1
|
Song S, Zhang X, Zheng H, Liao Y, Tang P, Liu Y, Tang A, Ran P, Sun X, Yang P. Intermittent Fasting Reduces Intestinal Inflammation in Dextran Sulfate Sodium-Induced Colitis of Mice. Food Sci Nutr 2025; 13:e70014. [PMID: 39898122 PMCID: PMC11787962 DOI: 10.1002/fsn3.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Inflammatory bowel disease (IBD), comprising ulcerative colitis (UC) and Crohn's disease (CD), is a chronic condition impacting both the gastrointestinal tract and the immune system. Intestinal inflammation and epithelial injury are the pathological features of IBD. Recent studies have reported that some strategies of dietary restriction (DR) can regulate immune system, correct the immune disorders, and improve some immune-associated diseases such as IBD. However, as a form of DR, the effect of intermittent fasting (IF) on the IBD remains unknown. In this study, we investigated the therapeutic efficacy of two cycles of IF on the IBD mouse model induced by dextran sulfate sodium (DSS). It was found that two cycles of IF significantly decreased the score of the disease activity index (DAI) and alleviated the IBD-related symptoms. In addition, IF reversed the shortening of colon length mediated by DSS, significantly increased the number of colonic crypts, and decreased the colonic histological score. Furthermore, the proportion of CD4+ T cells in both the spleen and mesenteric lymph node was reduced by IF treatment. The expression of serum pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 was restrained by IF intervention. Moreover, IF administration significantly reduced the number of leukocytes and macrophages infiltrating around the crypt base in the colon. In conclusion, these results demonstrated that IF administration can alleviate the symptoms and pathology of IBD in the DSS-induced IBD mouse model by reducing the intestinal inflammation.
Collapse
Affiliation(s)
- Shuo Song
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
- Institute of Allergy & ImmunologyShenzhen University School of Medicine and State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen UniversityShenzhenChina
| | - Xiwen Zhang
- Shenzhen Clinical School of MedicineGuangzhou University of Chinese MedicineShenzhenChina
| | - Haoyue Zheng
- Shenzhen Clinical School of MedicineGuangzhou University of Chinese MedicineShenzhenChina
| | - Yun Liao
- Shenzhen Clinical School of MedicineGuangzhou University of Chinese MedicineShenzhenChina
| | - Ping Tang
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Yu Liu
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Aifa Tang
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Pixin Ran
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthGuangzhou Medical UniversityGuangzhouChina
| | - Xizhuo Sun
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Pingchang Yang
- Institute of Allergy & ImmunologyShenzhen University School of Medicine and State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen UniversityShenzhenChina
| |
Collapse
|
2
|
Mao X, Paerhati G, Wu Y, Cheng LF. Modulation of gut microbiota, up-regulation of ZO-1, and promotion of metabolism as therapeutic mechanisms of indole-3-carbinol against obesity in mice. Front Pharmacol 2025; 15:1499142. [PMID: 39830328 PMCID: PMC11739362 DOI: 10.3389/fphar.2024.1499142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Background Indole-3-carbinol (I3C) is a compound derived from Cruciferous vegetables. We aim to ascertain whether I3C mediates the relations between mouse gut microbiota, intestinal barrier function, and metabolism to treat obesity in mice. Methods The experimental analyses focused on the changes in lipid distribution, inflammatory cytokines, glucose tolerance, gut microbiota composition, and serum metabolomics of 60 C57BL/6N mice. Results The experimental results demonstrated that I3C reduced body weight, hepatic steatosis, and systemic inflammation and improved insulin resistance in mice on a high-fat diet (HFD). Furthermore, I3C remarkably enhanced the enrichment of probiotics Akkermansia and Ligilactobacillus as well as SCFA-producing bacteria (Eubacterium, Lactococcus, and Coprococcus), while reducing the abundance of Eisenbergiella and Rikenellaceae_RC9_gut_group. Also, I3C notably up-regulated the levels of Claudin4, Occludin, and ZO-1 proteins and modulated the metabolism of argininosuccinic acid and galactose. Conclusion The aforementioned findings suggest that I3C exerts a significant anti-obesity effect in mice by regulating abnormal gut microbiome, enhancing intestinal barrier function, and improving metabolic disorders.
Collapse
Affiliation(s)
- XuWen Mao
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Ürümqi, China
| | - Guliruoyi Paerhati
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Ürümqi, China
| | - Yuche Wu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), Ürümqi, China
| | - Lu Feng Cheng
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
3
|
Shay JES, Yilmaz ÖH. Dietary and metabolic effects on intestinal stem cells in health and disease. Nat Rev Gastroenterol Hepatol 2025; 22:23-38. [PMID: 39358589 PMCID: PMC12105169 DOI: 10.1038/s41575-024-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Diet and nutritional metabolites exhibit wide-ranging effects on health and disease partly by altering tissue composition and function. With rapidly rising rates of obesity, there is particular interest in how obesogenic diets influence tissue homeostasis and risk of tumorigenesis; epidemiologically, these diets have a positive correlation with various cancers, including colorectal cancer. The gastrointestinal tract is a highly specialized, continuously renewing tissue with a fundamental role in nutrient uptake and is, in turn, influenced by diet composition and host metabolic state. Intestinal stem cells are found at the base of the intestinal crypt and can generate all mature lineages that comprise the intestinal epithelium and are uniquely influenced by host diet, metabolic by-products and energy dynamics. Similarly, tumour growth and metabolism can also be shaped by nutrient availability and host diet. In this Review, we discuss how different diets and metabolic changes influence intestinal stem cells in homeostatic and pathological conditions, as well as tumorigenesis. We also discuss how dietary changes and composition affect the intestinal epithelium and its surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica E S Shay
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Abdel Hadi L, Sheikh S, Suarez-Formigo GM, Zakaria A, Abdou F, Valverde CAV, Ventura Carmenate Y, Bencomo-Hernandez AA, Rivero-Jimenez RA. Intermittent Fasting During Ramadan Increases the Absolute Number of Circulating Progenitor Stem Cells in Healthy Subjects. Stem Cells Dev 2025; 34:35-47. [PMID: 39628382 DOI: 10.1089/scd.2024.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Fasting regimens have shown profound impact on pro-longevity and tissue regeneration in diverse species. Physiological events can induce a regenerative response in adult stem cells. However, little is known about signaling and activation of adult stem cells which are modulated by fasting. This study analyzed the presence of hematopoietic stem/progenitor cells (HSPCs) and their circulation in the peripheral blood (PB) of healthy male adults practicing Ramadan fasting. Ten healthy male volunteers were enrolled in this prospective observational study. PB samples were collected twice daily on days 0, 10, 20, and 30 of Ramadan fasting (RF). Populations of stem cells and serum soluble factors were analyzed by flow cytometry. As a response to RF, we report an increase in the average absolute count of circulating of HSPCs, defined as LIN-CD45- and LIN-CD45+ cell subsets expressing the stem markers, CD34 and CD133. Changes in the number of HSPCs subsets reflected changes in the peripheral concentration of chemoattractant soluble factors during fasting. A chemotaxis assay showed a migratory property of HSPCs towards plasma, collected at D30 of fasting that contained a higher concentration of SCF and G-CSF. The relationship between RF and an increase in the number of circulating HSPCs in part, describes a regenerative response to the physiological changes during fasting and may open opportunities to define the role of dietary intervention in the stem cell therapy.
Collapse
Affiliation(s)
- Loubna Abdel Hadi
- Research and development department, Abu Dhabi Stem Cells Center (ADSCC), Abu Dhabi, United Arab Emirates
| | - Samira Sheikh
- Research and development department, Abu Dhabi Stem Cells Center (ADSCC), Abu Dhabi, United Arab Emirates
| | - Gisela M Suarez-Formigo
- Research and development department, Abu Dhabi Stem Cells Center (ADSCC), Abu Dhabi, United Arab Emirates
| | - Aya Zakaria
- Research and development department, Abu Dhabi Stem Cells Center (ADSCC), Abu Dhabi, United Arab Emirates
| | - Fatma Abdou
- Research and development department, Abu Dhabi Stem Cells Center (ADSCC), Abu Dhabi, United Arab Emirates
| | | | - Yendry Ventura Carmenate
- Research and development department, Abu Dhabi Stem Cells Center (ADSCC), Abu Dhabi, United Arab Emirates
- Yas Clinic Khalifa City (YCKC) Hospital, Abu Dhabi, United Arab Emirates
| | | | | |
Collapse
|
5
|
Hou W, Sun C, Han X, Fan M, Qiao W. NEDD4L affects stability of the CHEK2/TP53 axis through ubiquitination modification to enhance osteogenic differentiation of periodontal ligament stem cells. Connect Tissue Res 2024; 65:433-446. [PMID: 39373023 DOI: 10.1080/03008207.2024.2406794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/09/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Checkpoint kinase 2 (CHEK2) and its regulated tumor protein p53 (TP53) have been correlated with osteogenic differentiation of osteoblast-like cells. Based on bioinformatics predictions, this study aims to investigate the effect of the CHEK2/TP53 axis on osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and to explore the regulatory mechanism. METHODS PDLSCs were isolated from human impacted wisdom teeth, and they were cultured in normal medium (NM) or osteogenic medium (OM). Protein levels of CHEK2 and TP53 were examined using western blot analysis. Osteogenic differentiation ability of PDLSCs was analyzed by measuring marker proteins (RUNX2, OCN, and OSX), ALP activity, and ALP staining. Molecular interaction between NEDD4 like E3 ubiquitin protein ligase (NEDD4L) and CHEK2 was examined by ubiquitination and co-immunoprecipitation assays. Gain- and loss-of function assays of NEDD4L, CHEK2, and TP53 were performed to analyze their function in osteogenic differentiation of PDLSCs. A rat model of mandibular bone defect was generated for in vivo validation. RESULTS NEDD4L was upregulated, while CHEK2 and TP53 were downregulated in PDLSCs cultured in OM. CHEK2 protected TP53 from degradation, while NEDD4L reduced CHEK2 protein level by ubiquitination modification. NEDD4L silencing reduced osteogenic differentiation ability of PDLSCs both in vitro and in vivo, which was restored by CHEK2 silencing. By contrast, CHEK2 overexpression blocked the osteogenic differentiation of PDLSCs in vitro. CONCLUSION This study demonstrates that NEDD4L affects protein stability of the CHEK2/TP53 axis through ubiquitination modification, thus increasing osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Wenyue Hou
- Outpatient Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Changsheng Sun
- Department of Stomatology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Xue Han
- Harbin Hou Kaiyu Dental Clinic, Harbin, Heilongjiang, P.R. China
| | - Mingyu Fan
- Harbin Hou Kaiyu Dental Clinic, Harbin, Heilongjiang, P.R. China
| | - Wenjuan Qiao
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
6
|
Şensoy E. Comparison of the effect of Sunset yellow on the stomach and small intestine of developmental period of mice. Heliyon 2024; 10:e31998. [PMID: 38882373 PMCID: PMC11176863 DOI: 10.1016/j.heliyon.2024.e31998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Sunset Yellow (SY), a synthetic food dye, is widely used in the food industry worldwide. The acceptable daily dosage for SY is 2.5 mg/kg/bw in humans. If SY is consumed in overdosage, it may cause histopathological effects in several organs. Studies in the literature about the effects of SY on growth and development in mammals are contradictory, and there are not enough of them. The investigation aims to determine SY's effects on the stomach and small intestine in different age groups of mice using histological methods. Control and treatment groups were created via mice aged 4, 8, and 10 weeks (n = 6). SY was administered by gavage at a level of 30 mg/kg/bw for 28 days to treatment groups. On the last day of the study, the mice were weighed and sacrificed by cervical dislocation. Stomach and small intestine tissues were removed from mice and transferred to 10 % formaldehyde. After passing through alcohol and xylene series and staining with Hematoxylin-Eosin, the tissues were evaluated under light and electron microscopy. The mean body weight (p = 0.01), mean stomach weight (p = 0.03), and mean small intestine weight were increased (p = 0.02) in treatment groups. In these groups, ruptures, fractures, and hemorrhage were detected in the small intestine tissue. In the stomach tissue, necrotic areas and hemorrhage were detected among the epithelial cells. The degenerations were more advanced in the weaning group. SY may be more harmful during weaning and puberty, but additional long-term studies are needed on the subject.
