1
|
Yoshimoto K, Maki K, Adachi T, Kamei KI. Cyclic Stretching Enhances Angiocrine Signals at Liver Bud Stage from Human Pluripotent Stem Cells in Two-Dimensional Culture. Tissue Eng Part A 2024; 30:426-439. [PMID: 38062736 DOI: 10.1089/ten.tea.2023.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Angiocrine signals during the development and growth of organs, including the liver, intestine, lung, and bone, are essential components of intercellular communication. The signals elicited during the liver bud stage are critical for vascularization and enhanced during the intercellular communication between the cells negative for kinase insert domain receptor (KDR) (KDR- cells) and the cells positive for KDR (KDR+ cells), which constitute the liver bud. However, the use of a human pluripotent stem cell (hPSC)-derived system has not facilitated the generation of a perfusable vascularized liver organoid that allows elucidation of liver development and has great potential for liver transplantation. This is largely owing to the lack of fundamental understanding to induce angiocrine signals in KDR- and KDR+ cells during the liver bud stage. We hypothesized that mechanical stimuli of cyclic stretching/pushing by the fetal heart adjacent to the liver bud could be the main contributor to promoting angiocrine signals in KDR- and KDR+ cells during the liver bud stage. In this study, we show that an organ-on-a-chip platform allows the emulation of an in vivo-like mechanical environment for the liver bud stage in vitro and investigate the role of cyclic mechanical stretching (cMS) to angiocrine signals in KDR- and KDR+ cells derived from hPSCs. RNA sequencing revealed that the expression of genes associated with epithelial-to-mesenchymal transition, including angiocrine signals, such as hepatocyte growth factor (HGF) and matrix metallopeptidase 9 (MMP9), were increased by cMS in cocultured KDR- and KDR+ cells. The expression and secretions of HGF and MMP9 were increased by 1.98- and 1.69-fold and 3.23- and 3.72-fold with cMS in the cocultured KDR- and KDR+ cells but were not increased by cMS in the monocultured KDR- and KDR+ cells, respectively. Finally, cMS during the liver bud stage did not lead to the dedifferentiation of hepatocytes, as the cells with cMS showed hepatic maker expression (CYP3A4, CYP3A7, ALB, and AAT) and 1.71-fold higher CYP3A activity than the cells without cMS, during 12 day-hepatocyte maturation after halting cMS. Our findings provide new insights into the mechanical factors during the liver bud stage and directions for future improvements in the engineered liver tissue.
Collapse
Affiliation(s)
- Koki Yoshimoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Koichiro Maki
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Taiji Adachi
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, China
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning, China
- Programs of Biology and Bioengineering, Divisions of Science and Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
| |
Collapse
|
2
|
Rizvi F, Lee YR, Diaz-Aragon R, Bawa PS, So J, Florentino RM, Wu S, Sarjoo A, Truong E, Smith AR, Wang F, Everton E, Ostrowska A, Jung K, Tam Y, Muramatsu H, Pardi N, Weissman D, Soto-Gutierrez A, Shin D, Gouon-Evans V. VEGFA mRNA-LNP promotes biliary epithelial cell-to-hepatocyte conversion in acute and chronic liver diseases and reverses steatosis and fibrosis. Cell Stem Cell 2023; 30:1640-1657.e8. [PMID: 38029740 PMCID: PMC10843608 DOI: 10.1016/j.stem.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial-cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via nonintegrative and safe nucleoside-modified mRNA encapsulated into lipid nanoparticles (mRNA-LNPs) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and elimination of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This work defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals unexpected therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases.
Collapse
Affiliation(s)
- Fatima Rizvi
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Yu-Ri Lee
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ricardo Diaz-Aragon
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pushpinder S Bawa
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Juhoon So
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Rodrigo M Florentino
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Susan Wu
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Arianna Sarjoo
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Emily Truong
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Anna R Smith
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Elissa Everton
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Alina Ostrowska
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kyounghwa Jung
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, Infectious Diseases Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 10104, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Donghun Shin
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Valerie Gouon-Evans
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
3
|
Ori C, Ansari M, Angelidis I, Olmer R, Martin U, Theis FJ, Schiller HB, Drukker M. Human pluripotent stem cell fate trajectories toward lung and hepatocyte progenitors. iScience 2023; 26:108205. [PMID: 38026193 PMCID: PMC10663741 DOI: 10.1016/j.isci.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 07/13/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, we interrogate molecular mechanisms underlying the specification of lung progenitors from human pluripotent stem cells (hPSCs). We employ single-cell RNA-sequencing with high temporal precision, alongside an optimized differentiation protocol, to elucidate the transcriptional hierarchy of lung specification to chart the associated single-cell trajectories. Our findings indicate that Sonic hedgehog, TGF-β, and Notch activation are essential within an ISL1/NKX2-1 trajectory, leading to the emergence of lung progenitors during the foregut endoderm phase. Additionally, the induction of HHEX delineates an alternate trajectory at the early definitive endoderm stage, preceding the lung pathway and giving rise to a significant hepatoblast population. Intriguingly, neither KDR+ nor mesendoderm progenitors manifest as intermediate stages in the lung and hepatic lineage development. Our multistep model offers insights into lung organogenesis and provides a foundation for in-depth study of early human lung development and modeling using hPSCs.
Collapse
Affiliation(s)
- Chaido Ori
- Institute of Stem Cell Research, Helmholtz Munich, Neuherberg, Munich, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Computational Health, Institute of Computational Biology, Helmholtz Munich, Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Fabian J. Theis
- Department of Computational Health, Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Herbert B. Schiller
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Munich, Neuherberg, Munich, Germany
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| |
Collapse
|
4
|
Cai P, Ni R, Lv M, Liu H, Zhao J, He J, Luo L. VEGF signaling governs the initiation of biliary-mediated liver regeneration through the PI3K-mTORC1 axis. Cell Rep 2023; 42:113028. [PMID: 37632748 DOI: 10.1016/j.celrep.2023.113028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023] Open
Abstract
Biliary epithelial cells (BECs) are a potential source to repair the damaged liver when hepatocyte proliferation is compromised. Promotion of BEC-to-hepatocyte transdifferentiation could be beneficial to the clinical therapeutics of patients with end-stage liver diseases. However, mechanisms underlying the initiation of BEC transdifferentiation remain largely unknown. Here, we show that upon extreme hepatocyte injury, vegfaa and vegfr2/kdrl are notably induced in hepatic stellate cells and BECs, respectively. Pharmacological and genetic inactivation of vascular endothelial growth factor (VEGF) signaling would disrupt BEC dedifferentiation and proliferation, thus restraining hepatocyte regeneration. Mechanically, VEGF signaling regulates the activation of the PI3K-mammalian target of rapamycin complex 1 (mTORC1) axis, which is essential for BEC-to-hepatocyte transdifferentiation. In mice, VEGF signaling exerts conserved roles in oval cell activation and BEC-to-hepatocyte differentiation. Taken together, this study shows VEGF signaling as an initiator of biliary-mediated liver regeneration through activating the PI3K-mTORC1 axis. Modulation of VEGF signaling in BECs could be a therapeutic approach for patients with end-stage liver diseases.
Collapse
Affiliation(s)
- Pengcheng Cai
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Mengzhu Lv
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Huijuan Liu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Jieqiong Zhao
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China; School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
5
|
Rizvi F, Lee YR, Diaz-Aragon R, So J, Florentino RM, Smith AR, Everton E, Ostrowska A, Jung K, Tam Y, Muramatsu H, Pardi N, Weissman D, Soto-Gutierrez A, Shin D, Gouon-Evans V. VEGFA mRNA-LNP promotes biliary epithelial cell-to-hepatocyte conversion in acute and chronic liver diseases and reverses steatosis and fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537186. [PMID: 37131823 PMCID: PMC10153196 DOI: 10.1101/2023.04.17.537186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via non-integrative and safe nucleoside-modified mRNA encapsulated into lipid-nanoparticles (mRNA-LNP) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and reversion of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals novel therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases. Highlights Complementary mouse and zebrafish models of liver injury demonstrate the therapeutic impact of VEGFA-KDR axis activation to harness BEC-driven liver regeneration.VEGFA mRNA LNPs restore two key features of the chronic liver disease in humans such as steatosis and fibrosis.Identification in human cirrhotic ESLD livers of KDR-expressing BECs adjacent to clusters of KDR+ hepatocytes suggesting their BEC origin.KDR-expressing BECs may represent facultative adult progenitor cells, a unique BEC population that has yet been uncovered.
