessary for a sensible balance between cellular proliferation and differentiation in the embryo and during tissue homeostasis by adult stem cells, but mechanistic details have remained incomplete. The homeodomain transcription factor MEIS2 is an important regulator of neurogenesis in the ventricular-subventricular zone (V-SVZ) adult stem cell niche in mice. We here identify MEIS2 as direct target of the intracellular protease calpain-2 (composed of the catalytic subunit CAPN2 and the regulatory subunit CAPNS1). Phosphorylation at conserved serine and/or threonine residues, or dimerization with PBX1, reduced the sensitivity of MEIS2 towards cleavage by calpain-2. In the adult V-SVZ, calpain-2 activity is high in stem and progenitor cells, but rapidly declines during neuronal differentiation, which is accompanied by increased stability of MEIS2 full-length protein. In accordance with this, blocking calpain-2 activity in stem and progenitor cells, or overexpression of a cleavage-insensitive form of MEIS2, increased the production of neurons, whereas overexpression of a catalytically active CAPN2 reduced it. Collectively, our results support a key role for calpain-2 in controlling the output of adult V-SVZ neural stem and progenitor cells through cleavage of the neuronal fate determinant MEIS2.
Collapse
Affiliation(s)
- Tanja Müller
- Goethe University, Faculty of Medicine, University Hospital Frankfurt, Institute of Neurology (Edinger Institute), 60528 Frankfurt, Germany
- Goethe University, University Hospital Frankfurt, Dr. Senckenberg Institute of Neurooncology and Institute of Neurology (Edinger Institute), Frankfurt Cancer Institute (FCI), University Cancer Center Frankfurt (UCT), MSNZ Junior Group Translational Neurooncology, 60528 Frankfurt, Germany
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Luxembourg Centre of Neuropathology (LCNP), 1445 Luxembourg, Luxembourg
| | - Marina Reichlmeir
- Goethe University, Faculty of Medicine, University Hospital Frankfurt, Institute of Neurology (Edinger Institute), 60528 Frankfurt, Germany
| | - Ann-Christin Hau
- Goethe University, University Hospital Frankfurt, Dr. Senckenberg Institute of Neurooncology and Institute of Neurology (Edinger Institute), Frankfurt Cancer Institute (FCI), University Cancer Center Frankfurt (UCT), MSNZ Junior Group Translational Neurooncology, 60528 Frankfurt, Germany
| | - Ilka Wittig
- Goethe University, Faculty of Medicine, Institute for Cardiovascular Physiology, Functional Proteomics, 60590, Frankfurt, Germany
| | - Dorothea Schulte
- Goethe University, Faculty of Medicine, University Hospital Frankfurt, Institute of Neurology (Edinger Institute), 60528 Frankfurt, Germany
| |
Collapse
|
14
|
Riley VA, Shankar V, Holmberg JC, Sokolov AM, Neckles VN, Williams K, Lyman R, Mackay TF, Feliciano DM. Tsc2 coordinates neuroprogenitor differentiation. iScience 2023; 26:108442. [PMID: 38107199 PMCID: PMC10724693 DOI: 10.1016/j.isci.2023.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem cells (NSCs) of the ventricular-subventricular zone (V-SVZ) generate numerous cell types. The uncoupling of mRNA transcript availability and translation occurs during the progression from stem to differentiated states. The mTORC1 kinase pathway acutely controls proteins that regulate mRNA translation. Inhibiting mTORC1 during differentiation is hypothesized to be critical for brain development since somatic mutations of mTORC1 regulators perturb brain architecture. Inactivating mutations of TSC1 or TSC2 genes cause tuberous sclerosis complex (TSC). TSC patients have growths near the striatum and ventricles. Here, it is demonstrated that V-SVZ NSC Tsc2 inactivation causes striatal hamartomas. Tsc2 removal altered translation factors, translatomes, and translational efficiency. Single nuclei RNA sequencing following in vivo loss of Tsc2 revealed changes in NSC activation states. The inability to decouple mRNA transcript availability and translation delayed differentiation leading to the retention of immature phenotypes in hamartomas. Taken together, Tsc2 is required for translational repression and differentiation.
Collapse
Affiliation(s)
- Victoria A. Riley
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Vijay Shankar
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | | | - Aidan M. Sokolov
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | - Kaitlyn Williams
- Clemson University Genomics and Bioinformatics Facility (CUGBF), Clemson University, Clemson, SC, USA
| | - Rachel Lyman
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Trudy F.C. Mackay
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - David M. Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| |
Collapse
|
15
|
Tung VSK, Mathews F, Boruk M, Suppa G, Foronjy R, Pato MT, Pato CN, Knowles JA, Evgrafov OV. Cultured Mesenchymal Cells from Nasal Turbinate as a Cellular Model of the Neurodevelopmental Component of Schizophrenia Etiology. Int J Mol Sci 2023; 24:15339. [PMID: 37895019 PMCID: PMC10607243 DOI: 10.3390/ijms242015339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The study of neurodevelopmental molecular mechanisms in schizophrenia requires the development of adequate biological models such as patient-derived cells and their derivatives. We previously utilized cell lines with neural progenitor properties (CNON) derived from the superior or middle turbinates of patients with schizophrenia and control groups to study schizophrenia-specific gene expression. In this study, we analyzed single-cell RNA seq data from two CNON cell lines (one derived from an individual with schizophrenia (SCZ) and the other from a control group) and two biopsy samples from the middle turbinate (MT) (also from an individual with SCZ and a control). We compared our data with previously published data regarding the olfactory neuroepithelium and demonstrated that CNON originated from a single cell type present both in middle turbinate and the olfactory neuroepithelium and expressed in multiple markers of mesenchymal cells. To define the relatedness of CNON to the developing human brain, we also compared CNON datasets with scRNA-seq data derived from an embryonic brain and found that the expression profile of the CNON closely matched the expression profile one of the cell types in the embryonic brain. Finally, we evaluated the differences between SCZ and control samples to assess the utility and potential benefits of using CNON single-cell RNA seq to study the etiology of schizophrenia.
Collapse
Affiliation(s)
- Victoria Sook Keng Tung
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Fasil Mathews
- Department of Otolaryngology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Marina Boruk
- Department of Otolaryngology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Gabrielle Suppa
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Robert Foronjy
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Michele T. Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA (C.N.P.)
| | - Carlos N. Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA (C.N.P.)
| | - James A. Knowles
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA;
| | - Oleg V. Evgrafov
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA;
| |
Collapse
|
16
|
Yang Q, Zhang L, Li M, Xu Y, Chen X, Yuan R, Ou X, He M, Liao M, Zhang L, Dai H, Lv M, Xie X, Liang W, Chen X. Single-nucleus transcriptomic mapping uncovers targets for traumatic brain injury. Genome Res 2023; 33:1818-1832. [PMID: 37730437 PMCID: PMC10691476 DOI: 10.1101/gr.277881.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
The subventricular zone (SVZ) is a neurogenic niche that contributes to homeostasis and repair after brain injury. However, the effects of mild traumatic brain injury (mTBI) on the divergence of the regulatory DNA landscape within the SVZ and its link to functional alterations remain unexplored. In this study, we mapped the transcriptome atlas of murine SVZ and its responses to mTBI at the single-cell level. We observed cell-specific gene expression changes following mTBI and unveiled diverse cell-to-cell interaction networks that influence a wide array of cellular processes. Moreover, we report novel neurogenesis lineage trajectories and related key transcription factors, which we validate through loss-of-function experiments. Specifically, we validate the role of Tcf7l1, a cell cycle gene regulator, in promoting neural stem cell differentiation toward the neuronal lineage after mTBI, providing a potential target for regenerative medicine. Overall, our study profiles an SVZ transcriptome reference map, which underlies the differential cellular behavior in response to mTBI. The identified key genes and pathways that may ameliorate brain damage or facilitate neural repair serve as a comprehensive resource for drug discovery in the context of mTBI.