Collapse
Affiliation(s)
- Erhan Şensoy
- Karamanoglu Mehmetbey University Faculty of Health Science, Karaman, Turkey
| |
Collapse
|
7
|
Dominguez LJ, Veronese N, Barbagallo M. Magnesium and the Hallmarks of Aging. Nutrients 2024; 16:496. [PMID: 38398820 PMCID: PMC10892939 DOI: 10.3390/nu16040496] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Magnesium is an essential ion in the human body that regulates numerous physiological and pathological processes. Magnesium deficiency is very common in old age. Age-related chronic diseases and the aging process itself are frequently associated with low-grade chronic inflammation, called 'inflammaging'. Because chronic magnesium insufficiency has been linked to excessive generation of inflammatory markers and free radicals, inducing a chronic inflammatory state, we formerly hypothesized that magnesium inadequacy may be considered among the intermediaries helping us explain the link between inflammaging and aging-associated diseases. We show in this review evidence of the relationship of magnesium with all the hallmarks of aging (genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, disabled autophagy, dysbiosis, and chronic inflammation), which may positively affect the human healthspan. It is feasible to hypothesize that maintaining an optimal balance of magnesium during one's life course may turn out to be a safe and economical strategy contributing to the promotion of healthy aging. Future well-designed studies are necessary to further explore this hypothesis.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- School of Medicine, “Kore” University of Enna, 94100 Enna, Italy;
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Nicola Veronese
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
8
|
Huang WH, Kajal K, Wibowo RH, Amartuvshin O, Kao SH, Rastegari E, Lin CH, Chiou KL, Pi HW, Ting CT, Hsu HJ. Excess dietary sugar impairs Drosophila adult stem cells via elevated reactive oxygen species-induced JNK signaling. Development 2024; 151:dev201772. [PMID: 38063853 DOI: 10.1242/dev.201772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
High-sugar diets (HSDs) often lead to obesity and type 2 diabetes, both metabolic syndromes associated with stem cell dysfunction. However, it is unclear whether excess dietary sugar affects stem cells. Here, we report that HSD impairs stem cell function in the intestine and ovaries of female Drosophila prior to the onset of insulin resistance, a hallmark of type 2 diabetes. Although 1 week of HSD leads to obesity, impaired oogenesis and altered lipid metabolism, insulin resistance does not occur. HSD increases glucose uptake by germline stem cells (GSCs) and triggers reactive oxygen species-induced JNK signaling, which reduces GSC proliferation. Removal of excess sugar from the diet reverses these HSD-induced phenomena. A similar phenomenon is found in intestinal stem cells (ISCs), except that HSD disrupts ISC maintenance and differentiation. Interestingly, tumor-like GSCs and ISCs are less responsive to HSD, which may be because of their dependence on glycolytic metabolism and high energy demand, respectively. This study suggests that excess dietary sugar induces oxidative stress and damages stem cells before insulin resistance develops, a mechanism that may also occur in higher organisms.
Collapse
Affiliation(s)
- Wei-Hao Huang
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Department of Life Science, National Taiwan University, Taipei 10917
| | - Kreeti Kajal
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227
| | | | - Oyundari Amartuvshin
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490
| | - Shih-Han Kao
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
| | - Elham Rastegari
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490
| | - Kuan-Lin Chiou
- Department of Biomedical Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Hai-Wei Pi
- Department of Biomedical Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Chau-Ti Ting
- Department of Life Science, National Taiwan University, Taipei 10917
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
| |
Collapse
|
9
|
Shabkhizan R, Haiaty S, Moslehian MS, Bazmani A, Sadeghsoltani F, Saghaei Bagheri H, Rahbarghazi R, Sakhinia E. The Beneficial and Adverse Effects of Autophagic Response to Caloric Restriction and Fasting. Adv Nutr 2023; 14:1211-1225. [PMID: 37527766 PMCID: PMC10509423 DOI: 10.1016/j.advnut.2023.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Each cell is equipped with a conserved housekeeping mechanism, known as autophagy, to recycle exhausted materials and dispose of injured organelles via lysosomal degradation. Autophagy is an early-stage cellular response to stress stimuli in both physiological and pathological situations. It is thought that the promotion of autophagy flux prevents host cells from subsequent injuries by removing damaged organelles and misfolded proteins. As a correlate, the modulation of autophagy is suggested as a therapeutic approach in diverse pathological conditions. Accumulated evidence suggests that intermittent fasting or calorie restriction can lead to the induction of adaptive autophagy and increase longevity of eukaryotic cells. However, prolonged calorie restriction with excessive autophagy response is harmful and can stimulate a type II autophagic cell death. Despite the existence of a close relationship between calorie deprivation and autophagic response in different cell types, the precise molecular mechanisms associated with this phenomenon remain unclear. Here, we aimed to highlight the possible effects of prolonged and short-term calorie restriction on autophagic response and cell homeostasis.
Collapse
Affiliation(s)
- Roya Shabkhizan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Student Committee Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ebrahim Sakhinia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Moraitis I, Guiu J, Rubert J. Gut microbiota controlling radiation-induced enteritis and intestinal regeneration. Trends Endocrinol Metab 2023:S1043-2760(23)00108-X. [PMID: 37336645 DOI: 10.1016/j.tem.2023.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
Cancer remains the second leading cause of mortality, with nearly 10 million deaths worldwide in 2020. In many cases, radiotherapy is used for its anticancer effects. However, radiation causes healthy tissue toxicity as a side effect. In intra-abdominal and pelvic malignancies, the healthy bowel is inevitably included in the radiation field, causing radiation-induced enteritis and dramatically affecting the gut microbiome. This condition is associated with significant morbidity and mortality that impairs cancer patients' and survivors' quality of life. This Review provides a critical overview of the main drivers in modulating the gut microenvironment in homeostasis, disease, and injury, focusing on gut microbial metabolites and microorganisms that influence epithelial regeneration upon radiation injury.
Collapse
Affiliation(s)
- Ilias Moraitis
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain; Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain
| | - Jordi Guiu
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain; Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain.
| | - Josep Rubert
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, Wageningen, 6708, WE, Netherlands; Food Quality and Design, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708, WG, Netherlands.
| |
Collapse
|
11
|
Zhou X, Zhang X, Niu D, Zhang S, Wang H, Zhang X, Nan F, Jiang S, Wang B. Gut microbiota induces hepatic steatosis by modulating the T cells balance in high fructose diet mice. Sci Rep 2023; 13:6701. [PMID: 37095192 PMCID: PMC10126116 DOI: 10.1038/s41598-023-33806-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Metabolic diseases are often associated with high fructose (HF) consumption. HF has also been found to alter the gut microbiota, which then favors the development of nonalcoholic fatty liver disease. However, the mechanisms underlying of the gut microbiota on this metabolic disturbance are yet to be determined. Thus, in this study, we further explored the effect the gut microbiota concerning the T cells balance in an HF diet mouse model. We fed mice 60% fructose-enriched diet for 12 weeks. At 4 weeks, HF diet did not affect the liver, but it caused injury to the intestine and adipose tissues. After 12 weeks, the lipid droplet aggregation was markedly increased in the liver of HF-fed mice. Further analysis of the gut microbial composition showed that HF decreased the Bacteroidetes/Firmicutes ratio and increased the levels of Blautia, Lachnoclostridium, and Oscillibacter. In addition, HF can increase the expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in the serum. T helper type 1 cells were significantly increased, and regulatory T(Treg) cells were markedly decreased in the mesenteric lymph nodes of the HF-fed mice. Furthermore, fecal microbiota transplantation alleviates systemic metabolic disorder by maintaining liver and intestinal immune homeostasis. Overall, our data indicated that intestinal structure injury and intestinal inflammation might be early, and liver inflammation and hepatic steatosis may be a subsequent effect following HF diets. Gut microbiota disorders impairing the intestinal barrier function and triggering immune homeostasis imbalance may be an importantly responsible for long-term HF diets induced hepatic steatosis.
Collapse
Affiliation(s)
- Xiaoqiong Zhou
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Delei Niu
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Shuyun Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Wang
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Xueming Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Fulong Nan
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China.