Collapse
|
6
|
Yang R, Zhan Y, Li Y, Dai SY, He SW, Ye CJ, Meng LD, Chen DQ, Dong CB, Chen L, Chen G, Dong KR, Li K, Zheng S, Li J, Yao W, Dong R. The Cellular and Molecular Landscape of Synchronous Pediatric Sialoblastoma and Hepatoblastoma. Front Oncol 2022; 12:893206. [PMID: 35860547 PMCID: PMC9289541 DOI: 10.3389/fonc.2022.893206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023] Open
Abstract
Sialoblastoma (SBL) is an infrequent embryonal malignant tumor originating from the salivary gland, resembling primitive salivary gland anlage, whereas hepatoblastoma (HB) is the most common pediatric liver malignancy. The simultaneous occurrence of both tumors is extremely rare. Here we reported a case of a 6-month-old infant diagnosed with synchronous SBL and HB. The patient received neoadjuvant chemotherapy followed by surgical resection. Fresh tissues of both tumors were collected before and after chemotherapy, which were further profiled by whole exome sequencing (WES) and single-cell RNA sequencing (scRNA-seq). WES analysis revealed potential somatic driver mutation PIK3CA p.Glu454Lys for SBL and canonical mutation CTNNB1 p.Ser45Pro for HB. No shared somatic variants or common copy number alterations were found between SBL and HB primary tumor samples. Though scRNA-seq, single-cell atlases were constructed for both tumors. SBL may recapitulate a pre-acinar stage in the development of salivary gland, including basaloid, duct-like, myoepithelial-like, and cycling phenotypes. In the meantime, HB was composed of tumor cells resembling different stages of the liver, including hepatocyte-like, hepatic progenitor-like, and hepatoblast-like cells. After chemotherapy, both tumors were induced into a more mature phenotype. In terms of transcriptional signatures, SBL and HB showed enhanced expression of epithelial markers KRT8, KRT18, and essential embryo development genes SDC1, MDK, indicating the disruption of normal embryo epithelium development. Finally, heterozygous deleterious germline mutation BLM and FANCI were identified which could predispose the patient to higher cancer risk. It partially explained the reason for the co-occurrence of SBL and HB. Taken together, we provided valuable resources for deciphering cellular heterogeneity and adaptive change of tumor cells after chemotherapy for synchronous SBL and HB, providing insights into the mechanisms leading to synchronous pediatric tumors.
Collapse
Affiliation(s)
- Ran Yang
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Yi Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Shu-Yang Dai
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Shi-Wei He
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Chun-Jing Ye
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Ling-Du Meng
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - De-Qian Chen
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Chen-Bin Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Lian Chen
- Department of Pathology, Children’s Hospital of Fudan University, Shanghai, China
| | - Gong Chen
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Kui-Ran Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Kai Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Jun Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- *Correspondence: Rui Dong, ; Wei Yao, ; Jun Li,
| | - Wei Yao
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- *Correspondence: Rui Dong, ; Wei Yao, ; Jun Li,
| | - Rui Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- *Correspondence: Rui Dong, ; Wei Yao, ; Jun Li,
| |
Collapse
|
7
|
Karaman S, Paavonsalo S, Heinolainen K, Lackman MH, Ranta A, Hemanthakumar KA, Kubota Y, Alitalo K. Interplay of vascular endothelial growth factor receptors in organ-specific vessel maintenance. J Exp Med 2022; 219:212969. [PMID: 35050301 PMCID: PMC8785977 DOI: 10.1084/jem.20210565] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/31/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are quintessential for the development and maintenance of blood and lymphatic vessels. However, genetic interactions between the VEGFRs are poorly understood. VEGFR2 is the dominant receptor that is required for the growth and survival of the endothelium, whereas deletion of VEGFR1 or VEGFR3 was reported to induce vasculature overgrowth. Here we show that vascular regression induced by VEGFR2 deletion in postnatal and adult mice is aggravated by additional deletion of VEGFR1 or VEGFR3 in the intestine, kidney, and pancreas, but not in the liver or kidney glomeruli. In the adult mice, hepatic and intestinal vessels regressed within a few days after gene deletion, whereas vessels in skin and retina remained stable for at least four weeks. Our results show changes in endothelial transcriptomes and organ-specific vessel maintenance mechanisms that are dependent on VEGFR signaling pathways and reveal previously unknown functions of VEGFR1 and VEGFR3 in endothelial cells.
Collapse
Affiliation(s)
- Sinem Karaman
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Satu Paavonsalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Krista Heinolainen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Madeleine H. Lackman
- Individualized Drug Therapy Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Amanda Ranta
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | | | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
KDR polymorphism (1192G/A, 1719A/T) and modulation of ARV drug-induced hepatotoxicity. Microb Pathog 2021; 161:105243. [PMID: 34656700 DOI: 10.1016/j.micpath.2021.105243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023]
Abstract
Kinase insert Domain containing Receptor (KDR)/Vascular Endothelial Growth Factor Receptor (VEGFR-2) participate in endothelial dysfunction, which can lead to chronic liver disease. KDR reflects naturally against the toxicants from the damaged liver cells. Association of KDR polymorphism has been reported with many diseases including liver disease, but its role has not been described in ARV induced hepatotoxicity. Hence, we examined the exonic regions KDR (1192G/A, 1719A/T) polymorphism from 165 HIV-infected individuals (34/165 had ARV induced hepatotoxicity, 131/165 were with no hepatotoxicity) and 160 normal uninfected individuals by PCR-RFLP. In univariate analysis, KDR 1719 TT genotype presented at greater frequency from all HIV positive individuals in contrast with normal uninfected individuals (7.87% vs. 4.4%, OR = 1.72, P = 0.38). Individuals with KDR 1719 TT genotype had a risk for increasing hepatotoxicity and its severity (OR = 1.91, P = 0.38). Individuals with haplotype AT had risk for increasing hepatotoxicity and its severity (OR = 1.60, P = 0.50; OR = 2.35, P = 0.27). Whereas haplotype AA was associated with reduced risk of developing hepatotoxicity (OR = 0.40, P = 0.04). Individuals with KDR 1719 TT genotype were at greater risk of advancement of HIV disease (OR = 2.31, P = 0.23). Individuals with KDR 1719 TT genotype had more vulnerability for developing hepatotoxicity among alcohol users (OR = 2.57, P = 0.23). Individuals with KDR 1719 TT genotype were at higher risk of developing hepatotoxicity and its severity among nevirapine and alcohol consumers (OR = 2.47, P = 0.24; OR = 5.42, P = 0.42). In multivariate analysis, hepatotoxicity patients taking ART inclusive of nevirapine was associated with the severity of hepatotoxicity (OR = 4.82, P = 0.002). In conclusion, KDR 1719 TT genotype and haplotype AT may have a risk for development of hepatotoxicity and its severity. Haplotype AA may have influence to reduce the risk of developing hepatotoxicity.
