1
|
Du S, Jin J, Tang C, Su Z, Wang L, Chen X, Zhang M, Zhu Y, Wang J, Ju C, Song X, Li S. Airway Basal Stem Cells Inflammatory Alterations in COVID-19 and Mitigation by Mesenchymal Stem Cells. Cell Prolif 2025; 58:e13812. [PMID: 39865778 DOI: 10.1111/cpr.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/18/2024] [Accepted: 01/11/2025] [Indexed: 01/28/2025] Open
Abstract
SARS-CoV-2 infection and the resultant COVID-19 pneumonia cause significant damage to the airway and lung epithelium. This damage manifests as mucus hypersecretion, pulmonary inflammation and fibrosis, which often lead to long-term complications collectively referred to as long COVID or post-acute sequelae of COVID-19 (PASC). The airway epithelium, as the first line of defence against respiratory pathogens, depends on airway basal stem cells (BSCs) for regeneration. Alterations in BSCs are associated with impaired epithelial repair and may contribute to the respiratory complications observed in PASC. Given the critical role of BSCs in maintaining epithelial integrity, understanding their alterations in COVID-19 is essential for developing effective therapeutic strategies. This study investigates the intrinsic properties of BSCs derived from COVID-19 patients and evaluates the modulatory effects of mesenchymal stem cells (MSCs). Through a combination of functional assessments and transcriptomic profiling, we identified key phenotypic and molecular deviations in COVID-19 patient-derived BSCs, including goblet cell hyperplasia, inflammation and fibrosis, which may underlie their contribution to PASC. Notably, MSC co-culture significantly mitigated these adverse effects, potentially through modulation of the interferon signalling pathway. This is the first study to isolate BSCs from COVID-19 patients in the Chinese population and establish a COVID-19 BSC-based xenograft model. Our findings reveal critical insights into the role of BSCs in epithelial repair and their inflammatory alterations in COVID-19 pathology, with potential relevance to PASC and virus-induced respiratory sequelae. Additionally, our study highlights MSC-based therapies as a promising strategy to address respiratory sequelae and persistent symptoms.
Collapse
Affiliation(s)
- Sheng Du
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Jing Jin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunli Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhuquan Su
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lulin Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinyuan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mengni Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiping Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaojiao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunrong Ju
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinyu Song
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiyue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, China
| |
Collapse
|
2
|
İdikut A, Değer İ, Göktaş G, Karahan S, Sarınç S, Köksal D, Babaoğlu MO, Babaoğlu E. Association of Endothelial Nitric Oxide Synthase Polymorphisms with Clinical Severity in Patients with COVID-19. J Clin Med 2025; 14:1931. [PMID: 40142738 PMCID: PMC11943162 DOI: 10.3390/jcm14061931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: To elucidate the factors that contribute to individual variability in the progression of COVID-19, experiments on endothelial nitric oxide synthase polymorphisms have been reported. Nitric oxide synthase (NOS3) is located in the endothelium and is involved in the regulation of inflammation and vascular homeostasis. In this study, we investigated the association between COVID-19 severity and NOS3 G894T and NOS3 27-bp VNTR 4b/a genetic polymorphisms. Methods: Patients with COVID-19 (n = 178) were divided into Group 1 (mild disease) and Group 2 (severe disease) based on oxygen saturation levels in room air (Group 1, SpO2 ≥ 93%, n = 107; and Group 2, SpO2 < 93%, n = 73) and hospitalization requirements. Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism analysis. Results: Overall, genotype and allele frequencies of the NOS3 genetic polymorphisms were similar across the two study groups (p > 0.05). However, the subgroup analysis showed a notable trend for the 4b/4a allele distribution between Groups 1 and 2. In the younger subgroup of patients (≤50 years old) without chronic obstructive pulmonary disease, Group 2 tended to have a higher frequency of the 4b allele than Group 1 (97.4% vs. 85.4% p = 0.06) and a higher occurrence of 4b/4b genotype (94.7% vs. 74.0%, p = 0.05). Additionally, a rarely observed 4c allele was detected only in two subjects within Group 2 but not in Group 1. Conclusions: These findings suggest a trend of association between COVID-19 severity and NOS3 27-bp VNTR 4b/a genetic polymorphism. Genetic analysis may reveal patient susceptibility to disease, prognosis risk factors, and drug responsiveness.
Collapse
Affiliation(s)
- Aytekin İdikut
- Department of Chest Diseases, Faculty of Medicine, Hacettepe University, Ankara 06230, Türkiye (S.S.); (D.K.)
| | - İlter Değer
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara 06230, Türkiye; (İ.D.); (M.O.B.)
| | - Gamze Göktaş
- Department of Chest Diseases, Faculty of Medicine, Hacettepe University, Ankara 06230, Türkiye (S.S.); (D.K.)
| | - Sevilay Karahan
- Department of Bioistatistics, Faculty of Medicine, Hacettepe University, Ankara 06230, Türkiye;
| | - Sevinç Sarınç
- Department of Chest Diseases, Faculty of Medicine, Hacettepe University, Ankara 06230, Türkiye (S.S.); (D.K.)
| | - Deniz Köksal
- Department of Chest Diseases, Faculty of Medicine, Hacettepe University, Ankara 06230, Türkiye (S.S.); (D.K.)
| | - Melih O. Babaoğlu
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara 06230, Türkiye; (İ.D.); (M.O.B.)
| | - Elif Babaoğlu
- Department of Chest Diseases, Faculty of Medicine, Hacettepe University, Ankara 06230, Türkiye (S.S.); (D.K.)
| |
Collapse
|
3
|
Liu X, Wang X, Wu X, Zhan S, Yang Y, Jiang C. Airway basal stem cell therapy for lung diseases: an emerging regenerative medicine strategy. Stem Cell Res Ther 2025; 16:29. [PMID: 39876014 PMCID: PMC11776311 DOI: 10.1186/s13287-025-04152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Chronic pulmonary diseases pose a prominent health threat globally owing to their intricate pathogenesis and lack of effective reversal therapies. Nowadays, lung transplantation stands out as a feasible treatment option for patients with end-stage lung disease. Unfortunately, the use of this this option is limited by donor organ shortage and severe immunological rejection reactions. Recently, airway basal stem cells (BSCs) have emerged as a novel therapeutic strategy in pulmonary regenerative medicine because of their substantial potential in repairing lung structure and function. Airway BSCs, which are strongly capable of self-renewal and multi-lineage differentiation, can effectively attenuate airway epithelial injury caused by environmental factors or genetic disorders, such as cystic fibrosis. This review comprehensively explores the efficacy and action mechanisms of airway BSCs across various lung disease models and describes potential strategies for inducing pluripotent stem cells to differentiate into pulmonary epithelial lineages on the basis of the original research findings. Additionally, the review also discusses the technical and biological challenges in translating these research findings into clinical applications and offers prospective views on future research directions, therefore broadening the landscape of pulmonary regenerative medicine.