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
12
|
Andreo-López MC, Contreras-Bolívar V, Muñoz-Torres M, García-Fontana B, García-Fontana C. Influence of the Mediterranean Diet on Healthy Aging. Int J Mol Sci 2023; 24:4491. [PMID: 36901921 PMCID: PMC10003249 DOI: 10.3390/ijms24054491] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.
Collapse
Affiliation(s)
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| |
Collapse
|
13
|
Sarkar A, Jin Y, DeFelice BC, Logan CY, Yang Y, Anbarchian T, Wu P, Morri M, Neff NF, Nguyen H, Rulifson E, Fish M, Kaye AG, Martínez Jaimes AM, Nusse R. Intermittent fasting induces rapid hepatocyte proliferation to restore the hepatostat in the mouse liver. eLife 2023; 12:e82311. [PMID: 36719070 PMCID: PMC9889086 DOI: 10.7554/elife.82311] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/09/2022] [Indexed: 02/01/2023] Open
Abstract
Nutrient availability fluctuates in most natural populations, forcing organisms to undergo periods of fasting and re-feeding. It is unknown how dietary changes influence liver homeostasis. Here, we show that a switch from ad libitum feeding to intermittent fasting (IF) promotes rapid hepatocyte proliferation. Mechanistically, IF-induced hepatocyte proliferation is driven by the combined action of systemic FGF15 and localized WNT signaling. Hepatocyte proliferation during periods of fasting and re-feeding re-establishes a constant liver-to-body mass ratio, thus maintaining the hepatostat. This study provides the first example of dietary influence on adult hepatocyte proliferation and challenges the widely held view that liver tissue is mostly quiescent unless chemically or mechanically injured.
Collapse
Affiliation(s)
- Abby Sarkar
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Yinhua Jin
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | | | - Catriona Y Logan
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Yan Yang
- Stanford Center for Genomics & Personalized Medicine, Stanford University School of MedicineStanfordUnited States
| | - Teni Anbarchian
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Peng Wu
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | | | - Norma F Neff
- Chan-Zuckerberg BiohubSan FranciscoUnited States
| | - Huy Nguyen
- Department of Neurology and Neurological Sciences, Stanford University School of MedicineStanfordUnited States
| | - Eric Rulifson
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Matthew Fish
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Avi Gurion Kaye
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Azalia M Martínez Jaimes
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
14
|
Abstract
Reprogrammed metabolism is a hallmark of colorectal cancer (CRC). CRC cells are geared toward rapid proliferation, requiring nutrients and the removal of cellular waste in nutrient-poor environments. Intestinal stem cells (ISCs), the primary cell of origin for CRCs, must adapt their metabolism along the adenoma-carcinoma sequence to the unique features of their complex microenvironment that include interactions with intestinal epithelial cells, immune cells, stromal cells, commensal microbes, and dietary components. Emerging evidence implicates modifiable risk factors related to the environment, such as diet, as important in CRC pathogenesis. Here, we focus on describing the metabolism of ISCs, diets that influence CRC initiation, CRC genetics and metabolism, and the tumor microenvironment. The mechanistic links between environmental factors, metabolic adaptations, and the tumor microenvironment in enhancing or supporting CRC tumorigenesis are becoming better understood. Thus, greater knowledge of CRC metabolism holds promise for improved prevention and treatment.
Collapse
Affiliation(s)
- Joseph C Sedlak
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Massachusetts General Hospital, Department of Pathology, Boston, Massachusetts, USA
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA;
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
15
|
Guevara-Garcia A, Soleilhac M, Minc N, Delacour D. Regulation and functions of cell division in the intestinal tissue. Semin Cell Dev Biol 2023:S1084-9521(23)00004-6. [PMID: 36702722 DOI: 10.1016/j.semcdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
In multicellular organisms, epithelial cells are key elements of tissue organization. In developing epithelial tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs to ensure correct organ formation and functioning. In these processes, proliferation rates and division orientation regulate the speed, timing and direction of tissue expansion but also its proper patterning. Moreover, tissue homeostasis relies on spatio-temporal modulations of daughter cell behavior and arrangement. These aspects are particularly crucial in the intestine, which is one of the most proliferative tissues in adults, making it a very attractive adult organ system to study the role of cell division on epithelial morphogenesis and organ function. Although epithelial cell division has been the subject of intense research for many years in multiple models, it still remains in its infancy in the context of the intestinal tissue. In this review, we focus on the current knowledge on cell division and regulatory mechanisms at play in the intestinal epithelial tissue, as well as their importance in developmental biology and physiopathology.
Collapse
Affiliation(s)
| | - Matis Soleilhac
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Delphine Delacour
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France.
| |
Collapse
|
16
|
Lara-Barba E, Torán-Vilarrubias A, Moriel-Carretero M. An Expansion of the Endoplasmic Reticulum that Halts Autophagy is Permissive to Genome Instability. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231157706. [PMID: 37366415 PMCID: PMC10243512 DOI: 10.1177/25152564231157706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/28/2023]
Abstract
The links between autophagy and genome stability, and whether they are important for lifespan and health, are not fully understood. We undertook a study to explore this notion at the molecular level using Saccharomyces cerevisiae. On the one hand, we triggered autophagy using rapamycin, to which we exposed mutants defective in preserving genome integrity, then assessed their viability, their ability to induce autophagy and the link between these two parameters. On the other hand, we searched for molecules derived from plant extracts known to have powerful benefits on human health to try to rescue the negative effects rapamycin had against some of these mutants. We uncover that autophagy execution is lethal for mutants unable to repair DNA double strand breaks, while the extract from Silybum marianum seeds induces an expansion of the endoplasmic reticulum (ER) that blocks autophagy and protects them. Our data uncover a connection between genome integrity and homeostasis of the ER whereby ER stress-like scenarios render cells tolerant to sub-optimal genome integrity conditions.
Collapse
Affiliation(s)
- Eliana Lara-Barba
- Institut de Génétique Humaine (IGH), Université de Montpellier-Centre National de la Recherche Scientifique,
Montpellier, France
| | - Alba Torán-Vilarrubias
- Institut de Génétique Humaine (IGH), Université de Montpellier-Centre National de la Recherche Scientifique,
Montpellier, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de
Montpellier (CRBM), Université de Montpellier-Centre National de la Recherche Scientifique,
Montpellier, France
| |
Collapse
|
17
|
Hoxha M, Zappacosta B. A review on the role of fatty acids in colorectal cancer progression. Front Pharmacol 2022; 13:1032806. [PMID: 36578540 PMCID: PMC9791100 DOI: 10.3389/fphar.2022.1032806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of mortality in cancer patients. The role of fatty acids (FA) and their metabolism in cancer, particularly in CRC raises a growing interest. In particular, dysregulation of synthesis, desaturation, elongation, and mitochondrial oxidation of fatty acids are involved. Here we review the current evidence on the link between cancer, in particular CRC, and fatty acids metabolism, not only to provide insight on its pathogenesis, but also on the development of novel biomarkers and innovative pharmacological therapies that are based on FAs dependency of cancer cells.
Collapse
|
18
|
Bezerra AF, Alves JPM, Fernandes CCL, Cavalcanti CM, Silva MRL, Conde AJH, Tetaping GM, Ferreira ACA, Melo LM, Rodrigues APR, Rondina D. Dyslipidemia induced by lipid diet in late gestation donor impact on growth kinetics and in vitro potential differentiation of umbilical cord Wharton's Jelly mesenchymal stem cells in goats. Vet Res Commun 2022; 46:1259-1270. [PMID: 36125693 DOI: 10.1007/s11259-022-09995-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Mesenchymal stem cells (MSC) from the umbilical cord (UC) have several attractive properties for clinical use. This study aimed to verify the impact of a lipid-rich diet during late gestation of donor goats on the growth and differentiation of MSCs from UC. From the 100th day of pregnancy to delivery, 22 goats were grouped based on their diet into the donor-lipid (DLD; n = 11) and donor-baseline (DBD; n = 11) diet groups. Diets were isonitrogenous and isoenergetic, differing in fat content (2.8% vs. 6.3% on a dry matter basis). Wharton's jelly (WJ) fragments were cultured. After primary culture, samples of WJ-MSCs were characterized by the expression of CD90, CD73, CD34, CD45, CD105, and Fas genes, mitochondrial activity using MitoTracker (MT) fluorescence probe, and growth kinetics. Population doubling time (PDT) was also determined. WJ-MSCs were differentiated into chondrocytes, adipocytes and osteocytes, and the mineralized area and adipocytes were determined. The lipid diet significantly increased triglyceride and cholesterol levels during pregnancy. The DLD group showed sub-expression of the CD90 gene, a high MT intensity, and a low proliferation rate at the end of the subculture. The mean PDT was 83.9 ± 1.3 h. Mineralized area and lipid droplet stain intensity from osteogenic and adipogenic differentiations, respectively, were greater in DLD. We conclude that in donor goats, dietary dyslipidemia during late pregnancy affects the ability of UC-derived MSCs to express their developmental potential in vitro, thus limiting their possible use for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Camila Muniz Cavalcanti
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, CE, 60.714.903, Brazil
| | | | | | - Gildas Mbemya Tetaping
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, CE, 60.714.903, Brazil
| | | | - Luciana Magalhães Melo
- School of Veterinary Medicine, Centro Universitario Fametro (UNIFAMETRO), Fortaleza, CE, 60010-470, Brazil
| | | | - Davide Rondina
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, CE, 60.714.903, Brazil.
