1
|
Mounissamy P, Premraj A, Chanadrashekar S, Jeyaraman N, Ramasubramanian S, Jeyaraman M. Effect of granulocyte colony-stimulating factor (G-CSF) in functional outcome of acute spinal cord injury patients: A single-blinded randomized controlled trial. J Orthop 2025; 64:97-101. [PMID: 39691645 PMCID: PMC11648636 DOI: 10.1016/j.jor.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024] Open
Abstract
Background Spinal Cord Injury (SCI) is a major public health issue causing significant disability and economic burden. Current treatments primarily focus on mitigating secondary injury, with limited effective therapies available. This study explores the efficacy of the Granulocyte Colony-Stimulating Factor (G-CSF) in improving functional outcomes in acute SCI patients. Materials and methods This single-blinded randomized control trial was conducted at JIPMER's orthopedic department. Patients with acute spinal cord injury (SCI) were enrolled based on specific inclusion and exclusion criteria. Participants were divided into two groups: Group A (n = 16) received a G-CSF injection whereas Group B (n = 18) received a placebo (normal saline) injection. The primary evaluation was based on the changes in the ASIA impairment scale at 1-, 3-, and 6-months post-injury. Results The study involved 34 participants, predominantly male. Initial assessments showed significant differences in ASIA scores between the groups. Group A demonstrated marked improvement in neurological status at 1, 3, and 6 months post-treatment compared to Group B. The frequency of adverse events was comparable between the two groups. Conclusion G-CSF showed significant improvement in ASIA scores at various time points post-administration compared to placebo. These findings suggest G-CSF as a potential therapeutic agent in acute SCI treatment. However, due to the small sample size, further research is necessary to confirm these results.
Collapse
Affiliation(s)
- Prabu Mounissamy
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India
| | - A.C. Premraj
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India
| | - Sushma Chanadrashekar
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, 600077, Chennai, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, 600002, Chennai, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, 600077, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Jaschke NP, Wang A. Integrated control of leukocyte compartments as a feature of adaptive physiology. Immunity 2025; 58:279-294. [PMID: 39909034 DOI: 10.1016/j.immuni.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/10/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
As a highly diverse and mobile organ, the immune system is uniquely equipped to participate in tissue responses in a tunable manner, depending on the number, type, and nature of cells deployed to the respective organ. Most acute organismal stressors that threaten survival-predation, infection, poisoning, and others-induce pronounced redistribution of immune cells across tissue compartments. Here, we review the current understanding of leukocyte compartmentalization under homeostatic and noxious conditions. We argue that leukocyte shuttling between compartments is a function of local tissue demands, which are linked to the organ's contribution to adaptive physiology at steady state and upon challenge. We highlight the neuroendocrine signals that relay and organize this trafficking behavior and outline mechanisms underlying the functional diversification of leukocyte responses. In this context, we discuss important areas of future inquiry and the implications of this scientific space for clinical medicine in the era of targeted immunomodulation.
Collapse
Affiliation(s)
- Nikolai P Jaschke
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| | - Andrew Wang
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Liao X, Liu H, Li Y, Zhang W, Dai Q, Wei H, Zhou J, Xie X, Zhou H. Dual Role of α-MSH in Colitis Progression: Mediating Neutrophil Differentiation via Bone Marrow. J Inflamm Res 2025; 18:2011-2029. [PMID: 39959638 PMCID: PMC11827500 DOI: 10.2147/jir.s503621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Background Inflammatory bowel disease (IBD) comprises a group of autoimmune disorders characterized by chronicity and resistance to cure, with an unknown etiology. Recent studies on the brain-gut axis suggest that the central nervous system (CNS), particularly the hypothalamic-pituitary axis (HPA), may play a crucial role in modulating the immune system and influencing disease progression. However, the specific role and mechanism of the HPA in IBD pathogenesis remain unclear. This study aims to investigate the alterations in the HPA and its potential roles during IBD development. Methods We utilized a dextran sodium sulfate (DSS)-induced colitis model in mice and employed immunofluorescence, real-time quantitative PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), among other techniques, to evaluate the impact of colitis on the HPA. Additionally, we used flow cytometry, adeno-associated virus-mediated gene silence, parabiosis and single-cell RNA sequencing to uncover the specific roles and mechanisms of the HPA in colitis. Results Our results indicate that colitis activates HPA secretion and increases α-MSH. α-MSH acts on the MC5R present on the surface of hematopoietic stem cells (HSCs) in the bone marrow, altering the bone marrow microenvironment and promoting HSCs proliferation and differentiation into neutrophils. This process enhances the clearance of pathogenic microorganisms during the acute phase of colitis, while inducing sustained inflammatory responses during the remission phase. Conclusion In summary, our study demonstrates the dual role of HPA activation and α-MSH secretion induced by colitis in the pathogenesis of IBD. These findings offer vital guidance for optimizing personalized treatment of IBD, emphasizing the importance of carefully managing the timing and dosage of α-MSH for its effective clinical application.
Collapse
Affiliation(s)
- Xiping Liao
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Hengqian Liu
- School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| | - Yuanyuan Li
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People’s Republic of China, Chongqing, People’s Republic of China
| | - Wei Zhang
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Qian Dai
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Haoqi Wei
- Department of General Surgery, The PLA 77th Group Army Hospital, Leshan City, People’s Republic of China
| | - Jianyun Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xia Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Hongli Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
4
|
Pierre-Jerome C. The peripheral nervous system: peripheral neuropathies in the diabetic foot. MYOPATHIES AND TENDINOPATHIES OF THE DIABETIC FOOT 2025:451-482. [DOI: 10.1016/b978-0-443-13328-2.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Beeraka NM, Basappa B, Nikolenko VN, Mahesh PA. Role of Neurotransmitters in Steady State Hematopoiesis, Aging, and Leukemia. Stem Cell Rev Rep 2025; 21:2-27. [PMID: 38976142 DOI: 10.1007/s12015-024-10761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Haematopoiesis within the bone marrow (BM) represents a complex and dynamic process intricately regulated by neural signaling pathways. This delicate orchestration is susceptible to disruption by factors such as aging, diabetes, and obesity, which can impair the BM niche and consequently affect haematopoiesis. Genetic mutations in Tet2, Dnmt3a, Asxl1, and Jak2 are known to give rise to clonal haematopoiesis of intermediate potential (CHIP), a condition linked to age-related haematological malignancies. Despite these insights, the exact roles of circadian rhythms, sphingosine-1-phosphate (S1P), stromal cell-derived factor-1 (SDF-1), sterile inflammation, and the complement cascade on various BM niche cells remain inadequately understood. Further research is needed to elucidate how BM niche cells contribute to these malignancies through neural regulation and their potential in the development of gene-corrected stem cells. This literature review describes the updated functional aspects of BM niche cells in haematopoiesis within the context of haematological malignancies, with a particular focus on neural signaling and the potential of radiomitigators in acute radiation syndrome. Additionally, it underscores the pressing need for technological advancements in stem cell-based therapies to alleviate the impacts of immunological stressors. Recent studies have illuminated the microheterogeneity and temporal stochasticity of niche cells within the BM during haematopoiesis, emphasizing the updated roles of neural signaling and immunosurveillance. The development of gene-corrected stem cells capable of producing blood, immune cells, and tissue-resident progeny is essential for combating age-related haematological malignancies and overcoming immunological challenges. This review aims to provide a comprehensive overview of these evolving insights and their implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
| | - Basappa Basappa
- Department of Studies in Organic Chemistry, Laboratory of Chemical Biology, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia
| | - P A Mahesh
- Department of Pulmonary Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
6
|
Huang Z, Iqbal Z, Zhao Z, Liu J, Alabsi AM, Shabbir M, Mahmood A, Liang Y, Li W, Deng Z. Cellular crosstalk in the bone marrow niche. J Transl Med 2024; 22:1096. [PMID: 39627858 PMCID: PMC11613879 DOI: 10.1186/s12967-024-05900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
The bone marrow niche is a special microenvironment that comprises elements, including hematopoietic stem cells, osteoblasts, and endothelial cells, and helps maintain their characteristic functions. Here, we elaborate on the crosstalk between various cellular components, hematopoietic stem cells, and other cells in the bone marrow niche. We further explain the mechanism of preserving equilibrium in the bone marrow niche, which is crucial for the directional regulation of bone reconstruction and repair. Additionally, we elucidate the intercommunication among osteocytes, the regulation of osteoblast maturation and activation by lymphocytes, the deficiency of megakaryocytes that can markedly impair osteoblast formation, and the mechanism of interaction between macrophages and mesenchymal stem cells in the bone marrow niche. Finally, we discussed the new immunotherapies for bone tumors in the BM niche. In this review, we aimed to provide a candid overview of the crosstalk among bone marrow niche cells and to highlight new concepts underlying the unknown mechanisms of hematopoiesis and bone reconstruction. Thus, this review may provide a more comprehensive understanding of the role of these niche cells in improving hematopoietic function and help identify their therapeutic potential for different diseases in the future.
Collapse
Affiliation(s)
- Zeqi Huang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zoya Iqbal
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - A M Alabsi
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia
- School of Dentistry, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 ShahAlam, Selangor, Malaysia
| | - Maryam Shabbir
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ayesha Mahmood
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Yujie Liang
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia.
- Department of Child and Adolescent Psychiatry, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| |
Collapse
|
7
|
Pereira AL, Galli S, Nombela‐Arrieta C. Bone marrow niches for hematopoietic stem cells. Hemasphere 2024; 8:e133. [PMID: 39086665 PMCID: PMC11289431 DOI: 10.1002/hem3.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 08/02/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are the cornerstone of the hematopoietic system. HSCs sustain the continuous generation of mature blood derivatives while self-renewing to preserve a relatively constant pool of progenitors throughout life. Yet, long-term maintenance of functional HSCs exclusively takes place in association with their native tissue microenvironment of the bone marrow (BM). HSCs have been long proposed to reside in fixed and identifiable anatomical units found in the complex BM tissue landscape, which control their identity and fate in a deterministic manner. In the last decades, tremendous progress has been made in the dissection of the cellular and molecular fabric of the BM, the structural organization governing tissue function, and the plethora of interactions established by HSCs. Nonetheless, a holistic model of the mechanisms controlling HSC regulation in their niche is lacking to date. Here, we provide an overview of our current understanding of BM anatomy, HSC localization, and crosstalk within local cellular neighborhoods in murine and human tissues, and highlight fundamental open questions on how HSCs functionally integrate in the BM microenvironment.