Collapse
Affiliation(s)
- Xingren Liu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Wang
- Department of Emergency, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Wu
- Department of Pulmonary and Critical Care Medicine, Bazhong Enyang District People's Hospital, Bazhong, China
| | - Shuhua Zhan
- Department of Pulmonary and Critical Care Medicine, Aba Tibetan and Qiang Autonomous Prefecture People's Hospital, Maerkang, China
| | - Yan Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Caiyu Jiang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
4
|
Sen C, Rickabaugh TM, Jeyachandran AV, Yuen C, Ghannam M, Durra A, Aziz A, Castillo K, Garcia G, Purkayastha A, Han B, Boulton FW, Chekler E, Garces R, Wolff KC, Riva L, Kirkpatrick MG, Gebara-Lamb A, McNamara CW, Betz UAK, Arumugaswami V, Damoiseaux R, Gomperts BN. Optimization of a micro-scale air-liquid-interface model of human proximal airway epithelium for moderate throughput drug screening for SARS-CoV-2. Respir Res 2025; 26:18. [PMID: 39819574 PMCID: PMC11740480 DOI: 10.1186/s12931-025-03095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Many respiratory viruses attack the airway epithelium and cause a wide spectrum of diseases for which we have limited therapies. To date, a few primary human stem cell-based models of the proximal airway have been reported for drug discovery but scaling them up to a higher throughput platform remains a significant challenge. As a result, most of the drug screening assays for respiratory viruses are performed on commercial cell line-based 2D cultures that provide limited translational ability. METHODS We optimized a primary human stem cell-based mucociliary airway epithelium model of SARS-CoV-2 infection, in 96-well air-liquid-interface (ALI) format, which is amenable to moderate throughput drug screening. We tested the model against SARS-CoV-2 parental strain (Wuhan) and variants Beta, Delta, and Omicron. We applied this model to screen 2100 compounds from targeted drug libraries using a high throughput-high content image-based quantification method. RESULTS The model recapitulated the heterogeneity of infection among patients with SARS-CoV-2 parental strain and variants. While there were heterogeneous responses across variants for host factor targeting compounds, the two direct-acting antivirals we tested, Remdesivir and Paxlovid, showed consistent efficacy in reducing infection across all variants and donors. Using the model, we characterized a new antiviral drug effective against both the parental strain and the Omicron variant. CONCLUSION This study demonstrates that the 96-well ALI model of primary human mucociliary epithelium can recapitulate the heterogeneity of infection among different donors and SARS-CoV-2 variants and can be used for moderate throughput screening. Compounds that target host factors showed variability among patients in response to SARS-CoV-2, while direct-acting antivirals were effective against SARS-CoV-2 despite the heterogeneity of patients tested.
Collapse
Affiliation(s)
- Chandani Sen
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, UCLA, Los Angeles, CA, 90095, USA
| | - Tammy M Rickabaugh
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, UCLA, Los Angeles, CA, 90095, USA
| | - Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Constance Yuen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Maisam Ghannam
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, UCLA, Los Angeles, CA, 90095, USA
| | - Abdo Durra
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, UCLA, Los Angeles, CA, 90095, USA
| | - Adam Aziz
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, UCLA, Los Angeles, CA, 90095, USA
| | - Kristen Castillo
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, UCLA, Los Angeles, CA, 90095, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Arunima Purkayastha
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, UCLA, Los Angeles, CA, 90095, USA
| | - Brandon Han
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Felix W Boulton
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, UCLA, Los Angeles, CA, 90095, USA
| | | | | | - Karen C Wolff
- Calibr-Skaggs Institute for Innovative Medicines, 11119 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Laura Riva
- Calibr-Skaggs Institute for Innovative Medicines, 11119 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Melanie G Kirkpatrick
- Calibr-Skaggs Institute for Innovative Medicines, 11119 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Amal Gebara-Lamb
- Calibr-Skaggs Institute for Innovative Medicines, 11119 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Case W McNamara
- Calibr-Skaggs Institute for Innovative Medicines, 11119 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | | | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.
- California Nanosystems Institute, UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
| | - Brigitte N Gomperts
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, UCLA, Los Angeles, CA, 90095, USA.
- California Nanosystems Institute, UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, 90095, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Becker ME, Martin-Sancho L, Simons LM, McRaven MD, Chanda SK, Hultquist JF, Hope TJ. Live imaging of airway epithelium reveals that mucociliary clearance modulates SARS-CoV-2 spread. Nat Commun 2024; 15:9480. [PMID: 39488529 PMCID: PMC11531594 DOI: 10.1038/s41467-024-53791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2024] [Indexed: 11/04/2024] Open
Abstract
SARS-CoV-2 initiates infection in the conducting airways, where mucociliary clearance inhibits pathogen penetration. However, it is unclear how mucociliary clearance impacts SARS-CoV-2 spread after infection is established. To investigate viral spread at this site, we perform live imaging of SARS-CoV-2 infected differentiated primary human bronchial epithelium cultures for up to 12 days. Using a fluorescent reporter virus and markers for cilia and mucus, we longitudinally monitor mucus motion, ciliary motion, and infection. Infected cell numbers peak at 4 days post infection, forming characteristic foci that tracked mucus movement. Inhibition of MCC using physical and genetic perturbations limits foci. Later in infection, mucociliary clearance deteriorates. Increased mucus secretion accompanies ciliary motion defects, but mucociliary clearance and vectorial infection spread resume after mucus removal, suggesting that mucus secretion may mediate MCC deterioration. Our work shows that while MCC can facilitate SARS-CoV-2 spread after initial infection, subsequent MCC decreases inhibit spread, revealing a complex interplay between SARS-CoV-2 and MCC.
Collapse
Affiliation(s)
- Mark E Becker
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lacy M Simons
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael D McRaven
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sumit K Chanda
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas J Hope
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
6
|
Redman E, Fierville M, Cavard A, Plaisant M, Arguel MJ, Ruiz Garcia S, McAndrew EM, Girard-Riboulleau C, Lebrigand K, Magnone V, Ponzio G, Gras D, Chanez P, Abelanet S, Barbry P, Marcet B, Zaragosi LE. Cell Culture Differentiation and Proliferation Conditions Influence the In Vitro Regeneration of the Human Airway Epithelium. Am J Respir Cell Mol Biol 2024; 71:267-281. [PMID: 38843491 PMCID: PMC11376247 DOI: 10.1165/rcmb.2023-0356ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The human airway mucociliary epithelium can be recapitulated in vitro using primary cells cultured in an air-liquid interface (ALI), a reliable surrogate to perform pathophysiological studies. As tremendous variations exist among media used for ALI-cultured human airway epithelial cells, the aim of our study was to evaluate the impact of several media (BEGM, PneumaCult, Half & Half, and Clancy) on cell type distribution using single-cell RNA sequencing and imaging. Our work revealed the impact of these media on cell composition, gene expression profile, cell signaling, and epithelial morphology. We found higher proportions of multiciliated cells in PneumaCult-ALI and Half & Half, stronger EGF signaling from basal cells in BEGM-ALI, differential expression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry factor ACE2, and distinct secretome transcripts depending on the media used. We also established that proliferation in PneumaCult-Ex Plus favored secretory cell fate, showing the key influence of proliferation media on late differentiation epithelial characteristics. Altogether, our data offer a comprehensive repertoire for evaluating the effects of culture conditions on airway epithelial differentiation and will aid in choosing the most relevant medium according to the processes to be investigated, such as cilia, mucus biology, or viral infection. We detail useful parameters that should be explored to document airway epithelial cell fate and morphology.