| |
Collapse
|
19
|
Leonov A, Feldman R, Piano A, Arlia-Ciommo A, Junio JAB, Orfanos E, Tafakori T, Lutchman V, Mohammad K, Elsaser S, Orfali S, Rajen H, Titorenko VI. Diverse geroprotectors differently affect a mechanism linking cellular aging to cellular quiescence in budding yeast. Oncotarget 2022; 13:918-943. [PMID: 35937500 PMCID: PMC9348708 DOI: 10.18632/oncotarget.28256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Rachel Feldman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Emmanuel Orfanos
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Tala Tafakori
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sarah Elsaser
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sandra Orfali
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Harshvardhan Rajen
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | |
Collapse
|
20
|
Ma N, Chen X, Liu C, Sun Y, Johnston LJ, Ma X. Dietary nutrition regulates intestinal stem cell homeostasis. Crit Rev Food Sci Nutr 2022; 63:11263-11274. [PMID: 35694795 DOI: 10.1080/10408398.2022.2087052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intestinal stem cells (ISCs), which locate at the base of intestinal crypts, are key determinants of governing proliferation and differentiation of the intestinal epithelium. The surrounding cells of ISCs and their related growth factors form ISC niche, supporting ISC function and self-renewal. ISC has an underappreciated but emerging role as a sensor of dietary nutrients, which fate decisions is adjusted in response to nutritional states to regulate gut homeostasis. Here, we review endogenous and exogenous factors, such as caloric restriction, fasting, fat, glucose and trace element. They instruct ISCs via mTORC1, PPAR/CPT1α, PPARγ/β-catenin, Wnt/GSK-3β pathway, respectively, jointly affect intestinal homeostasis. These dietary responses regulate ISC regenerative capacity and may be a potential target for cancer prevention. However, without precise definitions of nutrition intervene, it will be difficult to generate sufficient data to extending our knowledge of the biological response of ISC on nutrients. More accurately modeling organoids or high-throughput automated organoid culture in microcavity arrays have provided unprecedented opportunities for modeling diet-host interactions. These major advances collectively provide new insights into nutritional regulation of ISC proliferation and differentiation and drive us ever closer to breakthroughs for regenerative medicine and disease treatment by nutrition intervention in the clinic.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiyue Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunchen Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiwei Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Georgievski A, Michel A, Thomas C, Mlamla Z, Pais de Barros JP, Lemaire-Ewing S, Garrido C, Quéré R. Acute lymphoblastic leukemia-derived extracellular vesicles affect quiescence of hematopoietic stem and progenitor cells. Cell Death Dis 2022; 13:337. [PMID: 35414137 PMCID: PMC9005650 DOI: 10.1038/s41419-022-04761-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/05/2023]
Abstract
Patient-derived xenografted (PDX) models were generated through the transplantation of primary acute lymphoblastic leukemia (ALL) cells into immunodeficient NSG mice. We observed that ALL cells from mouse bone marrow (BM) produced extracellular vesicles (EVs) with specific expression of inducible heat shock protein HSP70, which is commonly activated in cancer cells. Taking advantage of this specific expression, we designed a strategy to generate fluorescent HSP70-labeled ALL EVs and monitor the impact of these EVs on endogenous murine BM cells ex vivo and in vivo. We discovered that hematopoietic stem and progenitor cells (HSPC) were mainly targeted by ALL EVs, affecting their quiescence and maintenance in the murine BM environment. Investigations revealed that ALL EVs were enriched in cholesterol and other metabolites that contribute to promote the mitochondrial function in targeted HSPC. Furthermore, using CD34+ cells isolated from cord blood, we confirmed that ALL EVs can modify quiescence of human HSPC. In conclusion, we have discovered a new oncogenic mechanism illustrating how EVs produced by proliferative ALL cells can target and compromise a healthy hematopoiesis system during leukemia development.
Collapse
Affiliation(s)
- Aleksandra Georgievski
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Anaïs Michel
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France
| | - Charles Thomas
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Zandile Mlamla
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,Plateforme de Lipidomique Analytique, Université Bourgogne Franche-Comté, Dijon, France
| | - Jean-Paul Pais de Barros
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Plateforme de Lipidomique Analytique, Université Bourgogne Franche-Comté, Dijon, France
| | - Stéphanie Lemaire-Ewing
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,Laboratoire de Biochimie Spécialisée, Hôpital Universitaire François Mitterrand, Dijon, France
| | - Carmen Garrido
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Centre Georges François Leclerc-Unicancer, Dijon, France
| | - Ronan Quéré
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France. .,LipSTIC Labex, Dijon, France.
| |
Collapse
|
22
|
Xu Y, Fang H, Chen Y, Tang Y, Sun H, Kong Z, Yang F, Kirschner-Schwabe R, Zhu L, Toker A, Xiao N, Zhou BBS, Li H. The KRAS-G12D mutation induces metabolic vulnerability in B-cell acute lymphoblastic leukemia. iScience 2022; 25:103881. [PMID: 35243242 PMCID: PMC8861657 DOI: 10.1016/j.isci.2022.103881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 12/26/2022] Open
|
23
|
Guiomar de Almeida Brasiel P, Cristina Potente Dutra Luquetti S, Dutra Medeiros J, Otavio do Amaral Corrêa J, Barbosa Ferreira Machado A, Paula Boroni Moreira A, Novaes Rocha V, Teodoro de Souza C, do Carmo Gouveia Peluzio M. Kefir modulates gut microbiota and reduces DMH-associated colorectal cancer via regulation of intestinal inflammation in adulthood offsprings programmed by neonatal overfeeding. Food Res Int 2022; 152:110708. [PMID: 35181109 DOI: 10.1016/j.foodres.2021.110708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Obesity is associated with chronic inflammation, intestinal dysbiosis, and colorectal cancer risk. The anti-cancer effects of kefir are highlighted. Here, lactating Wistar rats were divided into: Normal litter (NL); Kefir normal litter (KNL); Small litter (SL); Kefir small litter (KSL). The NL and SL groups received 1 mL of water/day; KNL and KSL received kefir milk daily (108 CFU/mL) during lactation. After weaning, the pups continued to receive the same treatments until 60 days. At 67 days old, colorectal carcinogenesis was induced through intraperitoneal injection of 1,2-dimethylhydrazine. At 240 days, visceral adipose tissue was higher in SL compared to NL, KNL, and KSL. Kefir intake was found to suppress the number of tumors in both KNL and KSL groups (-100% and -71.43%; p < 0.01, respectively). IL-1β, IL-6, TNF-α, and NO levels in the colon were higher in the NL and SL compared to the KNL and KSL. The gut microbiota in cecal samples of SL was enriched with Alloprevotella, Acinetobacter, and Bacteroides. In contrast, the cecal contents of KSL and KNL were higher Romboutsia. Thus, neonatal overfeeding leads to greater adiposity, inflammation and number of colon tumors in adulthood. Early-life nutrition based on kefir reverted these alterations.
Collapse
Affiliation(s)
| | | | - Julliane Dutra Medeiros
- Faculty of Biological and Agricultural Sciences, Mato Grosso State University, Alta Floresta, Brazil
| | | | | | | | - Vinícius Novaes Rocha
- Department of Veterinary Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Claudio Teodoro de Souza
- Department of Clinical Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | |
Collapse
|
24
|
Mi L, Hu J, Li N, Gao J, Huo R, Peng X, Zhang N, Liu Y, Zhao H, Liu R, Zhang L, Xu K. The Mechanism of Stem Cell Aging. Stem Cell Rev Rep 2022; 18:1281-1293. [PMID: 35000109 PMCID: PMC9033730 DOI: 10.1007/s12015-021-10317-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/22/2022]
Abstract
Stem cells have self-renewal ability and multi-directional differentiation potential. They have tissue repair capabilities and are essential for maintaining the tissue homeostasis. The depletion of stem cells is closely related to the occurrence of body aging and aging-related diseases. Therefore, revealing the molecular mechanisms of stem cell aging will set new directions for the therapeutic application of stem cells, the study of aging mechanisms, and the prevention and treatment of aging-related diseases. This review comprehensively describes the molecular mechanisms related to stem cell aging and provides the basis for further investigations aimed at developing new anti-stem cell aging strategies and promoting the clinical application of stem cells.
Collapse
Affiliation(s)
- Liangyu Mi
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Junping Hu
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Immunology, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Na Li
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jinfang Gao
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Rongxiu Huo
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xinyue Peng
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Na Zhang
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ying Liu
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Hanxi Zhao
- Silc Business School, Shanghai University, Shanghai, 200444, China
| | - Ruiling Liu
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Immunology, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Liyun Zhang
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ke Xu
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
25
|
A High-Fat Diet Activates the BAs-FXR Axis and Triggers Cancer-Associated Fibroblast Properties in the Colon. Cell Mol Gastroenterol Hepatol 2021; 13:1141-1159. [PMID: 34971821 PMCID: PMC8873938 DOI: 10.1016/j.jcmgh.2021.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Dietary signals are known to modulate stemness and tumorigenicity of intestinal progenitors; however, the impact of a high-fat diet (HFD) on the intestinal stem cell (ISC) niche and its association with colorectal cancer remains unclear. Thus, we aimed to investigate how a HFD affects the ISC niche and its regulatory factors. METHODS Mice were fed a purified diet (PD) or HFD for 2 months. The expression levels of ISC-related markers, ISC-supportive signals, and Wnt2b were assessed with real-time quantitative polymerase chain reaction, in situ hybridization, and immunofluorescence staining. RNA sequencing and metabolic function were analyzed in mesenchymal stromal cells (MSCs) from PD- and HFD-fed mice. Fecal microbiota were analyzed by 16s rRNA sequencing. Bile salt hydrolase activity and bile acid (BA) levels were measured. RESULTS We found that expression of CD44 and Wnt signal-related genes was higher in the colonic crypts of HFD-fed mice than in those fed a PD. Within the ISC niche, MSCs were expanded and secreted predominant levels of Wnt2b in the colon of HFD-fed mice. Of note, increased energy metabolism and cancer-associated fibroblast (CAF)-like properties were found in the colonic MSCs of HFD-fed mice. Moreover, colonic MSCs from HFD-fed mice promoted the growth of tumorigenic properties and accelerated the expression of cancer stem cell (CSC)-related markers in colon organoids. In particular, production of primary and secondary BAs was increased through the expansion of bile salt hydrolase-encoding bacteria in HFD-fed mice. Most importantly, BAs-FXR interaction stimulated Wnt2b production in colonic CAF-like MSCs. CONCLUSIONS HFD-induced colonic CAF-like MSCs play an indispensable role in balancing the properties of CSCs through activation of the BAs-FXR axis.