Collapse
|
9
|
Kim Y, Kim YW, Lee SB, Kang K, Yoon S, Choi D, Park SH, Jeong J. Hepatic patch by stacking patient-specific liver progenitor cell sheets formed on multiscale electrospun fibers promotes regenerative therapy for liver injury. Biomaterials 2021; 274:120899. [PMID: 34034028 DOI: 10.1016/j.biomaterials.2021.120899] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022]
Abstract
Recently, use of cell sheets with bio-applicable fabrication materials for transplantation has been an attractive approach for the treatment of patients with liver failure. However, renewable and scalable cell sources for engineered tissue patches remain limited. We previously reported a new type of proliferating bipotent human chemically derived hepatic progenitor cells (hCdHs) developed by small molecule-mediated reprogramming. Here, we developed a patient-specific hepatic cell sheet constructed from liver biopsy-derived hCdHs on a multiscale fibrous scaffold by combining electrospinning and three-dimensional printing. Analysis of biomaterial composition revealed that the high-density electrospun sheet was superior in increasing the functional properties of hCdHs. Furthermore, the hepatic patch assembled by multilayer stacking with alternate cell sheets of hCdHs and human umbilical vein endothelial cells (HUVECs) recapitulated a liver tissue-like structure, with histological and morphological shape and size similar to those of primary human hepatocytes, and exhibited a significant increase in hepatic functions such as albumin secretion and activity of cytochrome P450 during in vitro hepatic differentiation compared with that in hCdH cells cultured in a two-dimensional monolayer. Interestingly, in the hepatic patch, the induction of functional hepatocytes was associated with both the electrospun fibrous-facilitated oncostatin M signaling and selective activation of AKT signaling by HUVECs. Notably, upon transplantation into a mouse model of therapeutic liver repopulation, the hepatic patch effectively repopulated the damaged parenchyma and induced the restoration of liver function with healthy morphology in the lobe and an improved survival rate (>70%) in mice. Overall, these results suggested that liver biopsy-derived hCdHs can be an efficient alternative source for developing hepatic cell sheets and patches with potential clinical applications in tissue engineering to advance liver regeneration.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, 04763, Republic of Korea
| | - Young Won Kim
- Digital Manufacturing Process Group, Korea Institute of Industrial Technology, 113-58 Seohaean-ro, Siheungsi, Gyeonggi-do, 15014, Republic of Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, 01812, Republic of Korea
| | - Kyojin Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Sangtae Yoon
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Suk-Hee Park
- School of Mechanical Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
10
|
Jiang M, Fang Y, Li Y, Huang H, Wei Z, Gao X, Sung HK, Hu J, Qiang L, Ruan J, Chen Q, Jiang D, Whitsett JA, Ai X, Que J. VEGF receptor 2 (KDR) protects airways from mucus metaplasia through a Sox9-dependent pathway. Dev Cell 2021; 56:1646-1660.e5. [PMID: 34010630 DOI: 10.1016/j.devcel.2021.04.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023]
Abstract
Mucus-secreting goblet cells are the dominant cell type in pulmonary diseases, e.g., asthma and cystic fibrosis (CF), leading to pathologic mucus metaplasia and airway obstruction. Cytokines including IL-13 are the major players in the transdifferentiation of club cells into goblet cells. Unexpectedly, we have uncovered a previously undescribed pathway promoting mucous metaplasia that involves VEGFa and its receptor KDR. Single-cell RNA sequencing analysis coupled with genetic mouse modeling demonstrates that loss of epithelial VEGFa, KDR, or MEK/ERK kinase promotes excessive club-to-goblet transdifferentiation during development and regeneration. Sox9 is required for goblet cell differentiation following Kdr inhibition in both mouse and human club cells. Significantly, airway mucous metaplasia in asthmatic and CF patients is also associated with reduced KDR signaling and increased SOX9 expression. Together, these findings reveal an unexpected role for VEGFa/KDR signaling in the defense against mucous metaplasia, offering a potential therapeutic target for this common airway pathology.
Collapse
Affiliation(s)
- Ming Jiang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, P.R. China; Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Yinshan Fang
- Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Yu Li
- Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA; Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin 300350, P.R. China
| | - Huachao Huang
- Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Zichen Wei
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, P.R. China
| | - Xia Gao
- Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Hoon-Ki Sung
- Translation Medicine Program, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jim Hu
- Translation Medicine Program, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Li Qiang
- Department of Pathology and Cell Biology, Naomi Berrie Diabetes Center, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA
| | - Jian Ruan
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang, P.R. China
| | - Qixuan Chen
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Dianhua Jiang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048 CA, USA
| | - Jeffrey A Whitsett
- Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Xingbin Ai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Jianwen Que
- Columbia Center for Human Development & Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, NY 10032, USA.
| |
Collapse
|
11
|
Angiodiversity and organotypic functions of sinusoidal endothelial cells. Angiogenesis 2021; 24:289-310. [PMID: 33745018 PMCID: PMC7982081 DOI: 10.1007/s10456-021-09780-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
‘Angiodiversity’ refers to the structural and functional heterogeneity of endothelial cells (EC) along the segments of the vascular tree and especially within the microvascular beds of different organs. Organotypically differentiated EC ranging from continuous, barrier-forming endothelium to discontinuous, fenestrated endothelium perform organ-specific functions such as the maintenance of the tightly sealed blood–brain barrier or the clearance of macromolecular waste products from the peripheral blood by liver EC-expressed scavenger receptors. The microvascular bed of the liver, composed of discontinuous, fenestrated liver sinusoidal endothelial cells (LSEC), is a prime example of organ-specific angiodiversity. Anatomy and development of LSEC have been extensively studied by electron microscopy as well as linage-tracing experiments. Recent advances in cell isolation and bulk transcriptomics or single-cell RNA sequencing techniques allowed the identification of distinct LSEC molecular programs and have led to the identification of LSEC subpopulations. LSEC execute homeostatic functions such as fine tuning the vascular tone, clearing noxious substances from the circulation, and modulating immunoregulatory mechanisms. In recent years, the identification and functional analysis of LSEC-derived angiocrine signals, which control liver homeostasis and disease pathogenesis in an instructive manner, marks a major change of paradigm in the understanding of liver function in health and disease. This review summarizes recent advances in the understanding of liver vascular angiodiversity and the functional consequences resulting thereof.
Collapse
|
12
|
Jacobson EF, Chen Z, Stoukides DM, Nair GG, Hebrok M, Tzanakakis ES. Non-xenogeneic expansion and definitive endoderm differentiation of human pluripotent stem cells in an automated bioreactor. Biotechnol Bioeng 2020; 118:979-991. [PMID: 33205831 DOI: 10.1002/bit.27629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/13/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
Scalable processes are requisite for the robust biomanufacturing of human pluripotent stem cell (hPSC)-derived therapeutics. Toward this end, we demonstrate the xeno-free expansion and directed differentiation of human embryonic and induced pluripotent stem cells to definitive endoderm (DE) in a controlled stirred suspension bioreactor (SSB). Based on previous work on converting hPSCs to insulin-producing progeny, differentiation of two hPSC lines was optimized in planar cultures yielding up to 87% FOXA2+ /SOX17+ cells. Next, hPSCs were propagated in an SSB with controlled pH and dissolved oxygen. Cultures displayed a 10- to 12-fold increase in cell number over 5-6 days with the maintenance of pluripotency (>85% OCT4+ ) and viability (>85%). For differentiation, SSB cultures yielded up to 89% FOXA2+ /SOX17+ cells or ~ 8 DE cells per seeded hPSC. Specification to DE cell fate was consistently more efficient in the bioreactor compared to planar cultures. Hence, a tunable strategy is established that is suitable for the xeno-free manufacturing of DE cells from different hPSC lines in scalable SSBs. This study advances bioprocess development for producing a wide gamut of human DE cell-derived therapeutics.
Collapse
Affiliation(s)
- Elena F Jacobson
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Demetrios M Stoukides
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Gopika G Nair
- Department of Medicine, Diabetes Center, University of California - San Francisco, San Francisco, California, USA
| | - Matthias Hebrok
- Department of Medicine, Diabetes Center, University of California - San Francisco, San Francisco, California, USA
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, Massachusetts, USA
- Department of Developmental, Molecular and Cell Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Kiso A, Toba Y, Tsutsumi S, Deguchi S, Igai K, Koshino S, Tanaka Y, Takayama K, Mizuguchi H. Tolloid-Like 1 Negatively Regulates Hepatic Differentiation of Human Induced Pluripotent Stem Cells Through Transforming Growth Factor Beta Signaling. Hepatol Commun 2020; 4:255-267. [PMID: 32025609 PMCID: PMC6996343 DOI: 10.1002/hep4.1466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Single nucleotide polymorphisms in Tolloid-like 1 (TLL1) and the expression of TLL1 are known to be closely related to hepatocarcinogenesis after hepatitis C virus elimination or liver fibrosis in patients with nonalcoholic fatty liver disease. TLL1 is a type of matrix metalloprotease and has two isoforms in humans, with the short isoform showing higher activity. However, the functional role of TLL1 in human liver development is unknown. Here, we attempted to elucidate the function of human TLL1 using hepatocyte-like cells generated from human pluripotent stem cells. First, we generated TLL1-knockout human induced pluripotent stem (iPS) cells and found that hepatic differentiation was promoted by TLL1 knockout. Next, we explored TLL1-secreting cells using a model of liver development and identified that kinase insert domain receptor (FLK1)-positive cells (mesodermal cells) highly express TLL1. Finally, to elucidate the mechanism by which TLL1 knockout promotes hepatic differentiation, the expression profiles of transforming growth factor beta (TGFβ), a main target gene of TLL1, and its related genes were analyzed in hepatic differentiation. Both the amount of active TGFβ and the expression of TGFβ target genes were decreased by TLL1 knockout. It is known that TGFβ negatively regulates hepatic differentiation. Conclusion: TLL1 appears to negatively regulate hepatic differentiation of human iPS cells by up-regulating TGFβ signaling. Our findings will provide new insight into the function of TLL1 in human liver development.