Collapse
Affiliation(s)
- Ana Luísa Pereira
- Department of Medical Oncology and HematologyUniversity Hospital and University of ZurichZurichSwitzerland
| | - Serena Galli
- Department of Medical Oncology and HematologyUniversity Hospital and University of ZurichZurichSwitzerland
| | - César Nombela‐Arrieta
- Department of Medical Oncology and HematologyUniversity Hospital and University of ZurichZurichSwitzerland
| |
Collapse
|
8
|
Carpenter RS, Maryanovich M. Systemic and local regulation of hematopoietic homeostasis in health and disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:651-665. [PMID: 39196230 DOI: 10.1038/s44161-024-00482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/24/2024] [Indexed: 08/29/2024]
Abstract
Hematopoietic stem cells (HSCs) generate all blood cell lineages responsible for tissue oxygenation, life-long hematopoietic homeostasis and immune protection. In adulthood, HSCs primarily reside in the bone marrow (BM) microenvironment, consisting of diverse cell types that constitute the stem cell 'niche'. The adaptability of the hematopoietic system is required to respond to the needs of the host, whether to maintain normal physiology or during periods of physical, psychosocial or environmental stress. Hematopoietic homeostasis is achieved by intricate coordination of systemic and local factors that orchestrate the function of HSCs throughout life. However, homeostasis is not a static process; it modulates HSC and progenitor activity in response to circadian rhythms coordinated by the central and peripheral nervous systems, inflammatory cues, metabolites and pathologic conditions. Here, we review local and systemic factors that impact hematopoiesis, focusing on the implications of aging, stress and cardiovascular disease.
Collapse
Affiliation(s)
- Randall S Carpenter
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
9
|
Chen X, Liu C, Wang J, Du C. Hematopoietic Stem Cells as an Integrative Hub Linking Lifestyle to Cardiovascular Health. Cells 2024; 13:712. [PMID: 38667327 PMCID: PMC11049205 DOI: 10.3390/cells13080712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite breakthroughs in modern medical care, the incidence of cardiovascular disease (CVD) is even more prevalent globally. Increasing epidemiologic evidence indicates that emerging cardiovascular risk factors arising from the modern lifestyle, including psychosocial stress, sleep problems, unhealthy diet patterns, physical inactivity/sedentary behavior, alcohol consumption, and tobacco smoking, contribute significantly to this worldwide epidemic, while its underpinning mechanisms are enigmatic. Hematological and immune systems were recently demonstrated to play integrative roles in linking lifestyle to cardiovascular health. In particular, alterations in hematopoietic stem cell (HSC) homeostasis, which is usually characterized by proliferation, expansion, mobilization, megakaryocyte/myeloid-biased differentiation, and/or the pro-inflammatory priming of HSCs, have been shown to be involved in the persistent overproduction of pro-inflammatory myeloid leukocytes and platelets, the cellular protagonists of cardiovascular inflammation and thrombosis, respectively. Furthermore, certain lifestyle factors, such as a healthy diet pattern and physical exercise, have been documented to exert cardiovascular protective effects through promoting quiescence, bone marrow retention, balanced differentiation, and/or the anti-inflammatory priming of HSCs. Here, we review the current understanding of and progression in research on the mechanistic interrelationships among lifestyle, HSC homeostasis, and cardiovascular health. Given that adhering to a healthy lifestyle has become a mainstream primary preventative approach to lowering the cardiovascular burden, unmasking the causal links between lifestyle and cardiovascular health from the perspective of hematopoiesis would open new opportunities to prevent and treat CVD in the present age.
Collapse
Affiliation(s)
| | | | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| | - Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| |
Collapse
|
10
|
Yang H, Zhao G, Lu Y, Ma K, Gao X, She X, Zhu Y, Wang K, Du L, Wang Y, Xi Z, Cui B. Circadian disturbances by altering the light-dark cycle negatively affects hematopoietic function of bone marrow in mice. FASEB J 2024; 38:e23565. [PMID: 38558188 DOI: 10.1096/fj.202302233rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Circadian rhythms in metabolically active tissues are crucial for maintaining physical health. Circadian disturbance (CD) can cause various health issues, such as metabolic abnormalities and immune and cognitive dysfunctions. However, studies on the role of CD in immune cell development and differentiation, as well as the rhythmic expression of the core clock genes and their altered expression under CD, remain unclear. Therefore, we exposed C57bl/6j mice to repeated reversed light-dark cycles for 90 days to research the effects of CD on bone marrow (BM) hematopoietic function. We also researched the effects of CD on endogenous circadian rhythms, temporally dependent expression in peripheral blood and myeloid leukocytes, environmental homeostasis within BM, and circadian oscillations of hematopoietic-extrinsic cues. Our results confirmed that when the light and dark cycles around mice were frequently reversed, the circadian rhythmic expression of the two main circadian rhythm markers, the hypothalamic clock gene, and serum melatonin, was disturbed, indicating that the body was in a state of endogenous CD. Furthermore, CD altered the temporally dependent expression of peripheral blood and BM leukocytes and destroyed environmental homeostasis within the BM as well as circadian oscillations of hematopoietic-extrinsic cues, which may negatively affect BM hematopoiesis in mice. Collectively, these results demonstrate that circadian rhythms are vital for maintaining health and suggest that the association between CD and hematopoietic dysfunction warrants further investigation.
Collapse
Affiliation(s)
- Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Guojie Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yue Lu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kefeng Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiujie Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaojun She
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yingwen Zhu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kun Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lianqun Du
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ying Wang
- School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bo Cui
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
11
|
Potter E, Dolgova E, Proskurina A, Ruzanova V, Efremov Y, Kirikovich S, Oshikhmina S, Mamaev A, Taranov O, Bryukhovetskiy A, Grivtsova L, Kolchanov N, Ostanin A, Chernykh E, Bogachev S. Stimulation of mouse hematopoietic stem cells by angiogenin and DNA preparations. Braz J Med Biol Res 2024; 57:e13072. [PMID: 38451606 PMCID: PMC10913394 DOI: 10.1590/1414-431x2024e13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/24/2024] [Indexed: 03/08/2024] Open
Abstract
Immature hematopoietic progenitors are a constant source for renewal of hemocyte populations and the basic component of the tissue and cell repair apparatus. A unique property of these cells of internalizing extracellular double-stranded DNA has been previously shown. The leukostimulatory effect demonstrated in our pioneering studies was considered to be due to the feature of this cell. In the present research, we have analyzed the effects of DNA genome reconstructor preparation (DNAgr), DNAmix, and human recombinant angiogenin on both hematopoietic stem cells and multipotent progenitors. Treatment with bone marrow cells of experimental mice with these preparations stimulates colony formation by hematopoietic stem cells and proliferation of multipotent descendants. The main lineage responsible for this is the granulocyte-macrophage hematopoietic lineage. Using fluorescent microscopy as well as FACS assay, co-localization of primitive c-Kit- and Sca-1-positive progenitors and the TAMRA-labeled double-stranded DNA has been shown. Human recombinant angiogenin was used as a reference agent. Cells with specific markers were quantified in intact bone marrow and colonies grown in the presence of inducers. Quantitative analysis revealed that a total of 14,000 fragment copies of 500 bp, which is 0.2% of the haploid genome, can be delivered into early progenitors. Extracellular double-stranded DNA fragments stimulated the colony formation in early hematopoietic progenitors from the bone marrow, which assumed their effect on cells in G0. The observed number of Sca1+/c-Kit+ cells in colonies testifies to the possibility of both symmetrical and asymmetrical division of the initial hematopoietic stem cell and its progeny.
Collapse
Affiliation(s)
- E.A. Potter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E.V. Dolgova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A.S. Proskurina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V.S. Ruzanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Y.R. Efremov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk National Research State University, Novosibirsk, Russia
| | - S.S. Kirikovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S.G. Oshikhmina
- Department of Natural Sciences, Novosibirsk National Research State University, Novosibirsk, Russia
| | - A.L. Mamaev
- LLC “Angiopharm Laboratory”, Novosibirsk, Russia
| | - O.S. Taranov
- State Research Center of Virology and Biotechnology “Vector”, Novosibirsk, Russia
| | | | - L.U. Grivtsova
- Department of Clinical Immunology, National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - N.A. Kolchanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A.A. Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - E.R. Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - S.S. Bogachev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
12
|
Jaschke NP, Breining D, Hofmann M, Pählig S, Baschant U, Oertel R, Traikov S, Grinenko T, Saettini F, Biondi A, Stylianou M, Bringmann H, Zhang C, Yoshida TM, Weidner H, Poller WC, Swirski FK, Göbel A, Hofbauer LC, Rauner M, Scheiermann C, Wang A, Rachner TD. Small-molecule CBP/p300 histone acetyltransferase inhibition mobilizes leukocytes from the bone marrow via the endocrine stress response. Immunity 2024; 57:364-378.e9. [PMID: 38301651 PMCID: PMC10923082 DOI: 10.1016/j.immuni.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Mutations of the CBP/p300 histone acetyltransferase (HAT) domain can be linked to leukemic transformation in humans, suggestive of a checkpoint of leukocyte compartment sizes. Here, we examined the impact of reversible inhibition of this domain by the small-molecule A485. We found that A485 triggered acute and transient mobilization of leukocytes from the bone marrow into the blood. Leukocyte mobilization by A485 was equally potent as, but mechanistically distinct from, granulocyte colony-stimulating factor (G-CSF), which allowed for additive neutrophil mobilization when both compounds were combined. These effects were maintained in models of leukopenia and conferred augmented host defenses. Mechanistically, activation of the hypothalamus-pituitary-adrenal gland (HPA) axis by A485 relayed shifts in leukocyte distribution through corticotropin-releasing hormone receptor 1 (CRHR1) and adrenocorticotropic hormone (ACTH), but independently of glucocorticoids. Our findings identify a strategy for rapid expansion of the blood leukocyte compartment via a neuroendocrine loop, with implications for the treatment of human pathologies.