Collapse
Affiliation(s)
- Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
- West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Lingxuan Zhang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Yang Xu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Xiaogang Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Ruixuan Yuan
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Xiaofeng Ou
- Department of Critical Care Medicine, Sichuan University, Chengdu 610000, China
| | - Min He
- Department of Critical Care Medicine, Sichuan University, Chengdu 610000, China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Lin Zhang
- Sichuan University, Chengdu 610041, China
| | - Hao Dai
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Xiaoqi Xie
- Department of Critical Care Medicine, Sichuan University, Chengdu 610000, China;
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China;
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China;
| |
Collapse
|
17
|
Gao MY, Wang JQ, He J, Gao R, Zhang Y, Li X. Single-Cell RNA-Sequencing in Astrocyte Development, Heterogeneity, and Disease. Cell Mol Neurobiol 2023; 43:3449-3464. [PMID: 37552355 PMCID: PMC11409980 DOI: 10.1007/s10571-023-01397-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
Astrocytes are the most plentiful cell type in the central nervous system (CNS) and perform complicated functions in health and disease. It is obvious that different astrocyte subpopulations, or activation states, are relevant with specific genomic programs and functions. In recent years, the emergence of new technologies such as single-cell RNA sequencing (scRNA-seq) has made substantial advance in the characterization of astrocyte heterogeneity, astrocyte developmental trajectory, and its role in CNS diseases which has had a significant impact on neuroscience. In this review, we present an overview of astrocyte development, heterogeneity, and its essential role in the physiological and pathological environments of the CNS. We focused on the critical role of single-cell sequencing in revealing astrocyte development, heterogeneity, and its role in different CNS diseases.
Collapse
Affiliation(s)
- Meng-Yuan Gao
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Jia-Qi Wang
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Jin He
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Rui Gao
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yuan Zhang
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xing Li
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
18
|
Carrell EM, Chen YH, Ranum PT, Coffin SL, Singh LN, Tecedor L, Keiser MS, Hudry E, Hyman BT, Davidson BL. VWA3A-derived ependyma promoter drives increased therapeutic protein secretion into the CSF. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:296-304. [PMID: 37547292 PMCID: PMC10400871 DOI: 10.1016/j.omtn.2023.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Recombinant adeno-associated viral vectors (rAAVs) are a promising strategy to treat neurodegenerative diseases because of their ability to infect non-dividing cells and confer long-term transgene expression. Despite an ever-growing library of capsid variants, widespread delivery of AAVs in the adult central nervous system remains a challenge. We have previously demonstrated successful distribution of secreted proteins by infection of the ependyma, a layer of post-mitotic epithelial cells lining the ventricles of the brain and central column of the spinal cord, and subsequent protein delivery via the cerebrospinal fluid (CSF). Here we define a functional ependyma promoter to enhance expression from this cell type. Using RNA sequencing on human autopsy samples, we identified disease- and age-independent ependyma gene signatures. Associated promoters were cloned and screened as libraries in mouse and rhesus macaque to reveal cross-species function of a human DNA-derived von Willebrand factor domain containing 3A (VWA3A) promoter. When tested in mice, our VWA3A promoter drove strong, ependyma-localized expression of eGFP and increased secreted ApoE protein levels in the CSF by 2-12× over the ubiquitous iCAG promoter.
Collapse
Affiliation(s)
- Ellie M. Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yong Hong Chen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul T. Ranum
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephanie L. Coffin
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Larry N. Singh
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Luis Tecedor
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S. Keiser
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eloise Hudry
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Beverly L. Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Mihailova V, Stoyanova II, Tonchev AB. Glial Populations in the Human Brain Following Ischemic Injury. Biomedicines 2023; 11:2332. [PMID: 37760773 PMCID: PMC10525766 DOI: 10.3390/biomedicines11092332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
There is a growing interest in glial cells in the central nervous system due to their important role in maintaining brain homeostasis under physiological conditions and after injury. A significant amount of evidence has been accumulated regarding their capacity to exert either pro-inflammatory or anti-inflammatory effects under different pathological conditions. In combination with their proliferative potential, they contribute not only to the limitation of brain damage and tissue remodeling but also to neuronal repair and synaptic recovery. Moreover, reactive glial cells can modulate the processes of neurogenesis, neuronal differentiation, and migration of neurons in the existing neural circuits in the adult brain. By discovering precise signals within specific niches, the regulation of sequential processes in adult neurogenesis holds the potential to unlock strategies that can stimulate the generation of functional neurons, whether in response to injury or as a means of addressing degenerative neurological conditions. Cerebral ischemic stroke, a condition falling within the realm of acute vascular disorders affecting the circulation in the brain, stands as a prominent global cause of disability and mortality. Extensive investigations into glial plasticity and their intricate interactions with other cells in the central nervous system have predominantly relied on studies conducted on experimental animals, including rodents and primates. However, valuable insights have also been gleaned from in vivo studies involving poststroke patients, utilizing highly specialized imaging techniques. Following the attempts to map brain cells, the role of various transcription factors in modulating gene expression in response to cerebral ischemia is gaining increasing popularity. Although the results obtained thus far remain incomplete and occasionally ambiguous, they serve as a solid foundation for the development of strategies aimed at influencing the recovery process after ischemic brain injury.
Collapse
Affiliation(s)
- Victoria Mihailova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University Varna, 9000 Varna, Bulgaria; (I.I.S.); (A.B.T.)
| | | | | |
Collapse
|
20
|
Pereira MJ, Ayana R, Holt MG, Arckens L. Chemogenetic manipulation of astrocyte activity at the synapse- a gateway to manage brain disease. Front Cell Dev Biol 2023; 11:1193130. [PMID: 37534103 PMCID: PMC10393042 DOI: 10.3389/fcell.2023.1193130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023] Open
Abstract
Astrocytes are the major glial cell type in the central nervous system (CNS). Initially regarded as supportive cells, it is now recognized that this highly heterogeneous cell population is an indispensable modulator of brain development and function. Astrocytes secrete neuroactive molecules that regulate synapse formation and maturation. They also express hundreds of G protein-coupled receptors (GPCRs) that, once activated by neurotransmitters, trigger intracellular signalling pathways that can trigger the release of gliotransmitters which, in turn, modulate synaptic transmission and neuroplasticity. Considering this, it is not surprising that astrocytic dysfunction, leading to synaptic impairment, is consistently described as a factor in brain diseases, whether they emerge early or late in life due to genetic or environmental factors. Here, we provide an overview of the literature showing that activation of genetically engineered GPCRs, known as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), to specifically modulate astrocyte activity partially mimics endogenous signalling pathways in astrocytes and improves neuronal function and behavior in normal animals and disease models. Therefore, we propose that expressing these genetically engineered GPCRs in astrocytes could be a promising strategy to explore (new) signalling pathways which can be used to manage brain disorders. The precise molecular, functional and behavioral effects of this type of manipulation, however, differ depending on the DREADD receptor used, targeted brain region and timing of the intervention, between healthy and disease conditions. This is likely a reflection of regional and disease/disease progression-associated astrocyte heterogeneity. Therefore, a thorough investigation of the effects of such astrocyte manipulation(s) must be conducted considering the specific cellular and molecular environment characteristic of each disease and disease stage before this has therapeutic applicability.
Collapse
Affiliation(s)
- Maria João Pereira
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Rajagopal Ayana
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Matthew G. Holt
- Instituto de Investigação e Inovação em Saúde (i3S), Laboratory of Synapse Biology, Universidade do Porto, Porto, Portugal
| | - Lutgarde Arckens
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
21
|
Blasco-Chamarro L, Fariñas I. Fine-tuned rest: unveiling the regulatory landscape of adult quiescent neural stem cells. Neuroscience 2023:S0306-4522(23)00298-1. [PMID: 37437796 DOI: 10.1016/j.neuroscience.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Cell quiescence is an essential mechanism that allows cells to temporarily halt proliferation while preserving the potential to resume it at a later time. The molecular mechanisms underlying cell quiescence are complex and involve the regulation of various signaling pathways, transcription factors and epigenetic modifications. The importance of unveiling the mechanisms regulating the quiescent state is undeniable, as its long-term maintenance is key to sustain tissue homeostasis throughout life. Neural stem cells (NSCs) are maintained in the subependymal zone (SEZ) niche of adult mammalian brains mostly as long-lasting quiescent cells, owing to multiple intrinsic and extrinsic cues that actively regulate this state. Differently from other non-proliferative states, quiescence is a reversible and tightly regulated condition that can re-activate to support the formation of new neurons throughout adult lifespan. Decoding its regulatory mechanisms in homeostasis and unveiling how it is modulated in the context of the aged brain or during tumorigenesis, could bring us closer to the development of new potential strategies to intervene in adult neurogenesis with therapeutic purposes. Starting with a general conceptualization of the quiescent state in different stem cell niches, we here review what we have learned about NSC quiescence in the SEZ, encompassing the experimental strategies used for its study, to end up discussing the modulation of quiescence in the context of a physiology or pathological NSC dysregulation.