Collapse
Affiliation(s)
- Ayumi Kiso
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - Yukiko Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Laboratory of Hepatocyte RegulationNational Institutes of Biomedical Innovation, Health, and NutritionOsakaJapan
| | - Susumu Tsutsumi
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Sayaka Deguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - Keisuke Igai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - Saki Koshino
- Laboratory of Hepatocyte RegulationNational Institutes of Biomedical Innovation, Health, and NutritionOsakaJapan
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - Yasuhito Tanaka
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Laboratory of Hepatocyte RegulationNational Institutes of Biomedical Innovation, Health, and NutritionOsakaJapan
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencySaitamaJapan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Laboratory of Hepatocyte RegulationNational Institutes of Biomedical Innovation, Health, and NutritionOsakaJapan
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Global Center for Medical Engineering and InformaticsOsaka UniversityOsakaJapan
- Integrated Frontier Research for Medical Science DivisionInstitute for Open and Transdisciplinary Research InitiativesOsaka UniversityOsakaJapan
| |
Collapse
|
14
|
Cisneros T, Dillard DW, Qu X, Arredondo-Guerrero J, Castro M, Schaffert S, Martin R, Esquivel CO, Krams SM, Martinez OM. Differential role of natural killer group 2D in recognition and cytotoxicity of hepatocyte-like cells derived from embryonic stem cells and induced pluripotent stem cells. Am J Transplant 2019; 19:1652-1662. [PMID: 30549427 PMCID: PMC6543818 DOI: 10.1111/ajt.15217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/25/2023]
Abstract
Stem cell-based approaches have the potential to address the organ shortage in transplantation. Whereas both embryonic stem cells and induced pluripotent stem cells have been utilized as cellular sources for differentiation and lineage specification, their relative ability to be recognized by immune effector cells is unclear. We determined the expression of immune recognition molecules on hepatocyte-like cells (HLC) generated from murine embryonic stem cells and induced pluripotent stem cells, compared to adult hepatocytes, and we evaluated the impact on recognition by natural killer (NK) cells. We report that HLC lack MHC class I expression, and that embryonic stem cell-derived HLC have higher expression of the NK cell activating ligands Rae1, H60, and Mult1 than induced pluripotent stem cell-derived HLC and adult hepatocytes. Moreover, the lack of MHC class I renders embryonic stem cell-derived HLC, and induced pluripotent stem cell-derived HLC, susceptible to killing by syngeneic and allogeneic NK cells. Both embryonic stem cell-derived HLC, and induced pluripotent stem cell-derived HLC, are killed by NK cells at higher levels than adult hepatocytes. Finally, we demonstrate that the NK cell activation receptor, NKG2D, plays a key role in NK cell cytotoxicity of embryonic stem cell-derived HLC, but not induced pluripotent stem cell-derived HLC.
Collapse
Affiliation(s)
- Trinidad Cisneros
- Stanford Immunology, Stanford University School of
Medicine, Stanford, CA, USA,Department of Surgery/Division of Abdominal
Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Danielle W. Dillard
- Department of Surgery/Division of Abdominal
Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiumei Qu
- Department of Surgery/Division of Abdominal
Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Martha Castro
- Stanford Immunology, Stanford University School of
Medicine, Stanford, CA, USA
| | - Steven Schaffert
- Stanford Center for Biomedical Informatics Research,
Stanford University School of Medicine, Stanford, CA, USA
| | - Renata Martin
- Department of Biology, Stanford University School of
Medicine, Stanford, CA, USA
| | - Carlos O. Esquivel
- Department of Surgery/Division of Abdominal
Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheri M. Krams
- Stanford Immunology, Stanford University School of
Medicine, Stanford, CA, USA,Department of Surgery/Division of Abdominal
Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia M. Martinez
- Stanford Immunology, Stanford University School of
Medicine, Stanford, CA, USA,Department of Surgery/Division of Abdominal
Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Llovet JM, Montal R, Villanueva A. Randomized trials and endpoints in advanced HCC: Role of PFS as a surrogate of survival. J Hepatol 2019; 70:1262-1277. [PMID: 30943423 DOI: 10.1016/j.jhep.2019.01.028] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/21/2018] [Accepted: 01/29/2019] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality worldwide. Around half of patients with HCC will receive systemic therapies during their life span. The pivotal positive sorafenib trial and regulatory approval in 2007 was followed by a decade of negative studies with drugs leading to marginal antitumoral efficacy, toxicity, or trials with a lack of enrichment strategies. This trend has changed over the last 2 years with several compounds, such as lenvatinib (in first-line) and regorafenib, cabozantinib, ramucirumab and nivolumab (in second-line), showing clinical benefit. These successes came at a cost of increasing the complexity of decision-making, and ultimately, impacting the design of future clinical trials. Nowadays, life expectancy with single active agents has surpassed the threshold of 1 year and sequential strategies have provided encouraging outcomes. Overall survival (OS) remains the main endpoint in phase III investigations, but as in other solid tumours, there is a clear need to define surrogate endpoints that both reliably recapitulate survival benefits and can be assessed before additional efficacious drugs are administered. A thorough analysis of 21 phase III trials published in advanced HCC demonstrated a moderate correlation between progression-free survival (PFS) or time to progression (TTP) and OS (R = 0.84 and R = 0.83, respectively). Nonetheless, the significant differences in PFS identified in 7 phase III studies only correlated with differences in OS in 3 cases. In these cases, the hazard ratio (HR) for PFS was ≤0.6. Thus, this threshold is herein proposed as a potential surrogate endpoint of OS in advanced HCC. Conversely, PFS with an HR between 0.6-0.7, despite significance, was not associated with better survival, and thus these magnitudes are considered uncertain surrogates. In the current review, we discuss the reasons for positive or negative phase III trials in advanced HCC, and the strengths and limitations of surrogate endpoints (PFS, TTP and objective response rate [ORR]) to predict survival.
Collapse
Affiliation(s)
- Josep M Llovet
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Catalonia, Spain; Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| | - Robert Montal
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
| | - Augusto Villanueva
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
16
|
Primary Mechanism Study of Panax notoginseng Flower (Herb) on Myocardial Infarction in Rats. Cardiol Res Pract 2019; 2019:8723076. [PMID: 31192006 PMCID: PMC6525894 DOI: 10.1155/2019/8723076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/25/2019] [Indexed: 01/06/2023] Open
Abstract
Background Panax notoginseng (Burk.) F. H. Chen is one of the most common herbs in China. Because of its good efficacy and little adverse reaction, Panax notoginseng has been used widely to treat cardiovascular diseases (CVDs). Objective To investigate effects of Panax notoginseng flower (PN-F) on rats with myocardial infarction (MI). Methods The proximal left anterior descending coronary artery in rats was ligated to induce acute myocardial infarction. Then, animals were randomly assigned to four experimental groups: MI control group, Betaloc control group (with Betaloc 10 mg/kg/d), FD500 (low-dose) group (Panax notoginseng flower decoction 500 mg/kg, n=10), and FD1000 (high-dose) group (Panax notoginseng flower decoction 1000 mg/kg, n=10). Panax notoginseng flower decoction or Betaloc was orally administrated for two to four weeks before and after operation. Sham-operated group was used as a normal untreated group, in which animals were treated with double distilled water, once daily. HE (hematoxylin and eosin) staining, immunofluorescent assay, TUNEL assay, quantitative real-time PCR, and western blot analysis were, respectively, performed to observe morphology, count mean minimal vessels, investigate apoptotic cells, and record gene (HIF-1, VEGFA, and KDR) and protein (Bcl-2 and Bax) expressions. Results Two weeks after MI, PN-F significantly enhanced capillary density in the border area of MI, decreased infarct size, improved minimal vessels, suppressed cell apoptosis, and enhanced expressions of genes (HIF-1, VEGFA, and KDR) and proteins (Bcl-2 and Bax). Conclusions PN-F demonstrated a potential herb to treat rats with myocardial infarction through promoting angiogenesis and inhibition of apoptosis in the infarct area.
Collapse
|
17
|
Abstract
The essential liver exocrine and endocrine functions require a precise spatial arrangement of the hepatic lobule consisting of the central vein, portal vein, hepatic artery, intrahepatic bile duct system, and hepatocyte zonation. This allows blood to be carried through the liver parenchyma sampled by all hepatocytes and bile produced by the hepatocytes to be carried out of the liver through the intrahepatic bile duct system composed of cholangiocytes. The molecular orchestration of multiple signaling pathways and epigenetic factors is required to set up lineage restriction of the bipotential hepatoblast progenitor into the hepatocyte and cholangiocyte cell lineages, and to further refine cell fate heterogeneity within each cell lineage reflected in the functional heterogeneity of hepatocytes and cholangiocytes. In addition to the complex molecular regulation, there is a complicated morphogenetic choreography observed in building the refined hepatic epithelial architecture. Given the multifaceted molecular and cellular regulation, it is not surprising that impairment of any of these processes can result in acute and chronic hepatobiliary diseases. To enlighten the development of potential molecular and cellular targets for therapeutic options, an understanding of how the intricate hepatic molecular and cellular interactions are regulated is imperative. Here, we review the signaling pathways and epigenetic factors regulating hepatic cell lineages, fates, and epithelial architecture.