Collapse
Affiliation(s)
- Nikolai P Jaschke
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| | - Dorit Breining
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Maura Hofmann
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sophie Pählig
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Reinhard Oertel
- Institute of Clinical Pharmacology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sofia Traikov
- Max-Planck Institute of Molecular Cell Biology, Dresden, Germany
| | - Tatyana Grinenko
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Jiao Tong University School of Medicine, Shanghai, China
| | - Francesco Saettini
- Tettamanti Research Center, University of Milano-Bicocca, University of Milano Bicocca, Monza, Italy
| | - Andrea Biondi
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; Pediatria, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Myrto Stylianou
- Biotechnology Center (Biotec) Technische Universität Dresden, Dresden, Germany
| | - Henrik Bringmann
- Biotechnology Center (Biotec) Technische Universität Dresden, Dresden, Germany
| | - Cuiling Zhang
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tomomi M Yoshida
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Heike Weidner
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Wolfram C Poller
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andy Göbel
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel-Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany
| | - Andrew Wang
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tilman D Rachner
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Costa SO, Chaves WF, Lopes PKF, Silva IM, Burguer B, Ignácio-Souza LM, Torsoni AS, Milanski M, Rodrigues HG, Desai M, Ross MG, Torsoni MA. Maternal consumption of a high-fat diet modulates the inflammatory response in their offspring, mediated by the M1 muscarinic receptor. Front Immunol 2023; 14:1273556. [PMID: 38193079 PMCID: PMC10773672 DOI: 10.3389/fimmu.2023.1273556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction High-fat diet (HFD) consumption is associated with various metabolic disorders and diseases. Both pre-pregnancy and maternal obesity can have long-term consequences on offspring health. Furthermore, consuming an HFD in adulthood significantly increases the risk of obesity and metabolic disorders. However, an intriguing phenomenon known as the obesity paradox suggests that obesity may confer a protective effect on mortality outcomes in sepsis. In sepsis, activation of the cholinergic anti-inflammatory pathway (CAP) can help mitigate systemic inflammation. We employed a metabolic programming model to explore the relationship between maternal HFD consumption and offspring response to sepsis. Methods We fed female mice either a standard diet (SC) or an HFD during the pre-pregnancy, pregnancy, and lactation periods. Subsequently, we evaluated 28-day-old male offspring. Results Notably, we discovered that offspring from HFD-fed dams (HFD-O) exhibited a higher survival rate compared with offspring from SC-fed dams (SC-O). Importantly, inhibition of the m1 muscarinic acetylcholine receptor (m1mAChR), involved in the CAP, in the hypothalamus abolished this protection. The expression of m1mAChR in the hypothalamus was higher in HFD-O at different ages, peaking on day 28. Treatment with an m1mAChR agonist could modulate the inflammatory response in peripheral tissues. Specifically, CAP activation was greater in the liver of HFD-O following agonist treatment. Interestingly, lipopolysaccharide (LPS) challenge failed to induce a more inflammatory state in HFD-O, in contrast to SC-O, and agonist treatment had no additional effect. Analysis of spleen immune cells revealed a distinct phenotype in HFD-O, characterized by elevated levels of CD4+ lymphocytes rather than CD8+ lymphocytes. Moreover, basal Il17 messenger RNA (mRNA) levels were lower while Il22 mRNA levels were higher in HFD-O, and we observed the same pattern after LPS challenge. Discussion Further examination of myeloid cells isolated from bone marrow and allowed to differentiate showed that HFD-O macrophages displayed an anti-inflammatory phenotype. Additionally, treatment with the m1mAChR agonist contributed to reducing inflammatory marker levels in both groups. In summary, our findings demonstrate that HFD-O are protected against LPS-induced sepsis, and this protection is mediated by the central m1mAChR. Moreover, the inflammatory response in the liver, spleen, and bone marrow-differentiated macrophages is diminished. However, more extensive analysis is necessary to elucidate the specific mechanisms by which m1mAChR modulates the immune response during sepsis.
Collapse
Affiliation(s)
- Suleyma Oliveira Costa
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Wenicios Ferreira Chaves
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Iracema M. Silva
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Beatriz Burguer
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Leticia M. Ignácio-Souza
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Hosana Gomes Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Mina Desai
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA, United States
| | - Michael Glenn Ross
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA, United States
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
14
|
Momčilović S, Bogdanović A, Milošević MS, Mojsilović S, Marković DC, Kočović DM, Vignjević Petrinović S. Macrophages Provide Essential Support for Erythropoiesis, and Extracellular ATP Contributes to a Erythropoiesis-Supportive Microenvironment during Repeated Psychological Stress. Int J Mol Sci 2023; 24:11373. [PMID: 37511129 PMCID: PMC10379406 DOI: 10.3390/ijms241411373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Psychological stress is a significant contributor to various chronic diseases and affects multiple physiological processes including erythropoiesis. This study aimed to examine the tissue-specific contributions of macrophages and extracellular ATP, as a signal of disturbed tissue homeostasis, to erythropoiesis under conditions of repeated psychological stress. Adult male BALB/c mice were subjected to 2 h daily restraint stress for seven consecutive days. Clodronate-liposomes were used to deplete resident macrophages from the bone marrow and spleen two days prior to the first restraint procedure, as well as newly recruited macrophages, every third day for the duration of the experiment. Repeated stress induced a considerable increase in the number of erythroid progenitor cells as well as in the percentage of CD71+/Ter119+ and CD71-/Ter119+ cells in the bone marrow and spleen. Macrophage depletion completely abolished the stimulative effect of repeated stress on immature erythroid cells, and prevented stress-induced increases in ATP levels, P2X7 receptor (P2X7R) expression, and ectonucleotidase CD39 activity and expression in the bone marrow and spleen. The obtained results demonstrate the stimulative effects of repeated stress on erythroid cells, extracellular ATP levels, P2X7R expression, CD39 activity and expression within the bone marrow and spleen, as well as the essential role of macrophages in stress-induced changes.
Collapse
Affiliation(s)
- Sanja Momčilović
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Andrija Bogdanović
- Clinic for Hematology, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia
| | - Maja S Milošević
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Dragana C Marković
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Dušica M Kočović
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Sanja Vignjević Petrinović
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| |
Collapse
|
15
|
Suzuki T, Ishii S, Katayama Y. Regulation of granulocyte colony-stimulating factor-induced hematopoietic stem cell mobilization by the sympathetic nervous system. Curr Opin Hematol 2023; 30:124-129. [PMID: 37052297 DOI: 10.1097/moh.0000000000000764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
PURPOSE OF REVIEW Granulocyte colony-stimulating factor (G-CSF) is now a standard agent to mobilize hematopoietic stem cells (HSCs) from the bone marrow to circulation. This review introduced mechanistic insights from the aspect of the sympathetic nervous system (SNS). RECENT FINDINGS Mobilization efficiency is determined by the balance between promotion and suppression pathways critically regulated by the SNS. G-CSF-induced high catecholaminergic tone promotes mobilization by (1) the strong suppression of osteolineage cells as a hematopoietic microenvironment and (2) fibroblast growth factor 23 production from erythroblasts, which inhibits CXCR4 function in HSCs. Simultaneously, SNS signals inhibit mobilization by (1) prostaglandin E2 production from mature neutrophils to induce osteopontin in osteoblasts to anchor HSCs and (2) angiopoietin-like protein 4 production from immature neutrophils via peroxisome proliferator-activated receptor δ to inhibit BM vascular permeability. SUMMARY We now know not only the regulatory mechanisms of G-CSF-induced mobilization but also the leads about unfavorable clinical phenomena, such as low-grade fever, bone pain, and poor mobilizers. Recent understanding of the mechanism will assist clinicians in the treatment for mobilization and researchers in the studies of the hidden potential of BM.
Collapse
|
16
|
Deng ZH, Ma LY, Chen Q, Liu Y. Dynamic crosstalk between hematopoietic stem cells and their niche from emergence to aging. Bioessays 2023; 45:e2200121. [PMID: 36707486 DOI: 10.1002/bies.202200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/29/2023]
Abstract
The behavior of somatic stem cells is regulated by their niche. Interaction between hematopoietic stem cells (HSCs) and their niches are a representative model to understand stem cell-niche interplay. Here, we provide an overview of crosstalk between HSCs and their niches in bone marrow and extramedullary organs following the life journey of HSCs from emergence, development, maturation until aging. We highlight the unique differences of HSC niches in different life stages within various organs focusing on recent literature to propose new speculations and hypotheses.
Collapse
Affiliation(s)
- Zhao-Hua Deng
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Lan-Yue Ma
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Chen
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yang Liu
- School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
17
|
Asada N, Katayama Y. A mysterious triangle of blood, bones, and nerves. J Bone Miner Metab 2023; 41:404-414. [PMID: 36752904 DOI: 10.1007/s00774-023-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
The relationship between bone tissue and bone marrow, which is responsible for hematopoiesis, is inseparable. Osteoblasts and osteocytes, which produce and consist of bone tissue, regulate the function of hematopoietic stem cells (HSC), the ancestors of all hematopoietic cells in the bone marrow. The peripheral nervous system finely regulates bone remodeling in bone tissue and modulates HSC function within the bone marrow, either directly or indirectly via modification of the HSC niche function. Peripheral nerve signals also play an important role in the development and progression of malignant tumors (including hematopoietic tumors) and normal tissues, and peripheral nerve control is emerging as a potential new therapeutic target. In this review, we summarize recent findings on the linkage among blood system, bone tissue, and peripheral nerves.
Collapse
Affiliation(s)
- Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Yoshio Katayama
- Division of Hematology, Department of Medicine, Kobe University Hospital, 7-5-2 Kusunoki-Cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
18
|
Pinho S, Zhao M. Hematopoietic Stem Cells and Their Bone Marrow Niches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:17-28. [PMID: 38228956 PMCID: PMC10881178 DOI: 10.1007/978-981-99-7471-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are maintained in the bone marrow microenvironment, also known as the niche, that regulates their proliferation, self-renewal, and differentiation. In this chapter, we will introduce the history of HSC niche research and review the interdependencies between HSCs and their niches. We will further highlight recent advances in our understanding of HSC heterogeneity with regard to HSC subpopulations and their interacting cellular and molecular bone marrow niche constituents.