Collapse
Affiliation(s)
- Elisa Redman
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Morgane Fierville
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
- Interdisciplinary Institute for Artificial Intelligence (3IA Côte d'Azur), Université Côte d'Azur, Sophia Antipolis, France; and
| | - Amélie Cavard
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Magali Plaisant
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Marie-Jeanne Arguel
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Sandra Ruiz Garcia
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Eamon M McAndrew
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Cédric Girard-Riboulleau
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Kevin Lebrigand
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Virginie Magnone
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Gilles Ponzio
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Delphine Gras
- Centre de Recherche en Cardiovasculaire et Nutrition, Institut National de la Santé et de la Recherche Médicale (INSERM), and Institut National de Recherche pour L'agriculture, L'alimentation et L'environnement (INRAE), Université Aix-Marseille, Marseille, France
| | - Pascal Chanez
- Centre de Recherche en Cardiovasculaire et Nutrition, Institut National de la Santé et de la Recherche Médicale (INSERM), and Institut National de Recherche pour L'agriculture, L'alimentation et L'environnement (INRAE), Université Aix-Marseille, Marseille, France
| | - Sophie Abelanet
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
- Interdisciplinary Institute for Artificial Intelligence (3IA Côte d'Azur), Université Côte d'Azur, Sophia Antipolis, France; and
| | - Brice Marcet
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Laure-Emmanuelle Zaragosi
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| |
Collapse
|
7
|
Hussain SS, Libby EF, Lever JEP, Tipper JL, Phillips SE, Mazur M, Li Q, Campos-Gómez J, Harrod KS, Rowe SM. ACE-2 Blockade & TMPRSS2 Inhibition Mitigate SARS-CoV-2 Severity Following Cigarette Smoke Exposure in Airway Epithelial Cells In Vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.23.600238. [PMID: 38979208 PMCID: PMC11230175 DOI: 10.1101/2024.06.23.600238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cigarette smoking is associated with COVID-19 prevalence and severity, but the mechanistic basis for how smoking alters SARS-CoV-2 pathogenesis is unknown. A potential explanation is that smoking alters the expression of the SARS-CoV-2 cellular receptor and point of entry, angiotensin converting enzyme-2 (ACE-2), and its cofactors including transmembrane protease serine 2 (TMPRSS2). We investigated the impact of cigarette smoking on the expression of ACE-2, TMPRSS2, and other known cofactors of SARS-CoV-2 infection and the resultant effects on infection severity in vitro. Cigarette smoke extract (CSE) exposure increased ACE-2 and TMPRSS2 mRNA expression compared to air control in ferret airway cells, Calu-3 cells, and primary human bronchial epithelial (HBE) cells derived from normal and COPD donors. CSE-exposed ferret airway cells inoculated with SARS-CoV-2 had a significantly higher intracellular viral load versus vehicle-exposed cells. Likewise, CSE-exposure increased both SARS-CoV-2 intracellular viral load and viral replication in both normal and COPD HBE cells over vehicle control. Apoptosis was increased in CSE-exposed, SARS-CoV-2-infected HBE cells. Knockdown of ACE-2 via an antisense oligonucleotide (ASO) reduced SARS-CoV-2 viral load and infection in CSE-exposed ferret airway cells that was augmented by co-administration of camostat mesylate to block TMPRSS2 activity. Smoking increases SARS-CoV-2 infection via upregulation of ACE2 and TMPRSS2.
Collapse
|
8
|
Lee EH, Lee KH, Lee KN, Park Y, Do Han K, Han SH. The Relation Between Cigarette Smoking and Development of Sepsis: A 10-Year Follow-Up Study of Four Million Adults from the National Health Screening Program. J Epidemiol Glob Health 2024; 14:444-452. [PMID: 38372892 PMCID: PMC11176127 DOI: 10.1007/s44197-024-00197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Sepsis remains a growing global health concern with soaring mortality and no direct anti-sepsis drug. Although smoking has distinct deleterious effects on chronic inflammatory illnesses and can impair immune function, a comprehensive analysis of the connection between sepsis and smoking is lacking. METHODS This large-scale longitudinal cohort study retrospectively assessed adults aged ≥ 20 years who underwent national health checkups under the Korean National Health Insurance Service between January and December 2009 (N = 4,234,415) and were followed up for 10 years. Sepsis was identified based on the International Classification of Diseases, 10th Revision codes, and smoking status, including accumulated amount, was collected through a self-administered questionnaire. The Cox proportional hazard regression model was used, adjusting for age, sex, household income, body mass index, drinking, exercise, diabetes, hypertension, dyslipidemia, and chronic renal disease. RESULTS After excluding cases with sepsis occurring before follow-up or after ≤ 1 year of follow-up, 3,881,958 participants, including non-smokers (N = 2,342,841), former smokers (N = 539,850), and active smokers (N = 999,267), were included. Compared to non-smokers, all active smokers (adjust hazard ratio: 1.41, 95% confidence interval 1.38-1.44) and former smokers (1.10, 1.07-1.14) with ≥ 20 pack-years exhibited a significantly higher risk of sepsis (p < 0.001). Smoking of ≥ 30 pack-years in former and active smokers groups significantly increased sepsis incidence (adjust hazard ratio [95% confidence interval] 1.34 [1.31-1.38], p < 0.001). CONCLUSIONS Smoking is closely associated with the incidence of sepsis. Smoking cessation may help in the primary prevention of sepsis.
Collapse
Affiliation(s)
- Eun Hwa Lee
- Divison of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Kyoung Hwa Lee
- Divison of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Kyu-Na Lee
- Department of Preventive Medicine and Public Health, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Yebin Park
- Department of Statistics and Actuarial Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul, 06978, Republic of Korea
| | - Kyung Do Han
- Department of Statistics and Actuarial Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul, 06978, Republic of Korea.
| | - Sang Hoon Han
- Divison of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.
- Institute for Innovation in Digital Healthcare, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Phandthong R, Wong M, Song A, Martinez T, Talbot P. Does vaping increase the likelihood of SARS-CoV-2 infection? Paradoxically yes and no. Am J Physiol Lung Cell Mol Physiol 2024; 326:L175-L189. [PMID: 38147795 PMCID: PMC11280677 DOI: 10.1152/ajplung.00300.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023] Open
Abstract
Data on the relationship between electronic cigarettes (ECs) and SARS-CoV-2 infection are limited and contradictory. Our objectives were to investigate the impact of EC aerosols on SARS-CoV-2 infection of human bronchial epithelial cells and identify the causative chemical(s). Fully differentiated human bronchial epithelial tissues (hBETs) were exposed at the air-liquid interface (ALI) to aerosols produced from JUUL "Virginia Tobacco" and BLU ECs, as well as nicotine, propylene glycol (PG), vegetable glycerin (VG), and benzoic acid, and infection was then evaluated with SARS-CoV-2 pseudoparticles. Pseudoparticle infection of hBETs increased with aerosols produced from PG/VG, PG/VG plus nicotine, or BLU ECs; however, JUUL EC aerosols did not increase infection compared with controls. Increased infection in PG/VG alone was due to enhanced endocytosis, whereas increased infection in PG/VG plus nicotine or in BLU ECs was caused by nicotine-induced elevation of the aerosol's pH, which correlated with increased transmembrane protease, serine 2 (TMPRSS2) activity. Notably, benzoic acid in JUUL aerosols mitigated the enhanced infection caused by PG/VG or nicotine, offering protection that lasted for at least 48 h after exposure. In conclusion, the study demonstrates that EC aerosols can impact susceptibility to SARS-CoV-2 infection depending on their specific ingredients. PG/VG alone or PG/VG plus nicotine enhanced infection through different mechanisms, whereas benzoic acid in JUUL aerosols mitigated the increased infection caused by certain ingredients. These findings highlight the complex relationship between ECs and SARS-CoV-2 susceptibility, emphasizing the importance of considering the specific aerosol ingredients when evaluating the potential effects of ECs on infection risk.NEW & NOTEWORTHY Data on the relationship between electronic cigarettes (ECs) and SARS-CoV-2 infection are limited and contradictory. We investigated the impact of EC aerosols and their ingredients on SARS-CoV-2 infection of human bronchial epithelial cells. Our data show that specific ingredients in EC aerosols impact the susceptibility to SARS-CoV-2 infection. Propylene glycol (PG)/vegetable glycerin (VG) alone or PG/VG plus nicotine enhanced infection through different mechanisms, whereas benzoic acid in JUUL aerosols mitigated the increased infection caused by these ingredients.
Collapse
Affiliation(s)
- Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Man Wong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Ann Song
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Teresa Martinez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Prue Talbot
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| |
Collapse
|
10
|
Petpiroon N, Netkueakul W, Sukrak K, Wang C, Liang Y, Wang M, Liu Y, Li Q, Kamran R, Naruse K, Aueviriyavit S, Takahashi K. Development of lung tissue models and their applications. Life Sci 2023; 334:122208. [PMID: 37884207 DOI: 10.1016/j.lfs.2023.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The lungs are important organs that play a critical role in the development of specific diseases, as well as responding to the effects of drugs, chemicals, and environmental pollutants. Due to the ethical concerns around animal testing, alternative methods have been sought which are more time-effective, do not pose ethical issues for animals, do not involve species differences, and provide easy investigation of the pathobiology of lung diseases. Several national and international organizations are working to accelerate the development and implementation of structurally and functionally complex tissue models as alternatives to animal testing, particularly for the lung. Unfortunately, to date, there is no lung tissue model that has been accepted by regulatory agencies for use in inhalation toxicology. This review discusses the challenges involved in developing a relevant lung tissue model derived from human cells such as cell lines, primary cells, and pluripotent stem cells. It also introduces examples of two-dimensional (2D) air-liquid interface and monocultured and co-cultured three-dimensional (3D) culture techniques, particularly organoid culture and 3D bioprinting. Furthermore, it reviews development of the lung-on-a-chip model to mimic the microenvironment and physiological performance. The applications of lung tissue models in various studies, especially disease modeling, viral respiratory infection, and environmental toxicology will be also introduced. The development of a relevant lung tissue model is extremely important for standardizing and validation the in vitro models for inhalation toxicity and other studies in the future.
