1
|
Andreatta F, Hendriks D, Artegiani B. Human Organoids as an Emerging Tool for Genome Screenings. Annu Rev Biomed Eng 2025; 27:157-183. [PMID: 40310889 DOI: 10.1146/annurev-bioeng-103023-122327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Over the last decade, a plethora of organoid models have been generated to recapitulate aspects of human development, disease, tissue homeostasis, and repair. Organoids representing multiple tissues have emerged and are typically categorized based on their origin. Tissue-derived organoids are established directly from tissue-resident stem/progenitor cells of either adult or fetal origin. Starting from pluripotent stem cells (PSCs), PSC-derived organoids instead recapitulate the developmental trajectory of a given organ. Gene editing technologies, particularly the CRISPR-Cas toolbox, have greatly facilitated gene manipulation experiments with considerable ease and scalability, revolutionizing organoid-based human biology research. Here, we review the recent adaptation of CRISPR-based screenings in organoids. We examine the strategies adopted to perform CRISPR screenings in organoids, discuss different screening scopes and readouts, and highlight organoid-specific challenges. We then discuss individual organoid-based genome screening studies that have uncovered novel genes involved in a variety of biological processes. We close by providing an outlook on how widespread adaptation of CRISPR screenings across the organoid field may be achieved, to ultimately leverage our understanding of human biology.
Collapse
Affiliation(s)
| | - Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; ,
| | | |
Collapse
|
2
|
Wang D, Spoelstra WK, Lin L, Akkerman N, Krueger D, Dayton T, van Zon JS, Tans SJ, van Es JH, Clevers H. Interferon-responsive intestinal BEST4/CA7 + cells are targets of bacterial diarrheal toxins. Cell Stem Cell 2025; 32:598-612.e5. [PMID: 40010349 DOI: 10.1016/j.stem.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/25/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
BEST4/CA7+ cells of the human intestine were recently identified by single-cell RNA sequencing. While their gene expression profile predicts a role in electrolyte balance, BEST4/CA7+ cell function has not been explored experimentally owing to the absence of BEST4/CA7+ cells in mice and the paucity of human in vitro models. Here, we establish a protocol that allows the emergence of BEST4/CA7+ cells in human intestinal organoids. Differentiation of BEST4/CA7+ cells requires activation of Notch signaling and the transcription factor SPIB. BEST4/CA7+ cell numbers strongly increase in response to the cytokine interferon-γ, supporting a role in immunity. Indeed, we demonstrate that BEST4/CA7+ cells generate robust CFTR-mediated fluid efflux when stimulated with bacterial diarrhea-causing toxins and find the norepinephrine-ADRA2A axis as a potential mechanism in blocking BEST4/CA7+ cell-mediated fluid secretion. Our observations identify a central role of BEST4/CA7+ cells in fluid homeostasis in response to bacterial infections.
Collapse
Affiliation(s)
- Daisong Wang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | | | - Lin Lin
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands; The Princess Máxima Center for Pediatric Oncology, Utrecht 3584 CS, the Netherlands
| | - Ninouk Akkerman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | - Daniel Krueger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | - Talya Dayton
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | | | - Sander J Tans
- AMOLF, Amsterdam 1009 DB, the Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2629 HZ, the Netherlands
| | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands; The Princess Máxima Center for Pediatric Oncology, Utrecht 3584 CS, the Netherlands.
| |
Collapse
|
3
|
Liu X, Zhou Z, Zhang Y, Zhong H, Cai X, Guan R. Recent progress on the organoids: Techniques, advantages and applications. Biomed Pharmacother 2025; 185:117942. [PMID: 40043462 DOI: 10.1016/j.biopha.2025.117942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/30/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025] Open
Abstract
Organoids are a cutting-edge technology in the life sciences field, with applications in precision medicine, bionic organs, and toxicological evaluations of chemicals. Their 3D structure closely resembles that of real organs, allowing more accurate functional mimicry. The 3D organoid culture system can simulate the growth state of cells in vivo and establish a suspension culture system for organoid 3D culture by using scaffold-less or scaffold technology to avoid direct contact between cells and plastic culture vessels. Furthermore, organoids can simulate the pathophysiological state of tissues and organs in vitro. This paper primarily discusses the construction methodologies, as well as the advantages and disadvantages of 3D culture systems for both scaffold-free organoids and scaffolded organoids. This review also summarizes the application of organoid models in chemical toxicology evaluation, drug screening and functional evaluation, establishment of in vitro disease models, and research on disease occurrence and potential mechanisms. The aim is to provide a reference for the research and practical applications of organoid-related scientific fields.
Collapse
Affiliation(s)
- Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhiyuan Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yao Zhang
- Zhejiang Provincial Key Lab for Chem and Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiulei Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Moganshan Institute ZJUT, Kangqian District, Deqing 313200, China.
| |
Collapse
|
4
|
Huang W, Jeong S, Kim W, Chen L. Biomedical applications of organoids in genetic diseases. MEDICAL REVIEW (2021) 2025; 5:152-163. [PMID: 40224362 PMCID: PMC11987506 DOI: 10.1515/mr-2024-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/04/2024] [Indexed: 04/15/2025]
Abstract
Organoid technology has significantly transformed biomedical research by providing exceptional prospects for modeling human tissues and disorders in a laboratory setting. It has significant potential for understanding the intricate relationship between genetic mutations, cellular phenotypes, and disease pathology, especially in the field of genetic diseases. The intersection of organoid technology and genetic research offers great promise for comprehending the pathophysiology of genetic diseases and creating innovative treatment approaches customized for specific patients. This review aimed to present a thorough analysis of the current advancements in organoid technology and its biomedical applications for genetic diseases. We examined techniques for modeling genetic disorders using organoid platforms, analyze the approaches for incorporating genetic disease organoids into clinical practice, and showcase current breakthroughs in preclinical application, individualized healthcare, and transplantation. Through the integration of knowledge from several disciplines, such as genetics, regenerative medicine, and biological engineering, our aim is to enhance our comprehension of the complex connection between genetic variations and organoid models in relation to human health and disease.
Collapse
Affiliation(s)
- Wenhua Huang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Seogsong Jeong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Lei Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Nicosia L, Pranke I, Latorre RV, Murray JB, Lonetti L, Cavusoglu-Doran K, Dreano E, Costello JP, Carroll M, Melotti P, Sorio C, Sermet-Gaudelus I, Scallan MF, Harrison PT. Adenine base editing with engineered virus-like particles rescues the CFTR mutation G542X in patient-derived intestinal organoids. iScience 2025; 28:111979. [PMID: 40144632 PMCID: PMC11938077 DOI: 10.1016/j.isci.2025.111979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/05/2024] [Accepted: 02/05/2025] [Indexed: 03/28/2025] Open
Abstract
Cystic fibrosis (CF) is a life-shortening autosomal recessive disease, caused by loss-of-function mutations that affect the CF transmembrane conductance regulator (CFTR) anion channel. G542X is the second-most common CF-causing variant, and it does not respond to current CFTR modulator drugs. Our study explores the use of adenine base editing to edit G542X to a non-CF-causing variant, G542R, and recover CFTR function. Using base editor engineered virus-like particles (BE-eVLPs) in patient-derived intestinal organoids, we achieved ∼2% G542X-to-G542R editing efficiency and restored CFTR-mediated chloride transport to ∼6.4% of wild-type levels, independent of modulator treatment, and with no bystander edits. This proof-of-principle study demonstrates the potential of base editing to rescue G542X and provides a foundation for future in - vivo applications.
Collapse
Affiliation(s)
- Lucia Nicosia
- Department of Physiology, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Iwona Pranke
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | | | - Joss B. Murray
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lisa Lonetti
- Department of Physiology, University College Cork, Cork, Ireland
| | | | - Elise Dreano
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | | | - Michael Carroll
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Claudio Sorio
- Department of Medicine, University of Verona, Verona, Italy
| | - Isabelle Sermet-Gaudelus
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- Cystic Fibrosis National Pediatric Reference Center, Pneumo-Allergologie Pédiatrique, Hôpital Necker Enfants Malades, , Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
- European Reference Network, ERN-Lung CF, Frankfurt am Mein, Germany
| | | | - Patrick T. Harrison
- Department of Physiology, University College Cork, Cork, Ireland
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| |
Collapse
|
6
|
Taglieri M, Di Gregorio L, Matis S, Uras CRM, Ardy M, Casati S, Marchese M, Poggi A, Raffaghello L, Benelli R. Colorectal Organoids: Models, Imaging, Omics, Therapy, Immunology, and Ethics. Cells 2025; 14:457. [PMID: 40136707 PMCID: PMC11941511 DOI: 10.3390/cells14060457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Colorectal epithelium was the first long-term 3D organoid culture established in vitro. Identification of the key components essential for the long-term survival of the stem cell niche allowed an indefinite propagation of these cultures and the modulation of their differentiation into various lineages of mature intestinal epithelial cells. While these methods were eventually adapted to establish organoids from different organs, colorectal organoids remain a pioneering model for the development of new applications in health and disease. Several basic and applicative aspects of organoid culture, modeling, monitoring and testing are analyzed in this review. We also tackle the ethical problems of biobanking and distribution of these precious research tools, frequently confined in the laboratory of origin or condemned to destruction at the end of the project.
Collapse
Affiliation(s)
- Martina Taglieri
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Linda Di Gregorio
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Serena Matis
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Chiara Rosa Maria Uras
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Massimo Ardy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Sara Casati
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” CNR, 80131 Naples, Italy;
- Common Service ELSI, BBMRI.it (UNIMIB National Node Headquarter), 20126 Milan, Italy
| | - Monica Marchese
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Alessandro Poggi
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Lizzia Raffaghello
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Roberto Benelli
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| |
Collapse
|
7
|
Carrozzo I, Maule G, Gentile C, Umbach A, Ciciani M, Guidone D, De Santis M, Petris G, Vicente Galietta LJ, Arosio D, Cereseto A. Functional rescue of F508del-CFTR through revertant mutations introduced by CRISPR base editing. Mol Ther 2025; 33:970-985. [PMID: 39797401 PMCID: PMC11897810 DOI: 10.1016/j.ymthe.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/11/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025] Open
Abstract
Cystic fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF, affecting approximately 80% of persons with CF (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms, there is no definitive cure. Here, we leveraged revertant mutations (RMs) in cis with F508del to rescue CFTR protein folding and restore its function. We developed CRISPR base editing strategies to efficiently and precisely introduce the desired mutations in the F508del locus. Both editing and CFTR function recovery were verified in CF cellular models, including primary epithelial cells derived from pwCFs. The efficacy of the CFTR recovery strategy was validated in cultures of pseudostratified epithelia from pwCF cells showing full recovery of ion transport. Additionally, we observed an additive effect by combining our strategy with small molecules that enhance F508del activity, thus paving the way to combinatorial therapies.