Collapse
Affiliation(s)
- Sandra Pinho
- Department of Pharmacology & Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Zhao X, Peng T, Cao X, Hou Y, Li R, Han T, Fan Z, Zhao M, Chang Y, Chen H, Li C, Huang X. In vivo G-CSF treatment activates the GR-SOCS1 axis to suppress IFN-γ secretion by natural killer cells. Cell Rep 2022; 40:111342. [PMID: 36103837 DOI: 10.1016/j.celrep.2022.111342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 07/01/2022] [Accepted: 08/19/2022] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes that are involved in controlling tumors or microbial infections through the production of interferon gamma (IFN-γ). Granulocyte colony-stimulating factor (G-CSF) inhibits IFN-γ secretion by NK cells, but the mechanism underlying this effect remains unclear. Here, by comparing the multi-omics profiles of human NK cells before and after in vivo G-CSF treatment, we identify a pathway that is activated in response to G-CSF treatment, which suppresses IFN-γ secretion in NK cells. Specifically, glucocorticoid receptors (GRs) activated by G-CSF inhibit secretion of IFN-γ by promoting interactions between SOCS1 promoters and enhancers, as well as increasing the expression of SOCS1. Experiments in mice confirm that G-CSF treatment significantly downregulates IFN-γ secretion and upregulates GR and SOCS1 expression in NK cells. In addition, GR blockade by the antagonist RU486 significantly reverses the effects of G-CSF, demonstrating that GRs upregulate SOCS1 and inhibit the production of IFN-γ by NK cells.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ting Peng
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Xunhong Cao
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yingping Hou
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Ruifeng Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Tingting Han
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zeying Fan
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ming Zhao
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yingjun Chang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hebin Chen
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China.
| | - Xiaojun Huang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
20
|
Torres LS, Asada N, Weiss MJ, Trumpp A, Suda T, Scadden DT, Ito K. Recent advances in "sickle and niche" research - Tribute to Dr. Paul S Frenette. Stem Cell Reports 2022; 17:1509-1535. [PMID: 35830837 PMCID: PMC9287685 DOI: 10.1016/j.stemcr.2022.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/27/2022] Open
Abstract
In this retrospective, we review the two research topics that formed the basis of the outstanding career of Dr. Paul S. Frenette. In the first part, we focus on sickle cell disease (SCD). The defining feature of SCD is polymerization of the deoxygenated mutant hemoglobin, which leads to a vicious cycle of hemolysis and vaso-occlusion. We survey important discoveries in SCD pathophysiology that have led to recent advances in treatment of SCD. The second part focuses on the hematopoietic stem cell (HSC) niche, the complex microenvironment within the bone marrow that controls HSC function and homeostasis. We detail the cells that constitute this niche, and the factors that these cells use to exert control over hematopoiesis. Here, we trace the scientific paths of Dr. Frenette, highlight key aspects of his research, and identify his most important scientific contributions in both fields.
Collapse
Affiliation(s)
- Lidiane S Torres
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Einstein Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
21
|
Zhu Y, Duan S, Wang M, Deng Z, Li J. Neuroimmune Interaction: A Widespread Mutual Regulation and the Weapons for Barrier Organs. Front Cell Dev Biol 2022; 10:906755. [PMID: 35646918 PMCID: PMC9130600 DOI: 10.3389/fcell.2022.906755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Since the embryo, the nervous system and immune system have been interacting to regulate each other’s development and working together to resist harmful stimuli. However, oversensitive neural response and uncontrolled immune attack are major causes of various diseases, especially in barrier organs, while neural-immune interaction makes it worse. As the first defense line, the barrier organs give a guarantee to maintain homeostasis in external environment. And the dense nerve innervation and abundant immune cell population in barrier organs facilitate the neuroimmune interaction, which is the physiological basis of multiple neuroimmune-related diseases. Neuroimmune-related diseases often have complex mechanisms and require a combination of drugs, posing challenges in finding etiology and treatment. Therefore, it is of great significance to illustrate the specific mechanism and exact way of neuro-immune interaction. In this review, we first described the mutual regulation of the two principal systems and then focused on neuro-immune interaction in the barrier organs, including intestinal tract, lungs and skin, to clarify the mechanisms and provide ideas for clinical etiology exploration and treatment.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Shixin Duan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Mei Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| |
Collapse
|
22
|
Munley JA, Kelly LS, Mohr AM. Adrenergic Modulation of Erythropoiesis After Trauma. Front Physiol 2022; 13:859103. [PMID: 35514362 PMCID: PMC9063634 DOI: 10.3389/fphys.2022.859103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Severe traumatic injury results in a cascade of systemic changes which negatively affect normal erythropoiesis. Immediately after injury, acute blood loss leads to anemia, however, patients can remain anemic for as long as 6 months after injury. Research on the underlying mechanisms of such alterations of erythropoiesis after trauma has focused on the prolonged hypercatecholaminemia seen after trauma. Supraphysiologic elevation of catecholamines leads to an inhibitive effect on erythropoiesis. There is evidence to show that alleviation of the neuroendocrine stress response following trauma reduces these inhibitory effects. Both beta blockade and alpha-2 adrenergic receptor stimulation have demonstrated increased growth of hematopoietic progenitor cells as well as increased pro-erythropoietic cytokines after trauma. This review will describe prior research on the neuroendocrine stress response after trauma and its consequences on erythropoiesis, which offer insight into underlying mechanisms of prolonged anemia postinjury. We will then discuss the beneficial effects of adrenergic modulation to improve erythropoiesis following injury and propose future directions for the field.
Collapse
Affiliation(s)
- Jennifer A Munley
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Lauren S Kelly
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Alicia M Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials 2022; 286:121568. [DOI: 10.1016/j.biomaterials.2022.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022]
|
24
|
Klein Wolterink RGJ, Wu GS, Chiu IM, Veiga-Fernandes H. Neuroimmune Interactions in Peripheral Organs. Annu Rev Neurosci 2022; 45:339-360. [PMID: 35363534 DOI: 10.1146/annurev-neuro-111020-105359] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interactions between the nervous and immune systems were recognized long ago, but recent studies show that this crosstalk occurs more frequently than was previously appreciated. Moreover, technological advances have enabled the identification of the molecular mediators and receptors that enable the interaction between these two complex systems and provide new insights on the role of neuroimmune crosstalk in organismal physiology. Most neuroimmune interaction occurs at discrete anatomical locations in which neurons and immune cells colocalize. Here, we describe the interactions of the different branches of the peripheral nervous system with immune cells in various organs, including the skin, intestine, lung, and adipose tissue. We highlight how neuroimmune crosstalk orchestrates physiological processes such as host defense, tissue repair, metabolism, and thermogenesis. Unraveling these intricate relationships is invaluable to explore the therapeutic potential of neuroimmune interaction. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Glendon S Wu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | | |
Collapse
|
25
|
Hinterdobler J, Schunkert H, Kessler T, Sager HB. Impact of Acute and Chronic Psychosocial Stress on Vascular Inflammation. Antioxid Redox Signal 2021; 35:1531-1550. [PMID: 34293932 PMCID: PMC8713271 DOI: 10.1089/ars.2021.0153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/01/2023]
Abstract
Significance: Atherosclerosis and its complications, such as acute coronary syndromes, are the leading causes of death worldwide. A wide range of inflammatory processes substantially contribute to the initiation and progression of cardiovascular disease (CVD). In addition, epidemiological studies strongly associate both chronic stress and acute psychosocial stress with the occurrence of CVDs. Recent Advances: Extensive research during recent decades has not only identified major pathways in cardiovascular inflammation but also revealed a link between psychosocial factors and the immune system in the context of atherosclerosis. Both chronic and acute psychosocial stress drive systemic inflammation via neuroimmune interactions and promote atherosclerosis progression. Critical Issues: The associations human epidemiological studies found between psychosocial stress and cardiovascular inflammation have been substantiated by additional experimental studies in mice and humans. However, we do not yet fully understand the mechanisms through which psychosocial stress drives cardiovascular inflammation; consequently, specific treatment, although urgently needed, is lacking. Future Directions: Psychosocial factors are increasingly acknowledged as risk factors for CVD and are currently treated via behavioral interventions. Additional mechanistic insights might provide novel pharmacological treatment options to reduce stress-related morbidity and mortality. Antioxid. Redox Signal. 35, 1531-1550.
Collapse
Affiliation(s)
- Julia Hinterdobler
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
26
|
Brooker RC, Antczak P, Liloglou T, Risk JM, Sacco JJ, Schache AG, Shaw RJ. Genetic variants associated with mandibular osteoradionecrosis following radiotherapy for head and neck malignancy. Radiother Oncol 2021; 165:87-93. [PMID: 34757119 DOI: 10.1016/j.radonc.2021.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND/AIM Utilising radiotherapy in the management of head and neck cancer (HNC) often results in long term toxicities. Mandibular osteoradionecrosis (ORN) represents a late toxicity associated with significant morbidity. We aim to identify a panel of common genetic variants which can predict ORN to aid development of personalised radiotherapy protocols. METHOD Single nucleotide polymorphism (SNP) arrays were applied to DNA samples from patients who had prior HNC radiotherapy and minimum two years follow-up. A case cohort of mandibular ORN was compared to a control group of participants recruited to CRUK HOPON clinical trial. Relevant clinical parameters influencing ORN risk (e.g. smoking/alcohol) were collected. Significant associations from array data were internally validated using polymerase chain reaction (PCR) and pyrosequencing. RESULTS Following inclusion of 141 patients in the analysis (52 cases, 89 controls), a model predictive for ORN was developed; after controlling for alcohol consumption, smoking, and age, 4053 SNPs were identified as significant. This was reduced to a representative model of 18 SNPs achieving 92% accuracy. Following internal technical validation, a six SNP model (rs34798038, rs6011731, rs2348569, rs530752, rs7477958, rs1415848) was retained within multivariate regression analysis (ROC AUC 0.859). Of these, four SNPs (rs34798038 (A/G) (p 0.006), rs6011731 (C/T) (p 0.018), rs530752 (A/G) (p 0.046) and rs2348569 (G/G) (p 0.005)) were significantly associated with the absence of ORN. CONCLUSION This is the first genome wide association study in HNC using ORN as the endpoint and offers new insight into ORN pathogenesis. Subject to validation, these variants may guide patient selection for personalised radiotherapy strategies.