Collapse
Affiliation(s)
- Stacey S Huppert
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Makiko Iwafuchi-Doi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
18
|
Ober EA, Lemaigre FP. Development of the liver: Insights into organ and tissue morphogenesis. J Hepatol 2018; 68:1049-1062. [PMID: 29339113 DOI: 10.1016/j.jhep.2018.01.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/06/2018] [Indexed: 02/08/2023]
Abstract
Recent development of improved tools and methods to analyse tissues at the three-dimensional level has expanded our capacity to investigate morphogenesis of foetal liver. Here, we review the key morphogenetic steps during liver development, from the prehepatic endoderm stage to the postnatal period, and consider several model organisms while focussing on the mammalian liver. We first discuss how the liver buds out of the endoderm and gives rise to an asymmetric liver. We next outline the mechanisms driving liver and lobe growth, and review morphogenesis of the intra- and extrahepatic bile ducts; morphogenetic responses of the biliary tract to liver injury are discussed. Finally, we describe the mechanisms driving formation of the vasculature, namely venous and arterial vessels, as well as sinusoids.
Collapse
Affiliation(s)
- Elke A Ober
- Novo Nordisk Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
19
|
Goldman O, Cohen I, Gouon-Evans V. Functional Blood Progenitor Markers in Developing Human Liver Progenitors. Stem Cell Reports 2017; 7:158-66. [PMID: 27509132 PMCID: PMC4983080 DOI: 10.1016/j.stemcr.2016.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 11/30/2022] Open
Abstract
In the early fetal liver, hematopoietic progenitors expand and mature together with hepatoblasts, the liver progenitors of hepatocytes and cholangiocytes. Previous analyses of human fetal livers indicated that both progenitors support each other's lineage maturation and curiously share some cell surface markers including CD34 and CD133. Using the human embryonic stem cell (hESC) system, we demonstrate that virtually all hESC-derived hepatoblast-like cells (Hep cells) transition through a progenitor stage expressing CD34 and CD133 as well as GATA2, an additional hematopoietic marker that has not previously been associated with human hepatoblast development. Dynamic expression patterns for CD34, CD133, and GATA2 in hepatoblasts were validated in human fetal livers collected from the first and second trimesters of gestation. Knockdown experiments demonstrate that each gene also functions to regulate hepatic fate mostly in a cell-autonomous fashion, revealing unprecedented roles of fetal hematopoietic progenitor markers in human liver progenitors. Co-expression of hematopoietic markers CD34, CD133, and GATA2 in hESC-Hep cells Function of CD34, CD133, and GATA2 in hepatic specification of hESC-Hep cells Co-expression of CD34, CD133, and GATA2 in hepatoblasts from human fetal livers
Collapse
Affiliation(s)
- Orit Goldman
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Idan Cohen
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
20
|
Horiuchi Y, Lin J, Shinojima Y, Fujiwara K, Moriyama M, Nagase H. Characterizing key nucleotide polymorphisms of hepatitis C virus-disease associations via mass-spectrometric genotyping. Int J Oncol 2017; 52:441-452. [PMID: 29207078 DOI: 10.3892/ijo.2017.4209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/16/2017] [Indexed: 11/06/2022] Open
Abstract
As more than 80% of hepatocellular carcinoma patients in Japan also suffer from hepatitis C virus infections some time in their medical history, identifying genetic aberrations associated to hepatitis C virulence in these individuals remains a high priority in the diagnosis and treatment of hepatocellular carcinoma. From the BioBank Japan Project, we acquired 480 subjects of hepatocellular carcinoma, chronic hepatitis and liver cirrhosis, and genotyped 131 clinically relevant host single nucleotide polymorphisms to survey the potential association between certain risk alleles and genes to a patient's predisposition to hepatitis C and liver cancer. Among those polymorphisms, we found 12 candidates with statistical significance to support association with hepatitis C virus susceptibility and genetic predisposition to hepatocellular carcinoma. SNPs in genes such as XPC, FANCA, KDR and BRCA2 also suggested likely connections between hepatitis C virus susceptibility and the contraction of liver diseases. Single nucleotide polymorphisms reported here provided suggestions for genes as biomarkers and elucidated insights briefing the linkage of hepatitis C virulence to the alteration of healthy liver genomic landscape as well as liver disease progression.
Collapse
Affiliation(s)
- Yuta Horiuchi
- Institute of Gastroenterology, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Jason Lin
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan
| | - Yui Shinojima
- Department of Cancer Genetics, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kyoko Fujiwara
- Department of Cancer Genetics, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Mitsuhiko Moriyama
- Institute of Gastroenterology, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hiroki Nagase
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan
| |
Collapse
|
21
|
Irudayaswamy A, Muthiah M, Zhou L, Hung H, Jumat NHB, Haque J, Teoh N, Farrell G, Riehle KJ, Lin JS, Su LL, Chan JK, Choolani M, Wong PC, Wee A, Lim SG, Campbell J, Fausto N, Dan YY. Long-Term Fate of Human Fetal Liver Progenitor Cells Transplanted in Injured Mouse Livers. Stem Cells 2017; 36:103-113. [PMID: 28960647 DOI: 10.1002/stem.2710] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/25/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
Liver progenitor cells have the potential to repair and regenerate a diseased liver. The success of any translational efforts, however, hinges on thorough understanding of the fate of these cells after transplant, especially in terms of long-term safety and efficacy. Here, we report transplantation of a liver progenitor population isolated from human fetal livers into immune-permissive mice with follow-up up to 36 weeks after transplant. We found that human progenitor cells engraft and differentiate into functional human hepatocytes in the mouse, producing albumin, alpha-1-antitrypsin, and glycogen. They create tight junctions with mouse hepatocytes, with no evidence of cell fusion. Interestingly, they also differentiate into functional endothelial cell and bile duct cells. Transplantation of progenitor cells abrogated carbon tetrachloride-induced fibrosis in recipient mice, with downregulation of procollagen and anti-smooth muscle actin. Paradoxically, the degree of engraftment of human hepatocytes correlated negatively with the anti-fibrotic effect. Progenitor cell expansion was most prominent in cirrhotic animals, and correlated with transcript levels of pro-fibrotic genes. Animals that had resolution of fibrosis had quiescent native progenitor cells in their livers. No evidence of neoplasia was observed, even up to 9 months after transplantation. Human fetal liver progenitor cells successfully attenuate liver fibrosis in mice. They are activated in the setting of liver injury, but become quiescent when injury resolves, mimicking the behavior of de novo progenitor cells. Our data suggest that liver progenitor cells transplanted into injured livers maintain a functional role in the repair and regeneration of the liver. Stem Cells 2018;36:103-113.
Collapse
Affiliation(s)
| | - Mark Muthiah
- Department of Medicine, National University Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Hospital. National University Health System, Singapore
| | - Lei Zhou
- Department of Medicine, National University Singapore, Singapore
| | - Hau Hung
- Department of Medicine, National University Singapore, Singapore
| | | | - Jamil Haque
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Narcissus Teoh
- Department of Medicine, Australian National University, Canberra, Australia
| | - Geoffrey Farrell
- Department of Medicine, Australian National University, Canberra, Australia
| | - Kimberly J Riehle
- Department of Pathology, University of Washington, Seattle, Washington, USA.,Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Jaymie Siqi Lin
- Department of Medicine, National University Singapore, Singapore
| | - Lin Lin Su
- Department of Obstetrics and Gynecology, National University Singapore, Singapore
| | - Jerry Ky Chan
- Department of Obstetrics and Gynecology, National University Singapore, Singapore.,Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynecology, National University Singapore, Singapore
| | - Peng Cheang Wong
- Department of Obstetrics and Gynecology, National University Singapore, Singapore
| | - Aileen Wee
- Department of Pathology, National University Singapore, Singapore
| | - Seng Gee Lim
- Department of Medicine, National University Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Hospital. National University Health System, Singapore
| | - Jean Campbell
- Clinical Research Divison, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nelson Fausto
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Yock Young Dan
- Department of Medicine, National University Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Hospital. National University Health System, Singapore.,Cancer Science Institute, National University Singapore, Singapore.,Genome Institute Singapore, ASTAR, Singapore
| |
Collapse
|
22
|
Fukuda T, Takayama K, Hirata M, Liu YJ, Yanagihara K, Suga M, Mizuguchi H, Furue MK. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions. Exp Cell Res 2017; 352:333-345. [PMID: 28215634 DOI: 10.1016/j.yexcr.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022]
Abstract
Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells.