Collapse
Affiliation(s)
- Nalinrat Petpiroon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Woranan Netkueakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kanokwan Sukrak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Thailand Network Center on Air Quality Management: TAQM, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chen Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yin Liang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Mengxue Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yun Liu
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Qiang Li
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Rumaisa Kamran
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Keiji Naruse
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Ken Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan.
| |
Collapse
|
11
|
Cui Q, Jeyachandran AV, Garcia G, Qin C, Zhou Y, Zhang M, Wang C, Sun G, Liu W, Zhou T, Feng L, Palmer C, Li Z, Aziz A, Gomperts BN, Feng P, Arumugaswami V, Shi Y. The Apolipoprotein E neutralizing antibody inhibits SARS-CoV-2 infection by blocking cellular entry of lipoviral particles. MedComm (Beijing) 2023; 4:e400. [PMID: 37822714 PMCID: PMC10563865 DOI: 10.1002/mco2.400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal agent for coronavirus disease 2019 (COVID-19). Although vaccines have helped to prevent uncontrolled viral spreading, our understanding of the fundamental biology of SARS-CoV-2 infection remains insufficient, which hinders effective therapeutic development. Here, we found that Apolipoprotein E (ApoE), a lipid binding protein, is hijacked by SARS-CoV-2 for infection. Preincubation of SARS-CoV-2 with a neutralizing antibody specific to ApoE led to inhibition of SARS-CoV-2 infection. The ApoE neutralizing antibody efficiently blocked SARS-CoV-2 infection of human iPSC-derived astrocytes and air-liquid interface organoid models in addition to human ACE2-expressing HEK293T cells and Calu-3 lung cells. ApoE mediates SARS-CoV-2 entry through binding to its cellular receptors such as the low density lipoprotein receptor (LDLR). LDLR knockout or ApoE mutations at the receptor binding domain or an ApoE mimetic peptide reduced SARS-CoV-2 infection. Furthermore, we detected strong membrane LDLR expression on SARS-CoV-2 Spike-positive cells in human lung tissues, whereas no or low ACE2 expression was detected. This study provides a new paradigm for SARS-CoV-2 cellular entry through binding of ApoE on the lipoviral particles to host cell receptor(s). Moreover, this study suggests that ApoE neutralizing antibodies are promising antiviral therapies for COVID-19 by blocking entry of both parental virus and variants of concern.
Collapse
Affiliation(s)
- Qi Cui
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | | | - Gustavo Garcia
- Department of Molecular and Medical PharmacologyUCLALos AngelesCaliforniaUSA
| | - Chao Qin
- Section of Infection and ImmunityHerman Ostrow School of DentistryNorris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Yu Zhou
- Section of Infection and ImmunityHerman Ostrow School of DentistryNorris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mingzi Zhang
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Cheng Wang
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Guihua Sun
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Wei Liu
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Tao Zhou
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Lizhao Feng
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Chance Palmer
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Zhuo Li
- Electron Microscopy and Atomic Force Microscopy CoreBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Adam Aziz
- Mattel Children's Hospital UCLADepartment of PediatricsDavid Geffen School of MedicineUCLAUCLA Children's Discovery and Innovation InstituteLos AngelesCaliforniaUSA
- UCLAMolecular Biology InstituteLos AngelesCaliforniaUSA
- UCLAJonsson Comprehensive Cancer CenterLos AngelesCaliforniaUSA
- UCLAEli and Edythe Broad Stem Cell Research CenterLos AngelesCaliforniaUSA
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineUCLADavid Geffen School of MedicineLos AngelesCaliforniaUSA
| | - Brigitte N. Gomperts
- Mattel Children's Hospital UCLADepartment of PediatricsDavid Geffen School of MedicineUCLAUCLA Children's Discovery and Innovation InstituteLos AngelesCaliforniaUSA
- UCLAMolecular Biology InstituteLos AngelesCaliforniaUSA
- UCLAJonsson Comprehensive Cancer CenterLos AngelesCaliforniaUSA
- UCLAEli and Edythe Broad Stem Cell Research CenterLos AngelesCaliforniaUSA
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineUCLADavid Geffen School of MedicineLos AngelesCaliforniaUSA
| | - Pinghui Feng
- Section of Infection and ImmunityHerman Ostrow School of DentistryNorris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical PharmacologyUCLALos AngelesCaliforniaUSA
- UCLAEli and Edythe Broad Stem Cell Research CenterLos AngelesCaliforniaUSA
| | - Yanhong Shi
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| |
Collapse
|
12
|
Lin LQ, Zeng HK, Luo YL, Chen DF, Ma XQ, Chen HJ, Song XY, Wu HK, Li SY. Mechanical stretch promotes apoptosis and impedes ciliogenesis of primary human airway basal stem cells. Respir Res 2023; 24:237. [PMID: 37773064 PMCID: PMC10540374 DOI: 10.1186/s12931-023-02528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Airway basal stem cells (ABSCs) have self-renewal and differentiation abilities. Although an abnormal mechanical environment related to chronic airway disease (CAD) can cause ABSC dysfunction, it remains unclear how mechanical stretch regulates the behavior and structure of ABSCs. Here, we explored the effect of mechanical stretch on primary human ABSCs. METHODS Primary human ABSCs were isolated from healthy volunteers. A Flexcell FX-5000 Tension system was used to mimic the pathological airway mechanical stretch conditions of patients with CAD. ABSCs were stretched for 12, 24, or 48 h with 20% elongation. We first performed bulk RNA sequencing to identify the most predominantly changed genes and pathways. Next, apoptosis of stretched ABSCs was detected with Annexin V-FITC/PI staining and a caspase 3 activity assay. Proliferation of stretched ABSCs was assessed by measuring MKI67 mRNA expression and cell cycle dynamics. Immunofluorescence and hematoxylin-eosin staining were used to demonstrate the differentiation state of ABSCs at the air-liquid interface. RESULTS Compared with unstretched control cells, apoptosis and caspase 3 activation of ABSCs stretched for 48 h were significantly increased (p < 0.0001; p < 0.0001, respectively), and MKI67 mRNA levels were decreased (p < 0.0001). In addition, a significant increase in the G0/G1 population (20.2%, p < 0.001) and a significant decrease in S-phase cells (21.1%, p < 0.0001) were observed. The ratio of Krt5+ ABSCs was significantly higher (32.38% vs. 48.71%, p = 0.0037) following stretching, while the ratio of Ac-tub+ cells was significantly lower (37.64% vs. 21.29%, p < 0.001). Moreover, compared with the control, the expression of NKX2-1 was upregulated significantly after stretching (14.06% vs. 39.51%, p < 0.0001). RNA sequencing showed 285 differentially expressed genes, among which 140 were upregulated and 145 were downregulated, revealing that DDIAS, BIRC5, TGFBI, and NKX2-1 may be involved in the function of primary human ABSCs during mechanical stretch. There was no apparent difference between stretching ABSCs for 24 and 48 h compared with the control. CONCLUSIONS Pathological stretching induces apoptosis of ABSCs, inhibits their proliferation, and disrupts cilia cell differentiation. These features may be related to abnormal regeneration and repair observed after airway epithelium injury in patients with CAD.
Collapse
Affiliation(s)
- Li-Qin Lin
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Hai-Kang Zeng
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Yu-Long Luo
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, Guangdong, China
- Key Laboratory of Biological Targeting Diagnosis, Guangzhou, 510799, Guangdong, China
- Therapy and Rehabilitation of Guangdong Higher Education Institutes, Guangzhou, 510799, Guangdong, China
- Innovation Centre for Advanced Interdisciplinary Medicine, Guangzhou, 510799, Guangdong, China
| | - Di-Fei Chen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Xiao-Qian Ma
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Huan-Jie Chen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Xin-Yu Song
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Hong-Kai Wu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Shi-Yue Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China.