Collapse
Affiliation(s)
- Rachel C Brooker
- Liverpool Head & Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool Cancer Research Centre, University of Liverpool, United Kingdom; The Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, United Kingdom.
| | - Philipp Antczak
- Technology Directorate, Computational Biology Facility, University of Liverpool, United Kingdom; Institute of Systems, Molecular and Integrative Biology, Biochemistry and Systems Biology, University of Liverpool, United Kingdom; Center for Molecular Medicine Cologne, Faculty of Medicine and Cologne University Hospital, University of Cologne, Germany
| | - Triantafillos Liloglou
- Liverpool Head & Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool Cancer Research Centre, University of Liverpool, United Kingdom; Institute of Systems, Molecular and Integrative Biology, Dept of Molecular & Clinical Cancer Medicine, University of Liverpool, United Kingdom
| | - Janet M Risk
- Liverpool Head & Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool Cancer Research Centre, University of Liverpool, United Kingdom
| | - Joseph J Sacco
- Liverpool Head & Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool Cancer Research Centre, University of Liverpool, United Kingdom; The Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, United Kingdom
| | - Andrew G Schache
- Liverpool Head & Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool Cancer Research Centre, University of Liverpool, United Kingdom; Head and Neck Unit, Liverpool University Hospital NHS Foundation Trust, Aintree University Hospital, United Kingdom
| | - Richard J Shaw
- Liverpool Head & Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool Cancer Research Centre, University of Liverpool, United Kingdom; Head and Neck Unit, Liverpool University Hospital NHS Foundation Trust, Aintree University Hospital, United Kingdom
| |
Collapse
|
27
|
Kunst RF, Langlais AL, Barlow D, Houseknecht KL, Motyl KJ. Housing Temperature Influences Atypical Antipsychotic Drug-Induced Bone Loss in Female C57BL/6J Mice. JBMR Plus 2021; 5:e10541. [PMID: 34693191 PMCID: PMC8520062 DOI: 10.1002/jbm4.10541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/01/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Atypical antipsychotic (AA) drugs, such as risperidone, are associated with endocrine and metabolic side effects, including impaired bone mineral density (BMD) acquisition and increased fracture risk. We have previously shown that risperidone causes bone loss through the sympathetic nervous system and that bone loss is associated with elevated markers of thermogenesis in brown and white adipose tissue. Because rodents are normally housed in sub‐thermoneutral conditions, we wanted to test whether increasing housing temperature would protect against bone loss from risperidone. Four weeks of risperidone treatment in female C57BL/6J mice at thermoneutral (28°C) housing attenuated risperidone‐induced trabecular bone loss and led to a low‐turnover bone phenotype, with indices of both bone formation and resorption suppressed in mice with risperidone treatment at thermoneutrality, whereas indices of bone resorption were elevated by risperidone at room temperature. Protection against trabecular bone loss was not absolute, however, and additional evidence of cortical bone loss emerged in risperidone‐treated mice at thermoneutrality. Taken together, these findings suggest thermal challenge may be in part responsible for bone loss with risperidone treatment and that housing temperature should be considered when assessing bone outcomes of treatments that impact thermogenic pathways. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Roni F Kunst
- Center for Molecular Medicine Maine Medical Center Research Institute Scarborough ME USA
| | - Audrie L Langlais
- Center for Molecular Medicine Maine Medical Center Research Institute Scarborough ME USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine Orono ME USA
| | - Deborah Barlow
- College of Osteopathic Medicine, University of New England Biddeford ME USA
| | | | - Katherine J Motyl
- Center for Molecular Medicine Maine Medical Center Research Institute Scarborough ME USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine Orono ME USA.,Tufts University School of Medicine, Tufts University Boston MA USA
| |
Collapse
|
28
|
Hematopoietic Stem Cell Mobilization: Current Collection Approaches, Stem Cell Heterogeneity, and a Proposed New Method for Stem Cell Transplant Conditioning. Stem Cell Rev Rep 2021; 17:1939-1953. [PMID: 34661830 DOI: 10.1007/s12015-021-10272-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Hematopoietic stem cells naturally traffic out of their bone marrow niches into the peripheral blood. This natural trafficking process can be enhanced with numerous pharmacologic agents - a process termed "mobilization" - and the mobilized stem cells can be collected for transplantation. We review the current state of mobilization with an update on recent clinical trials and new biologic mechanisms regulating stem cell trafficking. We propose that hematopoietic mobilization can be used to answer questions regarding hematopoietic stem cell heterogeneity, can be used for non-toxic conditioning of patients receiving stem cell transplants, and can enhance gene editing and gene therapy strategies to cure genetic diseases.
Collapse
|
29
|
Lévesque JP, Purton LE, Hidalgo A, Zon LI, Katayama Y, Scadden DT, Bowman TV, Stanley ER, Lucas D, Pinho S. In memory of Paul Sylvain Frenette, a pioneering explorer of the hematopoietic stem cell niche who left far too early. Exp Hematol 2021; 101-102:S0301-472X(21)00282-4. [PMID: 34403758 DOI: 10.1016/j.exphem.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/21/2022]
Affiliation(s)
- Jean-Pierre Lévesque
- Mater Research Institute, University of Queensland, Woollongabba, Queensland, Australia
| | - Louise E Purton
- St. Vincent's Research Institute, Fitzroy, Victoria, Australia
| | - Andrés Hidalgo
- National Center for Cardiovascular Research, Madrid, Spain
| | - Leonard I Zon
- Boston Children's Hospital, Boston, MA; Harvard Medical School, Cambridge, MA
| | | | - David T Scadden
- Harvard Medical School, Cambridge, MA; Massachusetts General Hospital, Boston, MA
| | | | | | - Daniel Lucas
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | |
Collapse
|
30
|
Modulation of the HGF/c-Met Axis Impacts Prolonged Hematopoietic Progenitor Mobilization Following Trauma and Chronic Stress. Shock 2021; 54:482-487. [PMID: 31904616 DOI: 10.1097/shk.0000000000001506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Trauma and hemorrhagic shock trigger mobilization of hematopoietic progenitor cells (HPC) from bone marrow to peripheral blood. Hepatocyte growth factor (HGF), tyrosine-protein kinase Met (c-Met), matrix metallopeptidase 9 (MMP-9), and corticosterone regulate this mobilization process. We hypothesized that beta-blockade with propranolol and sympathetic outflow inhibition with clonidine following trauma and chronic stress would decrease hematopoietic progenitor cell mobilization. METHODS Sprague-Dawley rats were randomized to undergo three models of injury and stress: lung contusion, LC plus hemorrhagic shock (LCHS), or LCHS plus chronic restraint stress for 2 h daily (LCHS/CS). Propranolol and clonidine were administered by daily intraperitoneal injection until sacrifice on day seven. Bone marrow HGF, c-Met, and MMP-9 were measured by real-time PCR. Plasma corticosterone was measured by ELISA. Percentage HPC in peripheral blood was measured by flow cytometry. RESULTS Propranolol and clonidine significantly decreased bone marrow MMP-9 expression, plasma corticosterone levels, and HPC mobilization, and significantly increased hemoglobin levels. HPC mobilization was greatest following LCHS/CS (5.4 ± 1.8) and was significantly decreased by propranolol (2.2 ± 0.9, P < 0.001) and clonidine (1.7 ± 0.5, P < 0.001). Hemoglobin (g/dL) was lowest following LCHS/CS (12.3 ± 1.2) and was significantly increased by propranolol (13.7 ± 0.4, P = 0.022) and clonidine (14.1 ± 1.1, P < 0.001). CONCLUSIONS Severe injury was associated with increased bone marrow HGF, c-Met, and MMP-9, circulating corticosterone, HPC mobilization, and persistent anemia. Attenuating the neuroendocrine response to injury and stress with propranolol and clonidine reduced MMP-9 expression, corticosterone levels, HPC mobilization, and the degree of anemia.
Collapse
|
31
|
Broxmeyer HE, Yoder KK, Wu YC, Hutchins GD, Cooper SH, Farag SS. The Brain: Is it a Next Frontier to Better Understand the Regulation and Control of Hematopoiesis for Future Modulation and Treatment? Stem Cell Rev Rep 2021; 17:1083-1090. [PMID: 34255283 PMCID: PMC10784999 DOI: 10.1007/s12015-021-10203-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 12/29/2022]
Abstract
We wish to suggest the possibility there is a link between the brain and hematopoiesis in the bone marrow and that in the future it may be possible to use such information for better understanding of the regulation of hematopoiesis, and for efficacious treatment of hematopoietic disorders.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2 Bldg, Room 302, Indianapolis, IN, 46202-5181, USA.
| | - Karmen K Yoder
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gary D Hutchins
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Scott H Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2 Bldg, Room 302, Indianapolis, IN, 46202-5181, USA
| | - Sherif S Farag
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
32
|
Yao Y, Li F, Huang J, Jin J, Wang H. Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development. Exp Hematol Oncol 2021; 10:39. [PMID: 34246314 PMCID: PMC8272391 DOI: 10.1186/s40164-021-00233-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the advances in intensive chemotherapy regimens and targeted therapies, overall survival (OS) of acute myeloid leukemia (AML) remains unfavorable due to inevitable chemotherapy resistance and high relapse rate, which mainly caused by the persistence existence of leukemia stem cells (LSCs). Bone marrow microenvironment (BMM), the home of hematopoiesis, has been considered to play a crucial role in both hematopoiesis and leukemogenesis. When interrupted by the AML cells, a malignant BMM formed and thus provided a refuge for LSCs and protecting them from the cytotoxic effects of chemotherapy. In this review, we summarized the alterations in the bidirectional interplay between hematopoietic cells and BMM in the normal/AML hematopoietic environment, and pointed out the key role of these alterations in pathogenesis and chemotherapy resistance of AML. Finally, we focused on the current potential BMM-targeted strategies together with future prospects and challenges. Accordingly, while further research is necessary to elucidate the underlying mechanisms behind LSC–BMM interaction, targeting the interaction is perceived as a potential therapeutic strategy to eradicate LSCs and ultimately improve the outcome of AML.
Collapse
Affiliation(s)
- Yiyi Yao
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310000, Zhejiang, People's Republic of China.