Collapse
Affiliation(s)
- Takayuki Fukuda
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; K-CONNEX, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuhi Hirata
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yu-Jung Liu
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kana Yanagihara
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; iPS Cell-based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miho K Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
23
|
Abstract
The elucidation of cancer pathogenesis has been hindered by limited access to patient samples, tumor heterogeneity and the lack of reliable model organisms. Characterized by their ability to self-renew indefinitely and differentiate into all cell lineages of an organism, pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide a powerful and unlimited source to generate differentiated cells that can be used to study disease biology, facilitate drug discovery and development, and provide key insights for developing personalized therapies. This article reviews the recent developments and technologies converting PSCs into clinically relevant model systems for cancer research.
Collapse
Affiliation(s)
- Julian Gingold
- Women's Health Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Ruoji Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Ihor R Lemischka
- Department of Developmental and Regenerative Biology, Department of Pharmacology and System Therapeutics, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
24
|
Goldman O, Valdes VJ, Ezhkova E, Gouon-Evans V. The mesenchymal transcription factor SNAI-1 instructs human liver specification. Stem Cell Res 2016; 17:62-8. [PMID: 27240252 PMCID: PMC5012916 DOI: 10.1016/j.scr.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and the mesenchymal-epithelial transition (MET) are processes required for embryo organogenesis. Liver develops from the epithelial foregut endoderm from which the liver progenitors, hepatoblasts, are specified. The migrating hepatoblasts acquire a mesenchymal phenotype to form the liver bud. In mid-gestation, hepatoblasts mature into epithelial structures: the hepatocyte cords and biliary ducts. While EMT has been associated with liver bud formation, nothing is known about its contribution to hepatic specification. We previously established an efficient protocol from human embryonic stem cells (hESC) to generate hepatic cells (Hep cells) resembling the hepatoblasts expressing alpha-fetoprotein (AFP) and albumin (ALB). Here we show that Hep cells express both epithelial (EpCAM and E-cadherin) and mesenchymal (vimentin and SNAI-1) markers. Similar epithelial and mesenchymal hepatoblasts were identified in human and mouse fetal livers, suggesting a conserved interspecies phenotype. Knock-down experiments demonstrated the importance of SNAI-1 in Hep cell hepatic specification. Moreover, ChIP assays revealed direct binding of SNAI-1 in the promoters of AFP and ALB genes consistent with its transcriptional activator function in hepatic specification. Altogether, our hESC-derived Hep cell cultures reveal the dual mesenchymal and epithelial phenotype of hepatoblast-like cells and support the unexpected transcriptional activator role of SNAI-1 in hepatic specification.
Collapse
Affiliation(s)
- Orit Goldman
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Victor Julian Valdes
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Ezhkova
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
25
|
Zaret KS. From Endoderm to Liver Bud: Paradigms of Cell Type Specification and Tissue Morphogenesis. Curr Top Dev Biol 2016; 117:647-69. [PMID: 26970006 DOI: 10.1016/bs.ctdb.2015.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The early specification, rapid growth and morphogenesis, and conserved functions of the embryonic liver across diverse model organisms have made the system an experimentally facile paradigm for understanding basic regulatory mechanisms that govern cell differentiation and organogenesis. This essay highlights concepts that have emerged from studies of the discrete steps of foregut endoderm development into the liver bud, as well as from modeling the steps via embryonic stem cell differentiation. Such concepts include understanding the chromatin basis for the competence of progenitor cells to develop into specific lineages; the importance of combinatorial signaling from different sources to induce cell fates; the impact of inductive signaling on preexisting chromatin states; the ability of separately specified domains of cells to merge into a common tissue; and the marked cell biological dynamics, including interactions with the developing vasculature, which establish the initial morphogenesis and patterning of a tissue. The principles gleaned from these studies, focusing on the 2 days it takes for the endoderm to develop into a liver bud, should be instructive for many other organogenic systems and for manipulating tissues in regenerative contexts for biomedical purposes.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Institute for Regenerative Medicine, Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
26
|
Hhex Is Necessary for the Hepatic Differentiation of Mouse ES Cells and Acts via Vegf Signaling. PLoS One 2016; 11:e0146806. [PMID: 26784346 PMCID: PMC4718667 DOI: 10.1371/journal.pone.0146806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023] Open
Abstract
Elucidating the molecular mechanisms involved in the differentiation of stem cells to hepatic cells is critical for both understanding normal developmental processes as well as for optimizing the generation of functional hepatic cells for therapy. We performed in vitro differentiation of mouse embryonic stem cells (mESCs) with a null mutation in the homeobox gene Hhex and show that Hhex-/- mESCs fail to differentiate from definitive endoderm (Sox17+/Foxa2+) to hepatic endoderm (Alb+/Dlk+). In addition, hepatic culture elicited a >7-fold increase in Vegfa mRNA expression in Hhex-/- cells compared to Hhex+/+ cells. Furthermore, we identified VEGFR2+/ALB+/CD34- in early Hhex+/+ hepatic cultures. These cells were absent in Hhex-/- cultures. Finally, through manipulation of Hhex and Vegfa expression, gain and loss of expression experiments revealed that Hhex shares an inverse relationship with the activity of the Vegf signaling pathway in supporting hepatic differentiation. In summary, our results suggest that Hhex represses Vegf signaling during hepatic differentiation of mouse ESCs allowing for cell-type autonomous regulation of Vegfr2 activity independent of endothelial cells.
Collapse
|
27
|
Zhang M, Sun P, Wang Y, Chen J, Lv L, Wei W, Jin C, Li W. Generation of Self-Renewing Hepatoblasts From Human Embryonic Stem Cells by Chemical Approaches. Stem Cells Transl Med 2015; 4:1275-82. [PMID: 26371343 DOI: 10.5966/sctm.2015-0051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Somatic stem cells play crucial roles in organogenesis and tissue homeostasis and regeneration and may ultimately prove useful for cell therapy for a variety of degenerative diseases and injuries; however, isolation and expansion of most types of somatic stem cells from tissues are technically challenging. Human pluripotent stem cells are a renewable source for any adult cell types, including somatic stem cells. Generation of somatic stem cells from human pluripotent stem cells is a promising strategy to get these therapeutically valuable cells. Previously, we developed a chemically defined condition for mouse hepatoblast self-renewal through a reiterative screening strategy. In the present study, we efficiently generated hepatoblasts from human embryonic stem cells by a stepwise induction strategy. Importantly, these human embryonic stem cell-derived hepatoblasts can be captured and stably maintained using conditions previously established for mouse hepatoblast self-renewal, which includes basal media supplemented with insulin, transferrin, sodium selenite, epidermal growth factor, glycogen synthase kinase 3 inhibitor, transforming growth factor β receptor inhibitor, lysophosphatidic acid, and sphingosine 1-phosphate. The cells can stably retain hepatoblast phenotypes during prolonged culture and can differentiate into mature hepatocytes through in vitro provision of hepatocyte lineage developmental cues. After being embedded into three-dimensional Matrigel, these cells efficiently formed bile duct-like structures resembling native bile duct tissues. These human embryonic stem cell-derived hepatoblasts would be useful as a renewable source for cell therapy of liver diseases. SIGNIFICANCE Somatic stem cells have been proposed as promising candidates for cell-based therapy; however, isolation of somatic stem cells from adult tissues is usually invasive and technically challenging. In the present study, hepatoblasts from human embryonic stem cells were efficiently generated. These human hepatoblasts were then stably captured and maintained by a growth factor and small molecule cocktail, which included epidermal growth factor, glycogen synthase kinase 3 inhibitor, transforming growth factor β receptor inhibitor, lysophosphatidic acid, and sphingosine 1-phosphate. These human embryonic stem cell-derived hepatoblasts would be useful as a renewable source for cell therapy of liver diseases.