Collapse
|
26
|
Karabulutoglu M, Finnon R, Cruz-Garcia L, Hill MA, Badie C. Oxidative Stress and X-ray Exposure Levels-Dependent Survival and Metabolic Changes in Murine HSPCs. Antioxidants (Basel) 2021; 11:11. [PMID: 35052515 PMCID: PMC8772903 DOI: 10.3390/antiox11010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Haematopoietic bone marrow cells are amongst the most sensitive to ionizing radiation (IR), initially resulting in cell death or genotoxicity that may later lead to leukaemia development, most frequently Acute Myeloid Leukaemia (AML). The target cells for radiation-induced Acute Myeloid Leukaemia (rAML) are believed to lie in the haematopoietic stem and progenitor cell (HSPC) compartment. Using the inbred strain CBA/Ca as a murine model of rAML, progress has been made in understanding the underlying mechanisms, characterisation of target cell population and responses to IR. Complex regulatory systems maintain haematopoietic homeostasis which may act to modulate the risk of rAML. However, little is currently known about the role of metabolic factors and diet in these regulatory systems and modification of the risk of AML development. This study characterises cellular proliferative and clonogenic potential as well as metabolic changes within murine HSPCs under oxidative stress and X-ray exposure. Ambient oxygen (normoxia; 20.8% O2) levels were found to increase irradiated HSPC-stress, stimulating proliferative activity compared to low oxygen (3% O2) levels. IR exposure has a negative influence on the proliferative capability of HSPCs in a dose-dependent manner (0-2 Gy) and this is more pronounced under a normoxic state. One Gy x-irradiated HSPCs cultured under normoxic conditions displayed a significant increase in oxygen consumption compared to those cultured under low O2 conditions and to unirradiated HSPCs. Furthermore, mitochondrial analyses revealed a significant increase in mitochondrial DNA (mtDNA) content, mitochondrial mass and membrane potential in a dose-dependent manner under normoxic conditions. Our results demonstrate that both IR and normoxia act as stressors for HSPCs, leading to significant metabolic deregulation and mitochondrial dysfunctionality which may affect long term risks such as leukaemia.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards Directorate (RCE, Formally CRCE), UK Health Security Agency (Formerly Public Health England), Chilton, Didcot, Oxon OX11 0RQ, UK; (R.F.); (L.C.-G.)
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | - Rosemary Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards Directorate (RCE, Formally CRCE), UK Health Security Agency (Formerly Public Health England), Chilton, Didcot, Oxon OX11 0RQ, UK; (R.F.); (L.C.-G.)
| | - Lourdes Cruz-Garcia
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards Directorate (RCE, Formally CRCE), UK Health Security Agency (Formerly Public Health England), Chilton, Didcot, Oxon OX11 0RQ, UK; (R.F.); (L.C.-G.)
| | - Mark A. Hill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards Directorate (RCE, Formally CRCE), UK Health Security Agency (Formerly Public Health England), Chilton, Didcot, Oxon OX11 0RQ, UK; (R.F.); (L.C.-G.)
| |
Collapse
|
27
|
Mol MBA, Strous MTA, van Osch FHM, Vogelaar FJ, Barten DG, Farchi M, Foudraine NA, Gidron Y. Heart-rate-variability (HRV), predicts outcomes in COVID-19. PLoS One 2021; 16:e0258841. [PMID: 34710127 PMCID: PMC8553073 DOI: 10.1371/journal.pone.0258841] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patients with COVID-19 present with a variety of clinical manifestations, ranging from mild or asymptomatic disease to severe illness and death. Whilst previous studies have clarified these and several other aspects of COVID-19, one of the ongoing challenges regarding COVID-19 is to determine which patients are at risk of adverse outcomes of COVID-19 infection. It is hypothesized that this is the result of insufficient inhibition of the immune response, with the vagus nerve being an important neuro-immuno-modulator of inflammation. Vagus nerve activity can be non-invasively indexed by heart-rate-variability (HRV). Therefore, we aimed to assess the prognostic value of HRV, as a surrogate marker for vagus nerve activity, in predicting mortality and intensive care unit (ICU) referral, in patients hospitalized with COVID-19. METHODS A retrospective cohort study including all consecutive patients (n = 271) diagnosed and hospitalized with COVID-19 between March 2020 and May 2020, without a history of cardiac arrhythmias (including atrial and ventricular premature contractions), pacemaker, or current bradycardia (heart rate <50 bpm) or tachycardia (heart rate >110 bpm). HRV was based on one 10s ECG recorded at admission. 3-week survival and ICU referral were examined. RESULTS HRV indexed as standard deviation of normal to normal heartbeat intervals (SDNN) predicted survival (H.R. = 0.53 95%CI: 0.31-0.92). This protective role was observed only in patients aged 70 years and older, not in younger patients. HRV below median value also predicted ICU referral within the first week of hospitalization (H.R = 0.51, 95%CI: 0.29-0.90, P = 0.021). CONCLUSION Higher HRV predicts greater chances of survival, especially in patients aged 70 years and older with COVID-19, independent of major prognostic factors. Low HRV predicts ICU indication and admission in the first week after hospitalization.
Collapse
Affiliation(s)
- Maartje B A Mol
- Department of Surgery, VieCuri Medical Centre Venlo, Venlo, The Netherlands
| | - Maud T A Strous
- Department of Surgery, VieCuri Medical Centre Venlo, Venlo, The Netherlands.,Department of Intensive Care, VieCuri Medical Centre Venlo, Venlo, The Netherlands
| | - Frits H M van Osch
- Department of Epidemiology, VieCuri Medical Centre Venlo, Venlo, The Netherlands
| | - F Jeroen Vogelaar
- Department of Surgery, VieCuri Medical Centre Venlo, Venlo, The Netherlands
| | - Dennis G Barten
- Department of Emergency Medicine, VieCuri Medical Centre Venlo, Venlo, The Netherlands
| | - Moshe Farchi
- School of Social Work, Tel-Hai College, Qiryat Shemona, Israël
| | - Norbert A Foudraine
- Department of Intensive Care, VieCuri Medical Centre Venlo, Venlo, The Netherlands
| | - Yori Gidron
- Faculty of Welfare and Health Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
28
|
Samoilova EM, Belopasov VV, Ekusheva EV, Zhang C, Troitskiy AV, Baklaushev VP. Epigenetic Clock and Circadian Rhythms in Stem Cell Aging and Rejuvenation. J Pers Med 2021; 11:1050. [PMID: 34834402 PMCID: PMC8620936 DOI: 10.3390/jpm11111050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the current understanding of the interaction between circadian rhythms of gene expression and epigenetic clocks characterized by the specific profile of DNA methylation in CpG-islands which mirror the senescence of all somatic cells and stem cells in particular. Basic mechanisms of regulation for circadian genes CLOCK-BMAL1 as well as downstream clock-controlled genes (ССG) are also discussed here. It has been shown that circadian rhythms operate by the finely tuned regulation of transcription and rely on various epigenetic mechanisms including the activation of enhancers/suppressors, acetylation/deacetylation of histones and other proteins as well as DNA methylation. Overall, up to 20% of all genes expressed by the cell are subject to expression oscillations associated with circadian rhythms. Additionally included in the review is a brief list of genes involved in the regulation of circadian rhythms, along with genes important for cell aging, and oncogenesis. Eliminating some of them (for example, Sirt1) accelerates the aging process, while the overexpression of Sirt1, on the contrary, protects against age-related changes. Circadian regulators control a number of genes that activate the cell cycle (Wee1, c-Myc, p20, p21, and Cyclin D1) and regulate histone modification and DNA methylation. Approaches for determining the epigenetic age from methylation profiles across CpG islands in individual cells are described. DNA methylation, which characterizes the function of the epigenetic clock, appears to link together such key biological processes as regeneration and functioning of stem cells, aging and malignant transformation. Finally, the main features of adult stem cell aging in stem cell niches and current possibilities for modulating the epigenetic clock and stem cells rejuvenation as part of antiaging therapy are discussed.
Collapse
Affiliation(s)
- Ekaterina M. Samoilova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | | | - Evgenia V. Ekusheva
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 125371 Moscow, Russia;
| | - Chao Zhang
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China;
| | - Alexander V. Troitskiy
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| |
Collapse
|
29
|
Maguire G. Stem cells part of the innate and adaptive immune systems as a therapeutic for Covid-19. Commun Integr Biol 2021; 14:186-198. [PMID: 34527167 PMCID: PMC8437473 DOI: 10.1080/19420889.2021.1965356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Some stem cell types not only release molecules that reduce viral replication, but also reduce the hypercytokinemia and inflammation induced by the immune system, and have been found to be part of the innate and adaptive immune systems. An important component of the stem cell's ability to ameliorate viral diseases, especially the complications post-clearance of the pathogen, is the ability of adult stem cells to reset the innate and adaptive immune systems from an inflammatory state to a repair state. Thus, the molecules released from certain stem cell types found to be safe and efficacious, may be an important new means for therapeutic development in Covid-19, especially for late-stage inflammation and tissue damage once the virus has cleared, particularly in the aged population.
Collapse
Affiliation(s)
- Greg Maguire
- Dept. of Preventative and Medicinal Chemistry, NeoGenesis Inc. And BioRegenerative Sciences Inc, San Diego, CA, USA
| |
Collapse
|
30
|
Novak JSS, Baksh SC, Fuchs E. Dietary interventions as regulators of stem cell behavior in homeostasis and disease. Genes Dev 2021; 35:199-211. [PMID: 33526586 PMCID: PMC7849367 DOI: 10.1101/gad.346973.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stem cells maintain tissues by balancing self-renewal with differentiation. A stem cell's local microenvironment, or niche, informs stem cell behavior and receives inputs at multiple levels. Increasingly, it is becoming clear that the overall metabolic status of an organism or metabolites themselves can function as integral members of the niche to alter stem cell fate. Macroscopic dietary interventions such as caloric restriction, the ketogenic diet, and a high-fat diet systemically alter an organism's metabolic state in different ways. Intriguingly, however, they all converge on a propensity to enhance self-renewal. Here, we highlight our current knowledge on how dietary changes feed into stem cell behavior across a wide variety of tissues and illuminate possible explanations for why diverse interventions can result in similar stem cell phenotypes. In so doing, we hope to inspire new avenues of inquiry into the importance of metabolism in stem cell homeostasis and disease.