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310000, Zhejiang, People's Republic of China.
| |
Collapse
|
33
|
Quatrini L, Ricci B, Ciancaglini C, Tumino N, Moretta L. Regulation of the Immune System Development by Glucocorticoids and Sex Hormones. Front Immunol 2021; 12:672853. [PMID: 34248954 PMCID: PMC8260976 DOI: 10.3389/fimmu.2021.672853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Through the release of hormones, the neuro-endocrine system regulates the immune system function promoting adaptation of the organism to the external environment and to intrinsic physiological changes. Glucocorticoids (GCs) and sex hormones not only regulate immune responses, but also control the hematopoietic stem cell (HSC) differentiation and subsequent maturation of immune cell subsets. During the development of an organism, this regulation has long-term consequences. Indeed, the effects of GC exposure during the perinatal period become evident in the adulthood. Analogously, in the context of HSC transplantation (HSCT), the immune system development starts de novo from the donor HSCs. In this review, we summarize the effects of GCs and sex hormones on the regulation of HSC, as well as of adaptive and innate immune cells. Moreover, we discuss the short and long-term implications on hematopoiesis of sex steroid ablation and synthetic GC administration upon HSCT.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Biancamaria Ricci
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Cecilia Ciancaglini
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Tumino
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
34
|
Klose CSN, Veiga-Fernandes H. Neuroimmune interactions in peripheral tissues. Eur J Immunol 2021; 51:1602-1614. [PMID: 33895990 DOI: 10.1002/eji.202048812] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
Neuroimmune interactions have been revealed to be at the centre stage of tissue defence, organ homeostasis, and organismal physiology. Neuronal and immune cell subsets have been shown to colocalize in discrete tissue environments, forming neuroimmune cell units that constitute the basis for bidirectional interactions. These multitissue units drive coordinated neuroimmune responses to local and systemic signals, which represents an important challenge to our current views of mucosal physiology and immune regulation. In this review, we focus on the impact of reciprocal neuroimmune interactions, focusing on the anatomy of neuronal innervation and on the neuronal regulation of immune cells in peripheral tissues. Finally, we shed light on recent studies that explore how neuroimmune interactions maximise sensing and integration of environmental aggressions, modulating immune function in health and disease.
Collapse
Affiliation(s)
- Christoph S N Klose
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, 12203, Germany
| | | |
Collapse
|
35
|
Ueno M. Restoring neuro-immune circuitry after brain and spinal cord injuries. Int Immunol 2021; 33:311-325. [PMID: 33851981 DOI: 10.1093/intimm/dxab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Neuro-immune interactions are essential for our body's defense and homeostasis. Anatomical and physiological analyses have shown that the nervous system comprises multiple pathways that regulate the dynamics and functions of immune cells, which are mainly mediated by the autonomic nervous system and adrenal signals. These are disturbed when the neurons and circuits are damaged by diseases of the central nervous system (CNS). Injuries caused by stroke or trauma often cause immune dysfunction by abrogation of the immune-regulating neural pathways, which leads to an increased risk of infections. Here, I review the structures and functions of the neural pathways connecting the brain and the immune system, and the neurogenic mechanisms of immune dysfunction that emerge after CNS injuries. Recent technological advances in manipulating specific neural circuits have added mechanistic aspects of neuro-immune interactions and their dysfunctions. Understanding the neural bases of immune control and their pathological processes will deepen our knowledge of homeostasis and lead to the development of strategies to cure immune deficiencies observed in various CNS disorders.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Niigata 951-8585, Japan
| |
Collapse
|
36
|
Girard D, Torossian F, Oberlin E, Alexander KA, Gueguen J, Tseng HW, Genêt F, Lataillade JJ, Salga M, Levesque JP, Le Bousse-Kerdilès MC, Banzet S. Neurogenic Heterotopic Ossifications Recapitulate Hematopoietic Stem Cell Niche Development Within an Adult Osteogenic Muscle Environment. Front Cell Dev Biol 2021; 9:611842. [PMID: 33748104 PMCID: PMC7973025 DOI: 10.3389/fcell.2021.611842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis and bone interact in various developmental and pathological processes. Neurogenic heterotopic ossifications (NHO) are the formation of ectopic hematopoietic bones in peri-articular muscles that develop following severe lesions of the central nervous system such as traumatic cerebral or spinal injuries or strokes. This review will focus on the hematopoietic facet of NHO. The characterization of NHO demonstrates the presence of hematopoietic marrow in which quiescent hematopoietic stem cells (HSC) are maintained by a functional stromal microenvironment, thus documenting that NHOs are neo-formed ectopic HSC niches. Similarly to adult bone marrow, the NHO permissive environment supports HSC maintenance, proliferation and differentiation through bidirectional signaling with mesenchymal stromal cells and endothelial cells, involving cell adhesion molecules, membrane-bound growth factors, hormones, and secreted matrix proteins. The participation of the nervous system, macrophages and inflammatory cytokines including oncostatin M and transforming growth factor (TGF)-β in this process, reveals how neural circuitry fine-tunes the inflammatory response to generate hematopoietic bones in injured muscles. The localization of NHOs in the peri-articular muscle environment also suggests a role of muscle mesenchymal cells and bone metabolism in development of hematopoiesis in adults. Little is known about the establishment of bone marrow niches and the regulation of HSC cycling during fetal development. Similarities between NHO and development of fetal bones make NHOs an interesting model to study the establishment of bone marrow hematopoiesis during development. Conversely, identification of stage-specific factors that specify HSC developmental state during fetal bone development will give more mechanistic insights into NHO.
Collapse
Affiliation(s)
- Dorothée Girard
- INSERM UMRS-MD 1197, Institut de Recherche Biomédicale des Armées (IRBA), Clamart, France
| | - Frédéric Torossian
- INSERM UMRS-MD 1197, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France
| | - Estelle Oberlin
- INSERM UMRS-MD 1197, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France
| | - Kylie A. Alexander
- Mater Research Institute—The University of Queensland, Woolloongabba, QLD, Australia
| | - Jules Gueguen
- INSERM UMRS-MD 1197, Institut de Recherche Biomédicale des Armées (IRBA), Clamart, France
| | - Hsu-Wen Tseng
- Mater Research Institute—The University of Queensland, Woolloongabba, QLD, Australia
| | - François Genêt
- INSERM U1179, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, France
| | | | - Marjorie Salga
- INSERM U1179, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, France
| | - Jean-Pierre Levesque
- Mater Research Institute—The University of Queensland, Woolloongabba, QLD, Australia
| | | | - Sébastien Banzet
- INSERM UMRS-MD 1197, Institut de Recherche Biomédicale des Armées (IRBA), Clamart, France
| |
Collapse
|
37
|
Man Y, Yao X, Yang T, Wang Y. Hematopoietic Stem Cell Niche During Homeostasis, Malignancy, and Bone Marrow Transplantation. Front Cell Dev Biol 2021; 9:621214. [PMID: 33553181 PMCID: PMC7862549 DOI: 10.3389/fcell.2021.621214] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Self-renewal and multidirectional differentiation of hematopoietic stem cells (HSCs) are strictly regulated by numerous cellular components and cytokines in the bone marrow (BM) microenvironment. Several cell types that regulate HSC niche have been identified, including both non-hematopoietic cells and HSC-derived cells. Specific changes in the niche composition can result in hematological malignancies. Furthermore, processes such as homing, proliferation, and differentiation of HSCs are strongly controlled by the BM niche and have been reported to be related to the success of hematopoietic stem cell transplantation (HSCT). Single-cell sequencing and in vivo imaging are powerful techniques to study BM microenvironment in hematological malignancies and after HSCT. In this review, we discuss how different components of the BM niche, particularly non-hematopoietic and hematopoietic cells, regulate normal hematopoiesis, and changes in the BM niche in leukemia and after HSCT. We believe that this comprehensive review will provide clues for further research on improving HSCT efficiency and exploring potential therapeutic targets for leukemia.
Collapse
Affiliation(s)
- Yan Man
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Xiangmei Yao
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Tonghua Yang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Yajie Wang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
38
|
Gao W, Yang X, Du J, Wang H, Zhong H, Jiang J, Yang C. Glucocorticoid guides mobilization of bone marrow stem/progenitor cells via FPR and CXCR4 coupling. Stem Cell Res Ther 2021; 12:16. [PMID: 33413641 PMCID: PMC7791823 DOI: 10.1186/s13287-020-02071-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/06/2020] [Indexed: 12/04/2022] Open
Abstract
Background Our previous studies have proved the efficient exogenous repairing responses via bone marrow stem and progenitor cells (BMSPCs). However, the trafficking of endogenous bone marrow stem and progenitor cells to and from the bone marrow (BM) is a highly regulated process that remains to be elucidated. We aimed to study the relative importance of the hypothalamic-pituitary-adrenal (HPA) axis in the glucocorticoid-induced BMSPC mobilization. Methods The circulating mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) were examined in Crh (+/+, −/−) mice after running stress or glucocorticoid mini-infusion. The MSCs and EPCs were investigated ex vivo after treatment with glucocorticoid and glucocorticoid receptor (GR) antagonist, RU486. The expression of chemotaxis receptors, N-formyl peptide receptor (FPR), and Cys-X-Cys receptor 4 (CXCR4) of MSCs and EPCs as well as their colocalization were investigated after treatment with glucocorticoid, glucocorticoid receptor (GR) antagonist (RU486), and FPR antagonist (Cyclosporin H). Results Forced running stress increased circulating MSCs and EPCs in mice, which was blunted when Crh was knocked out, and positively related to the levels of serum glucocorticoid. Prolonged glucocorticoid mini-infusion imitated the stress-induced increase in circulating MSCs and EPCs in Crh+/+ mice and rescued the impaired mobilization in circulating MSCs and EPCs in Crh−/− mice. Meanwhile, glucocorticoid promoted the chemotaxis of MSCs and EPCs ex vivo via GR, inhibited by RU486 (10 μM). Concurrently, glucocorticoid increased the expression of FPR of MSCs and EPCs, but inhibited their expression of CXCR4, followed by their changing colocalization in the cytoplasm. The GC-induced colocalization of FPR and CXCR4 was blunted by Cyclosporin H (1 μM). Conclusion Glucocorticoid-induced CXCR4-FPR responsiveness selectively guides the mobilization of BMSPCs, which is essential to functional tissue repair. Graphical abstract Schematic view of the role of glucocorticoid on the mobilization of bone marrow-derived stem/progenitor cells subsets in the present study. The HPA axis activation promotes the release of glucocorticoid, which regulates the directional migration of MSCs and EPCs mainly via GR. The possible mechanisms refer to the signal coupling of FPR and CXCR4. Their two-sided changes regulated by glucocorticoid are involved in the egress of MSCs and EPCs from BM, which is helpful for wound healing. MSCs, mesenchymal stem cells; EPCs, endothelial progenitor cells.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02071-1.