Collapse
Affiliation(s)
- Muzi Zhang
- Department of Cell Biology, Second Military Medical University, Shanghai, People's Republic of China
| | - Pingxin Sun
- Department of Cell Biology, Second Military Medical University, Shanghai, People's Republic of China
| | - Yusheng Wang
- Department of Cell Biology, Second Military Medical University, Shanghai, People's Republic of China
| | - Junnan Chen
- Department of Cell Biology, Second Military Medical University, Shanghai, People's Republic of China
| | - Linjie Lv
- Department of Cell Biology, Second Military Medical University, Shanghai, People's Republic of China
| | - Wanguo Wei
- Stem Cell and Regenerative Medicine Center, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, People's Republic of China
| | - Caixia Jin
- Department of Regenerative Medicine, College of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Wenlin Li
- Department of Cell Biology, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Abstract
The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex tissue interactions that progressively generate liver progenitor cells, differentiated lineages and functional tissues. In addition, progress in understanding how these cells interact, and how transcriptional and signaling programs precisely coordinate liver development, has begun to elucidate the molecular mechanisms underlying this complexity. Here, we review the lineage relationships, signaling pathways and transcriptional programs that orchestrate hepatogenesis.
Collapse
Affiliation(s)
- Miriam Gordillo
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
29
|
Ober EA, Grapin-Botton A. At new heights - endodermal lineages in development and disease. Development 2015; 142:1912-7. [PMID: 26015535 DOI: 10.1242/dev.121095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endoderm gives rise to diverse tissues and organs that are essential for the homeostasis and metabolism of the organism: the thymus, thyroid, lungs, liver and pancreas, and the functionally diverse domains of the digestive tract. Classically, the endoderm, the 'innermost germ layer', was in the shadow of the ectoderm and mesoderm. However, at a recent Keystone meeting it took center stage, revealing astonishing progress in dissecting the mechanisms underlying the development and malfunction of the endodermal organs. In vitro cultures of stem and progenitor cells have become widespread, with remarkable success in differentiating three-dimensional organoids, which - in a new turn for the field - can be used as disease models.
Collapse
Affiliation(s)
- Elke A Ober
- Danish Stem Cell Center (DanStem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- Danish Stem Cell Center (DanStem), University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
30
|
Gu W, Sun W, Guo C, Yan Y, Liu M, Yao X, Yang B, Zheng J. Culture and Characterization of Circulating Endothelial Progenitor Cells in Patients with Renal Cell Carcinoma. J Urol 2015; 194:214-22. [PMID: 25659661 DOI: 10.1016/j.juro.2015.01.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Wenyu Gu
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Wei Sun
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Min Liu
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Junhua Zheng
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Lemaigre FP. Determining the fate of hepatic cells by lineage tracing: facts and pitfalls. Hepatology 2015; 61:2100-3. [PMID: 25503476 DOI: 10.1002/hep.27659] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/10/2014] [Indexed: 12/19/2022]
Abstract
Slow renewal of the epithelial cells by proliferation ensures homeostasis of the liver, but extensive proliferation may occur upon injury. When proliferation is impaired, transdifferentiation of mature cells or differentiation of stem cells allows production of new hepatocytes and cholangiocytes. While lineage tracings using cyclization recombinase (Cre) recombinase-mediated cell labeling represent the gold standard for defining cell fate, there are more variables than was initially realized. This led to controversies about the capacity of liver cells to switch their fate. Here, I review how cells are traced in the liver and highlight the experimental pitfalls that may cause misinterpretations and controversies.
Collapse
|
32
|
Ikonomou L, Kotton DN. Derivation of Endodermal Progenitors From Pluripotent Stem Cells. J Cell Physiol 2015; 230:246-58. [PMID: 25160562 PMCID: PMC4344429 DOI: 10.1002/jcp.24771] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 01/18/2023]
Abstract
Stem and progenitor cells play important roles in organogenesis during development and in tissue homeostasis and response to injury postnatally. As the regenerative capacity of many human tissues is limited, cell replacement therapies hold great promise for human disease management. Pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are prime candidates for the derivation of unlimited quantities of clinically relevant cell types through development of directed differentiation protocols, that is, the recapitulation of developmental milestones in in vitro cell culture. Tissue-specific progenitors, including progenitors of endodermal origin, are important intermediates in such protocols since they give rise to all mature parenchymal cells. In this review, we focus on the in vivo biology of embryonic endodermal progenitors in terms of key transcription factors and signaling pathways. We critically review the emerging literature aiming to apply this basic knowledge to achieve the efficient and reproducible in vitro derivation of endodermal progenitors such as pancreas, liver and lung precursor cells.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston
Medical Center, Boston, MA, USA
- Boston University Pulmonary Center, Boston University School of
Medicine, Boston, MA, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston
Medical Center, Boston, MA, USA
- Boston University Pulmonary Center, Boston University School of
Medicine, Boston, MA, USA
| |
Collapse
|
33
|
Lv L, Han Q, Chu Y, Zhang M, Sun L, Wei W, Jin C, Li W. Self-renewal of hepatoblasts under chemically defined conditions by iterative growth factor and chemical screening. Hepatology 2015; 61:337-47. [PMID: 25203445 DOI: 10.1002/hep.27421] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/23/2014] [Indexed: 01/20/2023]
Abstract
UNLABELLED Tissue-specific stem/progenitor cells are essential to mediate organogenesis and tissue homeostasis. In addition, these cells have attracted significant interest for their therapeutic potential. However, it remains challenging to expand most types of these cells in vitro. In this study we devised a screening strategy aimed at identifying growth factors and small molecules that can sustain self-renewal of mouse hepatoblasts. This approach began with a defined basal condition, on top of which collections of growth factors and bioactive small molecules were screened for maintaining self-renewal of primary hepatoblasts. The initially identified proteins and small molecules were then combined in the basal media for subsequent screening to identify additional molecules that can synergistically promote hepatoblast self-renewal. This strategy was performed iteratively to eventually define a small molecule and growth factor cocktail, including epidermal growth factor, glycogen synthase kinase 3 inhibitor, transforming growth factor β receptor inhibitor, lysophosphatidic acid, and sphingosine 1-phosphate, which was sufficient to sustain long-term self-renewal of the murine hepatoblasts under chemically defined conditions. These expanded hepatoblasts retain the ability to respond to liver developmental cues and produce functional hepatocytes and form bile duct-like structures. CONCLUSION Our work established a chemically defined condition that allows long-term expansion of hepatoblasts, improved our understanding of hepatoblast self-renewal, and highlights the power of phenotypic screening to enable self-renewal of somatic stem/progenitor cells.
Collapse
Affiliation(s)
- Linjie Lv
- Department of Cell Biology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kikuchi A, Monga SP. PDGFRα in liver pathophysiology: emerging roles in development, regeneration, fibrosis, and cancer. Gene Expr 2015; 16:109-27. [PMID: 25700367 PMCID: PMC4410163 DOI: 10.3727/105221615x14181438356210] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Platelet-derived growth factor receptor α (PDGFRα) is an isoform of the PDGFR family of tyrosine kinase receptors involved in cell proliferation, survival, differentiation, and growth. In this review, we highlight the role of PDGFRα and the current evidence of its expression and activities in liver development, regeneration, and pathology-including fibrosis, cirrhosis, and liver cancer. Studies elucidating PDGFRα signaling in processes ranging from profibrotic signaling, angiogenesis, and oxidative stress to epithelial-to-mesenchymal transition point toward PDGFRα as a potential therapeutic target in various hepatic pathologies, including hepatic fibrosis and liver cancer. Furthermore, PDGFRα localization and modulation during liver development and regeneration may lend insight into its potential roles in various pathologic states. We will also briefly discuss some of the current targeted treatments for PDGFRα, including multi receptor tyrosine kinase inhibitors and PDGFRα-specific inhibitors.
Collapse
Affiliation(s)
- Alexander Kikuchi
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
35
|
Ramanan V, Scull MA, Sheahan TP, Rice CM, Bhatia SN. New Methods in Tissue Engineering: Improved Models for Viral Infection. Annu Rev Virol 2014; 1:475-499. [PMID: 25893203 PMCID: PMC4398347 DOI: 10.1146/annurev-virology-031413-085437] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo-like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions.