Collapse
Affiliation(s)
- Irene Carrozzo
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Giulia Maule
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Carmelo Gentile
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Alessandro Umbach
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Matteo Ciciani
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | | | - Gianluca Petris
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Luis Juan Vicente Galietta
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; Department of Translational Medical Sciences, University of Napoli "Federico II", 80138 Napoli, Italy
| | - Daniele Arosio
- Institute of Biophysics, CNR, Via alla Cascata 56/C, 38123 Trento, Italy.
| | - Anna Cereseto
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy.
| |
Collapse
|
8
|
Alladina J, Medoff BD, Cho JL. Innate Immunity and Asthma Exacerbations: Insights From Human Models. Immunol Rev 2025; 330:e70016. [PMID: 40087882 PMCID: PMC11922041 DOI: 10.1111/imr.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Asthma is a common chronic respiratory disease characterized by the presence of airway inflammation, airway hyperresponsiveness, and mucus hypersecretion. Repeated asthma exacerbations can lead to progressive airway remodeling and irreversible airflow obstruction. Thus, understanding and preventing asthma exacerbations are of paramount importance. Although multiple endotypes exist, asthma is most often driven by type 2 airway inflammation. New therapies that target specific type 2 mediators have been shown to reduce the frequency of asthma exacerbations but are incompletely effective in a significant number of asthmatics. Furthermore, it remains unknown whether current treatments lead to sustained changes in the airway or if targeting additional pathways may be necessary to achieve asthma remission. Activation of innate immunity is the initial event in the inflammatory sequence that occurs during an asthma exacerbation. However, there continue to be critical gaps in our understanding of the innate immune response to asthma exacerbating factors. In this review, we summarize the current understanding of the role of innate immunity in asthma exacerbations and the methods used to study them. We also identify potential novel therapeutic targets for asthma and future areas for investigation.
Collapse
Affiliation(s)
- Jehan Alladina
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Josalyn L. Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
9
|
Sugihara HY, Okamoto R, Mizutani T. Intestinal organoids: The path towards clinical application. Eur J Cell Biol 2025; 104:151474. [PMID: 39740324 DOI: 10.1016/j.ejcb.2024.151474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Organoids have revolutionized the whole field of biology with their ability to model complex three-dimensional human organs in vitro. Intestinal organoids were especially consequential as the first successful long-term culture of intestinal stem cells, which raised hopes for translational medical applications. Despite significant contributions to basic research, challenges remain to develop intestinal organoids into clinical tools for diagnosis, prognosis, and therapy. In this review, we outline the current state of translational research involving adult stem cell and pluripotent stem cell derived intestinal organoids, highlighting the advances and limitations in disease modeling, drug-screening, personalized medicine, and stem cell therapy. Preclinical studies have demonstrated a remarkable functional recapitulation of infectious and genetic diseases, and there is mounting evidence for the reliability of intestinal organoids as a patient-specific avatar. Breakthroughs now allow the generation of structurally and cellularly complex intestinal models to better capture a wider range of intestinal pathophysiology. As the field develops and evolves, there is a need for standardized frameworks for generation, culture, storage, and analysis of intestinal organoids to ensure reproducibility, comparability, and interpretability of these preclinical and clinical studies to ultimately enable clinical translation.
Collapse
Affiliation(s)
- Hady Yuki Sugihara
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tomohiro Mizutani
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
10
|
McMahon M, Maquat LE. Exploring the therapeutic potential of modulating nonsense-mediated mRNA decay. RNA (NEW YORK, N.Y.) 2025; 31:333-348. [PMID: 39667907 PMCID: PMC11874985 DOI: 10.1261/rna.080334.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Discovered more than four decades ago, nonsense-mediated mRNA decay (NMD) plays a fundamental role in the regulation of gene expression and is a major contributor to numerous diseases. With advanced technologies, several novel approaches aim to directly circumvent the effects of disease-causing frameshift and nonsense mutations. Additional therapeutics aim to globally dampen the NMD pathway in diseases associated with pathway hyperactivation, one example being Fragile X syndrome. In other cases, therapeutics have been designed to hijack or inhibit the cellular NMD machinery to either activate or obviate transcript-specific NMD by modulating pre-mRNA splicing. Here, we discuss promising approaches employed to regulate NMD for therapeutic purposes and highlight potential challenges in future clinical development. We are optimistic that the future of developing target-specific and global modulators of NMD (inhibitors as well as activators) is bright and will revolutionize the treatment of many genetic disorders, especially those with high unmet medical need.
Collapse
Affiliation(s)
- Mary McMahon
- ReviR Therapeutics, Brisbane, California 94005, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
11
|
Terlizzi V, Lopes-Pacheco M. Cystic fibrosis: new challenges and perspectives beyond elexacaftor/tezacaftor/ivacaftor. Ther Adv Respir Dis 2025; 19:17534666251323194. [PMID: 40163448 PMCID: PMC11960163 DOI: 10.1177/17534666251323194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/07/2025] [Indexed: 04/02/2025] Open
Abstract
Over the past decade, major clinical advances have been made in the healthcare and therapeutic development for cystic fibrosis (CF), a lethal genetic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. CFTR modulators represent innovative treatments that directly target the primary defects in the mutated CFTR protein and have demonstrated significant clinical benefits for many people with CF (pwCF) who are eligible for these treatments. In particular, the triple combination therapy composed of elexacaftor, tezacaftor, and ivacaftor (ETI) has changed the CF therapeutic landscape by significantly improving lung function, quality of life, and predicted survival rates. Here, we provided a comprehensive summary of the impact of ETI on clinical outcomes and the need for further research on long-term efficacy, side effects, pregnancy, possible drug-drug interactions, and extra-pulmonary manifestations. Moreover, a significant number of pwCF are unresponsive to these drugs or cannot afford their high costs. We, therefore, discussed health inequity issues and alternative therapeutic strategies under development aiming to obtain effective therapies for all pwCF.
Collapse
Affiliation(s)
- Vito Terlizzi
- Department of Pediatric Medicine, Cystic Fibrosis Regional Reference Center, Meyer Children’s Hospital IRCCS, Viale Gaetano Pieraccini 24, Florence, Italy
| | - Miquéias Lopes-Pacheco
- Department of Pediatrics, Cystic Fibrosis and Airway Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
12
|
Mizutani T, Boretto M, Lim S, Drost J, González DM, Oka R, Geurts MH, Begthel H, Korving J, van Es JH, van Boxtel R, Clevers H. Recapitulating the adenoma-carcinoma sequence by selection of four spontaneous oncogenic mutations in mismatch-repair-deficient human colon organoids. NATURE CANCER 2024; 5:1852-1867. [PMID: 39487295 PMCID: PMC11663794 DOI: 10.1038/s43018-024-00841-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/23/2024] [Indexed: 11/04/2024]
Abstract
Carcinogenesis results from the sequential acquisition of oncogenic mutations that convert normal cells into invasive, metastasizing cancer cells. Colorectal cancer exemplifies this process through its well-described adenoma-carcinoma sequence, modeled previously using clustered regularly interspaced short palindromic repeats (CRISPR) to induce four consecutive mutations in wild-type human gut organoids. Here, we demonstrate that long-term culture of mismatch-repair-deficient organoids allows the selection of spontaneous oncogenic mutations through the sequential withdrawal of Wnt agonists, epidermal growth factor (EGF) agonists and the bone morphogenetic protein (BMP) antagonist Noggin, while TP53 mutations were selected through the addition of Nutlin-3. Thus, organoids sequentially acquired mutations in AXIN1 and AXIN2 (Wnt pathway), TP53, ACVR2A and BMPR2 (BMP pathway) and NRAS (EGF pathway), gaining complete independence from stem cell niche factors. Quadruple-pathway (Wnt, EGF receptor, p53 and BMP) mutant organoids formed solid tumors upon xenotransplantation. This demonstrates that carcinogenesis can be recapitulated in a DNA repair-mutant background through in vitro selection that targets four consecutive cancer pathways.
Collapse
Affiliation(s)
- Tomohiro Mizutani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Matteo Boretto
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sangho Lim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jarno Drost
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Diego Montiel González
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Rurika Oka
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Ruben van Boxtel
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Roche Pharmaceutical Research and Early Development, Basel, Switzerland.
| |
Collapse
|
13
|
Kulhankova K, Cheng A, Traore S, Auger M, Pelletier M, Hervault M, Wells K, Green J, Byrne A, Nelson B, Sponchiado M, Boosani C, Heffner C, Snow K, Murray S, Villacreses R, Rector M, Gansemer N, Stoltz D, Allamargot C, Couture F, Hemez C, Hallée S, Barbeau X, Harvey M, Lauvaux C, Gaillet B, Newby G, Liu D, McCray PB, Guay D. Amphiphilic shuttle peptide delivers base editor ribonucleoprotein to correct the CFTR R553X mutation in well-differentiated airway epithelial cells. Nucleic Acids Res 2024; 52:11911-11925. [PMID: 39315713 PMCID: PMC11514481 DOI: 10.1093/nar/gkae819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Base editing could correct nonsense mutations that cause cystic fibrosis (CF), but clinical development is limited by the lack of delivery methods that efficiently breach the barriers presented by airway epithelia. Here, we present a novel amphiphilic shuttle peptide based on the previously reported S10 peptide that substantially improved base editor ribonucleoprotein (RNP) delivery. Studies of the S10 secondary structure revealed that the alpha-helix formed by the endosomal leakage domain (ELD), but not the cell penetrating peptide (CPP), was functionally important for delivery. By isolating and extending the ELD, we created a novel shuttle peptide, termed S237. While S237 achieved lower delivery of green fluorescent protein, it outperformed S10 at Cas9 RNP delivery to cultured human airway epithelial cells and to pig airway epithelia in vivo, possibly due to its lower net charge. In well-differentiated primary human airway epithelial cell cultures, S237 achieved a 4.6-fold increase in base editor RNP delivery, correcting up to 9.4% of the cystic fibrosis transmembrane conductance regulator (CFTR) R553X allele and restoring CFTR channel function close to non-CF levels. These findings deepen the understanding of peptide-mediated delivery and offer a translational approach for base editor RNP delivery for CF airway disease.