Collapse
Affiliation(s)
- Wenting Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.,Department of Cardiovascular Surgery, First Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, People's Republic of China
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.,Chinese PLA 952th Hospital, Geermu, 816000, Qinghai, People's Republic of China
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Haiyan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Hejiang Zhong
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.,Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
39
|
Neuroprotection through G-CSF: recent advances and future viewpoints. Pharmacol Rep 2021; 73:372-385. [PMID: 33389706 DOI: 10.1007/s43440-020-00201-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Granulocyte-colony stimulating factor (G-CSF), a member of the cytokine family of hematopoietic growth factors, is 19.6 kDa glycoprotein which is responsible for the proliferation, maturation, differentiation, and survival of neutrophilic granulocyte lineage. Apart from its proven clinical application to treat chemotherapy-associated neutropenia, recent pre-clinical studies have highlighted the neuroprotective roles of G-CSF i.e., mobilization of haemopoietic stem cells, anti-apoptotic, neuronal differentiation, angiogenesis and anti-inflammatory in animal models of neurological disorders. G-CSF is expressed by numerous cell types including neuronal, immune and endothelial cells. G-CSF is released in autocrine manner and binds to its receptor G-CSF-R which further activates numerous signaling transduction pathways including PI3K/AKT, JAK/STAT and MAP kinase, and thereby promote neuronal survival, proliferation, differentiation, mobilization of hematopoietic stem and progenitor cells. The expression of G-CSF receptors (G-CSF-R) in the different brain regions and their upregulation in response to neuronal insult indicates the autocrine protective signaling mechanism of G-CSF by inhibition of apoptosis, inflammation, and stimulation of neurogenesis. These observed neuroprotective effects of G-CSF makes it an attractive target to mitigate neurodegeneration associated with neurological disorders. The objective of the review is to highlight and summarize recent updates on G-CSF as a therapeutically versatile neuroprotective agent along with mechanisms of action as well as possible clinical applications in neurodegenerative disorders including AD, PD and HD.
Collapse
|
40
|
Yuan S, Sun G, Zhang Y, Dong F, Cheng H, Cheng T. Understanding the "SMART" features of hematopoietic stem cells and beyond. SCIENCE CHINA. LIFE SCIENCES 2021; 64:2030-2044. [PMID: 34341896 PMCID: PMC8328818 DOI: 10.1007/s11427-021-1961-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Since the huge success of bone marrow transplantation technology in clinical practice, hematopoietic stem cells (HSCs) have become the gold standard for defining the properties of adult stem cells (ASCs). Here, we describe the "self-renewal, multi-lineage differentiation, apoptosis, rest, and trafficking" or "SMART" model, which has been developed based on data derived from studies of HSCs as the most well-characterized stem cell type. Given the potential therapeutic applications of ASCs, we delineate the key characteristics of HSCs using this model and speculate on the physiological relevance of stem cells identified in other tissues. Great strides are being made in understanding the biology of ASCs, and efforts are now underway to develop safe and effective ASC-based therapies in this emerging area.
Collapse
Affiliation(s)
- Shiru Yuan
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Guohuan Sun
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Yawen Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Fang Dong
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| | - Hui Cheng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| | - Tao Cheng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| |
Collapse
|
41
|
Carpenter RS, Marbourg JM, Brennan FH, Mifflin KA, Hall JCE, Jiang RR, Mo XM, Karunasiri M, Burke MH, Dorrance AM, Popovich PG. Spinal cord injury causes chronic bone marrow failure. Nat Commun 2020; 11:3702. [PMID: 32710081 PMCID: PMC7382469 DOI: 10.1038/s41467-020-17564-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) causes immune dysfunction, increasing the risk of infectious morbidity and mortality. Since bone marrow hematopoiesis is essential for proper immune function, we hypothesize that SCI disrupts bone marrow hematopoiesis. Indeed, SCI causes excessive proliferation of bone marrow hematopoietic stem and progenitor cells (HSPC), but these cells cannot leave the bone marrow, even after challenging the host with a potent inflammatory stimulus. Sequestration of HSPCs in bone marrow after SCI is linked to aberrant chemotactic signaling that can be reversed by post-injury injections of Plerixafor (AMD3100), a small molecule inhibitor of CXCR4. Even though Plerixafor liberates HSPCs and mature immune cells from bone marrow, competitive repopulation assays show that the intrinsic long-term functional capacity of HSPCs is still impaired in SCI mice. Together, our data suggest that SCI causes an acquired bone marrow failure syndrome that may contribute to chronic immune dysfunction.
Collapse
Affiliation(s)
- Randall S Carpenter
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Jessica M Marbourg
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Faith H Brennan
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Katherine A Mifflin
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Jodie C E Hall
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Roselyn R Jiang
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Xiaokui M Mo
- Center for Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH, USA
| | - Malith Karunasiri
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Matthew H Burke
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Adrienne M Dorrance
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA.
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
42
|
Abstract
The bone marrow (BM) is the primary site of postnatal hematopoiesis and hematopoietic stem cell (HSC) maintenance. The BM HSC niche is an essential microenvironment which evolves and responds to the physiological demands of HSCs. It is responsible for orchestrating the fate of HSCs and tightly regulates the processes that occur in the BM, including self-renewal, quiescence, engraftment, and lineage differentiation. However, the BM HSC niche is disturbed following hematological stress such as hematological malignancies, ionizing radiation, and chemotherapy, causing the cellular composition to alter and remodeling to occur. Consequently, hematopoietic recovery has been the focus of many recent studies and elucidating these mechanisms has great biological and clinical relevance, namely to exploit these mechanisms as a therapeutic treatment for hematopoietic malignancies and improve regeneration following BM injury. The sympathetic nervous system innervates the BM niche and regulates the migration of HSCs in and out of the BM under steady state. However, recent studies have investigated how sympathetic innervation and signaling are dysregulated under stress and the subsequent effect they have on hematopoiesis. Here, we provide an overview of distinct BM niches and how they contribute to HSC regulatory processes with a particular focus on neuronal regulation of HSCs under steady state and stress hematopoiesis.
Collapse
Affiliation(s)
- Claire Fielding
- Haematology, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- National Health Service Blood and Transplant, Cambridge, UK
| | - Simón Méndez-Ferrer
- Haematology, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- National Health Service Blood and Transplant, Cambridge, UK
| |
Collapse
|
43
|
Chen X, Zhao C, Zhang C, Li Q, Chen J, Cheng L, Zhou J, Su X, Song Y. Vagal-α7nAChR signaling promotes lung stem cells regeneration via fibroblast growth factor 10 during lung injury repair. Stem Cell Res Ther 2020; 11:230. [PMID: 32522255 PMCID: PMC7288553 DOI: 10.1186/s13287-020-01757-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Proliferation and transdifferentiation of lung stem cells (LSCs) could promote lung injury repair. The distal airways of the lung are innervated by the vagus nerve. Vagal-alpha7 nicotinic acetylcholine receptor (α7nAChR) signaling plays a key role in regulating lung infection and inflammation; however, whether this pathway could regulate LSCs remains unknown. METHODS LSCs (Sca1+CD45-CD31- cells) were isolated and characterized according to a previously published protocol. α7nAChR knockout mice and wild-type littermates were intratracheally challenged with lipopolysaccharide (LPS) to induce lung injury. A cervical vagotomy was performed to study the regulatory effect of the vagus nerve on LSCs-mediated lung repair. α7nAChR agonist or fibroblast growth factor 10 (FGF10) was intratracheally delivered to mice. A single-cell suspension of lung cells was analyzed by flow cytometry. Lung tissues were collected for histology, quantitative real-time polymerase chain reaction (RT-PCR), and immunohistochemistry. RESULTS We found that LSCs maintained multilineage differentiation ability and transdifferentiated into alveolar epithelial type II cells (AEC2) following FGF10 stimulation in vitro. Vagotomy or α7nAChR deficiency reduced lung Ki67+ LSCs expansion and hampered the resolution of LPS-induced lung injury. Vagotomy or α7nAChR deficiency decreased lung FGF10 expression and the number of AEC2. The α7nAChR agonist-GTS-21 reversed the reduction of FGF10 expression in the lungs, as well as the number of Ki67+ cells, LSCs, Ki67+ LSCs, and AEC2 in LPS-challenged vagotomized mice. Supplementation with FGF10 counteracted the loss of Ki67+ LSCs and AEC2 in LPS-challenged α7nAChR knockout mice. CONCLUSIONS The vagus nerve deploys α7nAChR to enhance LSCs proliferation and transdifferentiation and promote lung repair in an FGF10-dependent manner during LPS-induced lung injury.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Caiqi Zhao
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Cuiping Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Qingmei Li
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Lianping Cheng
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China.
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China. .,Department of Pulmonary Medicine, Zhongshan Hospital, Qingpu Branch, Fudan University, Shanghai, People's Republic of China. .,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
44
|
Carnevale D, Lembo G. Neuroimmune interactions in cardiovascular diseases. Cardiovasc Res 2020; 117:402-410. [PMID: 32462184 DOI: 10.1093/cvr/cvaa151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Our body is continuously in contact with external stimuli that need a fine integration with the internal milieu in order to maintain the homoeostasis. Similarly, perturbations of the internal environment are responsible for the alterations of the physiological mechanisms regulating our main functions. The nervous system and the immune system represent the main interfaces between the internal and the external environment. In carrying out these functions, they share many similarities, being able to recognize, integrate, and organize responses to a wide variety of stimuli, with the final aim to re-establish the homoeostasis. The autonomic nervous system, which collectively refers to the ensemble of afferent and efferent neurons that wire the central nervous system with visceral effectors throughout the body, is the prototype system controlling the homoeostasis through reflex arches. On the other hand, immune cells continuously patrol our body against external enemies and internal perturbations, organizing acute responses and forming memory for future encounters. Interesting to notice, the integration of the two systems provides a further unique opportunity for fine tuning of our body's homoeostasis. In fact, the autonomic nervous system guides the development of lymphoid and myeloid organs, as well as the deployment of immune cells towards peripheral tissues where they can affect and control several physiological functions. In turn, every specific immune cell type can contribute to regulate neural circuits involved in cardiovascular function, metabolism, and inflammation. Here, we review current understanding of the cross-regulation between these systems in cardiovascular diseases.