Collapse
Affiliation(s)
- Laura Blasco-Chamarro
- Biomedical Research Network on Neurodegenerative Diseases (CIBERNED); Department of Cell Biology; Biotechnology and Biomedicine Institute (BioTecMed), University of Valencia, Spain
| | - Isabel Fariñas
- Biomedical Research Network on Neurodegenerative Diseases (CIBERNED); Department of Cell Biology; Biotechnology and Biomedicine Institute (BioTecMed), University of Valencia, Spain.
| |
Collapse
|
22
|
Yeo RW, Zhou OY, Zhong BL, Sun ED, Navarro Negredo P, Nair S, Sharmin M, Ruetz TJ, Wilson M, Kundaje A, Dunn AR, Brunet A. Chromatin accessibility dynamics of neurogenic niche cells reveal defects in neural stem cell adhesion and migration during aging. NATURE AGING 2023; 3:866-893. [PMID: 37443352 PMCID: PMC10353944 DOI: 10.1038/s43587-023-00449-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023]
Abstract
The regenerative potential of brain stem cell niches deteriorates during aging. Yet the mechanisms underlying this decline are largely unknown. Here we characterize genome-wide chromatin accessibility of neurogenic niche cells in vivo during aging. Interestingly, chromatin accessibility at adhesion and migration genes decreases with age in quiescent neural stem cells (NSCs) but increases with age in activated (proliferative) NSCs. Quiescent and activated NSCs exhibit opposing adhesion behaviors during aging: quiescent NSCs become less adhesive, whereas activated NSCs become more adhesive. Old activated NSCs also show decreased migration in vitro and diminished mobilization out of the niche for neurogenesis in vivo. Using tension sensors, we find that aging increases force-producing adhesions in activated NSCs. Inhibiting the cytoskeletal-regulating kinase ROCK reduces these adhesions, restores migration in old activated NSCs in vitro, and boosts neurogenesis in vivo. These results have implications for restoring the migratory potential of NSCs and for improving neurogenesis in the aged brain.
Collapse
Affiliation(s)
- Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Olivia Y Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Brian L Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | | | - Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Mahfuza Sharmin
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Tyson J Ruetz
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Mikaela Wilson
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Paez-Gonzalez P, Lopez-de-San-Sebastian J, Ceron-Funez R, Jimenez AJ, Rodríguez-Perez LM. Therapeutic strategies to recover ependymal barrier after inflammatory damage: relevance for recovering neurogenesis during development. Front Neurosci 2023; 17:1204197. [PMID: 37397456 PMCID: PMC10308384 DOI: 10.3389/fnins.2023.1204197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
The epithelium covering the surfaces of the cerebral ventricular system is known as the ependyma, and is essential for maintaining the physical and functional integrity of the central nervous system. Additionally, the ependyma plays an essential role in neurogenesis, neuroinflammatory modulation and neurodegenerative diseases. Ependyma barrier is severely affected by perinatal hemorrhages and infections that cross the blood brain barrier. The recovery and regeneration of ependyma after damage are key to stabilizing neuroinflammatory and neurodegenerative processes that are critical during early postnatal ages. Unfortunately, there are no effective therapies to regenerate this tissue in human patients. Here, the roles of the ependymal barrier in the context of neurogenesis and homeostasis are reviewed, and future research lines for development of actual therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Patricia Paez-Gonzalez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | | | - Raquel Ceron-Funez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
| | - Antonio J. Jimenez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Luis Manuel Rodríguez-Perez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Sports, University of Malaga, Málaga, Spain
| |
Collapse
|
24
|
Murtaj V, Butti E, Martino G, Panina-Bordignon P. Endogenous neural stem cells characterization using omics approaches: Current knowledge in health and disease. Front Cell Neurosci 2023; 17:1125785. [PMID: 37091923 PMCID: PMC10113633 DOI: 10.3389/fncel.2023.1125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Neural stem cells (NSCs), an invaluable source of neuronal and glial progeny, have been widely interrogated in the last twenty years, mainly to understand their therapeutic potential. Most of the studies were performed with cells derived from pluripotent stem cells of either rodents or humans, and have mainly focused on their potential in regenerative medicine. High-throughput omics technologies, such as transcriptomics, epigenetics, proteomics, and metabolomics, which exploded in the past decade, represent a powerful tool to investigate the molecular mechanisms characterizing the heterogeneity of endogenous NSCs. The transition from bulk studies to single cell approaches brought significant insights by revealing complex system phenotypes, from the molecular to the organism level. Here, we will discuss the current literature that has been greatly enriched in the “omics era”, successfully exploring the nature and function of endogenous NSCs and the process of neurogenesis. Overall, the information obtained from omics studies of endogenous NSCs provides a sharper picture of NSCs function during neurodevelopment in healthy and in perturbed environments.
Collapse
Affiliation(s)
- Valentina Murtaj
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Erica Butti
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Paola Panina-Bordignon
| |
Collapse
|
25
|
Tung VSK, Mathews F, Boruk M, Suppa G, Foronjy R, Pato M, Pato C, Knowles JA, Evgrafov OV. Cultured Mesenchymal Cells from Nasal Turbinate as a Cellular Model of the Neurodevelopmental Component of Schizophrenia Etiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534295. [PMID: 37034711 PMCID: PMC10081251 DOI: 10.1101/2023.03.28.534295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Study of the neurodevelopmental molecular mechanisms of schizophrenia requires the development of adequate biological models such as patient-derived cells and their derivatives. We previously used cell lines with neural progenitor properties (CNON) derived from superior or middle turbinates of patients with schizophrenia and control groups to study gene expression specific to schizophrenia. In this study, we compared single cell-RNA seq data from two CNON cell lines, one derived from an individual with schizophrenia (SCZ) and the other from a control group, with two biopsy samples from the middle turbinate (MT), also from an individual with SCZ and a control. In addition, we compared our data with previously published data from olfactory neuroepithelium (1). Our data demonstrated that CNON originated from a single cell type which is present both in middle turbinate and olfactory neuroepithelium. CNON express multiple markers of mesenchymal cells. In order to define relatedness of CNON to the developing human brain, we also compared CNON datasets with scRNA-seq data of embryonic brain (2) and found that the expression profile of CNON very closely matched one of the cell types in the embryonic brain. Finally, we evaluated differences between SCZ and control samples to assess usability and potential benefits of using single cell RNA-seq of CNON to study etiology of schizophrenia.
Collapse
Affiliation(s)
| | - Fasil Mathews
- Department of Otolaryngology, State University of New York at Downstate, Brooklyn, NY, USA
| | - Marina Boruk
- Department of Otolaryngology, State University of New York at Downstate, Brooklyn, NY, USA
| | - Gabrielle Suppa
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY, USA
| | - Robert Foronjy
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY, USA
| | | | - Carlos Pato
- Department of Psychiatry, Rutgers University
| | - James A. Knowles
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Oleg V. Evgrafov
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY, USA
| |
Collapse
|
26
|
Gonzalez L, Domingo-Muelas A, Duart-Abadia P, Nuñez M, Mikolcevic P, Llonch E, Cubillos-Rojas M, Cánovas B, Forrow SMA, Morante-Redolat JM, Fariñas I, Nebreda AR. The atypical CDK activator RingoA/Spy1 regulates exit from quiescence in neural stem cells. iScience 2023; 26:106202. [PMID: 36876138 PMCID: PMC9982312 DOI: 10.1016/j.isci.2023.106202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
In the adult mammalian brain, most neural stem cells (NSCs) are held in a reversible state of quiescence, which is essential to avoid NSC exhaustion and determine the appropriate neurogenesis rate. NSCs of the mouse adult subependymal niche provide neurons for olfactory circuits and can be found at different depths of quiescence, but very little is known on how their quiescence-to-activation transition is controlled. Here, we identify the atypical cyclin-dependent kinase (CDK) activator RingoA as a regulator of this process. We show that the expression of RingoA increases the levels of CDK activity and facilitates cell cycle entry of a subset of NSCs that divide slowly. Accordingly, RingoA-deficient mice exhibit reduced olfactory neurogenesis with an accumulation of quiescent NSCs. Our results indicate that RingoA plays an important role in setting the threshold of CDK activity required for adult NSCs to exit quiescence and may represent a dormancy regulator in adult mammalian tissues.