Collapse
Affiliation(s)
| | | | - Soumba Traore
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Maud Auger
- Feldan Therapeutics, Quebec, Qc, Canada
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| | - Mia Pelletier
- Feldan Therapeutics, Quebec, Qc, Canada
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| | | | - Kevin D Wells
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Jonathan A Green
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Addison Byrne
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Benjamin Nelson
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Mariana Sponchiado
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Chandra Boosani
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Caleb S Heffner
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME, USA
| | - Kathy J Snow
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME, USA
| | - Stephen A Murray
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME, USA
| | - Raul A Villacreses
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael V Rector
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Nicholas D Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - David A Stoltz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Chantal Allamargot
- Central Microscopy Research Facility (CMRF), and Office for the Vice President of Research (OVPR), University of Iowa, Iowa City, IA, USA
| | | | - Colin Hemez
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | | | | | | | | | - Bruno Gaillet
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Paul B McCray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - David Guay
- Feldan Therapeutics, Quebec, Qc, Canada
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| |
Collapse
|
14
|
Liu J, Grimm D. A breath of fresh air: targeted non-viral in vivo gene correction in the mammalian lung. Signal Transduct Target Ther 2024; 9:286. [PMID: 39397026 PMCID: PMC11471783 DOI: 10.1038/s41392-024-01994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024] Open
Affiliation(s)
- Jixin Liu
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, BioQuant, Center for Integrative Infectious Diseases (CIID), 69120, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, BioQuant, Center for Integrative Infectious Diseases (CIID), 69120, Heidelberg, Germany.
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120, Heidelberg, Germany.
- Faculty of Engineering Sciences, University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L, Cao H. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (Beijing) 2024; 5:e735. [PMID: 39309690 PMCID: PMC11416091 DOI: 10.1002/mco2.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Organoids are miniature, highly accurate representations of organs that capture the structure and unique functions of specific organs. Although the field of organoids has experienced exponential growth, driven by advances in artificial intelligence, gene editing, and bioinstrumentation, a comprehensive and accurate overview of organoid applications remains necessary. This review offers a detailed exploration of the historical origins and characteristics of various organoid types, their applications-including disease modeling, drug toxicity and efficacy assessments, precision medicine, and regenerative medicine-as well as the current challenges and future directions of organoid research. Organoids have proven instrumental in elucidating genetic cell fate in hereditary diseases, infectious diseases, metabolic disorders, and malignancies, as well as in the study of processes such as embryonic development, molecular mechanisms, and host-microbe interactions. Furthermore, the integration of organoid technology with artificial intelligence and microfluidics has significantly advanced large-scale, rapid, and cost-effective drug toxicity and efficacy assessments, thereby propelling progress in precision medicine. Finally, with the advent of high-performance materials, three-dimensional printing technology, and gene editing, organoids are also gaining prominence in the field of regenerative medicine. Our insights and predictions aim to provide valuable guidance to current researchers and to support the continued advancement of this rapidly developing field.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoqiang Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic‐Chemical and Aging‐Related InjuriesHangzhouChina
| |
Collapse
|
16
|
Ruan J, Yu X, Xu H, Cui W, Zhang K, Liu C, Sun W, Huang X, An L, Zhang Y. Suppressor tRNA in gene therapy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2120-2131. [PMID: 38926247 DOI: 10.1007/s11427-024-2613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
Suppressor tRNAs are engineered or naturally occurring transfer RNA molecules that have shown promise in gene therapy for diseases caused by nonsense mutations, which result in premature termination codons (PTCs) in coding sequence, leading to truncated, often nonfunctional proteins. Suppressor tRNAs can recognize and pair with these PTCs, allowing the ribosome to continue translation and produce a full-length protein. This review introduces the mechanism and development of suppressor tRNAs, compares suppressor tRNAs with other readthrough therapies, discusses their potential for clinical therapy, limitations, and obstacles. We also summarize the applications of suppressor tRNAs in both in vitro and in vivo, offering new insights into the research and treatment of nonsense mutation diseases.
Collapse
Affiliation(s)
- Jingjing Ruan
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Liangzhu Laboratory, Hangzhou, 310000, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Xiaoxiao Yu
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Huixia Xu
- Department of Thoracic and Cardiovascular Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Wenrui Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Kaiye Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Chenyang Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Wenlong Sun
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Lei An
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
| | - Yue Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Liangzhu Laboratory, Hangzhou, 310000, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China.
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
| |
Collapse
|
17
|
Huang L, Bernink JH, Giladi A, Krueger D, van Son GJF, Geurts MH, Busslinger G, Lin L, Begthel H, Zandvliet M, Buskens CJ, Bemelman WA, López-Iglesias C, Peters PJ, Clevers H. Tuft cells act as regenerative stem cells in the human intestine. Nature 2024; 634:929-935. [PMID: 39358509 PMCID: PMC11499303 DOI: 10.1038/s41586-024-07952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/15/2024] [Indexed: 10/04/2024]
Abstract
In mice, intestinal tuft cells have been described as a long-lived, postmitotic cell type. Two distinct subsets have been identified: tuft-1 and tuft-2 (ref. 1). By combining analysis of primary human intestinal resection material and intestinal organoids, we identify four distinct human tuft cell states, two of which overlap with their murine counterparts. We show that tuft cell development depends on the presence of Wnt ligands, and that tuft cell numbers rapidly increase on interleukin-4 (IL-4) and IL-13 exposure, as reported previously in mice2-4. This occurs through proliferation of pre-existing tuft cells, rather than through increased de novo generation from stem cells. Indeed, proliferative tuft cells occur in vivo both in fetal and in adult human intestine. Single mature proliferating tuft cells can form organoids that contain all intestinal epithelial cell types. Unlike stem and progenitor cells, human tuft cells survive irradiation damage and retain the ability to generate all other epithelial cell types. Accordingly, organoids engineered to lack tuft cells fail to recover from radiation-induced damage. Thus, tuft cells represent a damage-induced reserve intestinal stem cell pool in humans.
Collapse
Affiliation(s)
- Lulu Huang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Jochem H Bernink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands.
- Amsterdam University Medical Center, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands.
| | - Amir Giladi
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Daniel Krueger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gijs J F van Son
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Georg Busslinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lin Lin
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maurice Zandvliet
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Christianne J Buskens
- Amsterdam University Medical Center, University of Amsterdam, Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Willem A Bemelman
- Amsterdam University Medical Center, University of Amsterdam, Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands.
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Pharma, Research and Early Development of F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
18
|
Celotti M, Derks LLM, van Es J, van Boxtel R, Clevers H, Geurts MH. Protocol to create isogenic disease models from adult stem cell-derived organoids using next-generation CRISPR tools. STAR Protoc 2024; 5:103189. [PMID: 39003744 PMCID: PMC11298932 DOI: 10.1016/j.xpro.2024.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Isogenic disease models, such as genetically engineered organoids, provide insight into the impact of genetic variants on organ function. Here, we present a protocol to create isogenic disease models from adult stem cell-derived organoids using next-generation CRISPR tools. We describe steps for single guide RNA (sgRNA) design and cloning, electroporation, and selecting electroporated cells. We then detail procedures for clonal line generation. Next-generation CRISPR tools do not require double-stranded break (DSB) induction for their function, thus simplifying in vitro disease model generation. For complete details on the use and execution of this protocol, please refer to Geurts et al.1,2.
Collapse
Affiliation(s)
- Martina Celotti
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| | - Lucca L M Derks
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Johan van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Ruben van Boxtel
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Maarten H Geurts
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
19
|
Papp D, Korcsmaros T, Hautefort I. Revolutionizing immune research with organoid-based co-culture and chip systems. Clin Exp Immunol 2024; 218:40-54. [PMID: 38280212 PMCID: PMC11404127 DOI: 10.1093/cei/uxae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024] Open
Abstract
The intertwined interactions various immune cells have with epithelial cells in our body require sophisticated experimental approaches to be studied. Due to the limitations of immortalized cell lines and animal models, there is an increasing demand for human in vitro model systems to investigate the microenvironment of immune cells in normal and in pathological conditions. Organoids, which are self-renewing, 3D cellular structures that are derived from stem cells, have started to provide gap-filling tissue modelling solutions. In this review, we first demonstrate with some of the available examples how organoid-based immune cell co-culture experiments can advance disease modelling of cancer, inflammatory bowel disease, and tissue regeneration. Then, we argue that to achieve both complexity and scale, organ-on-chip models combined with cutting-edge microfluidics-based technologies can provide more precise manipulation and readouts. Finally, we discuss how genome editing techniques and the use of patient-derived organoids and immune cells can improve disease modelling and facilitate precision medicine. To achieve maximum impact and efficiency, these efforts should be supported by novel infrastructures such as organoid biobanks, organoid facilities, as well as drug screening and host-microbe interaction testing platforms. All these together or in combination can allow researchers to shed more detailed, and often patient-specific, light on the crosstalk between immune cells and epithelial cells in health and disease.
Collapse
Affiliation(s)
- Diana Papp
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
| | - Tamas Korcsmaros
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
- Food, Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Isabelle Hautefort
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
- Food, Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| |
Collapse
|
20
|
Zhang L, Wang X, Yang X, Chi Y, Chu Y, Zhang Y, Gong Y, Wang F, Zhao Q, Zhao D. Genome Engineering of Primary and Pluripotent Stem Cell-Derived Hepatocytes for Modeling Liver Tumor Formation. BIOLOGY 2024; 13:684. [PMID: 39336111 PMCID: PMC11428634 DOI: 10.3390/biology13090684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024]
Abstract
Genome editing has demonstrated its utility in generating isogenic cell-based disease models, enabling the precise introduction of genetic alterations into wild-type cells to mimic disease phenotypes and explore underlying mechanisms. However, its application in liver-related diseases has been limited by challenges in genetic modification of mature hepatocytes in a dish. Here, we conducted a systematic comparison of various methods for primary hepatocyte culture and gene delivery to achieve robust genome editing of hepatocytes ex vivo. Our efforts yielded editing efficiencies of up to 80% in primary murine hepatocytes cultured in monolayer and 20% in organoids. To model human hepatic tumorigenesis, we utilized hepatocytes differentiated from human pluripotent stem cells (hPSCs) as an alternative human hepatocyte source. We developed a series of cellular models by introducing various single or combined oncogenic alterations into hPSC-derived hepatocytes. Our findings demonstrated that distinct mutational patterns led to phenotypic variances, affecting both overgrowth and transcriptional profiles. Notably, we discovered that the PI3KCA E542K mutant, whether alone or in combination with exogenous c-MYC, significantly impaired hepatocyte functions and facilitated cancer metabolic reprogramming, highlighting the critical roles of these frequently mutated genes in driving liver neoplasia. In conclusion, our study demonstrates genome-engineered hepatocytes as valuable cellular models of hepatocarcinoma, providing insights into early tumorigenesis mechanisms.