Collapse
Affiliation(s)
- Jesse S S Novak
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| | - Sanjeethan C Baksh
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
31
|
Campos J, Silva NA, Salgado AJ. Nutritional interventions for spinal cord injury: preclinical efficacy and molecular mechanisms. Nutr Rev 2021; 80:1206-1221. [PMID: 34472615 DOI: 10.1093/nutrit/nuab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that leads to motor, sensory, and autonomic impairments. Its intrinsic pathophysiological complexity has hindered the establishment of effective treatments for decades. Nutritional interventions (NIs) for SCI have been proposed as a route to circumvent some of the problems associated with this condition. Results obtained in animal models point to a more holistic effect, rather than to specific modulation, of several relevant SCI pathophysiological processes. Indeed, published data have shown NI improves energetic imbalance, oxidative damage, and inflammation, which are promoters of improved proteostasis and neurotrophic signaling, leading ultimately to neuroprotection and neuroplasticity. This review focuses on the most well-documented Nis. The mechanistic implications and their translational potential for SCI are discussed.
Collapse
Affiliation(s)
- Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
32
|
Aliluev A, Tritschler S, Sterr M, Oppenländer L, Hinterdobler J, Greisle T, Irmler M, Beckers J, Sun N, Walch A, Stemmer K, Kindt A, Krumsiek J, Tschöp MH, Luecken MD, Theis FJ, Lickert H, Böttcher A. Diet-induced alteration of intestinal stem cell function underlies obesity and prediabetes in mice. Nat Metab 2021; 3:1202-1216. [PMID: 34552271 PMCID: PMC8458097 DOI: 10.1038/s42255-021-00458-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
Excess nutrient uptake and altered hormone secretion in the gut contribute to a systemic energy imbalance, which causes obesity and an increased risk of type 2 diabetes and colorectal cancer. This functional maladaptation is thought to emerge at the level of the intestinal stem cells (ISCs). However, it is not clear how an obesogenic diet affects ISC identity and fate. Here we show that an obesogenic diet induces ISC and progenitor hyperproliferation, enhances ISC differentiation and cell turnover and changes the regional identities of ISCs and enterocytes in mice. Single-cell resolution of the enteroendocrine lineage reveals an increase in progenitors and peptidergic enteroendocrine cell types and a decrease in serotonergic enteroendocrine cell types. Mechanistically, we link increased fatty acid synthesis, Ppar signaling and the Insr-Igf1r-Akt pathway to mucosal changes. This study describes molecular mechanisms of diet-induced intestinal maladaptation that promote obesity and therefore underlie the pathogenesis of the metabolic syndrome and associated complications.
Collapse
Affiliation(s)
- Alexandra Aliluev
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lena Oppenländer
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Julia Hinterdobler
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Tobias Greisle
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
- Technical University of Munich, Freising, Germany
| | - Na Sun
- Research Unit of Analytical Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | - Axel Walch
- Research Unit of Analytical Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | - Kerstin Stemmer
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Alida Kindt
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Jan Krumsiek
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany.
- Technical University of Munich, Munich, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Technical University of Munich, Munich, Germany.
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
33
|
Neumann B, Segel M, Ghosh T, Zhao C, Tourlomousis P, Young A, Förster S, Sharma A, Chen CZY, Cubillos JF, Rawji KS, Chalut KJ, Franklin RJM. Myc determines the functional age state of oligodendrocyte progenitor cells. NATURE AGING 2021; 1:826-837. [PMID: 37117631 DOI: 10.1038/s43587-021-00109-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/05/2021] [Indexed: 01/03/2023]
Abstract
Like many adult stem cell populations, the capacity of oligodendrocyte progenitor cells (OPCs) to proliferate and differentiate is substantially impaired with aging. Previous work has shown that tissue-wide transient expression of the pluripotency factors Oct4, Sox2, Klf4 and c-Myc extends lifespan and enhances somatic cell function. Here we show that just one of these factors, c-Myc, is sufficient to determine the age state of OPC: c-Myc expression in aged OPCs drives their functional rejuvenation, while its inhibition in neonatal OPCs induces an aged-like phenotype, as determined by in vitro assays and transcriptome analysis. Increasing c-Myc expression in aged OPCs in vivo restores their proliferation and differentiation capacity, thereby enhancing regeneration in an aged central nervous system environment. Our results directly link Myc to cellular activity and cell age state, with implications for understanding regeneration in the context of aging, and provide important insights into the biology of stem cell aging.
Collapse
Affiliation(s)
- Björn Neumann
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Michael Segel
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Tanay Ghosh
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Chao Zhao
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | | | - Adam Young
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Sarah Förster
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Amar Sharma
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Civia Zi-Yu Chen
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Juan F Cubillos
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Khalil S Rawji
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Kevin J Chalut
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Robin J M Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
| |
Collapse
|
34
|
Shannon OM, Ashor AW, Scialo F, Saretzki G, Martin-Ruiz C, Lara J, Matu J, Griffiths A, Robinson N, Lillà L, Stevenson E, Stephan BCM, Minihane AM, Siervo M, Mathers JC. Mediterranean diet and the hallmarks of ageing. Eur J Clin Nutr 2021; 75:1176-1192. [PMID: 33514872 DOI: 10.1038/s41430-020-00841-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/09/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
Ageing is a multifactorial process associated with reduced function and increased risk of morbidity and mortality. Recently, nine cellular and molecular hallmarks of ageing have been identified, which characterise the ageing process, and collectively, may be key determinants of the ageing trajectory. These include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intercellular communication. Healthier dietary patterns reduce the risk of age-related diseases and increase longevity and may influence positively one or more of these hallmarks. The Mediterranean dietary pattern (MedDiet) is a plant-based eating pattern that was typical of countries such as Greece, Spain, and Italy pre-globalisation of the food system and which is associated with better health during ageing. Here we review the potential effects of a MedDiet on each of the nine hallmarks of ageing, and provide evidence that the MedDiet as a whole, or individual elements of this dietary pattern, may influence each hallmark positively-effects which may contribute to the beneficial effects of this dietary pattern on age-related disease risk and longevity. We also highlight potential avenues for future research.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne,, NE2 4HH, UK
| | - Ammar W Ashor
- Department of Pharmacology, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Filippo Scialo
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne,, NE4 5PL, UK
- Dipartimento di Scienze Mediche Traslazionali, University of Campania "L. Vanvitelli", Naples, Italy
| | - Gabriele Saretzki
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne,, NE4 5PL, UK
| | - Carmen Martin-Ruiz
- Bioscience Institute, Bioscreening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne,, NE4 5PL, UK
| | - Jose Lara
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne,, NE1 8ST, UK
| | - Jamie Matu
- School of Clinical Applied Sciences, Leeds Beckett University, Leeds,, LS1 3HE, UK
| | - Alex Griffiths
- Institute for Sport, Physical Activity & Leisure, Leeds Beckett University, Leeds,, LS163QS, UK
| | - Natassia Robinson
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne,, NE4 5PL, UK
| | - Lionetti Lillà
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Emma Stevenson
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne,, NE2 4HH, UK
| | - Blossom C M Stephan
- Institute of Mental Health, The University of Nottingham Medical School, Nottingham, UK
| | - Anne Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia (UEA), Norwich, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham,, NG7 2UH, UK.
| | - John C Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne,, NE2 4HH, UK
| |
Collapse
|
35
|
Maestri E, Duszka K, Kuznetsov VA. Immunity Depletion, Telomere Imbalance, and Cancer-Associated Metabolism Pathway Aberrations in Intestinal Mucosa upon Short-Term Caloric Restriction. Cancers (Basel) 2021; 13:cancers13133180. [PMID: 34202278 PMCID: PMC8267928 DOI: 10.3390/cancers13133180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Systems cancer biology analysis of calorie restriction (CR) mechanisms and pathways has not been carried out, leaving therapeutic benefits unclear. Using metadata analysis, we studied gene expression changes in normal mouse duodenum mucosa (DM) response to short-term (2-weeks) 25% CR as a biological model. Our results indicate cancer-associated genes consist of 26% of 467 CR responding differential expressed genes (DEGs). The DEGs were enriched with over-expressed cell cycle, oncogenes, and metabolic reprogramming pathways that determine tissue-specific tumorigenesis, cancer, and stem cell activation; tumor suppressors and apoptosis genes were under-expressed. DEG enrichments suggest telomeric maintenance misbalance and metabolic pathway activation playing dual (anti-cancer and pro-oncogenic) roles. The aberrant DEG profile of DM epithelial cells is found within CR-induced overexpression of Paneth cells and is coordinated significantly across GI tract tissues mucosa. Immune system genes (ISGs) consist of 37% of the total DEGs; the majority of ISGs are suppressed, including cell-autonomous immunity and tumor-immune surveillance. CR induces metabolic reprogramming, suppressing immune mechanics and activating oncogenic pathways. We introduce and argue for our network pro-oncogenic model of the mucosa multicellular tissue response to CR leading to aberrant transcription and pre-malignant states. These findings change the paradigm regarding CR's anti-cancer role, initiating specific treatment target development. This will aid future work to define critical oncogenic pathways preceding intestinal lesion development and biomarkers for earlier adenoma and colorectal cancer detection.
Collapse
Affiliation(s)
- Evan Maestri
- Department of Biochemistry and Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA;
- Department of Biology, SUNY University at Buffalo, Buffalo, NY 14260, USA
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria;
| | - Vladimir A. Kuznetsov
- Department of Biochemistry and Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA;
- Bioinformatics Institute, Biomedical Sciences Institutes A*STAR, Singapore 13867, Singapore
- Correspondence:
| |
Collapse
|
36
|
Crudele L, Piccinin E, Moschetta A. Visceral Adiposity and Cancer: Role in Pathogenesis and Prognosis. Nutrients 2021; 13:2101. [PMID: 34205356 PMCID: PMC8234141 DOI: 10.3390/nu13062101] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
The prevalence of being overweight and obese has been expanded dramatically in recent years worldwide. Obesity usually occurs when the energetic introit overtakes energy expenditure from metabolic and physical activity, leading to fat accumulation mainly in the visceral depots. Excessive fat accumulation represents a risk factor for many chronic diseases, including cancer. Adiposity, chronic low-grade inflammation, and hyperinsulinemia are essential factors of obesity that also play a crucial role in tumor onset. In recent years, several strategies have been pointed toward boundary fat accumulation, thus limiting the burden of cancer attributable to obesity. While remodeling fat via adipocytes browning seems a tempting prospect, lifestyle interventions still represent the main pathway to prevent cancer and enhance the efficacy of treatments. Specifically, the Mediterranean Diet stands out as one of the best dietary approaches to curtail visceral adiposity and, therefore, cancer risk. In this Review, the close relationship between obesity and cancer has been investigated, highlighting the biological mechanisms at the basis of this link. Finally, strategies to remodel fat, including browning and lifestyle interventions, have been taken into consideration as a major perspective to limit excess body weight and tumor onset.