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China.
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China.
| |
Collapse
|
13
|
Hu C, Ji H, Gong Y, Yang X, Jia Y, Liu Y, Ji G, Wang X, Wang M. Wet-adhesive γ-PGA/ε-PLL hydrogel loaded with EGF for tracheal epithelial injury repair. J Mater Chem B 2023; 11:8666-8678. [PMID: 37622289 DOI: 10.1039/d3tb01550e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Following the global COVID-19 pandemic, the incidence of tracheal epithelial injury is increasing. However, the repair of tracheal epithelial injury remains a challenge due to the slow renewal rate of tracheal epithelial cells (TECs). In traditional nebulized inhalation treatments, drugs are enriched in the lungs or absorbed into the blood, reducing drug concentration at the tracheal injury site. In this study, we prepared an epidermal growth factor (EGF)-loaded gamma-polyglutamic acid (γ-PGA)/epsilon-poly-L-lysine (ε-PLL) (PP) hydrogel (EGF@PP) to promote the repair of tracheal epithelial injury. Epidermal growth factor promotes the proliferation of TECs and enhances vascularization, thereby accelerating injury repair. The PP hydrogel exhibits outstanding wet adhesion, slow drug release, and antibacterial and anti-inflammatory properties, making it suitable for application in the airways and creating an environment conducive to epithelial repair. Here, we established a rabbit model of tracheal injury using a laser to destroy the tracheal epithelium and delivered EGF@PP powder to the injury site under fiberoptic bronchoscopy guidance. Our findings revealed that this was an effective therapeutic strategy for accelerating the repair of tracheal epithelial injury.
Collapse
Affiliation(s)
- Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Yan Gong
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Xuhui Yang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Yunxuan Jia
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Yuanhao Liu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| |
Collapse
|
14
|
Hope T, Becker M, Martin-Sancho L, Simons L, McRaven M, Chanda S, Hultquist J. Live imaging of the airway epithelium reveals that mucociliary clearance modulates SARS-CoV-2 spread. RESEARCH SQUARE 2023:rs.3.rs-3246773. [PMID: 37720034 PMCID: PMC10503848 DOI: 10.21203/rs.3.rs-3246773/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
SARS-CoV-2 initiates infection in the conducting airways, which rely on mucocilliary clearance (MCC) to minimize pathogen penetration. However, it is unclear how MCC impacts SARS-CoV-2 spread after infection is established. To understand viral spread at this site, we performed live imaging of SARS-CoV-2 infected differentiated primary human bronchial epithelium cultures for up to 9 days. Fluorescent markers for cilia and mucus allowed longitudinal monitoring of MCC, ciliary motion, and infection. The number of infected cells peaked at 4 days post-infection in characteristic foci that followed mucus movement. Inhibition of MCC using physical and genetic perturbations limited foci. Later in infection, MCC was diminished despite relatively subtle ciliary function defects. Resumption of MCC and infection spread after mucus removal suggests that mucus secretion mediates this effect. We show that MCC facilitates SARS-CoV-2 spread early in infection while later decreases in MCC inhibit spread, suggesting a complex interplay between SARS-CoV-2 and MCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Sumit Chanda
- Sanford Burnham Prebys Medical Discovery Institute
| | | |
Collapse
|
15
|
Chen J, Wang X, Schmalen A, Haines S, Wolff M, Ma H, Zhang H, Stoleriu MG, Nowak J, Nakayama M, Bueno M, Brands J, Mora AL, Lee JS, Krauss-Etschmann S, Dmitrieva A, Frankenberger M, Hofer TP, Noessner E, Moosmann A, Behr J, Milger K, Deeg CA, Staab-Weijnitz CA, Hauck SM, Adler H, Goldmann T, Gaede KI, Behrends J, Kammerl IE, Meiners S. Antiviral CD8 + T-cell immune responses are impaired by cigarette smoke and in COPD. Eur Respir J 2023; 62:2201374. [PMID: 37385655 PMCID: PMC10397470 DOI: 10.1183/13993003.01374-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Virus infections drive COPD exacerbations and progression. Antiviral immunity centres on the activation of virus-specific CD8+ T-cells by viral epitopes presented on major histocompatibility complex (MHC) class I molecules of infected cells. These epitopes are generated by the immunoproteasome, a specialised intracellular protein degradation machine, which is induced by antiviral cytokines in infected cells. METHODS We analysed the effects of cigarette smoke on cytokine- and virus-mediated induction of the immunoproteasome in vitro, ex vivo and in vivo using RNA and Western blot analyses. CD8+ T-cell activation was determined in co-culture assays with cigarette smoke-exposed influenza A virus (IAV)-infected cells. Mass-spectrometry-based analysis of MHC class I-bound peptides uncovered the effects of cigarette smoke on inflammatory antigen presentation in lung cells. IAV-specific CD8+ T-cell numbers were determined in patients' peripheral blood using tetramer technology. RESULTS Cigarette smoke impaired the induction of the immunoproteasome by cytokine signalling and viral infection in lung cells in vitro, ex vivo and in vivo. In addition, cigarette smoke altered the peptide repertoire of antigens presented on MHC class I molecules under inflammatory conditions. Importantly, MHC class I-mediated activation of IAV-specific CD8+ T-cells was dampened by cigarette smoke. COPD patients exhibited reduced numbers of circulating IAV-specific CD8+ T-cells compared to healthy controls and asthmatics. CONCLUSION Our data indicate that cigarette smoke interferes with MHC class I antigen generation and presentation and thereby contributes to impaired activation of CD8+ T-cells upon virus infection. This adds important mechanistic insight on how cigarette smoke mediates increased susceptibility of smokers and COPD patients to viral infections.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
- These authors contributed equally
| | - Xinyuan Wang
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Guangzhou Medical University, Guangzhou, China
- These authors contributed equally
| | - Adrian Schmalen
- Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Munich, Germany
| | - Sophia Haines
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Martin Wolff
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Huan Ma
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Huabin Zhang
- Neurosurgery Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mircea Gabriel Stoleriu
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Thoracic Surgery Munich, University Clinic of Ludwig-Maximilians-University of Munich (LMU), Munich, Germany
- Asklepios Pulmonary Hospital, Gauting, Germany
| | - Johannes Nowak
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Misako Nakayama
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marta Bueno
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Judith Brands
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana L Mora
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart Lung Institute, Ohio State University, Columbus, OH, USA
| | - Janet S Lee
- Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Anna Dmitrieva
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Marion Frankenberger
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Thomas P Hofer
- Immunoanalytics - Working Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| | - Elfriede Noessner
- Immunoanalytics - Working Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| | - Andreas Moosmann
- DZIF Group Host Control of Viral Latency and Reactivation, Department of Medicine III, LMU-Klinikum, Munich, Germany
- DZIF - German Center for Infection Research, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Katrin Milger
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Cornelia A Deeg
- Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Claudia A Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Munich, Germany
| | - Heiko Adler
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Torsten Goldmann
- Histology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Karoline I Gaede
- BioMaterialBank North, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Popgen 2.0 Network, (P2N), Borstel, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Ilona E Kammerl
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- These authors contributed equally
| | - Silke Meiners
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
- Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
- These authors contributed equally
| |
Collapse
|
16
|
Lee W, Lee S, Yoon JK, Lee D, Kim Y, Han YB, Kim R, Moon S, Park YJ, Park K, Cha B, Choi J, Kim J, Ha NY, Kim K, Cho S, Cho NH, Desai TJ, Chung JH, Lee JH, Kim JI. A single-cell atlas of in vitro multiculture systems uncovers the in vivo lineage trajectory and cell state in the human lung. Exp Mol Med 2023; 55:1831-1842. [PMID: 37582976 PMCID: PMC10474282 DOI: 10.1038/s12276-023-01076-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 08/17/2023] Open
Abstract
We present an in-depth single-cell atlas of in vitro multiculture systems on human primary airway epithelium derived from normal and diseased lungs of 27 individual donors. Our large-scale single-cell profiling identified new cell states and differentiation trajectories of rare airway epithelial cell types in human distal lungs. By integrating single-cell datasets of human lung tissues, we discovered immune-primed subsets enriched in lungs and organoids derived from patients with chronic respiratory disease. To demonstrate the full potential of our platform, we further illustrate transcriptomic responses to various respiratory virus infections in vitro airway models. Our work constitutes a single-cell roadmap for the cellular and molecular characteristics of human primary lung cells in vitro and their relevance to human tissues in vivo.