Collapse
Affiliation(s)
- Laura Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Ana Domingo-Muelas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain.,Instituto de Biotecnología y Biomedicina, Universidad de Valencia, 46100 Burjassot, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid , Spain
| | - Pere Duart-Abadia
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain.,Instituto de Biotecnología y Biomedicina, Universidad de Valencia, 46100 Burjassot, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid , Spain
| | - Marc Nuñez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Petra Mikolcevic
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Elisabet Llonch
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Monica Cubillos-Rojas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Begoña Cánovas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Stephen M A Forrow
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Jose Manuel Morante-Redolat
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain.,Instituto de Biotecnología y Biomedicina, Universidad de Valencia, 46100 Burjassot, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid , Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain.,Instituto de Biotecnología y Biomedicina, Universidad de Valencia, 46100 Burjassot, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid , Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
27
|
Saghatelyan A. Calcium signaling as an integrator and decoder of niche factors to control somatic stem cell quiescence and activation. FEBS J 2023; 290:677-683. [PMID: 34797958 DOI: 10.1111/febs.16289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 11/18/2021] [Indexed: 02/04/2023]
Abstract
Somatic stem cells (SSCs) play a major role in tissue homeostasis and respond to a panoply of micro-environmental cues by adjusting their quiescence and activation profiles. How these cells integrate and decode multiple niche signals remains elusive. In recent years, Ca2+ signaling has emerged as one of the key intracellular pathways that allow stem cells to dynamically adjust their fate and either to remain quiescent for future needs or to become activated to generate new progeny. Interestingly, not only distinct Ca2+ signatures are associated with the quiescence and activation states of stem cells, but also various extracellular cues impinge on Ca2+ pathways to dynamically regulate the responses of stem cells to different niche signals. This Viewpoint article deals with how Ca2+ signaling may be used to decode and integrate different niche factors and how Ca2+ fluctuations of distinct amplitudes, frequencies, and overall intracellular levels may trigger the differential gene transcription program. Knowledge about mechanisms that allow SSCs to translate the complexity of extracellular niche signaling into intrinsic states of cell quiescence and activation is crucial for understanding life-long tissue homeostasis and regeneration.
Collapse
Affiliation(s)
- Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, Quebec, Canada.,Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
28
|
Domingo-Muelas A, Duart-Abadia P, Morante-Redolat JM, Jordán-Pla A, Belenguer G, Fabra-Beser J, Paniagua-Herranz L, Pérez-Villalba A, Álvarez-Varela A, Barriga FM, Gil-Sanz C, Ortega F, Batlle E, Fariñas I. Post-transcriptional control of a stemness signature by RNA-binding protein MEX3A regulates murine adult neurogenesis. Nat Commun 2023; 14:373. [PMID: 36690670 PMCID: PMC9871011 DOI: 10.1038/s41467-023-36054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Neural stem cells (NSCs) in the adult murine subependymal zone balance their self-renewal capacity and glial identity with the potential to generate neurons during the lifetime. Adult NSCs exhibit lineage priming via pro-neurogenic fate determinants. However, the protein levels of the neural fate determinants are not sufficient to drive direct differentiation of adult NSCs, which raises the question of how cells along the neurogenic lineage avoid different conflicting fate choices, such as self-renewal and differentiation. Here, we identify RNA-binding protein MEX3A as a post-transcriptional regulator of a set of stemness associated transcripts at critical transitions in the subependymal neurogenic lineage. MEX3A regulates a quiescence-related RNA signature in activated NSCs that is needed for their return to quiescence, playing a role in the long-term maintenance of the NSC pool. Furthermore, it is required for the repression of the same program at the onset of neuronal differentiation. Our data indicate that MEX3A is a pivotal regulator of adult murine neurogenesis acting as a translational remodeller.
Collapse
Grants
- EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- Ministerio de Ciencia e Innovación (MICINN, Spain) - PID2020-119917RB-I00.
- Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- Ministerio de Ciencia e Innovación (MICINN, Spain) - PID2020-117937GB-I00, PID2020-119917RB-I00, PID 2019-109155RB-I00, PID2020-114227RB-I00, RyC-2015-19058, PRE2018-084838. Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED, Spain) - MICINN- CB06/05/0086.
Collapse
Affiliation(s)
- Ana Domingo-Muelas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Pere Duart-Abadia
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Jose Manuel Morante-Redolat
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Antonio Jordán-Pla
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Germán Belenguer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Jaime Fabra-Beser
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Lucía Paniagua-Herranz
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Ana Pérez-Villalba
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Adrián Álvarez-Varela
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Francisco M Barriga
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Cristina Gil-Sanz
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain.
| |
Collapse
|
29
|
Dentate gyrus astrocytes exhibit layer-specific molecular, morphological and physiological features. Nat Neurosci 2022; 25:1626-1638. [PMID: 36443610 DOI: 10.1038/s41593-022-01192-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
Neuronal heterogeneity has been established as a pillar of higher central nervous system function, but glial heterogeneity and its implications for neural circuit function are poorly understood. Here we show that the adult mouse dentate gyrus (DG) of the hippocampus is populated by molecularly distinct astrocyte subtypes that are associated with distinct DG layers. Astrocytes localized to different DG compartments also exhibit subtype-specific morphologies. Physiologically, astrocytes in upper DG layers form large syncytia, while those in lower DG compartments form smaller networks. Astrocyte subtypes differentially express glutamate transporters, which is associated with different amplitudes of glutamate transporter-mediated currents. Key molecular and morphological features of astrocyte diversity in the mice DG are conserved in humans. This adds another layer of complexity to our understanding of brain network composition and function, which will be crucial for further studies on astrocytes in health and disease.
Collapse
|
30
|
Baur K, Abdullah Y, Mandl C, Hölzl‐Wenig G, Shi Y, Edelkraut U, Khatri P, Hagenston AM, Irmler M, Beckers J, Ciccolini F. A novel stem cell type at the basal side of the subventricular zone maintains adult neurogenesis. EMBO Rep 2022; 23:e54078. [PMID: 35861333 PMCID: PMC9442324 DOI: 10.15252/embr.202154078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Katja Baur
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Yomn Abdullah
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Claudia Mandl
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Gabriele Hölzl‐Wenig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Yan Shi
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Udo Edelkraut
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Priti Khatri
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Martin Irmler
- Helmholtz Zentrum München GmbH Institute of Experimental Genetics Neuherberg Germany
| | - Johannes Beckers
- Helmholtz Zentrum München GmbH Institute of Experimental Genetics Neuherberg Germany
- Technische Universität München Chair of Experimental Genetics Weihenstephan Germany
- Deutsches Zentrum für Diabetesforschung e.V. (DZD) Neuherberg Germany
| | - Francesca Ciccolini
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| |
Collapse
|
31
|
Frederico B, Martins I, Chapela D, Gasparrini F, Chakravarty P, Ackels T, Piot C, Almeida B, Carvalho J, Ciccarelli A, Peddie CJ, Rogers N, Briscoe J, Guillemot F, Schaefer AT, Saúde L, Reis e Sousa C. DNGR-1-tracing marks an ependymal cell subset with damage-responsive neural stem cell potential. Dev Cell 2022; 57:1957-1975.e9. [PMID: 35998585 PMCID: PMC9616800 DOI: 10.1016/j.devcel.2022.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/16/2022] [Accepted: 07/20/2022] [Indexed: 01/19/2023]
Abstract
Cells with latent stem ability can contribute to mammalian tissue regeneration after damage. Whether the central nervous system (CNS) harbors such cells remains controversial. Here, we report that DNGR-1 lineage tracing in mice identifies an ependymal cell subset, wherein resides latent regenerative potential. We demonstrate that DNGR-1-lineage-traced ependymal cells arise early in embryogenesis (E11.5) and subsequently spread across the lining of cerebrospinal fluid (CSF)-filled compartments to form a contiguous sheet from the brain to the end of the spinal cord. In the steady state, these DNGR-1-traced cells are quiescent, committed to their ependymal cell fate, and do not contribute to neuronal or glial lineages. However, trans-differentiation can be induced in adult mice by CNS injury or in vitro by culture with suitable factors. Our findings highlight previously unappreciated ependymal cell heterogeneity and identify across the entire CNS an ependymal cell subset wherein resides damage-responsive neural stem cell potential.