Collapse
Affiliation(s)
- Lulu Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xunting Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.W.); (X.Y.); (Y.Z.)
| | - Xuelian Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.W.); (X.Y.); (Y.Z.)
| | - Yijia Chi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yihang Chu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Yi Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.W.); (X.Y.); (Y.Z.)
| | - Yufan Gong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Fei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
| | - Qian Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
| | - Dongxin Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.Z.); (Y.C.); (Y.C.); (Y.G.); (F.W.); (Q.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.W.); (X.Y.); (Y.Z.)
| |
Collapse
|
21
|
Kasper VL, Assis DN. Pathophysiology of Cystic Fibrosis Liver Disease. Pediatr Pulmonol 2024; 59 Suppl 1:S98-S106. [PMID: 39105342 DOI: 10.1002/ppul.26869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 08/07/2024]
Abstract
Hepatobiliary complications of Cystic Fibrosis (CF) constitute a significant burden for persons with CF of all ages, with advanced CF liver disease in particular representing a leading cause of mortality. The causes of the heterogeneity of clinical manifestations, ranging from steatosis to focal biliary cholestasis and biliary strictures, are poorly understood and likely reflect a variety of environmental and disease-modifying factors in the setting of underlying CFTR mutations. This review summarizes the current understanding of the pathophysiology of hepatobiliary manifestations of CF, and discusses emerging disease models and therapeutic approaches that hold promise to impact this important yet incompletely addressed aspect of CF care.
Collapse
Affiliation(s)
- Vania L Kasper
- The Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - David N Assis
- Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Hynds RE, Magin CM, Ikonomou L, Aschner Y, Beers MF, Burgess JK, Heise RL, Hume PS, Krasnodembskaya AD, Mei SHJ, Misharin AV, Park JA, Reynolds SD, Tschumperlin DJ, Tanneberger AE, Vaidyanathan S, Waters CM, Zettler PJ, Weiss DJ, Ryan AL. Stem cells, cell therapies, and bioengineering in lung biology and diseases 2023. Am J Physiol Lung Cell Mol Physiol 2024; 327:L327-L340. [PMID: 38772903 PMCID: PMC11442098 DOI: 10.1152/ajplung.00052.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
Repair and regeneration of a diseased lung using stem cells or bioengineered tissues is an exciting therapeutic approach for a variety of lung diseases and critical illnesses. Over the past decade, increasing evidence from preclinical models suggests that mesenchymal stromal cells, which are not normally resident in the lung, can be used to modulate immune responses after injury, but there have been challenges in translating these promising findings to the clinic. In parallel, there has been a surge in bioengineering studies investigating the use of artificial and acellular lung matrices as scaffolds for three-dimensional lung or airway regeneration, with some recent attempts of transplantation in large animal models. The combination of these studies with those involving stem cells, induced pluripotent stem cell derivatives, and/or cell therapies is a promising and rapidly developing research area. These studies have been further paralleled by significant increases in our understanding of the molecular and cellular events by which endogenous lung stem and/or progenitor cells arise during lung development and participate in normal and pathological remodeling after lung injury. For the 2023 Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases Conference, scientific symposia were chosen to reflect the most cutting-edge advances in these fields. Sessions focused on the integration of "omics" technologies with function, the influence of immune cells on regeneration, and the role of the extracellular matrix in regeneration. The necessity for basic science studies to enhance fundamental understanding of lung regeneration and to design innovative translational studies was reinforced throughout the conference.
Collapse
Affiliation(s)
- Robert E Hynds
- Epithelial Cell Biology in ENT Research Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Chelsea M Magin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, State University of New York, Buffalo, New York, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine and PENN-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Patrick S Hume
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Anna D Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Shirley H J Mei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States
| | - Susan D Reynolds
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States
| | - Alicia E Tanneberger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sriram Vaidyanathan
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Christopher M Waters
- Department of Physiology and Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Patricia J Zettler
- Moritz College of Law, Drug Enforcement and Policy Center, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, Vermont, United States
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
23
|
Darmasaputra GS, Geerlings CC, Chuva de Sousa Lopes SM, Clevers H, Galli M. Binucleated human hepatocytes arise through late cytokinetic regression during endomitosis M phase. J Cell Biol 2024; 223:e202403020. [PMID: 38727809 PMCID: PMC11090133 DOI: 10.1083/jcb.202403020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/15/2024] Open
Abstract
Binucleated polyploid cells are common in many animal tissues, where they arise by endomitosis, a non-canonical cell cycle in which cells enter M phase but do not undergo cytokinesis. Different steps of cytokinesis have been shown to be inhibited during endomitosis M phase in rodents, but it is currently unknown how human cells undergo endomitosis. In this study, we use fetal-derived human hepatocyte organoids (Hep-Orgs) to investigate how human hepatocytes initiate and execute endomitosis. We find that cells in endomitosis M phase have normal mitotic timings, but lose membrane anchorage to the midbody during cytokinesis, which is associated with the loss of four cortical anchoring proteins, RacGAP1, Anillin, SEPT9, and citron kinase (CIT-K). Moreover, reduction of WNT activity increases the percentage of binucleated cells in Hep-Orgs, an effect that is dependent on the atypical E2F proteins, E2F7 and E2F8. Together, we have elucidated how hepatocytes undergo endomitosis in human Hep-Orgs, providing new insights into the mechanisms of endomitosis in mammals.
Collapse
Affiliation(s)
- Gabriella S. Darmasaputra
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | - Cindy C. Geerlings
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
24
|
Banerjee P, Senapati S. Translational Utility of Organoid Models for Biomedical Research on Gastrointestinal Diseases. Stem Cell Rev Rep 2024; 20:1441-1458. [PMID: 38758462 DOI: 10.1007/s12015-024-10733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Organoid models have recently been utilized to study 3D human-derived tissue systems to uncover tissue architecture and adult stem cell biology. Patient-derived organoids unambiguously provide the most suitable in vitro system to study disease biology with the actual genetic background. With the advent of much improved and innovative approaches, patient-derived organoids can potentially be used in regenerative medicine. Various human tissues were explored to develop organoids due to their multifold advantage over the conventional in vitro cell line culture approach and in vivo models. Gastrointestinal (GI) tissues have been widely studied to establish organoids and organ-on-chip for screening drugs, nutraceuticals, and other small molecules having therapeutic potential. The function of channel proteins, transporters, and transmembrane proteins was also explained. The successful application of genome editing in organoids using the CRISPR-Cas approach has been reported recently. GI diseases such as Celiac disease (CeD), Inflammatory bowel disease (IBD), and common GI cancers have been investigated using several patient-derived organoid models. Recent advancements on organoid bio-banking and 3D bio-printing contributed significantly in personalized disease management and therapeutics. This article reviews the available literature on investigations and translational applications of patient-derived GI organoid models, notably on elucidating gut-microbial interaction and epigenetic modifications.
Collapse
Affiliation(s)
- Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
25
|
Liu Y, Wang D, Luan Y, Tao B, Li Q, Feng Q, Zhou H, Mu J, Yu J. The application of organoids in colorectal diseases. Front Pharmacol 2024; 15:1412489. [PMID: 38983913 PMCID: PMC11231380 DOI: 10.3389/fphar.2024.1412489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Intestinal organoids are a three-dimensional cell culture model derived from colon or pluripotent stem cells. Intestinal organoids constructed in vitro strongly mimic the colon epithelium in cell composition, tissue architecture, and specific functions, replicating the colon epithelium in an in vitro culture environment. As an emerging biomedical technology, organoid technology has unique advantages over traditional two-dimensional culture in preserving parental gene expression and mutation, cell function, and biological characteristics. It has shown great potential in the research and treatment of colorectal diseases. Organoid technology has been widely applied in research on colorectal topics, including intestinal tumors, inflammatory bowel disease, infectious diarrhea, and intestinal injury regeneration. This review focuses on the application of organoid technology in colorectal diseases, including the basic principles and preparation methods of organoids, and explores the pathogenesis of and personalized treatment plans for various colorectal diseases to provide a valuable reference for organoid technology development and application.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yanhong Luan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jianfeng Mu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jinhai Yu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Sun Y, Chatterjee S, Lian X, Traylor Z, Sattiraju SR, Xiao Y, Dilliard SA, Sung YC, Kim M, Lee SM, Moore S, Wang X, Zhang D, Wu S, Basak P, Wang J, Liu J, Mann RJ, LePage DF, Jiang W, Abid S, Hennig M, Martinez A, Wustman BA, Lockhart DJ, Jain R, Conlon RA, Drumm ML, Hodges CA, Siegwart DJ. In vivo editing of lung stem cells for durable gene correction in mice. Science 2024; 384:1196-1202. [PMID: 38870301 DOI: 10.1126/science.adk9428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/17/2024] [Indexed: 06/15/2024]
Abstract
In vivo genome correction holds promise for generating durable disease cures; yet, effective stem cell editing remains challenging. In this work, we demonstrate that optimized lung-targeting lipid nanoparticles (LNPs) enable high levels of genome editing in stem cells, yielding durable responses. Intravenously administered gene-editing LNPs in activatable tdTomato mice achieved >70% lung stem cell editing, sustaining tdTomato expression in >80% of lung epithelial cells for 660 days. Addressing cystic fibrosis (CF), NG-ABE8e messenger RNA (mRNA)-sgR553X LNPs mediated >95% cystic fibrosis transmembrane conductance regulator (CFTR) DNA correction, restored CFTR function in primary patient-derived bronchial epithelial cells equivalent to Trikafta for F508del, corrected intestinal organoids and corrected R553X nonsense mutations in 50% of lung stem cells in CF mice. These findings introduce LNP-enabled tissue stem cell editing for disease-modifying genome correction.