Collapse
Affiliation(s)
- Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (L.C.); (E.P.)
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Elena Piccinin
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (L.C.); (E.P.)
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (L.C.); (E.P.)
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
- National Cancer Center, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| |
Collapse
|
37
|
Modulation of intestinal stem cell homeostasis by nutrients: a novel therapeutic option for intestinal diseases. Nutr Res Rev 2021; 35:150-158. [PMID: 34100341 DOI: 10.1017/s0954422421000172] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Intestinal stem cells, which are capable of both self-renewal and differentiation to mature cell types, are responsible for maintaining intestinal epithelial homeostasis. Recent evidence indicates that these processes are mediated, in part, through nutritional status in response to diet. Diverse dietary patterns including caloric restriction, fasting, high-fat diets, ketogenic diets and high-carbohydrate diets as well as other nutrients control intestinal stem cell self-renewal and differentiation through nutrient-sensing pathways such as mammalian target of rapamycin and AMP-activated kinase. Herein, we summarise the current understanding of how intestinal stem cells contribute to intestinal epithelial homeostasis and diseases. We also discuss the effects of diet and nutrient-sensing pathways on intestinal stem cell self-renewal and differentiation, as well as their potential application in the prevention and treatment of intestinal diseases.
Collapse
|
38
|
Keller A, Temple T, Sayanjali B, Mihaylova MM. Metabolic Regulation of Stem Cells in Aging. CURRENT STEM CELL REPORTS 2021; 7:72-84. [PMID: 35251892 PMCID: PMC8893351 DOI: 10.1007/s40778-021-00186-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW From invertebrates to vertebrates, the ability to sense nutrient availability is critical for survival. Complex organisms have evolved numerous signaling pathways to sense nutrients and dietary fluctuations, which influence many cellular processes. Although both overabundance and extreme depletion of nutrients can lead to deleterious effects, dietary restriction without malnutrition can increase lifespan and promote overall health in many model organisms. In this review, we focus on age-dependent changes in stem cell metabolism and dietary interventions used to modulate stem cell function in aging. RECENT FINDINGS Over the last half-century, seminal studies have illustrated that dietary restriction confers beneficial effects on longevity in many model organisms. Many researchers have now turned to dissecting the molecular mechanisms by which these diets affect aging at the cellular level. One subpopulation of cells of particular interest are adult stem cells, the most regenerative cells of the body. It is generally accepted that the regenerative capacity of stem cells declines with age, and while the metabolic requirements of each vary across tissues, the ability of dietary interventions to influence stem cell function is striking. SUMMARY In this review, we will focus primarily on how metabolism plays a role in adult stem cell homeostasis with respect to aging, with particular emphasis on intestinal stem cells while also touching on hematopoietic, skeletal muscle, and neural stem cells. We will also discuss key metabolic signaling pathways influenced by both dietary restriction and the aging process, and will examine their role in improving tissue homeostasis and lifespan. Understanding the mechanisms behind the metabolic needs of stem cells will help bridge the divide between a basic science interpretation of stem cell function and a whole-organism view of nutrition, thereby providing insight into potential dietary or therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Keller
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Tyus Temple
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Behnam Sayanjali
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Maria M. Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
39
|
Abstract
The expanding field of stem cell metabolism has been supported by technical advances in metabolite profiling and novel functional analyses. While use of these methodologies has been fruitful, many challenges are posed by the intricacies of culturing stem cells in vitro, along with the distinctive scarcity of adult tissue stem cells and the complexities of their niches in vivo. This review provides an examination of the methodologies used to characterize stem cell metabolism, highlighting their utility while placing a sharper focus on their limitations and hurdles the field needs to overcome for the optimal study of stem cell metabolic networks.
Collapse
|
40
|
Pourvali K, Monji H. Obesity and intestinal stem cell susceptibility to carcinogenesis. Nutr Metab (Lond) 2021; 18:37. [PMID: 33827616 PMCID: PMC8028194 DOI: 10.1186/s12986-021-00567-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Background Obesity is a top public health problem associated with an increase in colorectal cancer incidence. Stem cells are the chief cells in tissue homeostasis that self-renew and differentiate into other cells to regenerate the organ. It is speculated that an increase in stem cell pool makes cells susceptible to carcinogenesis. In this review, we looked at the recent investigations linking obesity/high-fat diet-induced obesity to intestinal carcinogenesis with regard to intestinal stem cells and their niche. Findings High-fat diet-induced obesity may rise intestinal carcinogenesis by increased Intestinal stem cells (ISC)/progenitor’s population, stemness, and niche independence through activation of PPAR-δ with fatty acids, hormonal alterations related to obesity, and low-grade inflammation. However, these effects may possibly relate to the interaction between fats and carbohydrates, and not a fatty acid per se. Nonetheless, literature studies are inconsistency in their results, probably due to the differences in the diet components and limitations of genetic models used. Conclusion High-fat diet-induced obesity affects carcinogenesis by changing ISC proliferation and function. However, a well-matched diet and the reliable colorectal cancer models that mimic human carcinogenesis is necessary to clearly elucidate the influence of high-fat diet-induced obesity on ISC behavior.
Collapse
Affiliation(s)
- Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran
| | - Hadi Monji
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran.
| |
Collapse
|
41
|
Ternet C, Kiel C. Signaling pathways in intestinal homeostasis and colorectal cancer: KRAS at centre stage. Cell Commun Signal 2021; 19:31. [PMID: 33691728 PMCID: PMC7945333 DOI: 10.1186/s12964-021-00712-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium acts as a physical barrier that separates the intestinal microbiota from the host and is critical for preserving intestinal homeostasis. The barrier is formed by tightly linked intestinal epithelial cells (IECs) (i.e. enterocytes, goblet cells, neuroendocrine cells, tuft cells, Paneth cells, and M cells), which constantly self-renew and shed. IECs also communicate with microbiota, coordinate innate and adaptive effector cell functions. In this review, we summarize the signaling pathways contributing to intestinal cell fates and homeostasis functions. We focus especially on intestinal stem cell proliferation, cell junction formation, remodelling, hypoxia, the impact of intestinal microbiota, the immune system, inflammation, and metabolism. Recognizing the critical role of KRAS mutants in colorectal cancer, we highlight the connections of KRAS signaling pathways in coordinating these functions. Furthermore, we review the impact of KRAS colorectal cancer mutants on pathway rewiring associated with disruption and dysfunction of the normal intestinal homeostasis. Given that KRAS is still considered undruggable and the development of treatments that directly target KRAS are unlikely, we discuss the suitability of targeting pathways downstream of KRAS as well as alterations of cell extrinsic/microenvironmental factors as possible targets for modulating signaling pathways in colorectal cancer. Video Abstract
Collapse
Affiliation(s)
- Camille Ternet
- School of Medicine, Systems Biology Ireland, and UCD Charles Institute of Dermatology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Kiel
- School of Medicine, Systems Biology Ireland, and UCD Charles Institute of Dermatology, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
42
|
Calibasi-Kocal G, Mashinchian O, Basbinar Y, Ellidokuz E, Cheng CW, Yilmaz ÖH. Nutritional Control of Intestinal Stem Cells in Homeostasis and Tumorigenesis. Trends Endocrinol Metab 2021; 32:20-35. [PMID: 33277157 DOI: 10.1016/j.tem.2020.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Food and nutrition have a profound impact on organismal health and diseases, and tissue-specific adult stem cells play a crucial role in coordinating tissue maintenance by responding to dietary cues. Emerging evidence indicates that adult intestinal stem cells (ISCs) actively adjust their fate decisions in response to diets and nutritional states to drive intestinal adaptation. Here, we review the signaling mechanisms mediating the dietary responses imposed by caloric intake and nutritional composition (i.e., macronutrients and micronutrients), fasting-feeding patterns, diet-induced growth factors, and microbiota on ISCs and their relevance to the beginnings of intestinal tumors.
Collapse
Affiliation(s)
- Gizem Calibasi-Kocal
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Omid Mashinchian
- Nestlé Research, Ecole Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland; School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Ender Ellidokuz
- Department of Gastroenterology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Chia-Wei Cheng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| | - Ömer H Yilmaz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biology, MIT, Cambridge, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Departments of Pathology, Gastroenterology, and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
43
|
Response of adult stem cell populations to a high-fat/high-fiber diet in skeletal muscle and adipose tissue of growing pigs divergently selected for feed efficiency. Eur J Nutr 2020; 60:2397-2408. [PMID: 33125577 DOI: 10.1007/s00394-020-02418-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The control of body composition by genetics and dietary nutrients is of the upmost importance for both human and animal physiology. Adult stem cells (aSC) may represent a relevant level of tissue adaptation. The purpose of this study was to determine the impact of macronutrient composition on aSC populations isolated from adipose tissue or muscle in growing pigs. METHODS Pigs from two lines divergently selected for feed efficiency were fed ad libitum either a high-fat/high-fiber (HF) diet or a low-fat/low-fiber (LF) diet (n = 6 per line and diet) from 74 to 132 days of age. Stroma vascular cells were isolated from adipose tissue and muscle and characterized with cell surface markers. RESULTS In both lines, pigs fed the HF diet exhibited a reduced adiposity (P < 0.001) compared with pigs fed the LF diet. In the four groups, CD90 and PDGFRα markers were predominantly expressed in adipose cells, whereas CD90 and CD56 markers were highly expressed in muscle cells. In adipose tissue, the proportions of CD56+/PDGFRα + and of CD90+/PDGFRα + cells were lower (P < 0.05) in HF pigs than in LF pigs. On the opposite, in muscle, these proportions were higher (P < 0.001) in HF pigs. CONCLUSION This study indicates that dietary nutrients affected the relative proportions of CD56+/PDGFRα + cells with opposite effects between muscle and adipose tissue. These cell populations exhibiting adipogenic potential in adipose tissue and myogenic potential in muscle may be a target to modulate body composition.