Collapse
Affiliation(s)
- Woochan Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seyoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Ki Yoon
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dakyung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yuri Kim
- Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul, Korea
| | - Yeon Bi Han
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Rokhyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sungji Moon
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, Korea
| | - Young Jun Park
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyunghyuk Park
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
| | - Bukyoung Cha
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
| | - Jaeyong Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Juhyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Na-Young Ha
- Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul, Korea
| | - Kwhanmien Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nam-Hyuk Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Tushar J Desai
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jin-Haeng Chung
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
| | - Joo-Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, Korea.
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.
- Cancer Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
17
|
Dong Z, Ma J, Qiu J, Ren Q, Shan Q, Duan X, Li G, Zuo YY, Qi Y, Liu Y, Liu G, Lynch I, Fang M, Liu S. Airborne fine particles drive H1N1 viruses deep into the lower respiratory tract and distant organs. SCIENCE ADVANCES 2023; 9:eadf2165. [PMID: 37294770 PMCID: PMC10256160 DOI: 10.1126/sciadv.adf2165] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/05/2023] [Indexed: 06/11/2023]
Abstract
Mounting data suggest that environmental pollution due to airborne fine particles (AFPs) increases the occurrence and severity of respiratory virus infection in humans. However, it is unclear whether and how interactions with AFPs alter viral infection and distribution. We report synergetic effects between various AFPs and the H1N1 virus, regulated by physicochemical properties of the AFPs. Unlike infection caused by virus alone, AFPs facilitated the internalization of virus through a receptor-independent pathway. Moreover, AFPs promoted the budding and dispersal of progeny virions, likely mediated by lipid rafts in the host plasma membrane. Infected animal models demonstrated that AFPs favored penetration of the H1N1 virus into the distal lung, and its translocation into extrapulmonary organs including the liver, spleen, and kidney, thus causing severe local and systemic disorders. Our findings revealed a key role of AFPs in driving viral infection throughout the respiratory tract and beyond. These insights entail stronger air quality management and air pollution reduction policies.
Collapse
Affiliation(s)
- Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qing’e Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xuefeng Duan
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangle Li
- Department of Mechanical Engineering, University of Hawaii at Mānoa, Honolulu, HI 96822, USA
| | - Yi Y. Zuo
- Department of Mechanical Engineering, University of Hawaii at Mānoa, Honolulu, HI 96822, USA
| | - Yu Qi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajun Liu
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing 100035, China
| | - Guoliang Liu
- Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
- National Center for Respiratory Medicine, Beijing 100029, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
18
|
Phandthong R, Wong M, Song A, Martinez T, Talbot P. New insights into how popular electronic cigarette aerosols and aerosol constituents affect SARS-CoV-2 infection of human bronchial epithelial cells. Sci Rep 2023; 13:5807. [PMID: 37037851 PMCID: PMC10086046 DOI: 10.1038/s41598-023-31592-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
The relationship between the use of tobacco products and SARS-CoV-2 infection is poorly understood and controversial. Few studies have examined the effect of electronic cigarettes (ECs) on SARS-CoV-2 infection. We tested the hypothesis that EC fluids and aerosols with nicotine promote SARS-COV-2 infection by increasing viral entry into human respiratory epithelial cells. Responses of BEAS-2B cells to JUUL aerosols or their individual constituents were compared using three exposure platforms: submerged culture, air-liquid-interface (ALI) exposure in a cloud chamber, and ALI exposure in a Cultex system, which produces authentic heated EC aerosols. In general, nicotine and nicotine + propylene glycol/vegetable glycerin aerosols increased ACE2 (angiotensin converting enzyme 2) levels, the SARS-CoV-2 receptor; and increased the activity of TMPRSS2 (transmembrane serine protease 2), an enzyme essential for viral entry. Lentivirus pseudoparticles with spike protein were used to test viral penetration. Exposure to nicotine, EC fluids, or aerosols altered the infection machinery and increased viral entry into cells. While most data were in good agreement across the three exposure platforms, cells were more responsive to treatments when exposed at the ALI in the Cultex system, even though the exposures were brief and intermittent. While both nicotine and JUUL aerosols increased SARS-CoV-2 infection, JUUL significantly decreased the effect of nicotine alone. These data support the idea that vaping can increase the likelihood of contracting COVID-19 and that e-liquid composition may modulate this effect.
Collapse
Affiliation(s)
- Rattapol Phandthong
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, 92521, USA
| | - Man Wong
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, 92521, USA
| | - Ann Song
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, 92521, USA
| | - Teresa Martinez
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, 92521, USA
| | - Prue Talbot
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
19
|
Subramaniyan B, Gurung S, Bodas M, Moore AR, Larabee JL, Reuter D, Georgescu C, Wren JD, Myers DA, Papin JF, Walters MS. The Isolation and In Vitro Differentiation of Primary Fetal Baboon Tracheal Epithelial Cells for the Study of SARS-CoV-2 Host-Virus Interactions. Viruses 2023; 15:v15040862. [PMID: 37112842 PMCID: PMC10146425 DOI: 10.3390/v15040862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The mucociliary airway epithelium lines the human airways and is the primary site of host-environmental interactions in the lung. Following virus infection, airway epithelial cells initiate an innate immune response to suppress virus replication. Therefore, defining the virus-host interactions of the mucociliary airway epithelium is critical for understanding the mechanisms that regulate virus infection, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Non-human primates (NHP) are closely related to humans and provide a model to study human disease. However, ethical considerations and high costs can restrict the use of in vivo NHP models. Therefore, there is a need to develop in vitro NHP models of human respiratory virus infection that would allow for rapidly characterizing virus tropism and the suitability of specific NHP species to model human infection. Using the olive baboon (Papio anubis), we have developed methodologies for the isolation, in vitro expansion, cryopreservation, and mucociliary differentiation of primary fetal baboon tracheal epithelial cells (FBTECs). Furthermore, we demonstrate that in vitro differentiated FBTECs are permissive to SARS-CoV-2 infection and produce a potent host innate-immune response. In summary, we have developed an in vitro NHP model that provides a platform for the study of SARS-CoV-2 infection and other human respiratory viruses.
Collapse
Affiliation(s)
- Bharathiraja Subramaniyan
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
| | - Sunam Gurung
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.G.); (D.A.M.)
| | - Manish Bodas
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
| | - Andrew R. Moore
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
| | - Jason L. Larabee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Darlene Reuter
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.R.); (J.F.P.)
| | - Constantin Georgescu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.G.); (J.D.W.)
| | - Jonathan D. Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.G.); (J.D.W.)
| | - Dean A. Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.G.); (D.A.M.)
| | - James F. Papin
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.R.); (J.F.P.)
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Matthew S. Walters
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
- Correspondence:
| |
Collapse
|
20
|
Oubounyt M, Elkjaer ML, Laske T, Grønning AB, Moeller M, Baumbach J. De-novo reconstruction and identification of transcriptional gene regulatory network modules differentiating single-cell clusters. NAR Genom Bioinform 2023; 5:lqad018. [PMID: 36879901 PMCID: PMC9985332 DOI: 10.1093/nargab/lqad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/16/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technology provides an unprecedented opportunity to understand gene functions and interactions at single-cell resolution. While computational tools for scRNA-seq data analysis to decipher differential gene expression profiles and differential pathway expression exist, we still lack methods to learn differential regulatory disease mechanisms directly from the single-cell data. Here, we provide a new methodology, named DiNiro, to unravel such mechanisms de novo and report them as small, easily interpretable transcriptional regulatory network modules. We demonstrate that DiNiro is able to uncover novel, relevant, and deep mechanistic models that not just predict but explain differential cellular gene expression programs. DiNiro is available at https://exbio.wzw.tum.de/diniro/.