Collapse
Affiliation(s)
- Vyas Ramanan
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Cambridge, Massachusetts 02139
| | - Margaret A Scull
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Timothy P Sheahan
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Charles M Rice
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Sangeeta N Bhatia
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Cambridge, Massachusetts 02139
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Division of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
36
|
Goldman O, Han S, Hamou W, Jodon de Villeroche V, Uzan G, Lickert H, Gouon-Evans V. Endoderm generates endothelial cells during liver development. Stem Cell Reports 2014; 3:556-65. [PMID: 25358784 PMCID: PMC4223703 DOI: 10.1016/j.stemcr.2014.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 12/22/2022] Open
Abstract
Organogenesis requires expansion of the embryonic vascular plexus that migrates into developing organs through a process called angiogenesis. Mesodermal progenitors are thought to derive endothelial cells (ECs) that contribute to both embryonic vasculogenesis and the subsequent organ angiogenesis. Here, we demonstrate that during development of the liver, which is an endoderm derivative, a subset of ECs is generated from FOXA2+ endoderm-derived fetal hepatoblast progenitor cells expressing KDR (VEGFR2/FLK-1). Using human and mouse embryonic stem cell models, we demonstrate that KDR+FOXA2+ endoderm cells developing in hepatic differentiation cultures generate functional ECs. This introduces the concept that ECs originate not exclusively from mesoderm but also from endoderm, supported in Foxa2 lineage-tracing mouse embryos by the identification of FOXA2+ cell-derived CD31+ ECs that integrate the vascular network of developing fetal livers.
Collapse
Affiliation(s)
- Orit Goldman
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Songyan Han
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Wissam Hamou
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | | | - Georges Uzan
- INSERM U972, Hospital Paul Brousse, 12 Avenue Paul Vaillant Couturier, 94807 Villejuif, France
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
37
|
Stem/Progenitor Cells in Liver Development, Homeostasis, Regeneration, and Reprogramming. Cell Stem Cell 2014; 14:561-74. [DOI: 10.1016/j.stem.2014.04.010] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Walter TJ, Vanderpool C, Cast AE, Huppert SS. Intrahepatic bile duct regeneration in mice does not require Hnf6 or Notch signaling through Rbpj. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1479-88. [PMID: 24631193 DOI: 10.1016/j.ajpath.2014.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 12/11/2022]
Abstract
The potential for intrahepatic bile duct (IHBD) regeneration in patients with bile duct insufficiency diseases is poorly understood. Notch signaling and Hnf6 have each been shown to be important for the morphogenesis of IHBDs in mice. One congenital pediatric liver disease characterized by reduced numbers of IHBDs, Alagille syndrome, is associated with mutations in Notch signaling components. Therefore, we investigated whether liver cell plasticity could contribute to IHBD regeneration in mice with disruptions in Notch signaling and Hnf6. We studied a mouse model of bile duct insufficiency with liver epithelial cell-specific deficiencies in Hnf6 and Rbpj, a mediator of canonical Notch signaling. Albumin-Cre Hnf6(flox/flox)Rbpj(flox/flox) mice initially developed no peripheral bile ducts. The evolving postnatal liver phenotype was analyzed using IHBD resin casting, immunostaining, and serum chemistry. With age, Albumin-Cre Hnf6(flox/flox)Rbpj(flox/flox) mice mounted a ductular reaction extending through the hepatic tissue and then regenerated communicating peripheral IHBD branches. Rbpj and Hnf6 were determined to remain absent from biliary epithelial cells constituting the ductular reaction and the regenerated peripheral IHBDs. We report the expression of Sox9, a marker of biliary epithelial cells, in cells expressing hepatocyte markers. Tissue analysis indicates that reactive ductules did not arise directly from preexisting hilar IHBDs. We conclude that liver cell plasticity is competent for regeneration of IHBDs independent of Notch signaling via Rbpj and Hnf6.
Collapse
Affiliation(s)
- Teagan J Walter
- Divisions of Gastroenterology, Hepatology, and Nutrition and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Charles Vanderpool
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ashley E Cast
- Divisions of Gastroenterology, Hepatology, and Nutrition and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stacey S Huppert
- Divisions of Gastroenterology, Hepatology, and Nutrition and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
39
|
Affiliation(s)
- Songyan Han
- Department of Developmental and Regenerative Biology; Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai; New York, NY USA
| | - Orit Goldman
- Department of Developmental and Regenerative Biology; Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai; New York, NY USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology; Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai; New York, NY USA
| |
Collapse
|
40
|
Gerbal-Chaloin S, Funakoshi N, Caillaud A, Gondeau C, Champon B, Si-Tayeb K. Human induced pluripotent stem cells in hepatology: beyond the proof of concept. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:332-47. [PMID: 24269594 DOI: 10.1016/j.ajpath.2013.09.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 02/08/2023]
Abstract
The discovery of the wide plasticity of most cell types means that it is now possible to produce virtually any cell type in vitro. This concept, developed because of the possibility of reprogramming somatic cells toward induced pluripotent stem cells, provides the opportunity to produce specialized cells that harbor multiple phenotypical traits, thus integrating genetic interindividual variability. The field of hepatology has exploited this concept, and hepatocyte-like cells can now be differentiated from induced pluripotent stem cells. This review discusses the choice of somatic cells to be reprogrammed by emergent new and nonintegrative strategies, as well as the application of differentiated human induced pluripotent stem cells in hepatology, including liver development, disease modeling, host-pathogen interactions, and drug metabolism and toxicity. The actual consensus is that hepatocyte-like cells generated in vitro present an immature phenotype. Currently, developed strategies used to resolve this problem, such as overexpression of transcription factors, mimicking liver neonatal and postnatal modifications, and re-creating the three-dimensional hepatocyte environment in vitro and in vivo, are also discussed.
Collapse
Affiliation(s)
- Sabine Gerbal-Chaloin
- INSERM, U1087, Montpellier, France; UMR 1040, Université Montpellier 1, Montpellier, France
| | - Natalie Funakoshi
- INSERM, U1087, Montpellier, France; UMR 1040, Université Montpellier 1, Montpellier, France; Hepato-Gastroenterology Service B, Saint Eloi Hospital, CHU Montpellier, Montpellier, France
| | - Amandine Caillaud
- INSERM, UMR 1087, the Institute of the Thorax, Nantes, France; CNRS, UMR 6291, Nantes, France; School of Medicine, University of Nantes, Nantes, France
| | - Claire Gondeau
- INSERM, U1087, Montpellier, France; UMR 1040, Université Montpellier 1, Montpellier, France
| | - Benoite Champon
- INSERM, UMR 1087, the Institute of the Thorax, Nantes, France; CNRS, UMR 6291, Nantes, France; School of Medicine, University of Nantes, Nantes, France
| | - Karim Si-Tayeb
- INSERM, UMR 1087, the Institute of the Thorax, Nantes, France; CNRS, UMR 6291, Nantes, France; School of Medicine, University of Nantes, Nantes, France.
| |
Collapse
|
41
|
Sourisseau M, Goldman O, He W, Gori JL, Kiem HP, Gouon-Evans V, Evans MJ. Hepatic cells derived from induced pluripotent stem cells of pigtail macaques support hepatitis C virus infection. Gastroenterology 2013; 145:966-969.e7. [PMID: 23891978 PMCID: PMC3805793 DOI: 10.1053/j.gastro.2013.07.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 12/21/2022]
Abstract
The narrow species tropism of hepatitis C virus (HCV) limits animal studies. We found that pigtail macaque (Macaca nemestrina) hepatic cells derived from induced pluripotent stem cells support the entire HCV life cycle, although infection efficiency was limited by defects in the HCV cell entry process. This block was overcome by either increasing occludin expression, complementing the cells with human CD81, or infecting them with a strain of HCV with less restricted requirements for CD81. Using this system, we can modify viral and host cell genetics to make pigtail macaques a suitable, clinically relevant model for the study of HCV infection.
Collapse
Affiliation(s)
- Marion Sourisseau
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Orit Goldman
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Wenqian He
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Jennifer L. Gori
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA, 98109
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA, 98109,Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA, 98195,Department of Pathology, University of Washington, 815 Mercer Street, Seattle, WA, USA, 98109
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029,Corresponding Authors: Valerie Gouon-Evans, 212-241-4033, , Matthew J. Evans, 212-241-5576,
| | - Matthew J. Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029,Corresponding Authors: Valerie Gouon-Evans, 212-241-4033, , Matthew J. Evans, 212-241-5576,
| |
Collapse
|
42
|
Toivonen S, Lundin K, Balboa D, Ustinov J, Tamminen K, Palgi J, Trokovic R, Tuuri T, Otonkoski T. Activin A and Wnt-dependent specification of human definitive endoderm cells. Exp Cell Res 2013; 319:2535-44. [DOI: 10.1016/j.yexcr.2013.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 06/28/2013] [Accepted: 07/10/2013] [Indexed: 12/31/2022]
|