Collapse
Affiliation(s)
- Bruno Frederico
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Isaura Martins
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Diana Chapela
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; TechnoPhage, SA, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francesca Gasparrini
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tobias Ackels
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Cécile Piot
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bruna Almeida
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joana Carvalho
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alessandro Ciccarelli
- Advanced Light Microscopy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christopher J Peddie
- Electron Microscopy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Neil Rogers
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James Briscoe
- Developmental Dynamic Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - François Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andreas T Schaefer
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuroscience, Physiology &Pharmacology, University College London, London, UK
| | - Leonor Saúde
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
32
|
Lerond J, Morisse MC, Letourneur Q, Gimonnet C, Navarro S, Gaspar C, Idbaih A, Bielle F. Immune Microenvironment and Lineage Tracing Help to Decipher Rosette-Forming Glioneuronal Tumors: A Multi-Omics Analysis. J Neuropathol Exp Neurol 2022; 81:873-884. [PMID: 35984315 DOI: 10.1093/jnen/nlac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rosette-forming glioneuronal tumors (RGNT) are rare low-grade primary central nervous system (CNS) tumors. The methylation class (MC) RGNT (MC-RGNT) delineates RGNT from other neurocytic CNS tumors with similar histological features. We performed a comprehensive molecular analysis including whole-exome sequencing, RNAseq, and methylome on 9 tumors with similar histology, focusing on the immune microenvironment and cell of origin of RGNT. Three RGNT in this cohort were plotted within the MC-RGNT and characterized by FGFR1 mutation plus PIK3CA or NF1 mutations. RNAseq analysis, validated by immunohistochemistry, identified 2 transcriptomic groups with distinct immune microenvironments. The "cold" group was distinguishable by a low immune infiltration and included the 3 MC-RGNT and 1 MC-pilocytic astrocytoma; the "hot" group included other tumors with a rich immune infiltration. Gene set enrichment analysis showed that the "cold" group had upregulated NOTCH pathway and mainly oligodendrocyte precursor cell and neuronal phenotypes, while the "hot" group exhibited predominantly astrocytic and neural stem cell phenotypes. In silico deconvolution identified the cerebellar granule cell lineage as a putative cell of origin of RGNT. Our study identified distinct tumor biology and immune microenvironments as key features relevant to the pathogenesis and management of RGNT.
Collapse
Affiliation(s)
- Julie Lerond
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC Curamus, Paris, France
| | - Mony Chenda Morisse
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | | | | | - Soledad Navarro
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurochirurgie, Paris, France
| | - Cassandra Gaspar
- Sorbonne Université, Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Ahmed Idbaih
- Sorbonne Université, AP-HP, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Franck Bielle
- Sorbonne Université, AP-HP, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neuropathologie, Paris, France.,AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Onconeurotek, Paris, France
| |
Collapse
|
33
|
Everlien I, Yen TY, Liu YC, Di Marco B, Vázquez-Marín J, Centanin L, Alfonso J, Monyer H. Diazepam binding inhibitor governs neurogenesis of excitatory and inhibitory neurons during embryonic development via GABA signaling. Neuron 2022; 110:3139-3153.e6. [PMID: 35998632 DOI: 10.1016/j.neuron.2022.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
Abstract
Of the neurotransmitters that influence neurogenesis, gamma-aminobutyric acid (GABA) plays an outstanding role, and GABA receptors support non-synaptic signaling in progenitors and migrating neurons. Here, we report that expression levels of diazepam binding inhibitor (DBI), an endozepine that modulates GABA signaling, regulate embryonic neurogenesis, affecting the long-term outcome regarding the number of neurons in the postnatal mouse brain. We demonstrate that DBI is highly expressed in radial glia and intermediate progenitor cells in the germinal zones of the embryonic mouse brain that give rise to excitatory and inhibitory cells. The mechanism by which DBI controls neurogenesis involves its action as a negative allosteric modulator of GABA-induced currents on progenitor cells that express GABAA receptors containing γ2 subunits. DBI's modulatory effect parallels that of GABAA-receptor-mediating signaling in these cells in the proliferative areas, reflecting the tight control that DBI exerts on embryonic neurogenesis.
Collapse
Affiliation(s)
- Isabelle Everlien
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ting-Yun Yen
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Chao Liu
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Barbara Di Marco
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Javier Vázquez-Marín
- Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Lázaro Centanin
- Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
34
|
Hirrlinger J, Nimmerjahn A. A perspective on astrocyte regulation of neural circuit function and animal behavior. Glia 2022; 70:1554-1580. [PMID: 35297525 PMCID: PMC9291267 DOI: 10.1002/glia.24168] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022]
Abstract
Studies over the past two decades have demonstrated that astrocytes are tightly associated with neurons and play pivotal roles in neural circuit development, operation, and adaptation in health and disease. Nevertheless, precisely how astrocytes integrate diverse neuronal signals, modulate neural circuit structure and function at multiple temporal and spatial scales, and influence animal behavior or disease through aberrant excitation and molecular output remains unclear. This Perspective discusses how new and state-of-the-art approaches, including fluorescence indicators, opto- and chemogenetic actuators, genetic targeting tools, quantitative behavioral assays, and computational methods, might help resolve these longstanding questions. It also addresses complicating factors in interpreting astrocytes' role in neural circuit regulation and animal behavior, such as their heterogeneity, metabolism, and inter-glial communication. Research on these questions should provide a deeper mechanistic understanding of astrocyte-neuron assemblies' role in neural circuit function, complex behaviors, and disease.
Collapse
Affiliation(s)
- Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Medical Faculty,
University of Leipzig, Leipzig, Germany
- Department of Neurogenetics, Max-Planck-Institute for
Multidisciplinary Sciences, Göttingen, Germany
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for
Biological Studies, La Jolla, California
| |
Collapse
|
35
|
Ye X, Li M, Bian W, Wu A, Zhang T, Li J, Zhou P, Cui H, Ding YQ, Liao M, Sun C. RBP-J deficiency promoted the proliferation and differentiation of CD133-positive cells in vitro and in vivo studies. Eur J Neurosci 2022; 56:3839-3860. [PMID: 35661443 DOI: 10.1111/ejn.15727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/02/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022]
Abstract
Although Notch signaling pathway could control the proliferation and differentiation of neural stem cells (NSCs), it is largely unknown about the effect of Notch signaling pathway on the neurogenesis of CD133-positive cells. By using the primary cultured ependymal cells and the transgenic mouse, we found that CD133 immunoreactivity was exclusively localized in the ependymal layer of ventricles, moreover, most CD133-positive cells were co-labeled with Nestin. In addition, recombination signal binding protein J (RBP-J), a key nuclear effector of Notch signaling pathway, was highly active in CD133-positive cells. CD133-positive cells can differentiate into the immature and mature neurons, in particular, the number of CD133-positive cells differentiating into the immature and mature neurons was significantly increased following the deficiency or interference of RBP-J in vivo or in vitro. By using real-time qPCR and western blot, we found that RBP-J and Hes1 were down-regulated while Notch1 was up-regulated in the expression levels of mRNAs and proteins following the deficiency or interference of RBP-J. These results demonstrated RBP-J deficiency promoted the proliferation and differentiation of CD133-positive cells. Therefore, we speculated that RBP-J could maintain CD133-positive cells in the characteristics of NSCs possibly by regulating Notch1/RBP-J/Hes1 pathway. It will provide a novel molecular insight into the function of RBP-J, as well as facilitate a future investigation of CD133-positive cells with respect to their potential application in neurodegenerative disorder.