Collapse
Affiliation(s)
- Yehui Sun
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sumanta Chatterjee
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xizhen Lian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zachary Traylor
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - Yufen Xiao
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean A Dilliard
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yun-Chieh Sung
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Minjeong Kim
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sang M Lee
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stephen Moore
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xu Wang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Di Zhang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shiying Wu
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pratima Basak
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jialu Wang
- ReCode Therapeutics, Menlo Park, CA 94025, USA
| | - Jing Liu
- ReCode Therapeutics, Menlo Park, CA 94025, USA
| | - Rachel J Mann
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - David F LePage
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Weihong Jiang
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Shadaan Abid
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | - Raksha Jain
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ronald A Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Craig A Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Daniel J Siegwart
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
27
|
Turuvekere Vittala Murthy N, Vlasova K, Renner J, Jozic A, Sahay G. A new era of targeting cystic fibrosis with non-viral delivery of genomic medicines. Adv Drug Deliv Rev 2024; 209:115305. [PMID: 38626860 DOI: 10.1016/j.addr.2024.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Cystic fibrosis (CF) is a complex genetic respiratory disorder that necessitates innovative gene delivery strategies to address the mutations in the gene. This review delves into the promises and challenges of non-viral gene delivery for CF therapy and explores strategies to overcome these hurdles. Several emerging technologies and nucleic acid cargos for CF gene therapy are discussed. Novel formulation approaches including lipid and polymeric nanoparticles promise enhanced delivery through the CF mucus barrier, augmenting the potential of non-viral strategies. Additionally, safety considerations and regulatory perspectives play a crucial role in navigating the path toward clinical translation of gene therapy.
Collapse
Affiliation(s)
| | - Kseniia Vlasova
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Jonas Renner
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201, USA; Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
28
|
Han W, Lu G, Zhao S, Wang R, Zhang H, Liu K, Nie Y, Dong J. Rapid, Efficient, and Universally Applicable Genetic Engineering of Intestinal Organoid with a Sequential Monolayer to Three-Dimensional Strategy. Stem Cells Int 2024; 2024:2005845. [PMID: 38882597 PMCID: PMC11178405 DOI: 10.1155/2024/2005845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/14/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Genetically modified intestinal organoids are being explored as potential surrogates of immortalized cell lines and gene-engineered animals. However, genetic manipulation of intestinal organoids is time-consuming, and the efficiency is far beyond satisfactory. To ensure the yield of the genetically modified organoids, large quantity of starting materials is required, and the procedure usually takes more than 10 days. Two major obstacles that restrict the genetic delivery efficiency are the three-dimensional culture condition and that the genetic delivery is carried out in cell suspensions. In the present study, we introduce a novel highly efficient strategy for building genetically modified intestinal organoids in which genetic delivery was performed in freshly established monolayer primary intestinal epithelial cells under two-dimensional conditions and subsequentially transformed into three-dimensional organoids. The total procedure can be finished within 10 hr while displaying much higher efficiency than the traditional methods. Furthermore, this strategy allowed for the selection of transgenic cells in monolayer conditions before establishing high-purity genetically modified intestinal organoids.
Collapse
Affiliation(s)
- Weili Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases Xijing Hospital of Digestive Diseases Fourth Military Medical University, Xi'an 710032, China
| | - Guofang Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases Xijing Hospital of Digestive Diseases Fourth Military Medical University, Xi'an 710032, China
| | - Sheng Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases Xijing Hospital of Digestive Diseases Fourth Military Medical University, Xi'an 710032, China
| | - Rui Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases Xijing Hospital of Digestive Diseases Fourth Military Medical University, Xi'an 710032, China
- Department of Psychiatry The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Haohao Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases Xijing Hospital of Digestive Diseases Fourth Military Medical University, Xi'an 710032, China
| | - Kun Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases Xijing Hospital of Digestive Diseases Fourth Military Medical University, Xi'an 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases Xijing Hospital of Digestive Diseases Fourth Military Medical University, Xi'an 710032, China
| | - Jiaqiang Dong
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases Xijing Hospital of Digestive Diseases Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
29
|
Park S, Cho SW. Bioengineering toolkits for potentiating organoid therapeutics. Adv Drug Deliv Rev 2024; 208:115238. [PMID: 38447933 DOI: 10.1016/j.addr.2024.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoids are three-dimensional, multicellular constructs that recapitulate the structural and functional features of specific organs. Because of these characteristics, organoids have been widely applied in biomedical research in recent decades. Remarkable advancements in organoid technology have positioned them as promising candidates for regenerative medicine. However, current organoids still have limitations, such as the absence of internal vasculature, limited functionality, and a small size that is not commensurate with that of actual organs. These limitations hinder their survival and regenerative effects after transplantation. Another significant concern is the reliance on mouse tumor-derived matrix in organoid culture, which is unsuitable for clinical translation due to its tumor origin and safety issues. Therefore, our aim is to describe engineering strategies and alternative biocompatible materials that can facilitate the practical applications of organoids in regenerative medicine. Furthermore, we highlight meaningful progress in organoid transplantation, with a particular emphasis on the functional restoration of various organs.
Collapse
Affiliation(s)
- Sewon Park
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
30
|
Johnson GA, Gould SI, Sánchez-Rivera FJ. Deconstructing cancer with precision genome editing. Biochem Soc Trans 2024; 52:803-819. [PMID: 38629716 PMCID: PMC11088927 DOI: 10.1042/bst20230984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Recent advances in genome editing technologies are allowing investigators to engineer and study cancer-associated mutations in their endogenous genetic contexts with high precision and efficiency. Of these, base editing and prime editing are quickly becoming gold-standards in the field due to their versatility and scalability. Here, we review the merits and limitations of these precision genome editing technologies, their application to modern cancer research, and speculate how these could be integrated to address future directions in the field.
Collapse
Affiliation(s)
- Grace A. Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| | - Samuel I. Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| | - Francisco J. Sánchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| |
Collapse
|
31
|
Zhu H, Qu S, Deng Y, Gong M, Xiang Y, Teng Y, Ye D. Application of organoids in otolaryngology: head and neck surgery. Eur Arch Otorhinolaryngol 2024; 281:1643-1649. [PMID: 38091101 PMCID: PMC10942880 DOI: 10.1007/s00405-023-08348-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 03/16/2024]
Abstract
PURPOSE The purpose of this review is to systematically summarize the application of organoids in the field of otolaryngology and head and neck surgery. It aims to shed light on the current advancements and future potential of organoid technology in these areas, particularly in addressing challenges like hearing loss, cancer research, and organ regeneration. METHODS Review of current literature regrading organoids in the field of otolaryngology and head and neck surgery. RESULTS The review highlights several advancements in the field. In otology, the development of organoid replacement therapies offers new avenues for treating hearing loss. In nasal science, the creation of specific organoid models aids in studying nasopharyngeal carcinoma and respiratory viruses. In head and neck surgery, innovative approaches for squamous cell carcinoma prediction and thyroid regeneration using organoids have been developed. CONCLUSION Organoid research in otolaryngology-head and neck surgery is still at an early stage. This review underscores the potential of this technology in advancing our understanding and treatment of various conditions, predicting a transformative impact on future medical practices in these fields.
Collapse
Affiliation(s)
- Hai Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Siyuan Qu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yaoshu Teng
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
32
|
Boretto M, Geurts MH, Gandhi S, Ma Z, Staliarova N, Celotti M, Lim S, He GW, Millen R, Driehuis E, Begthel H, Smabers L, Roodhart J, van Es J, Wu W, Clevers H. Epidermal growth factor receptor (EGFR) is a target of the tumor-suppressor E3 ligase FBXW7. Proc Natl Acad Sci U S A 2024; 121:e2309902121. [PMID: 38483988 PMCID: PMC10962967 DOI: 10.1073/pnas.2309902121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/08/2024] [Indexed: 03/19/2024] Open
Abstract
FBXW7 is an E3 ubiquitin ligase that targets proteins for proteasome-mediated degradation and is mutated in various cancer types. Here, we use CRISPR base editors to introduce different FBXW7 hotspot mutations in human colon organoids. Functionally, FBXW7 mutation reduces EGF dependency of organoid growth by ~10,000-fold. Combined transcriptomic and proteomic analyses revealed increased EGFR protein stability in FBXW7 mutants. Two distinct phosphodegron motifs reside in the cytoplasmic tail of EGFR. Mutations in these phosphodegron motifs occur in human cancer. CRISPR-mediated disruption of the phosphodegron motif at T693 reduced EGFR degradation and EGF growth factor dependency. FBXW7 mutant organoids showed reduced sensitivity to EGFR-MAPK inhibitors. These observations were further strengthened in CRC-derived organoid lines and validated in a cohort of patients treated with panitumumab. Our data imply that FBXW7 mutations reduce EGF dependency by disabling EGFR turnover.
Collapse
Affiliation(s)
- Matteo Boretto
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Maarten H. Geurts
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Shashank Gandhi
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
- Department of Molecular and Cellular Biology, Miller Institute for Basic Research in Science, University of California, Berkeley, CA94720
| | - Ziliang Ma
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore138648, Singapore
- Department of Pharmacy, National University of Singapore, Singapore117543, Singapore
- Department of Biomolecular Mass Spectrometry and Proteomics, Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CHUtrecht, the Netherlands
| | - Nadzeya Staliarova
- Department of Biomolecular Mass Spectrometry and Proteomics, Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CHUtrecht, the Netherlands
| | - Martina Celotti
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Sangho Lim
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Gui-Wei He
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Rosemary Millen
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Else Driehuis
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Harry Begthel
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Lidwien Smabers
- Department of Medical Oncology, University Medical Center Utrecht, 3584 CXUtrecht, the Netherlands
| | - Jeanine Roodhart
- Department of Medical Oncology, University Medical Center Utrecht, 3584 CXUtrecht, the Netherlands
| | - Johan van Es
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Wei Wu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore138648, Singapore
- Department of Pharmacy, National University of Singapore, Singapore117543, Singapore
- Department of Biomolecular Mass Spectrometry and Proteomics, Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CHUtrecht, the Netherlands
| | - Hans Clevers
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| |
Collapse
|
33
|
Kulhankova K, Traore S, Cheng X, Benk-Fortin H, Hallée S, Harvey M, Roberge J, Couture F, Kohli S, Gross TJ, Meyerholz DK, Rettig GR, Thommandru B, Kurgan G, Wohlford-Lenane C, Hartigan-O'Connor DJ, Yates BP, Newby GA, Liu DR, Tarantal AF, Guay D, McCray PB. Shuttle peptide delivers base editor RNPs to rhesus monkey airway epithelial cells in vivo. Nat Commun 2023; 14:8051. [PMID: 38052872 PMCID: PMC10698009 DOI: 10.1038/s41467-023-43904-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023] Open
Abstract
Gene editing strategies for cystic fibrosis are challenged by the complex barrier properties of airway epithelia. We previously reported that the amphiphilic S10 shuttle peptide non-covalently combined with CRISPR-associated (Cas) ribonucleoprotein (RNP) enabled editing of human and mouse airway epithelial cells. Here, we derive the S315 peptide as an improvement over S10 in delivering base editor RNP. Following intratracheal aerosol delivery of Cy5-labeled peptide in rhesus macaques, we confirm delivery throughout the respiratory tract. Subsequently, we target CCR5 with co-administration of ABE8e-Cas9 RNP and S315. We achieve editing efficiencies of up-to 5.3% in rhesus airway epithelia. Moreover, we document persistence of edited epithelia for up to 12 months in mice. Finally, delivery of ABE8e-Cas9 targeting the CFTR R553X mutation restores anion channel function in cultured human airway epithelia. These results demonstrate the therapeutic potential of base editor delivery with S315 to functionally correct the CFTR R553X mutation in respiratory epithelia.