Collapse
Affiliation(s)
- Mhaned Oubounyt
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Tanja Laske
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Alexander G B Grønning
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marcus J Moeller
- Heisenberg Chair of Preventive and Translational Nephrology, Department of Nephrology, Rheumatology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
21
|
Porter LM, Guo W, Crozier TWM, Greenwood EJD, Ortmann B, Kottmann D, Nathan JA, Mahadeva R, Lehner PJ, McCaughan F. Cigarette smoke preferentially induces full length ACE2 expression in differentiated primary human airway cultures but does not alter the efficiency of cellular SARS-CoV-2 infection. Heliyon 2023; 9:e14383. [PMID: 36938474 PMCID: PMC10005841 DOI: 10.1016/j.heliyon.2023.e14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Cigarette smoking has many serious negative health consequences. The relationship between smoking and SARS-CoV-2 infection is controversial, specifically whether smokers are at increased risk of infection. We investigated the impact of cigarette smoke on ACE2 isoform expression and SARS-CoV-2 infection in differentiated primary human bronchial epithelial cells at the air-liquid-interface (ALI). We assessed the expression of ACE2 in response to CSE and therapeutics reported to modulate ACE2. We exposed ALI cultures to cigarette smoke extract (CSE) and then infected them with SARS-CoV-2. We measured cellular infection using flow cytometry and whole-transwell immunofluorescence. We found that CSE increased expression of full-length ACE2 (flACE2) but did not alter the expression of a Type I-interferon sensitive truncated isoform (dACE2) that lacks the capacity to bind SARS-CoV-2. CSE did not have a significant impact on key mediators of the innate immune response. Importantly, we show that, despite the increase in flACE2, CSE did not alter airway cell infection after CSE exposure. We found that nicotine does not significantly alter flACE2 expression but that NRF2 agonists do lead to an increase in flACE2 expression. This increase was not associated with an increase in SARS-CoV-2 infection. Our results are consistent with the epidemiological data suggesting that current smokers do not have an excess of SARS-CoV-2 infection. but that those with chronic respiratory or cardiovascular disease are more vulnerable to severe COVID-19. They suggest that, in differentiated conducting airway cells, flACE2 expression levels may not limit airway SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Linsey M. Porter
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 OQQ, UK
| | - Wenrui Guo
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 OQQ, UK
| | - Thomas WM. Crozier
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Edward JD. Greenwood
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Brian Ortmann
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Daniel Kottmann
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 OQQ, UK
| | - James A. Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ravindra Mahadeva
- Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 OQQ, UK
| | - Paul J. Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Frank McCaughan
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 OQQ, UK
| |
Collapse
|
22
|
Leibel SL, McVicar RN, Murad R, Kwong EM, Clark AE, Alvarado A, Grimmig BA, Nuryyev R, Young RE, Lee JC, Peng W, Zhu YP, Griffis E, Nowell CJ, Liu K, James B, Alarcon S, Malhotra A, Gearing LJ, Hertzog PJ, Galapate CM, Galenkamp KM, Commisso C, Smith DM, Sun X, Carlin AF, Croker BA, Snyder EY. The lung employs an intrinsic surfactant-mediated inflammatory response for viral defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525578. [PMID: 36747824 PMCID: PMC9900938 DOI: 10.1101/2023.01.26.525578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) causes an acute respiratory distress syndrome (ARDS) that resembles surfactant deficient RDS. Using a novel multi-cell type, human induced pluripotent stem cell (hiPSC)-derived lung organoid (LO) system, validated against primary lung cells, we found that inflammatory cytokine/chemokine production and interferon (IFN) responses are dynamically regulated autonomously within the lung following SARS-CoV-2 infection, an intrinsic defense mechanism mediated by surfactant proteins (SP). Single cell RNA sequencing revealed broad infectability of most lung cell types through canonical (ACE2) and non-canonical (endocytotic) viral entry routes. SARS-CoV-2 triggers rapid apoptosis, impairing viral dissemination. In the absence of surfactant protein B (SP-B), resistance to infection was impaired and cytokine/chemokine production and IFN responses were modulated. Exogenous surfactant, recombinant SP-B, or genomic correction of the SP-B deletion restored resistance to SARS-CoV-2 and improved viability.
Collapse
|
23
|
Human Coronavirus Cell Receptors Provide Challenging Therapeutic Targets. Vaccines (Basel) 2023; 11:vaccines11010174. [PMID: 36680018 PMCID: PMC9862439 DOI: 10.3390/vaccines11010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Coronaviruses interact with protein or carbohydrate receptors through their spike proteins to infect cells. Even if the known protein receptors for these viruses have no evolutionary relationships, they do share ontological commonalities that the virus might leverage to exacerbate the pathophysiology. ANPEP/CD13, DPP IV/CD26, and ACE2 are the three protein receptors that are known to be exploited by several human coronaviruses. These receptors are moonlighting enzymes involved in several physiological processes such as digestion, metabolism, and blood pressure regulation; moreover, the three proteins are expressed in kidney, intestine, endothelium, and other tissues/cell types. Here, we spot the commonalities between the three enzymes, the physiological functions of the enzymes are outlined, and how blocking either enzyme results in systemic deregulations and multi-organ failures via viral infection or therapeutic interventions is addressed. It can be difficult to pinpoint any coronavirus as the target when creating a medication to fight them, due to the multiple processes that receptors are linked to and their extensive expression.
Collapse
|
24
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
25
|
Mo JS, Abente EJ, Cardenas Perez M, Sutton TC, Cowan B, Ferreri LM, Geiger G, Gauger PC, Perez DR, Vincent Baker AL, Rajao DS. Transmission of Human Influenza A Virus in Pigs Selects for Adaptive Mutations on the HA Gene. J Virol 2022; 96:e0148022. [PMID: 36317880 PMCID: PMC9682980 DOI: 10.1128/jvi.01480-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022] Open
Abstract
Influenza A viruses (FLUAV) cause respiratory diseases in many host species, including humans and pigs. The spillover of FLUAV between swine and humans has been a concern for both public health and the swine industry. With the emergence of the triple reassortant internal gene (TRIG) constellation, establishment of human-origin FLUAVs in pigs has become more common, leading to increased viral diversity. However, little is known about the adaptation processes that are needed for a human-origin FLUAV to transmit and become established in pigs. We generated a reassortant FLUAV (VIC11pTRIG) containing surface gene segments from a human FLUAV strain and internal gene segments from the 2009 pandemic and TRIG FLUAV lineages and demonstrated that it can replicate and transmit in pigs. Sequencing and variant analysis identified three mutants that emerged during replication in pigs, which were mapped near the receptor binding site of the hemagglutinin (HA). The variants replicated more efficiently in differentiated swine tracheal cells compared to the virus containing the wildtype human-origin HA, and one of them was present in all contact pigs. These results show that variants are selected quickly after replication of human-origin HA in pigs, leading to improved fitness in the swine host, likely contributing to transmission. IMPORTANCE Influenza A viruses cause respiratory disease in several species, including humans and pigs. The bidirectional transmission of FLUAV between humans and pigs plays a significant role in the generation of novel viral strains, greatly impacting viral epidemiology. However, little is known about the evolutionary processes that allow human FLUAV to become established in pigs. In this study, we generated reassortant viruses containing human seasonal HA and neuraminidase (NA) on different constellations of internal genes and tested their ability to replicate and transmit in pigs. We demonstrated that a virus containing a common internal gene constellation currently found in U.S. swine was able to transmit efficiently via the respiratory route. We identified a specific amino acid substitution that was fixed in the respiratory contact pigs that was associated with improved replication in primary swine tracheal epithelial cells, suggesting it was crucial for the transmissibility of the human virus in pigs.