Collapse
Affiliation(s)
- Xin Ye
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengyi Li
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Bian
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Anting Wu
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ting Zhang
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwei Li
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peng Zhou
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huairui Cui
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu-Qiang Ding
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Min Liao
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenyou Sun
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Schaberg E, Götz M, Faissner A. The extracellular matrix molecule tenascin-C modulates cell cycle progression and motility of adult neural stem/progenitor cells from the subependymal zone. Cell Mol Life Sci 2022; 79:244. [PMID: 35430697 PMCID: PMC9013340 DOI: 10.1007/s00018-022-04259-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
Adult neurogenesis has been described in two canonical regions of the adult central nervous system (CNS) of rodents, the subgranular zone (SGZ) of the hippocampus and the subependymal zone (SEZ) of the lateral ventricles. The stem cell niche of the SEZ provides a privileged environment composed of a specialized extracellular matrix (ECM) that comprises the glycoproteins tenascin-C (Tnc) and laminin-1 (LN1). In the present study, we investigated the function of these ECM glycoproteins in the adult stem cell niche. Adult neural stem/progenitor cells (aNSPCs) of the SEZ were prepared from wild type (Tnc+/+) and Tnc knockout (Tnc−/−) mice and analyzed using molecular and cell biological approaches. A delayed maturation of aNSPCs in Tnc−/− tissue was reflected by a reduced capacity to form neurospheres in response to epidermal growth factor (EGF). To examine a potential influence of the ECM on cell proliferation, aNSPCs of both genotypes were studied by cell tracking using digital video microscopy. aNSPCs were cultivated on three different substrates, namely, poly-d-lysine (PDL) and PDL replenished with either LN1 or Tnc for up to 6 days in vitro. On each of the three substrates aNSPCs displayed lineage trees that could be investigated with regard to cell cycle length. The latter appeared reduced in Tnc−/− aNSPCs on PDL and LN1 substrates, less so on Tnc that seemed to compensate the absence of the ECM compound to some extent. Close inspection of the lineage trees revealed a subpopulation of late dividing aNSPCslate that engaged into cycling after a notable delay. aNSPCslate exhibited a clearly different morphology, with a larger cell body and conspicuous processes. aNSPCslate reiterated the reduction in cell cycle length on all substrates tested, which was not rescued on Tnc substrates. When the migratory activity of aNSPC-derived progeny was determined, Tnc−/− neuroblasts displayed significantly longer migration tracks. This was traced to an increased rate of migration episodes compared to the wild-type cells that rested for longer time periods. We conclude that Tnc intervenes in the proliferation of aNSPCs and modulates the motility of neuroblasts in the niche of the SEZ.
Collapse
Affiliation(s)
- Elena Schaberg
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, LMU, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Biomedical Center, LMU, Planegg-Martinsried, Germany
- Synergy, Excellence Cluster for Systems Neurology, BMC, LMU, Planegg-Martinsried, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
37
|
Velloso FJ, Kumari E, Buono KD, Frondelli MJ, Levison SW. Analyzing mouse neural stem cell and progenitor cell proliferation using EdU incorporation and multicolor flow cytometry. STAR Protoc 2022; 3:101065. [PMID: 35005647 PMCID: PMC8718722 DOI: 10.1016/j.xpro.2021.101065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This protocol describes an ex vivo approach to identify and quantify the proportions of proliferating neural stem cells and progenitors of the mouse subventricular zone. It uses ethynyl deoxyuridine (EdU) incorporation to identify dividing cells, combined with multicolor flow cytometry for 4 cell surface antigens to distinguish between 8 phenotypically distinct mouse neural progenitors and stem cells. It has been optimized for wild-type neonatal mice but can be used on mice of any postnatal age. For complete details on the use and execution of this profile, please refer to Kumari et al. (2020).
Collapse
Affiliation(s)
| | - Ekta Kumari
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-NJMS, Newark, NJ 07103, USA
| | | | - Michelle J. Frondelli
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-NJMS, Newark, NJ 07103, USA
| | - Steven W. Levison
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-NJMS, Newark, NJ 07103, USA
| |
Collapse
|
38
|
Identification and functional characterization of CD133+GFAP+CD117+Sca1+ neural stem cells. Mol Cell Biochem 2022; 477:897-914. [DOI: 10.1007/s11010-021-04339-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
|
39
|
Sun B, Wang M, Hoerder-Suabedissen A, Xu C, Packer AM, Szele FG. Intravital Imaging of the Murine Subventricular Zone with Three Photon Microscopy. Cereb Cortex 2022; 32:3057-3067. [PMID: 35029646 PMCID: PMC9290563 DOI: 10.1093/cercor/bhab400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/21/2023] Open
Abstract
The mouse subventricular zone (SVZ) produces neurons throughout life. It is useful for mechanism discovery and is relevant for regeneration. However, the SVZ is deep, significantly restricting live imaging since current methods do not extend beyond a few hundred microns. We developed and adapted three-photon microscopy (3PM) for non-invasive deep brain imaging in live mice, but its utility in imaging the SVZ niche was unknown. Here, with fluorescent dyes and genetic labeling, we show successful 3PM imaging in the whole SVZ, extending to a maximum depth of 1.5 mm ventral to the dura mater. 3PM imaging distinguished multiple SVZ cell types in postnatal and juvenile mice. We also detected fine processes on neural stem cells interacting with the vasculature. Previous live imaging removed overlying cortical tissue or lowered lenses into the brain, which could cause inflammation and alter neurogenesis. We found that neither astrocytes nor microglia become activated in the SVZ, suggesting 3PM does not induce major damage in the niche. Thus, we show for the first time 3PM imaging of the SVZ in live mice. This strategy could be useful for intravital visualization of cell dynamics, molecular, and pathological perturbation and regenerative events.
Collapse
Affiliation(s)
| | | | | | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Adam M Packer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Francis G Szele
- Address correspondence to Adam M. Packer, Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK. and Francis G. Szele, Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
40
|
Iqbal MA, Fong BC, Slack RS. Direct FACS Isolation of Neural Stem/Progenitor Lineages from the Adult Brain. Methods Mol Biol 2022; 2515:117-127. [PMID: 35776349 DOI: 10.1007/978-1-0716-2409-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adult neural stem and progenitor cells reside in the neurogenic niche of the adult brain and have tremendous potential in regenerative medicine. Compelling evidence suggests that adult neurogenesis plays an important role in hippocampal memory formation, plasticity, and mood regulation. Understanding the mechanisms that regulate the function of neural stem/progenitor cells within the brain is a critical step for the development of regenerative strategies to maintain or enhance neurological function. A major challenge in studying these cells is the limited cell number of adult neural stem cells, and the significant changes in their properties induced by in vitro culture and expansion. To best understand the regulation of these cells, they must be studied within their niche context. In this chapter, we provide a simplified protocol for the harvest and isolation of neural stem cell lineages directly from the murine brain, to provide input material for single-cell RNA-seq. This approach will elucidate the true transcriptional signatures and activated pathways in neural stem cell lineages, within the context of their niche environment.
Collapse
Affiliation(s)
- Mohamed Ariff Iqbal
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Bensun C Fong
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
41
|
Velloso FJ, Shankar S, Parpura V, Rakic P, Levison SW. Neural Stem Cells in Adult Mammals are not Astrocytes. ASN Neuro 2022; 14:17590914221134739. [PMID: 36330653 PMCID: PMC9638700 DOI: 10.1177/17590914221134739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
At the turn of the 21st century studies of the cells that resided in the adult mammalian subventricular zone (SVZ) characterized the neural stem cells (NSCs) as a subtype of astrocyte. Over the ensuing years, numerous studies have further characterized the properties of these NSCs and compared them to parenchymal astrocytes. Here we have evaluated the evidence collected to date to establish whether classifying the NSCs as astrocytes is appropriate and useful. We also performed a meta-analysis with 4 previously published datasets that used cell sorting and unbiased single-cell RNAseq to highlight the distinct gene expression profiles of adult murine NSCs and niche astrocytes. On the basis of our understanding of the properties and functions of astrocytes versus the properties and functions of NSCs, and from our comparative transcriptomic analyses we conclude that classifying the adult mammalian NSC as an astrocyte is potentially misleading. From our vantage point, it is more appropriate to refer to the cells in the adult mammalian SVZ that retain the capacity to produce new neurons and macroglia as NSCs without attaching the term "astrocyte-like."