Collapse
Affiliation(s)
| | - Soumba Traore
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | | - Sajeev Kohli
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Thomas J Gross
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | - Gavin Kurgan
- Integrated DNA Technologies, Coralville, IA, USA
| | | | - Dennis J Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, School of Medicine, UC Davis, Davis, CA, USA
- California National Primate Research Center, UC Davis, Davis, CA, USA
| | - Bradley P Yates
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Alice F Tarantal
- California National Primate Research Center, UC Davis, Davis, CA, USA
- Department of Pediatrics, School of Medicine, UC Davis, Davis, CA, USA
- Department of Cell Biology and Human Anatomy, School of Medicine, UC Davis, Davis, CA, USA
| | | | - Paul B McCray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
34
|
Co JY, Klein JA, Kang S, Homan KA. Toward Inclusivity in Preclinical Drug Development: A Proposition to Start with Intestinal Organoids. Adv Biol (Weinh) 2023; 7:e2200333. [PMID: 36932900 DOI: 10.1002/adbi.202200333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/08/2023] [Indexed: 03/19/2023]
Abstract
Representation of humans from diverse backgrounds in the drug development process is key to advancing health equity, and while clinical trial design has recently made strides toward greater inclusivity, preclinical drug development has struggled to make those same gains. One barrier to inclusion is the current lack of robust and established in vitro model systems that simultaneously capture the complexity of human tissues while representing patient diversity. Here, the use of primary human intestinal organoids as a mechanism to advance inclusive preclinical research is proposed. This in vitro model system not only recapitulates tissue functions and disease states, but also retains the genetic identity and epigenetic signatures of the donors from which they are derived. Thus, intestinal organoids are an ideal in vitro prototype for capturing human diversity. In this perspective, the authors call for an industry-wide effort to leverage intestinal organoids as a starting point to actively and intentionally incorporate diversity into preclinical drug programs.
Collapse
Affiliation(s)
- Julia Y Co
- Complex in vitro Systems, Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jessica A Klein
- Complex in vitro Systems, Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Serah Kang
- Complex in vitro Systems, Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kimberly A Homan
- Complex in vitro Systems, Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| |
Collapse
|
35
|
Mention K, Cavusoglu-Doran K, Joynt AT, Santos L, Sanz D, Eastman AC, Merlo C, Langfelder-Schwind E, Scallan MF, Farinha CM, Cutting GR, Sharma N, Harrison PT. Use of adenine base editing and homology-independent targeted integration strategies to correct the cystic fibrosis causing variant, W1282X. Hum Mol Genet 2023; 32:3237-3248. [PMID: 37649273 PMCID: PMC10656707 DOI: 10.1093/hmg/ddad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023] Open
Abstract
Small molecule drugs known as modulators can treat ~90% of people with cystic fibrosis (CF), but do not work for premature termination codon variants such as W1282X (c.3846G>A). Here we evaluated two gene editing strategies, Adenine Base Editing (ABE) to correct W1282X, and Homology-Independent Targeted Integration (HITI) of a CFTR superexon comprising exons 23-27 (SE23-27) to enable expression of a CFTR mRNA without W1282X. In Flp-In-293 cells stably expressing a CFTR expression minigene bearing W1282X, ABE corrected 24% of W1282X alleles, rescued CFTR mRNA from nonsense mediated decay and restored protein expression. However, bystander editing at the adjacent adenine (c.3847A>G), caused an amino acid change (R1283G) that affects CFTR maturation and ablates ion channel activity. In primary human nasal epithelial cells homozygous for W1282X, ABE corrected 27% of alleles, but with a notably lower level of bystander editing, and CFTR channel function was restored to 16% of wild-type levels. Using the HITI approach, correct integration of a SE23-27 in intron 22 of the CFTR locus in 16HBEge W1282X cells was detected in 5.8% of alleles, resulting in 7.8% of CFTR transcripts containing the SE23-27 sequence. Analysis of a clonal line homozygous for the HITI-SE23-27 produced full-length mature protein and restored CFTR anion channel activity to 10% of wild-type levels, which could be increased three-fold upon treatment with the triple combination of CF modulators. Overall, these data demonstrate two different editing strategies can successfully correct W1282X, the second most common class I variant, with a concomitant restoration of CFTR function.
Collapse
Affiliation(s)
- Karen Mention
- Department of Physiology, University College Cork, College Road, Cork, T12 K8AF, Ireland
- School of Microbiology, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Kader Cavusoglu-Doran
- Department of Physiology, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Anya T Joynt
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, United States
| | - Lúcia Santos
- Department of Physiology, University College Cork, College Road, Cork, T12 K8AF, Ireland
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal
| | - David Sanz
- Department of Physiology, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Alice C Eastman
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, United States
| | - Christian Merlo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, 1800 Orleans St, Baltimore, MD 21287, United States
| | - Elinor Langfelder-Schwind
- The Cystic Fibrosis Center, Lenox Hill Hospital, 100 E. 77th Street, 4E, New York, NY 10075, United States
| | - Martina F Scallan
- School of Microbiology, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Carlos M Farinha
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal
| | - Garry R Cutting
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, United States
| | - Neeraj Sharma
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, United States
| | - Patrick T Harrison
- Department of Physiology, University College Cork, College Road, Cork, T12 K8AF, Ireland
| |
Collapse
|
36
|
Wei T, Sun Y, Cheng Q, Chatterjee S, Traylor Z, Johnson LT, Coquelin ML, Wang J, Torres MJ, Lian X, Wang X, Xiao Y, Hodges CA, Siegwart DJ. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat Commun 2023; 14:7322. [PMID: 37951948 PMCID: PMC10640563 DOI: 10.1038/s41467-023-42948-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Approximately 10% of Cystic Fibrosis (CF) patients, particularly those with CF transmembrane conductance regulator (CFTR) gene nonsense mutations, lack effective treatments. The potential of gene correction therapy through delivery of the CRISPR/Cas system to CF-relevant organs/cells is hindered by the lack of efficient genome editor delivery carriers. Herein, we report improved Lung Selective Organ Targeting Lipid Nanoparticles (SORT LNPs) for efficient delivery of Cas9 mRNA, sgRNA, and donor ssDNA templates, enabling precise homology-directed repair-mediated gene correction in CF models. Optimized Lung SORT LNPs deliver mRNA to lung basal cells in Ai9 reporter mice. SORT LNP treatment successfully corrected the CFTR mutations in homozygous G542X mice and in patient-derived human bronchial epithelial cells with homozygous F508del mutations, leading to the restoration of CFTR protein expression and chloride transport function. This proof-of-concept study will contribute to accelerating the clinical development of mRNA LNPs for CF treatment through CRISPR/Cas gene correction.
Collapse
Affiliation(s)
- Tuo Wei
- Department of Biomedical Engineering, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yehui Sun
- Department of Biomedical Engineering, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiang Cheng
- Department of Biomedical Engineering, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sumanta Chatterjee
- Department of Biomedical Engineering, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zachary Traylor
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lindsay T Johnson
- Department of Biomedical Engineering, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Jialu Wang
- ReCode Therapeutics, Menlo Park, CA, USA
| | | | - Xizhen Lian
- Department of Biomedical Engineering, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xu Wang
- Department of Biomedical Engineering, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yufen Xiao
- Department of Biomedical Engineering, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Craig A Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Daniel J Siegwart
- Department of Biomedical Engineering, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
37
|
Sparmann A, Vogel J. RNA-based medicine: from molecular mechanisms to therapy. EMBO J 2023; 42:e114760. [PMID: 37728251 PMCID: PMC10620767 DOI: 10.15252/embj.2023114760] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
RNA-based therapeutics have the potential to revolutionize the treatment and prevention of human diseases. While early research faced setbacks, it established the basis for breakthroughs in RNA-based drug design that culminated in the extraordinarily fast development of mRNA vaccines to combat the COVID-19 pandemic. We have now reached a pivotal moment where RNA medicines are poised to make a broad impact in the clinic. In this review, we present an overview of different RNA-based strategies to generate novel therapeutics, including antisense and RNAi-based mechanisms, mRNA-based approaches, and CRISPR-Cas-mediated genome editing. Using three rare genetic diseases as examples, we highlight the opportunities, but also the challenges to wide-ranging applications of this class of drugs.
Collapse
Affiliation(s)
- Anke Sparmann
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI)WürzburgGermany
| | - Jörg Vogel
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI)WürzburgGermany
- Institute of Molecular Infection Biology (IMIB)University of WürzburgWürzburgGermany
| |
Collapse
|
38
|
Graeber SY, Mall MA. The future of cystic fibrosis treatment: from disease mechanisms to novel therapeutic approaches. Lancet 2023; 402:1185-1198. [PMID: 37699417 DOI: 10.1016/s0140-6736(23)01608-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
With the 2019 breakthrough in the development of highly effective modulator therapy providing unprecedented clinical benefits for over 90% of patients with cystic fibrosis who are genetically eligible for treatment, this rare disease has become a front runner of transformative molecular therapy. This success is based on fundamental research, which led to the identification of the disease-causing CFTR gene and our subsequent understanding of the disease mechanisms underlying the pathogenesis of cystic fibrosis, working together with a continuously evolving clinical research and drug development pipeline. In this Series paper, we focus on advances since 2018, and remaining knowledge gaps in our understanding of the molecular mechanisms of CFTR dysfunction in the airway epithelium and their links to mucus dysfunction, impaired host defences, airway infection, and chronic inflammation of the lungs of people with cystic fibrosis. We review progress in (and the remaining obstacles to) pharmacological approaches to rescue CFTR function, and novel strategies for improved symptomatic therapies for cystic fibrosis, including how these might be applicable to common lung diseases, such as bronchiectasis and chronic obstructive pulmonary disease. Finally, we discuss the promise of genetic therapies and gene editing approaches to restore CFTR function in the lungs of all patients with cystic fibrosis independent of their CFTR genotype, and the unprecedented opportunities to transform cystic fibrosis from a fatal disease to a treatable and potentially curable one.