Collapse
|
44
|
Exogenous L-arginine increases intestinal stem cell function through CD90+ stromal cells producing mTORC1-induced Wnt2b. Commun Biol 2020; 3:611. [PMID: 33097830 PMCID: PMC7584578 DOI: 10.1038/s42003-020-01347-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/02/2020] [Indexed: 01/02/2023] Open
Abstract
The renewal and repair of intestinal epithelium depend on the self-renewal of intestinal stem cells (ISCs) under physiological and pathological conditions. Although previous work has established that exogenous nutrients regulate adult stem cell activity, little is known about the regulatory effect of L-arginine on ISCs. In this study we utilize mice and small intestinal (SI) organoid models to clarify the role of L-arginine on epithelial differentiation of ISCs. We show that L-arginine increases expansion of ISCs in mice. Furthermore, CD90+ intestinal stromal cells augment stem-cell function in response to L-arginine in co-culture experiments. Mechanistically, we find that L-arginine stimulates Wnt2b secretion by CD90+ stromal cells through the mammalian target of rapamycin complex 1 (mTORC1) and that blocking Wnt2b production prevents L-arginine-induced ISC expansion. Finally, we show that L-arginine treatment protects the gut in response to injury. Our findings highlight an important role for CD90+ stromal cells in L-arginine-stimulated ISC expansion.
Collapse
|
45
|
Kong X, Wang X, Qin Y, Han J. Effects of sunset yellow on proliferation and differentiation of intestinal epithelial cells in murine intestinal organoids. J Appl Toxicol 2020; 41:953-963. [PMID: 33063357 DOI: 10.1002/jat.4080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Xiunan Kong
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Xiu Wang
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Yumei Qin
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Jianzhong Han
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| |
Collapse
|
46
|
Nicaise AM, Willis CM, Crocker SJ, Pluchino S. Stem Cells of the Aging Brain. Front Aging Neurosci 2020; 12:247. [PMID: 32848716 PMCID: PMC7426063 DOI: 10.3389/fnagi.2020.00247] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The adult central nervous system (CNS) contains resident stem cells within specific niches that maintain a self-renewal and proliferative capacity to generate new neurons, astrocytes, and oligodendrocytes throughout adulthood. Physiological aging is associated with a progressive loss of function and a decline in the self-renewal and regenerative capacities of CNS stem cells. Also, the biggest risk factor for neurodegenerative diseases is age, and current in vivo and in vitro models of neurodegenerative diseases rarely consider this. Therefore, combining both aging research and appropriate interrogation of animal disease models towards the understanding of the disease and age-related stem cell failure is imperative to the discovery of new therapies. This review article will highlight the main intrinsic and extrinsic regulators of neural stem cell (NSC) aging and discuss how these factors impact normal homeostatic functions within the adult brain. We will consider established in vivo animal and in vitro human disease model systems, and then discuss the current and future trajectories of novel senotherapeutics that target aging NSCs to ameliorate brain disease.
Collapse
Affiliation(s)
- Alexandra M Nicaise
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Cory M Willis
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
47
|
Hou Q, Dong Y, Yu Q, Wang B, Le S, Guo Y, Zhang B. Regulation of the Paneth cell niche by exogenous L-arginine couples the intestinal stem cell function. FASEB J 2020; 34:10299-10315. [PMID: 32725957 DOI: 10.1096/fj.201902573rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/22/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
Abstract
Although previous studies show that exogenous nutrients regulate the stem cell function, little is known about the effects of L-arginine on intestinal stem cells (ISCs). In this study, we utilize mice, small intestinal (SI) organoids, and ISC-Paneth cell co-cultured models to clarify the role of L-arginine in ISC function. We find that exogenous L-arginine is essential for ISCs proliferation and intestinal epithelial renewal. Our data show that Paneth cells, a critical component of the ISCs niche, augment the ISCs function in response to L-arginine. Moreover, enhanced the expression of Wnt3a in Paneth cells, which is a ligand of the Wnt/β-catenin signaling pathway, mediates the effects of L-arginine on ISCs function. Pre-treatment with L-arginine enhances the ISCs pool and protects the gut in response to injury provoked by murine tumor necrosis factor α (TNF-α) and 5-Fluorouracil (5-FU). Our findings establish that the regulation of Wnt3a in the Paneth cell niche by exogenous L-arginine couples ISCs function and favours a model in which the ISCs niche couples the nutrient levels to ISCs function.
Collapse
Affiliation(s)
- Qihang Hou
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Yuanyang Dong
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Qinghua Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Shen Le
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
McKinley KL, Castillo-Azofeifa D, Klein OD. Tools and Concepts for Interrogating and Defining Cellular Identity. Cell Stem Cell 2020; 26:632-656. [PMID: 32386555 PMCID: PMC7250495 DOI: 10.1016/j.stem.2020.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Defining the mechanisms that generate specialized cell types and coordinate their functions is critical for understanding organ development and renewal. New tools and discoveries are challenging and refining our definitions of a cell type. A rapidly growing toolkit for single-cell analyses has expanded the number of markers that can be assigned to a cell simultaneously, revealing heterogeneity within cell types that were previously regarded as homogeneous populations. Additionally, cell types defined by specific molecular markers can exhibit distinct, context-dependent functions; for example, between tissues in homeostasis and those responding to damage. Here we review the current technologies used to identify and characterize cells, and we discuss how experimental and pathological perturbations are adding increasing complexity to our definitions of cell identity.
Collapse
Affiliation(s)
- Kara L McKinley
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - David Castillo-Azofeifa
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
49
|
Shapira SN, Christofk HR. Metabolic Regulation of Tissue Stem Cells. Trends Cell Biol 2020; 30:566-576. [PMID: 32359707 DOI: 10.1016/j.tcb.2020.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Adult tissue stem cells mediate organ homeostasis and regeneration and thus are continually making decisions about whether to remain quiescent, proliferate, or differentiate into mature cell types. These decisions often integrate external cues, such as energy balance and the nutritional status of the organism. Metabolic substrates and byproducts that regulate epigenetic and signaling pathways are now appreciated to have instructive rather than bystander roles in regulating cell fate decisions. In this review, we highlight recent literature focused on how metabolites and dietary manipulations can impact cell fate decisions, with a focus on the regulation of adult tissue stem cells.
Collapse
Affiliation(s)
- Suzanne N Shapira
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
50
|
Chen L, Vasoya RP, Toke NH, Parthasarathy A, Luo S, Chiles E, Flores J, Gao N, Bonder EM, Su X, Verzi MP. HNF4 Regulates Fatty Acid Oxidation and Is Required for Renewal of Intestinal Stem Cells in Mice. Gastroenterology 2020; 158:985-999.e9. [PMID: 31759926 PMCID: PMC7062567 DOI: 10.1053/j.gastro.2019.11.031] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/22/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Functions of intestinal stem cells (ISCs) are regulated by diet and metabolic pathways. Hepatocyte nuclear factor 4 (HNF4) family are transcription factors that bind fatty acids. We investigated how HNF4 transcription factors regulate metabolism and their functions in ISCs in mice. METHODS We performed studies with Villin-CreERT2;Lgr5-EGFP-IRES-CreERT2;Hnf4αf/f;Hnf4γCrispr/Crispr mice, hereafter referred to Hnf4αγDKO. Mice were given tamoxifen to induce Cre recombinase. Mice transgenic with only Cre alleles (Villin-CreERT2, Lgr5-EGFP-IRES-CreERT2, Hnf4α+/+, and Hnf4γ+/+) or mice given vehicle were used as controls. Crypt and villus cells were isolated, incubated with fluorescently labeled fatty acids or glucose analog, and analyzed by confocal microscopy. Fatty acid oxidation activity and tricarboxylic acid (TCA) cycle metabolites were measured in cells collected from the proximal half of the small intestine of Hnf4αγDKO and control mice. We performed chromatin immunoprecipitation and gene expression profiling analyses to identify genes regulated by HNF4 factors. We established organoids from duodenal crypts, incubated them with labeled palmitate or acetate, and measured production of TCA cycle metabolites or fatty acids. Acetate, a precursor of acetyl coenzyme A (CoA) (a product of fatty acid β-oxidation [FAO]), or dichloroacetate, a compound that promotes pyruvate oxidation and generation of mitochondrial acetyl-CoA, were used for metabolic intervention. RESULTS Crypt cells rapidly absorbed labeled fatty acids, and messenger RNA levels of Lgr5+ stem cell markers (Lgr5, Olfm4, Smoc2, Msi1, and Ascl2) were down-regulated in organoids incubated with etomoxir, an inhibitor of FAO, indicating that FAO was required for renewal of ISCs. HNF4A and HNF4G were expressed in ISCs and throughout the intestinal epithelium. Single knockout of either HNF4A or HNF4G did not affect maintenance of ISCs, but double-knockout of HNF4A and HNF4G resulted in ISC loss; stem cells failed to renew. FAO supports ISC renewal, and HNF4 transcription factors directly activate FAO genes, including Acsl5 and Acsf2 (encode regulators of acyl-CoA synthesis), Slc27a2 (encodes a fatty acid transporter), Fabp2 (encodes fatty acid binding protein), and Hadh (encodes hydroxyacyl-CoA dehydrogenase). In the intestinal epithelium of Hnf4αγDKO mice, expression levels of FAO genes, FAO activity, and metabolites of TCA cycle were all significantly decreased, but fatty acid synthesis transcripts were increased, compared with control mice. The contribution of labeled palmitate or acetate to the TCA cycle was reduced in organoids derived from Hnf4αγDKO mice, compared with control mice. Incubation of organoids derived from double-knockout mice with acetate or dichloroacetate restored stem cells. CONCLUSIONS In mice, the transcription factors HNF4A and HNF4G regulate the expression of genes required for FAO and are required for renewal of ISCs.
Collapse
Affiliation(s)
- Lei Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Roshan P. Vasoya
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Natalie H. Toke
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Aditya Parthasarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Shirley Luo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Eric Chiles
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Flores
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Edward M. Bonder
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA,Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA,Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA,Correspondence: (M.P.V.)
| |
Collapse
|