Collapse
Affiliation(s)
- Fernando Janczur Velloso
- Department of Pharmacology, Physiology & Neuroscience, New
Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Sandhya Shankar
- Department of Pharmacology, Physiology & Neuroscience, New
Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham,
Birmingham, AL, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT,
USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New
Haven, CT, USA
| | - Steven W. Levison
- Department of Pharmacology, Physiology & Neuroscience, New
Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
42
|
Impaired Generation of Transit-Amplifying Progenitors in the Adult Subventricular Zone of Cyclin D2 Knockout Mice. Cells 2022; 11:cells11010135. [PMID: 35011697 PMCID: PMC8750346 DOI: 10.3390/cells11010135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
In the adult brain, new neurons are constitutively derived from postnatal neural stem cells/progenitors located in two neurogenic regions: the subventricular zone (SVZ) of the lateral ventricles (migrating and differentiating into different subtypes of the inhibitory interneurons of the olfactory bulbs), and the subgranular layer of the hippocampal dentate gyrus. Cyclin D2 knockout (cD2-KO) mice exhibit reduced numbers of new hippocampal neurons; however, the proliferation deficiency and the dysregulation of adult neurogenesis in the SVZ required further investigation. In this report, we characterized the differentiation potential of each subpopulation of the SVZ neural precursors in cD2-KO mice. The number of newly generated cells in the SVZs was significantly decreased in cD2-KO mice compared to wild type mice (WT), and was not accompanied by elevated levels of apoptosis. Although the number of B1-type quiescent precursors (B1q) and the overall B1-type activated precursors (B1a) were not affected in the SVZ neurogenic niche, the number of transit-amplifying progenitors (TaPs) was significantly reduced. Additionally, the subpopulations of calbindin D28k and calretinin interneurons were diminished in the olfactory bulbs of cD2-KO mice. Our results suggest that cyclin D2 might be critical for the proliferation of neural precursors and progenitors in the SVZ—the transition of B1a into TaPs and, thereafter, the production of newly generated interneurons in the olfactory bulbs. Untangling regulators that functionally modulate adult neurogenesis provides a basis for the development of regenerative therapies for injuries and neurodegenerative diseases.
Collapse
|
43
|
Ohlig S, Clavreul S, Thorwirth M, Simon-Ebert T, Bocchi R, Ulbricht S, Kannayian N, Rossner M, Sirko S, Smialowski P, Fischer-Sternjak J, Götz M. Molecular diversity of diencephalic astrocytes reveals adult astrogenesis regulated by Smad4. EMBO J 2021; 40:e107532. [PMID: 34549820 PMCID: PMC8561644 DOI: 10.15252/embj.2020107532] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Astrocytes regulate brain‐wide functions and also show region‐specific differences, but little is known about how general and region‐specific functions are aligned at the single‐cell level. To explore this, we isolated adult mouse diencephalic astrocytes by ACSA‐2‐mediated magnetic‐activated cell sorting (MACS). Single‐cell RNA‐seq revealed 7 gene expression clusters of astrocytes, with 4 forming a supercluster. Within the supercluster, cells differed by gene expression related to ion homeostasis or metabolism, with the former sharing gene expression with other regions and the latter being restricted to specific regions. All clusters showed expression of proliferation‐related genes, and proliferation of diencephalic astrocytes was confirmed by immunostaining. Clonal analysis demonstrated low level of astrogenesis in the adult diencephalon, but not in cerebral cortex grey matter. This led to the identification of Smad4 as a key regulator of diencephalic astrocyte in vivo proliferation and in vitro neurosphere formation. Thus, astrocytes show diverse gene expression states related to distinct functions with some subsets being more widespread while others are more regionally restricted. However, all share low‐level proliferation revealing the novel concept of adult astrogenesis in the diencephalon.
Collapse
Affiliation(s)
- Stefanie Ohlig
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Solène Clavreul
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Manja Thorwirth
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Tatiana Simon-Ebert
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Riccardo Bocchi
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Sabine Ulbricht
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Nirmal Kannayian
- Molecular Neurobiology, Department of Psychiatry, LMU Munich, Munich, Germany
| | - Moritz Rossner
- Molecular Neurobiology, Department of Psychiatry, LMU Munich, Munich, Germany
| | - Swetlana Sirko
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Pawel Smialowski
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Judith Fischer-Sternjak
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany.,SYNERGY, Excellence cluster of Systems Neurology, LMU Munich, Munich, Germany
| |
Collapse
|
44
|
Han S, Okawa S, Wilkinson GA, Ghazale H, Adnani L, Dixit R, Tavares L, Faisal I, Brooks MJ, Cortay V, Zinyk D, Sivitilli A, Li S, Malik F, Ilnytskyy Y, Angarica VE, Gao J, Chinchalongporn V, Oproescu AM, Vasan L, Touahri Y, David LA, Raharjo E, Kim JW, Wu W, Rahmani W, Chan JAW, Kovalchuk I, Attisano L, Kurrasch D, Dehay C, Swaroop A, Castro DS, Biernaskie J, Del Sol A, Schuurmans C. Proneural genes define ground-state rules to regulate neurogenic patterning and cortical folding. Neuron 2021; 109:2847-2863.e11. [PMID: 34407390 PMCID: PMC12080610 DOI: 10.1016/j.neuron.2021.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
Asymmetric neuronal expansion is thought to drive evolutionary transitions between lissencephalic and gyrencephalic cerebral cortices. We report that Neurog2 and Ascl1 proneural genes together sustain neurogenic continuity and lissencephaly in rodent cortices. Using transgenic reporter mice and human cerebral organoids, we found that Neurog2 and Ascl1 expression defines a continuum of four lineage-biased neural progenitor cell (NPC) pools. Double+ NPCs, at the hierarchical apex, are least lineage restricted due to Neurog2-Ascl1 cross-repression and display unique features of multipotency (more open chromatin, complex gene regulatory network, G2 pausing). Strikingly, selectively eliminating double+ NPCs by crossing Neurog2-Ascl1 split-Cre mice with diphtheria toxin-dependent "deleter" strains locally disrupts Notch signaling, perturbs neurogenic symmetry, and triggers cortical folding. In support of our discovery that double+ NPCs are Notch-ligand-expressing "niche" cells that control neurogenic periodicity and cortical folding, NEUROG2, ASCL1, and HES1 transcript distribution is modular (adjacent high/low zones) in gyrencephalic macaque cortices, prefiguring future folds.
Collapse
Affiliation(s)
- Sisu Han
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Integrated BioBank of Luxembourg, 3555, 3531 Dudelange, Luxembourg
| | - Grey Atteridge Wilkinson
- Department of Biochemistry and Molecular Biology, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hussein Ghazale
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lata Adnani
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry and Molecular Biology, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rajiv Dixit
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ligia Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Imrul Faisal
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew J Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1204, USA
| | - Veronique Cortay
- Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Dawn Zinyk
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
| | - Adam Sivitilli
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Saiqun Li
- Department of Biochemistry and Molecular Biology, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Faizan Malik
- Department of Medical Genetics, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Vladimir Espinosa Angarica
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Jinghua Gao
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Vorapin Chinchalongporn
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ana-Maria Oproescu
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lakshmy Vasan
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yacine Touahri
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Luke Ajay David
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eko Raharjo
- Department of Comparative Biology and Experimental Medicine, HBI, ACHRI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jung-Woong Kim
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1204, USA
| | - Wei Wu
- Department of Pathology and Laboratory Medicine, Charbonneau Cancer Institute, HBI, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Waleed Rahmani
- Department of Comparative Biology and Experimental Medicine, HBI, ACHRI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jennifer Ai-Wen Chan
- Department of Pathology and Laboratory Medicine, Charbonneau Cancer Institute, HBI, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Deborah Kurrasch
- Department of Medical Genetics, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Colette Dehay
- Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1204, USA
| | - Diogo S Castro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, HBI, ACHRI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Carol Schuurmans
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
45
|
Fargeas CA, Lorico A, Corbeil D. Commentary: Could We Address the Interplay Between CD133, Wnt/β-Catenin, and TERT Signaling Pathways as a Potential Target for Glioblastoma Therapy? Front Oncol 2021; 11:712358. [PMID: 34476215 PMCID: PMC8406637 DOI: 10.3389/fonc.2021.712358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Christine A Fargeas
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Aurelio Lorico
- College of Medicine, Touro University Nevada, Henderson, NV, United States
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
46
|
Marymonchyk A, Malvaut S, Saghatelyan A. In vivo live imaging of postnatal neural stem cells. Development 2021; 148:271820. [PMID: 34383894 DOI: 10.1242/dev.199778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neural stem cells (NSCs) are maintained in specific regions of the postnatal brain and contribute to its structural and functional plasticity. However, the long-term renewal potential of NSCs and their mode of division remain elusive. The use of advanced in vivo live imaging approaches may expand our knowledge of NSC physiology and provide new information for cell replacement therapies. In this Review, we discuss the in vivo imaging methods used to study NSC dynamics and recent live-imaging results with respect to specific intracellular pathways that allow NSCs to integrate and decode different micro-environmental signals. Lastly, we discuss future directions that may provide answers to unresolved questions regarding NSC physiology.