Collapse
Affiliation(s)
- Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research, associated partner site, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research, associated partner site, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
39
|
Joynt AT, Kavanagh EW, Newby GA, Mitchell S, Eastman AC, Paul KC, Bowling AD, Osorio DL, Merlo CA, Patel SU, Raraigh KS, Liu DR, Sharma N, Cutting GR. Protospacer modification improves base editing of a canonical splice site variant and recovery of CFTR function in human airway epithelial cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:335-350. [PMID: 37547293 PMCID: PMC10400809 DOI: 10.1016/j.omtn.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
Canonical splice site variants affecting the 5' GT and 3' AG nucleotides of introns result in severe missplicing and account for about 10% of disease-causing genomic alterations. Treatment of such variants has proven challenging due to the unstable mRNA or protein isoforms that typically result from disruption of these sites. Here, we investigate CRISPR-Cas9-mediated adenine base editing for such variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. We validate a CFTR expression minigene (EMG) system for testing base editing designs for two different targets. We then use the EMG system to test non-standard single-guide RNAs with either shortened or lengthened protospacers to correct the most common cystic fibrosis-causing variant in individuals of African descent (c.2988+1G>A). Varying the spacer region length allowed placement of the editing window in a more efficient context and enabled use of alternate protospacer adjacent motifs. Using these modifications, we restored clinically significant levels of CFTR function to human airway epithelial cells from two donors bearing the c.2988+1G>A variant.
Collapse
Affiliation(s)
- Anya T. Joynt
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Erin W. Kavanagh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Shakela Mitchell
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Alice C. Eastman
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Kathleen C. Paul
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Alyssa D. Bowling
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Derek L. Osorio
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Christian A. Merlo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Shivani U. Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Karen S. Raraigh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Neeraj Sharma
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Garry R. Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| |
Collapse
|
40
|
Johnson PA, Ackerman JE, Kurowska-Stolarska M, Coles M, Buckley CD, Dakin SG. Three-dimensional, in-vitro approaches for modelling soft-tissue joint diseases. THE LANCET. RHEUMATOLOGY 2023; 5:e553-e563. [PMID: 38251499 DOI: 10.1016/s2665-9913(23)00190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 01/23/2024]
Abstract
Diseases affecting the soft tissues of the joint represent a considerable global health burden, causing pain and disability and increasing the likelihood of developing metabolic comorbidities. Current approaches to investigating the cellular basis of joint diseases, including osteoarthritis, rheumatoid arthritis, tendinopathy, and arthrofibrosis, involve well phenotyped human tissues, animal disease models, and in-vitro tissue culture models. Inherent challenges in preclinical drug discovery have driven the development of state-of-the-art, in-vitro human tissue models to rapidly advance therapeutic target discovery. The clinical potential of such models has been substantiated through successful recapitulation of the pathobiology of cancers, generating accurate predictions of patient responses to therapeutics and providing a basis for equivalent musculoskeletal models. In this Review, we discuss the requirement to develop physiologically relevant three-dimensional (3D) culture systems that could advance understanding of the cellular and molecular basis of diseases that affect the soft tissues of the joint. We discuss the practicalities and challenges associated with modelling the complex extracellular matrix of joint tissues-including cartilage, synovium, tendon, and ligament-highlighting the importance of considering the joint as a whole organ to encompass crosstalk across tissues and between diverse cell types. The design of bespoke in-vitro models for soft-tissue joint diseases has the potential to inform functional studies of the cellular and molecular mechanisms underlying disease onset, progression, and resolution. Use of these models could inform precision therapeutic targeting and advance the field towards personalised medicine for patients with common musculoskeletal diseases.
Collapse
Affiliation(s)
- Peter A Johnson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jessica E Ackerman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Mark Coles
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Christopher D Buckley
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Stephanie G Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
41
|
Oliver KE, Carlon MS, Pedemonte N, Lopes-Pacheco M. The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold? Expert Opin Pharmacother 2023; 24:1545-1565. [PMID: 37379072 PMCID: PMC10528905 DOI: 10.1080/14656566.2023.2230129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF), a potentially fatal genetic disease, is caused by loss-of-function mutations in the gene encoding for the CFTR chloride/bicarbonate channel. Modulator drugs rescuing mutant CFTR traffic and function are now in the clinic, providing unprecedented breakthrough therapies for people with CF (PwCF) carrying specific genotypes. However, several CFTR variants are unresponsive to these therapies. AREA COVERED We discussed several therapeutic approaches that are under development to tackle the fundamental cause of CF, including strategies targeting defective CFTR mRNA and/or protein expression and function. Alternatively, defective chloride secretion and dehydration in CF epithelia could be restored by exploiting pharmacological modulation of alternative targets, i.e., ion channels/transporters that concur with CFTR to maintain the airway surface liquid homeostasis (e.g., ENaC, TMEM16A, SLC26A4, SLC26A9, and ATP12A). Finally, we assessed progress and challenges in the development of gene-based therapies to replace or correct the mutant CFTR gene. EXPERT OPINION CFTR modulators are benefiting many PwCF responsive to these drugs, yielding substantial improvements in various clinical outcomes. Meanwhile, the CF therapy development pipeline continues to expand with the development of novel CFTR modulators and alternative therapeutic strategies with the ultimate goal of providing effective therapies for all PwCF in the foreseeable future.
Collapse
Affiliation(s)
- Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marianne S. Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Center for Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
42
|
Geurts MH, Gandhi S, Boretto MG, Akkerman N, Derks LLM, van Son G, Celotti M, Harshuk-Shabso S, Peci F, Begthel H, Hendriks D, Schürmann P, Andersson-Rolf A, Chuva de Sousa Lopes SM, van Es JH, van Boxtel R, Clevers H. One-step generation of tumor models by base editor multiplexing in adult stem cell-derived organoids. Nat Commun 2023; 14:4998. [PMID: 37591832 PMCID: PMC10435570 DOI: 10.1038/s41467-023-40701-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Optimization of CRISPR/Cas9-mediated genome engineering has resulted in base editors that hold promise for mutation repair and disease modeling. Here, we demonstrate the application of base editors for the generation of complex tumor models in human ASC-derived organoids. First we show efficacy of cytosine and adenine base editors in modeling CTNNB1 hot-spot mutations in hepatocyte organoids. Next, we use C > T base editors to insert nonsense mutations in PTEN in endometrial organoids and demonstrate tumorigenicity even in the heterozygous state. Moreover, drug sensitivity assays on organoids harboring either PTEN or PTEN and PIK3CA mutations reveal the mechanism underlying the initial stages of endometrial tumorigenesis. To further increase the scope of base editing we combine SpCas9 and SaCas9 for simultaneous C > T and A > G editing at individual target sites. Finally, we show that base editor multiplexing allow modeling of colorectal tumorigenesis in a single step by simultaneously transfecting sgRNAs targeting five cancer genes.
Collapse
Affiliation(s)
- Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands.
- Oncode Institute, 3521AL, Utrecht, the Netherlands.
- Princess Maxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands.
| | - Shashank Gandhi
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA, 94720, USA
| | - Matteo G Boretto
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | - Ninouk Akkerman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | - Lucca L M Derks
- Oncode Institute, 3521AL, Utrecht, the Netherlands
- Princess Maxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Gijs van Son
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
- Princess Maxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Martina Celotti
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | - Sarina Harshuk-Shabso
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | - Flavia Peci
- Oncode Institute, 3521AL, Utrecht, the Netherlands
- Princess Maxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | - Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
- Princess Maxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Paul Schürmann
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | - Amanda Andersson-Rolf
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | | | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | - Ruben van Boxtel
- Oncode Institute, 3521AL, Utrecht, the Netherlands
- Princess Maxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands.
- Oncode Institute, 3521AL, Utrecht, the Netherlands.
- Pharma Research Early Development, Basel, Switzerland.
| |
Collapse
|
43
|
Wang J, Wang P, Shao Y, He D. Advancing Treatment Strategies: A Comprehensive Review of Drug Delivery Innovations for Chronic Inflammatory Respiratory Diseases. Pharmaceutics 2023; 15:2151. [PMID: 37631365 PMCID: PMC10458134 DOI: 10.3390/pharmaceutics15082151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic inflammatory respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis, present ongoing challenges in terms of effective treatment and management. These diseases are characterized by persistent inflammation in the airways, leading to structural changes and compromised lung function. There are several treatments available for them, such as bronchodilators, immunomodulators, and oxygen therapy. However, there are still some shortcomings in the effectiveness and side effects of drugs. To achieve optimal therapeutic outcomes while minimizing systemic side effects, targeted therapies and precise drug delivery systems are crucial to the management of these diseases. This comprehensive review focuses on the role of drug delivery systems in chronic inflammatory respiratory diseases, particularly nanoparticle-based drug delivery systems, inhaled corticosteroids (ICSs), novel biologicals, gene therapy, and personalized medicine. By examining the latest advancements and strategies in these areas, we aim to provide a thorough understanding of the current landscape and future prospects for improving treatment outcomes in these challenging conditions.
Collapse
Affiliation(s)
- Junming Wang
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Pengfei Wang
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Yiru Shao
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Daikun He
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
44
|
Szabó L, Seubert AC, Kretzschmar K. Modelling adult stem cells and their niche in health and disease with epithelial organoids. Semin Cell Dev Biol 2023; 144:20-30. [PMID: 36127261 DOI: 10.1016/j.semcdb.2022.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Adult stem cells are responsible for homoeostasis and regeneration of epithelial tissues. Stem cell function is regulated by both cell autonomous mechanisms as well as the niche. Deregulated stem cell function contributes to diseases such as cancer. Epithelial organoid cultures generated from tissue-resident adult stem cells have allowed unprecedented insights into the biology of epithelial tissues. The subsequent adaptation of organoid technology enabled the modelling of the communication of stem cells with their cellular and non-cellular niche as well as diseases. Starting from its first model described in 2009, the murine small intestinal organoid, we discuss here how epithelial organoid cultures have been become a prime in vitro research tool for cell and developmental biology, bioengineering, and biomedicine in the last decade.