Collapse
Affiliation(s)
- Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli IS, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli IS, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
45
|
García-García A, Méndez-Ferrer S. The Autonomic Nervous System Pulls the Strings to Coordinate Circadian HSC Functions. Front Immunol 2020; 11:956. [PMID: 32508835 PMCID: PMC7251159 DOI: 10.3389/fimmu.2020.00956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/23/2020] [Indexed: 11/16/2022] Open
Abstract
As for many other adult stem cells, the behavior of hematopoietic stem and progenitor cells (HSPCs) is subjected to circadian regulatory patterns. Multiple HSPC functions, such as proliferation, differentiation or trafficking exhibit time-dependent patterns that require a tight coordination to ensure daily blood cell production. The autonomic nervous system, together with circulating hormones, relay circadian signals from the central clock-the suprachiasmatic nucleus in the brain-to synchronize HSC niche physiology according to light/darkness cycles. Research over the last 20 years has revealed how specific neural signals modulate certain aspects of circadian HSC biology. However, only recently some studies have started to decipher the cellular and molecular mechanisms that orchestrate this complex regulation in a time-dependent fashion. Here we firstly review some of the recent key findings illustrating how different neural signals (catecholaminergic or cholinergic) regulate circadian HSC egress, homing, maintenance, proliferation, and differentiation. In particular, we highlight the critical role of different neurotransmitter receptors in the bone marrow microenvironment to channel these neural signals and regulate antagonistic processes according to circadian cues and organismal demands. Then, we discuss the potential biological meaning of HSC circadian regulation and its possible utility for clinical purposes. Finally, we offer our perspective on emerging concepts in HSC chronobiology.
Collapse
Affiliation(s)
- Andrés García-García
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Simón Méndez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Pro-inflammatory modification of cancer cells microsurroundings increases the survival rates for rats with low differentiated malignant glioma of brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:253-279. [PMID: 32448611 DOI: 10.1016/bs.irn.2020.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RATIONALE Glioblastoma multiforme (GBM) is one of the most aggressive human brain tumors. The prognosis is unfavorable with a median survival of 15 months. GBM aggressive nature is associated with a special phenotype of cancer cells that develops because of the transforming growth factor β (TGF-β). The study was aimed at providing experimental justification in vivo of a possibility to suppress TGF-β production in a tumor via pro-inflammatory modification of cancer cell microenvironment, using CD45+ mononuclear cells of the red bone marrow. MATERIALS AND METHODS The experiment used animals with transplanted C6 glioma. The animals were divided into 4 groups: (I) control (N=60); (II) group of rats (N=30) that received granulocyte colony-stimulating factor (G-CSF) to recruit CD45+ bone marrow mononuclear cells into their systemic circulation (G-CSF group); (III) group of rats (N=30) that received pro-inflammatory therapy to trigger systemic inflammatory reaction by injecting bacterial lipopolysaccharides (LPS) and interferon-γ (IFNγ); (IV) rats (N=30), stimulated with G-CSF, followed by pro-inflammatory therapy. Stereotaxic modeling of a brain tumor in experimental animals, as well as a combination of morphological, immunocytochemical analyses and immunosorbent assay were used. RESULTS TGF-β1 production in the tumor tissue resulted being inversely proportional to the intensity of proliferation processes and directly proportional to the size of necrosis areas, peaking on the 28th day of the experiment. Stimulation of experimental animals with G-CSF recruits CD45+ mononuclear stem and progenitor cells into the systemic circulation of experimental animals with C6 glioma, accompanied by intensification of microglial proliferation in the tumor and infiltration of the tumor tissue with microglial cells. Pro-inflammatory therapy against G-CSF stimulation results in polarization of microglia/macrophages population together with intensified antigen presentation, lower production of TGF-β and IL10, increased synthesis of pro-inflammatory cytokines TNFα and IL1 in the tumor lesion and adjacent brain matter, remodeling of tumor matrix and higher survival rates for the experimental animals. CONCLUSIONS Pro-inflammatory inflammatory modification of cancer cell microenvironment suppresses TGFβ production in a tumor and increases survival rates of the rats with transplanted poorly differentiated malignant brain glioma.
Collapse
|
47
|
Al-Sharea A, Lee MKS, Purton LE, Hawkins ED, Murphy AJ. The haematopoietic stem cell niche: a new player in cardiovascular disease? Cardiovasc Res 2020; 115:277-291. [PMID: 30590405 DOI: 10.1093/cvr/cvy308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Haematopoiesis, the process of blood production, can be altered during the initiation or progression of many diseases. Cardiovascular disease (CVD) has been shown to be heavily influenced by changes to the haematopoietic system, including the types and abundance of immune cells produced. It is now well established that innate immune cells are increased in people with CVD, and the mechanisms contributing to this can be vastly different depending on the risk factors or comorbidities present. Many of these changes begin at the level of the haematopoietic stem and progenitor cells (HSPCs) that reside in the bone marrow (BM). In general, the HSPCs and downstream myeloid progenitors are expanded via increased proliferation in the setting of atherosclerotic CVD. However, HSPCs can also be encouraged to leave the BM and colonise extramedullary sites (i.e. the spleen). Within the BM, HSPCs reside in specialized microenvironments, often referred to as a niche. To date in depth studies assessing the damage or dysregulation that occurs in the BM niche in varying CVDs are scarce. In this review, we provide a general overview of the complex components and interactions within the BM niche and how they influence the function of HSPCs. Additionally, we discuss the main findings regarding changes in the HSPC niche that influence the progression of CVD. We hypothesize that understanding the influence of the BM niche in CVD will aid in delineating new pathways for therapeutic interventions.
Collapse
Affiliation(s)
- Annas Al-Sharea
- Division of Immunometabolism, Haematopoiesis and Leukocyte Biology, Baker Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| | - Man Kit Sam Lee
- Division of Immunometabolism, Haematopoiesis and Leukocyte Biology, Baker Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| | | | - Edwin D Hawkins
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Haematopoiesis and Leukocyte Biology, Baker Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| |
Collapse
|
48
|
Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol 2020; 20:303-320. [PMID: 30745579 DOI: 10.1038/s41580-019-0103-9] [Citation(s) in RCA: 658] [Impact Index Per Article: 131.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The haematopoietic stem cell (HSC) microenvironment in the bone marrow, termed the niche, ensures haematopoietic homeostasis by controlling the proliferation, self-renewal, differentiation and migration of HSCs and progenitor cells at steady state and in response to emergencies and injury. Improved methods for HSC isolation, driven by advances in single-cell and molecular technologies, have led to a better understanding of their behaviour, heterogeneity and lineage fate and of the niche cells and signals that regulate their function. Niche regulatory signals can be in the form of cell-bound or secreted factors and other local physical cues. A combination of technological advances in bone marrow imaging and genetic manipulation of crucial regulatory factors has enabled the identification of several candidate cell types regulating the niche, including both non-haematopoietic (for example, perivascular mesenchymal stem and endothelial cells) and HSC-derived (for example, megakaryocytes, macrophages and regulatory T cells), with better topographical understanding of HSC localization in the bone marrow. Here, we review advances in our understanding of HSC regulation by niches during homeostasis, ageing and cancer, and we discuss their implications for the development of therapies to rejuvenate aged HSCs or niches or to disrupt self-reinforcing malignant niches.
Collapse
Affiliation(s)
- Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA. .,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY, USA. .,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, USA.
| |
Collapse
|
49
|
Zeng H, Li H, Yue M, Fan Y, Cheng J, Wu X, Xu R, Yang W, Li M, Tang J, Chen H, Kuang B, Fan G, Zhu Q, Shao L. Isoprenaline protects intestinal stem cells from chemotherapy-induced damage. Br J Pharmacol 2020; 177:687-700. [PMID: 31648381 DOI: 10.1111/bph.14883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/01/2019] [Accepted: 09/07/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Damage to intestinal epithelial cells and mucosa limits the effectiveness of several anti-cancer chemotherapeutic agents but the underlying mechanism (s) remain unknown. Little is known of how enteric nervous system regulates proliferation, differentiation, impairment, and regeneration of intestinal stem cells. Here we have investigated the effects of isoprenaline on the damaged intestinal stem cells induced by chemotherapeutic treatments in mice. EXPERIMENTAL APPROACH The effects of inhibiting sympathetic and parasympathetic nerves on intestinal stem cells were examined in male C57BL/6J mice. Protection by isoprenaline of intestinal stem cells was assessed in the presence or absence of 5-fluorouracil (5FU) or cisplatin. Cellular apoptosis, cell cycle, PI3K/Akt signalling, and NF-κB signalling in intestinal stem cells were mechanistically evaluated. KEY RESULTS The sympathetic nerve inhibitor 6-OHDA decreased the number and function of intestinal stem cells. 5FU or cisplatin treatment damaged both intestinal stem cells and sympathetic nerves. Notably, isoprenaline accelerated the recovery of intestinal stem cells after 5FU or cisplatin treatment. This protective effect of isoprenaline on damaged intestinal stem cells was mediated by β2 -adrenoceptors. The benefits of isoprenaline were mainly mediated by inhibiting cellular apoptosis induced by 5FU treatment, which might contribute to fine-tuning regulating NF-κB signalling pathway by isoprenaline administration. CONCLUSIONS AND IMPLICATIONS Treatment with isoprenaline is a new approach to ameliorate the damage to intestinal stem cells following exposure to cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Huihong Zeng
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Huan Li
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Mengzhen Yue
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Ying Fan
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Jiaoqi Cheng
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Xincheng Wu
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Rui Xu
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Wuping Yang
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Manjun Li
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiahui Tang
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Hongping Chen
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Bohai Kuang
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Qingxian Zhu
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
50
|
Abstract
Enforced egress of hematopoietic stem cells (HSCs) out of the bone marrow (BM) into the peripheral circulation, termed mobilization, has come a long way since its discovery over four decades ago. Mobilization research continues to be driven by the need to optimize the regimen currently available in the clinic with regard to pharmacokinetic and pharmacodynamic profile, costs, and donor convenience. In this review, we describe the most recent findings in the field and how we anticipate them to affect the development of mobilization strategies in the future. Furthermore, the significance of mobilization beyond HSC collection, i.e. for chemosensitization, conditioning, and gene therapy as well as a means to study the interactions between HSCs and their BM microenvironment, is reviewed. Open questions, controversies, and the potential impact of recent technical progress on mobilization research are also highlighted.
Collapse
Affiliation(s)
- Darja Karpova
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, 69120, Germany
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| |
Collapse
|