Collapse
Affiliation(s)
- Alina Marymonchyk
- CERVO Brain Research Center, Quebec City, QC, CanadaG1J 2G3.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, CanadaG1V 0A6
| | - Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC, CanadaG1J 2G3.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, CanadaG1V 0A6
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, CanadaG1J 2G3.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, CanadaG1V 0A6
| |
Collapse
|
47
|
Malvaut S, Marymonchyk A, Gengatharan A, Saghatelyan A. Live imaging of adult neural stem cells in freely behaving mice using mini-endoscopes. STAR Protoc 2021; 2:100596. [PMID: 34169290 PMCID: PMC8209737 DOI: 10.1016/j.xpro.2021.100596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
During adulthood, the activation of adult neural stem cells (NSCs) has been mostly studied ex vivo in post-mortem tissues or in vivo in anesthetized animals. This protocol presents an approach that allows for the long-term and minimally invasive investigation of adult NSC activation and physiology in freely behaving animals. By combining specific NSC labeling and mini-endoscopic microscopy, live imaging of NSC division and Ca2+ activity can be performed continuously for 2–3 days and even up to several months. For complete details on the use and execution of this protocol, please refer to Gengatharan et al. (2021). A protocol for mini-endoscopic imaging of adult neural stem cells (NSCs) Live imaging of NSCs activation in freely behaving mice In vivo mini-endoscopic imaging and analysis of Ca2+ dynamics in NSCs A protocol for labeling adult NSCs based on coincident activity of two promoters
Collapse
Affiliation(s)
- Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada.,Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Alina Marymonchyk
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada.,Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Archana Gengatharan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada.,Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada.,Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
48
|
Marqués-Torrejón MÁ, Williams CAC, Southgate B, Alfazema N, Clements MP, Garcia-Diaz C, Blin C, Arranz-Emparan N, Fraser J, Gammoh N, Parrinello S, Pollard SM. LRIG1 is a gatekeeper to exit from quiescence in adult neural stem cells. Nat Commun 2021; 12:2594. [PMID: 33972529 PMCID: PMC8110534 DOI: 10.1038/s41467-021-22813-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/26/2021] [Indexed: 01/17/2023] Open
Abstract
Adult neural stem cells (NSCs) must tightly regulate quiescence and proliferation. Single-cell analysis has suggested a continuum of cell states as NSCs exit quiescence. Here we capture and characterize in vitro primed quiescent NSCs and identify LRIG1 as an important regulator. We show that BMP-4 signaling induces a dormant non-cycling quiescent state (d-qNSCs), whereas combined BMP-4/FGF-2 signaling induces a distinct primed quiescent state poised for cell cycle re-entry. Primed quiescent NSCs (p-qNSCs) are defined by high levels of LRIG1 and CD9, as well as an interferon response signature, and can efficiently engraft into the adult subventricular zone (SVZ) niche. Genetic disruption of Lrig1 in vivo within the SVZ NSCs leads an enhanced proliferation. Mechanistically, LRIG1 primes quiescent NSCs for cell cycle re-entry and EGFR responsiveness by enabling EGFR protein levels to increase but limiting signaling activation. LRIG1 is therefore an important functional regulator of NSC exit from quiescence.
Collapse
Affiliation(s)
| | - Charles A C Williams
- MRC Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Benjamin Southgate
- MRC Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Neza Alfazema
- MRC Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Melanie P Clements
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London, UK
| | - Claudia Garcia-Diaz
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London, UK
| | - Carla Blin
- MRC Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Nerea Arranz-Emparan
- MRC Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Jane Fraser
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Noor Gammoh
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London, UK
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
49
|
Kjell J, Fischer-Sternjak J, Thompson AJ, Friess C, Sticco MJ, Salinas F, Cox J, Martinelli DC, Ninkovic J, Franze K, Schiller HB, Götz M. Defining the Adult Neural Stem Cell Niche Proteome Identifies Key Regulators of Adult Neurogenesis. Cell Stem Cell 2021; 26:277-293.e8. [PMID: 32032526 PMCID: PMC7005820 DOI: 10.1016/j.stem.2020.01.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/24/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022]
Abstract
The mammalian brain contains few niches for neural stem cells (NSCs) capable of generating new neurons, whereas other regions are primarily gliogenic. Here we leverage the spatial separation of the sub-ependymal zone NSC niche and the olfactory bulb, the region to which newly generated neurons from the sub-ependymal zone migrate and integrate, and present a comprehensive proteomic characterization of these regions in comparison to the cerebral cortex, which is not conducive to neurogenesis and integration of new neurons. We find differing compositions of regulatory extracellular matrix (ECM) components in the neurogenic niche. We further show that quiescent NSCs are the main source of their local ECM, including the multi-functional enzyme transglutaminase 2, which we show is crucial for neurogenesis. Atomic force microscopy corroborated indications from the proteomic analyses that neurogenic niches are significantly stiffer than non-neurogenic parenchyma. Together these findings provide a powerful resource for unraveling unique compositions of neurogenic niches.
Collapse
Affiliation(s)
- Jacob Kjell
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet, Muenchen, Germany; Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, Germany
| | - Judith Fischer-Sternjak
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet, Muenchen, Germany; Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, Germany
| | - Amelia J Thompson
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | - Christian Friess
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet, Muenchen, Germany
| | - Matthew J Sticco
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Favio Salinas
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - David C Martinelli
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Jovica Ninkovic
- Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, Germany; Division of Cell Biology and Anatomy, Biomedical Center, Ludwig-Maximilians-Universitaet, Muenchen, Germany; SYNERGY, Excellence Cluster Systems Neurology, Ludwig-Maximilians-Universitaet, Muenchen, Germany
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | - Herbert B Schiller
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany; Institute of Lung Biology and Disease, Member of the German Center for Lung Research, Helmholtz Zentrum Muenchen, Germany
| | - Magdalena Götz
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet, Muenchen, Germany; Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, Germany; SYNERGY, Excellence Cluster Systems Neurology, Ludwig-Maximilians-Universitaet, Muenchen, Germany.
| |
Collapse
|
50
|
Rojas-Vázquez S, Blasco-Chamarro L, López-Fabuel I, Martínez-Máñez R, Fariñas I. Vascular Senescence: A Potential Bridge Between Physiological Aging and Neurogenic Decline. Front Neurosci 2021; 15:666881. [PMID: 33958987 PMCID: PMC8093510 DOI: 10.3389/fnins.2021.666881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/25/2021] [Indexed: 01/25/2023] Open
Abstract
The adult mammalian brain contains distinct neurogenic niches harboring populations of neural stem cells (NSCs) with the capacity to sustain the generation of specific subtypes of neurons during the lifetime. However, their ability to produce new progeny declines with age. The microenvironment of these specialized niches provides multiple cellular and molecular signals that condition NSC behavior and potential. Among the different niche components, vasculature has gained increasing interest over the years due to its undeniable role in NSC regulation and its therapeutic potential for neurogenesis enhancement. NSCs are uniquely positioned to receive both locally secreted factors and adhesion-mediated signals derived from vascular elements. Furthermore, studies of parabiosis indicate that NSCs are also exposed to blood-borne factors, sensing and responding to the systemic circulation. Both structural and functional alterations occur in vasculature with age at the cellular level that can affect the proper extrinsic regulation of NSCs. Additionally, blood exchange experiments in heterochronic parabionts have revealed that age-associated changes in blood composition also contribute to adult neurogenesis impairment in the elderly. Although the mechanisms of vascular- or blood-derived signaling in aging are still not fully understood, a general feature of organismal aging is the accumulation of senescent cells, which act as sources of inflammatory and other detrimental signals that can negatively impact on neighboring cells. This review focuses on the interactions between vascular senescence, circulating pro-senescence factors and the decrease in NSC potential during aging. Understanding the mechanisms of NSC dynamics in the aging brain could lead to new therapeutic approaches, potentially include senolysis, to target age-dependent brain decline.
Collapse
Affiliation(s)
- Sara Rojas-Vázquez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
| | - Laura Blasco-Chamarro
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Irene López-Fabuel
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|