Collapse
Affiliation(s)
- Lili Szabó
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany
| | - Anna C Seubert
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany
| | - Kai Kretzschmar
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany.
| |
Collapse
|
45
|
Amistadi S, Maule G, Ciciani M, Ensinck MM, De Keersmaecker L, Ramalho AS, Guidone D, Buccirossi M, Galietta LJV, Carlon MS, Cereseto A. Functional restoration of a CFTR splicing mutation through RNA delivery of CRISPR adenine base editor. Mol Ther 2023; 31:1647-1660. [PMID: 36895161 PMCID: PMC10277887 DOI: 10.1016/j.ymthe.2023.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The 2789+5G>A CFTR mutation is a quite frequent defect causing an aberrant splicing and a non-functional CFTR protein. Here we used a CRISPR adenine base editing (ABE) approach to correct the mutation in the absence of DNA double-strand breaks (DSB). To select the strategy, we developed a minigene cellular model reproducing the 2789+5G>A splicing defect. We obtained up to 70% editing in the minigene model by adapting the ABE to the PAM sequence optimal for targeting 2789+5G>A with a SpCas9-NG (NG-ABE). Nonetheless, the on-target base correction was accompanied by secondary (bystander) A-to-G conversions in nearby nucleotides, which affected the wild-type CFTR splicing. To decrease the bystander edits, we used a specific ABE (NG-ABEmax), which was delivered as mRNA. The NG-ABEmax RNA approach was validated in patient-derived rectal organoids and bronchial epithelial cells showing sufficient gene correction to recover the CFTR function. Finally, in-depth sequencing revealed high editing precision genome-wide and allele-specific correction. Here we report the development of a base editing strategy to precisely repair the 2789+5G>A mutation resulting in restoration of the CFTR function, while reducing bystander and off-target activities.
Collapse
Affiliation(s)
- Simone Amistadi
- University of Trento, Department of Computational, Cellular and Integrative Biology, Laboratory of Molecular Virology, 38123 Trento, Italy
| | - Giulia Maule
- University of Trento, Department of Computational, Cellular and Integrative Biology, Laboratory of Molecular Virology, 38123 Trento, Italy.
| | - Matteo Ciciani
- University of Trento, Department of Computational, Cellular and Integrative Biology, Laboratory of Molecular Virology, 38123 Trento, Italy
| | - Marjolein M Ensinck
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, 3000 Leuven, Belgium
| | - Liesbeth De Keersmaecker
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, 3000 Leuven, Belgium
| | - Anabela S Ramalho
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | | | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; Department of Translational Medical Sciences, University of Napoli "Federico II," 80138 Napoli, Italy
| | - Marianne S Carlon
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, 3000 Leuven, Belgium; KU Leuven, Department of Chronic Diseases and Metabolism, BREATHE Laboratory, 3000 Leuven, Belgium
| | - Anna Cereseto
- University of Trento, Department of Computational, Cellular and Integrative Biology, Laboratory of Molecular Virology, 38123 Trento, Italy.
| |
Collapse
|
46
|
Cheng Y, Wang H, Li M. The promise of CRISPR/Cas9 technology in diabetes mellitus therapy: How gene editing is revolutionizing diabetes research and treatment. J Diabetes Complications 2023; 37:108524. [PMID: 37295292 DOI: 10.1016/j.jdiacomp.2023.108524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Diabetes mellitus is a metabolic disease, characterized by chronic hyperglycemia caused by an abnormality in insulin secretion or action. Millions of people across the world are affected by diabetes mellitus which has serious implications for their health. Over the past few decades, diabetes has become a major cause of mortality and morbidity across the world due to its rapid prevalence. Treatment for diabetes that focuses on insulin secretion and sensitization can lead to unwanted side effects and/or poor compliance, as well as treatment failure. A promising way to treat diabetes is through gene-editing technologies such as clustered regularly interspaced short palindromic repeats (CRISPR/Cas9). However, issues such as efficiency and off-target effects have hindered the use of these technologies. In this review, we summarize what we know today about CRISPR/Cas9 technology's therapeutic potential for treating diabetes. We discuss how different strategies are employed, including cell-based therapies (such as stem cells and brown adipocytes), targeting critical genes involved in diabetes pathogenesis, and discussing the challenges and limitations associated with this technology. A novel and powerful treatment approach to diabetes and other diseases can be found with CRISPR/Cas9 technology, and further research should be carried out in this field.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China
| | - Haiyang Wang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China
| | - Mo Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
47
|
Yang S, Hu H, Kung H, Zou R, Dai Y, Hu Y, Wang T, Lv T, Yu J, Li F. Organoids: The current status and biomedical applications. MedComm (Beijing) 2023; 4:e274. [PMID: 37215622 PMCID: PMC10192887 DOI: 10.1002/mco2.274] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Organoids are three-dimensional (3D) miniaturized versions of organs or tissues that are derived from cells with stem potential and can self-organize and differentiate into 3D cell masses, recapitulating the morphology and functions of their in vivo counterparts. Organoid culture is an emerging 3D culture technology, and organoids derived from various organs and tissues, such as the brain, lung, heart, liver, and kidney, have been generated. Compared with traditional bidimensional culture, organoid culture systems have the unique advantage of conserving parental gene expression and mutation characteristics, as well as long-term maintenance of the function and biological characteristics of the parental cells in vitro. All these features of organoids open up new opportunities for drug discovery, large-scale drug screening, and precision medicine. Another major application of organoids is disease modeling, and especially various hereditary diseases that are difficult to model in vitro have been modeled with organoids by combining genome editing technologies. Herein, we introduce the development and current advances in the organoid technology field. We focus on the applications of organoids in basic biology and clinical research, and also highlight their limitations and future perspectives. We hope that this review can provide a valuable reference for the developments and applications of organoids.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Haijie Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hengchung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruiqi Zou
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yushi Dai
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yafei Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianrun Lv
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jun Yu
- Departments of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fuyu Li
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
48
|
Hiramoto T, Kashiwakura Y, Hayakawa M, Baatartsogt N, Kamoshita N, Abe T, Inaba H, Nishimasu H, Uosaki H, Hanazono Y, Nureki O, Ohmori T. PAM-flexible Cas9-mediated base editing of a hemophilia B mutation in induced pluripotent stem cells. COMMUNICATIONS MEDICINE 2023; 3:56. [PMID: 37076593 PMCID: PMC10115777 DOI: 10.1038/s43856-023-00286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Base editing via CRISPR-Cas9 has garnered attention as a method for correcting disease-specific mutations without causing double-strand breaks, thereby avoiding large deletions and translocations in the host chromosome. However, its reliance on the protospacer adjacent motif (PAM) can limit its use. We aimed to restore a disease mutation in a patient with severe hemophilia B using base editing with SpCas9-NG, a modified Cas9 with the board PAM flexibility. METHODS We generated induced pluripotent stem cells (iPSCs) from a patient with hemophilia B (c.947T>C; I316T) and established HEK293 cells and knock-in mice expressing the patient's F9 cDNA. We transduced the cytidine base editor (C>T), including the nickase version of Cas9 (wild-type SpCas9 or SpCas9-NG), into the HEK293 cells and knock-in mice through plasmid transfection and an adeno-associated virus vector, respectively. RESULTS Here we demonstrate the broad PAM flexibility of SpCas9-NG near the mutation site. The base-editing approach using SpCas9-NG but not wild-type SpCas9 successfully converts C to T at the mutation in the iPSCs. Gene-corrected iPSCs differentiate into hepatocyte-like cells in vitro and express substantial levels of F9 mRNA after subrenal capsule transplantation into immunodeficient mice. Additionally, SpCas9-NG-mediated base editing corrects the mutation in both HEK293 cells and knock-in mice, thereby restoring the production of the coagulation factor. CONCLUSION A base-editing approach utilizing the broad PAM flexibility of SpCas9-NG can provide a solution for the treatment of genetic diseases, including hemophilia B.
Collapse
Affiliation(s)
- Takafumi Hiramoto
- Department of Biochemistry, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuji Kashiwakura
- Department of Biochemistry, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Morisada Hayakawa
- Department of Biochemistry, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
- Center for Gene Therapy Research, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Nemekhbayar Baatartsogt
- Department of Biochemistry, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Nobuhiko Kamoshita
- Department of Biochemistry, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
- Center for Gene Therapy Research, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Tomoyuki Abe
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiroshi Inaba
- Department of Laboratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hiroshi Nishimasu
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yutaka Hanazono
- Center for Gene Therapy Research, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
- Center for Gene Therapy Research, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
49
|
Spelier S, van Doorn EPM, van der Ent CK, Beekman JM, Koppens MAJ. Readthrough compounds for nonsense mutations: bridging the translational gap. Trends Mol Med 2023; 29:297-314. [PMID: 36828712 DOI: 10.1016/j.molmed.2023.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Approximately 10% of all pathological mutations are nonsense mutations that are responsible for several severe genetic diseases for which no treatment regimens are currently available. The most widespread strategy for treating nonsense mutations is by enhancing ribosomal readthrough of premature termination codons (PTCs) to restore the production of the full-length protein. In the past decade several compounds with readthrough potential have been identified. However, although preclinical results on these compounds are promising, clinical studies have not yielded positive outcomes. We review preclinical and clinical research related to readthrough compounds and characterize factors that contribute to the observed translational gap.
Collapse
Affiliation(s)
- Sacha Spelier
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Eveline P M van Doorn
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Martijn A J Koppens
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands.
| |
Collapse
|
50
|
Otsuka H. Nanofabrication Technologies to Control Cell and Tissue Function in Three-Dimension. Gels 2023; 9:gels9030203. [PMID: 36975652 PMCID: PMC10048556 DOI: 10.3390/gels9030203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
In the 2000s, advances in cellular micropatterning using microfabrication contributed to the development of cell-based biosensors for the functional evaluation of newly synthesized drugs, resulting in a revolutionary evolution in drug screening. To this end, it is essential to utilize cell patterning to control the morphology of adherent cells and to understand contact and paracrine-mediated interactions between heterogeneous cells. This suggests that the regulation of the cellular environment by means of microfabricated synthetic surfaces is not only a valuable endeavor for basic research in biology and histology, but is also highly useful to engineer artificial cell scaffolds for tissue regeneration. This review particularly focuses on surface engineering techniques for the cellular micropatterning of three-dimensional (3D) spheroids. To establish cell microarrays, composed of a cell adhesive region surrounded by a cell non-adherent surface, it is quite important to control a protein-repellent surface in the micro-scale. Thus, this review is focused on the surface chemistries of the biologically inspired micropatterning of two-dimensional non-fouling characters. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single-cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., fibers and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. These important approaches to cell engineering result in their applications to tissue regeneration, where the cell-biomaterial composite is injected into diseased area. This approach allows the operating surgeon to implant the cell and polymer combinations with minimum invasiveness. The polymers utilized in hydrogels are structurally similar to components of the extracellular matrix in vivo, and are considered biocompatible. This review will provide an overview of the critical design to make hydrogels when used as cell scaffolds for tissue engineering. In addition, the new strategy of injectable hydrogel will be discussed as future directions.
Collapse
Affiliation(s)
- Hidenori Otsuka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|