Collapse
Affiliation(s)
- Jong-suk Mo
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | | - Matias Cardenas Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Troy C. Sutton
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Lucas M. Ferreri
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Phillip C. Gauger
- Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
26
|
Garcia G, Jeyachandran AV, Wang Y, Irudayam JI, Cario SC, Sen C, Li S, Li Y, Kumar A, Nielsen-Saines K, French SW, Shah PS, Morizono K, Gomperts BN, Deb A, Ramaiah A, Arumugaswami V. Hippo signaling pathway activation during SARS-CoV-2 infection contributes to host antiviral response. PLoS Biol 2022; 20:e3001851. [PMID: 36346780 PMCID: PMC9642871 DOI: 10.1371/journal.pbio.3001851] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, causes respiratory failure and damage to multiple organ systems. The emergence of viral variants poses a risk of vaccine failures and prolongation of the pandemic. However, our understanding of the molecular basis of SARS-CoV-2 infection and subsequent COVID-19 pathophysiology is limited. In this study, we have uncovered a critical role for the evolutionarily conserved Hippo signaling pathway in COVID-19 pathogenesis. Given the complexity of COVID-19-associated cell injury and immunopathogenesis processes, we investigated Hippo pathway dynamics in SARS-CoV-2 infection by utilizing COVID-19 lung samples and human cell models based on pluripotent stem cell-derived cardiomyocytes (PSC-CMs) and human primary lung air-liquid interface (ALI) cultures. SARS-CoV-2 infection caused activation of the Hippo signaling pathway in COVID-19 lung and in vitro cultures. Both parental and Delta variant of concern (VOC) strains induced Hippo pathway. The chemical inhibition and gene knockdown of upstream kinases MST1/2 and LATS1 resulted in significantly enhanced SARS-CoV-2 replication, indicating antiviral roles. Verteporfin, a pharmacological inhibitor of the Hippo pathway downstream transactivator, YAP, significantly reduced virus replication. These results delineate a direct antiviral role for Hippo signaling in SARS-CoV-2 infection and the potential for this pathway to be pharmacologically targeted to treat COVID-19.
Collapse
Affiliation(s)
- Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Yijie Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Joseph Ignatius Irudayam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Sebastian Castillo Cario
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Chandani Sen
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Shen Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Yunfeng Li
- Translational Pathology Core Laboratory, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Karin Nielsen-Saines
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Samuel W. French
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, United States of America
| | - Priya S. Shah
- Department of Chemical Engineering, University of California, Davis, California, United States of America
| | - Kouki Morizono
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Brigitte N. Gomperts
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, United States of America
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California, United States of America
- Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California, United States of America
- Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
- California Nanosystems Institute, UCLA, Los Angeles, California, United States of America
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, California, United States of America
| | - Arunachalam Ramaiah
- Tata Institute for Genetics and Society, Centre at inStem, Bangalore, India
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
- Section of Cell and Developmental Biology, University of California, San Diego, California, United States of America
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California, United States of America
- California Nanosystems Institute, UCLA, Los Angeles, California, United States of America
| |
Collapse
|
27
|
Phandthong R, Wong M, Song A, Martinez T, Talbot P. New Insights into How JUUL™ Electronic Cigarette Aerosols and Aerosol Constituents Affect SARS-CoV-2 Infection of Human Bronchial Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.23.505031. [PMID: 36052374 PMCID: PMC9435402 DOI: 10.1101/2022.08.23.505031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Background The relationship between the use of tobacco products and SARS-CoV-2 infection is poorly understood and controversial. Most studies have been done with tobacco cigarettes, while few have examined the effect of electronic cigarettes (ECs) on SARS-CoV-2 infection. We tested the hypothesis that EC fluids and aerosols with high concentrations of nicotine promote SARS-COV-2 infection by increasing viral entry into human respiratory epithelial cells. Methods Responses of BEAS-2B cells to authentic JUUL™ aerosols or their individual constituents (propylene glycol (PG)/vegetable glycerin (VG) and nicotine) were compared using three exposure platforms: submerged culture, air-liquid-interface (ALI) exposure in a cloud chamber, and ALI exposure in a Cultex® system, which produces authentic heated EC aerosols. SARS-CoV-2 infection machinery was assessed using immunohistochemistry and Western blotting. Specifically, the levels of the SARS-CoV-2 receptor ACE2 (angiotensin converting enzyme 2) and a spike modifying enzyme, TMPRSS2 (transmembrane serine protease 2), were evaluated. Following each exposure, lentivirus pseudoparticles with spike protein and a green-fluorescent reporter were used to test viral penetration and the susceptibility of BEAS-2B cells to infection. Results Nicotine, EC fluids, and authentic JUUL™ aerosols increased both ACE2 levels and TMPRSS2 activity, which in turn increased viral particle entry into cells. While most data were in good agreement across the three exposure platforms, cells were more responsive to treatments when exposed at the ALI in the Cultex system, even though the exposures were brief and intermittent. In the Cultex system, PG/VG, PG/VG/nicotine, and JUUL™ aerosols significantly increased infection above clean air controls. However, both the PG/VG and JUUL™ treatments were significantly lower than nicotine/PG/VG. PG/VG increased infection only in the Cultex® system, which produces heated aerosol. Conclusion Our data are consistent with the conclusion that authentic JUUL™ aerosols or their individual constituents (nicotine or PG/VG) increase SARS-CoV-2 infection. The strong effect produced by nicotine was modulated in authentic JUUL aerosols, demonstrating the importance of studying mixtures and aerosols from actual EC products. These data support the idea that vaping increases the likelihood of contracting COVID-19.
Collapse
Affiliation(s)
- Rattapol Phandthong
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA 92521, USA
| | - Man Wong
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA 92521, USA
| | - Ann Song
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA 92521, USA
| | - Teresa Martinez
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA 92521, USA
| | - Prue Talbot
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
28
|
He Y, He Y, Hu Q, Yang S, Li J, Liu Y, Hu J. Association between smoking and COVID-19 severity: A multicentre retrospective observational study. Medicine (Baltimore) 2022; 101:e29438. [PMID: 35866793 PMCID: PMC9302364 DOI: 10.1097/md.0000000000029438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The relationship between smoking and coronavirus disease 2019 (COVID-19) severity remains unclear. This study aimed to investigate the effect of smoking status (current smoking and a smoking history) on the clinical severity of COVID-19. Data of all enrolled 588 patients, who were referred to 25 hospitals in Jiangsu province between January 10, 2020 and March 14, 2020, were retrospectively reviewed. Univariate and multivariate regression, random forest algorithms, and additive interaction were used to estimate the importance of selective predictor variables in the relationship between smoking and COVID-19 severity. In the univariate analysis, the proportion of patients with a current smoking status in the severe group was significantly higher than that in the non-severe group. In the multivariate analysis, current smoking remained a risk factor for severe COVID-19. Data from the interaction analysis showed a strong interaction between the number of comorbidities in patients with COVID-19 and smoking. However, no significant interaction was found between smoking and specific comorbidities, such as hypertension, diabetes, etc. In the random forest model, smoking history was ranked sixth in mean decrease accuracy. Active smoking may be significantly associated with an enhanced risk of COVID-19 progression towards severe disease. However, additional prospective studies are needed to clarify the complex relationship between smoking and COVID-19 severity.
Collapse
Affiliation(s)
- Yue He
- Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yangai He
- Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinghui Hu
- Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Yang
- Department of Biostatistics, Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yuan Liu & Jun Hu, Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China (e-mail: )
| | - Jun Hu
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yuan Liu & Jun Hu, Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China (e-mail: )
| |
Collapse
|
29
|
Zhang N, Liu Y, Yang C, Zeng P, Gong T, Tao L, Li X. Association between smoking and risk of death in patients
with sepsis: A systematic review and meta-analysis. Tob Induc Dis 2022; 20:65. [PMID: 35903643 PMCID: PMC9284521 DOI: 10.18332/tid/150340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Nai Zhang
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, China
| | - Yujuan Liu
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, China
| | - Chuang Yang
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, China
| | - Peng Zeng
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, China
| | - Tao Gong
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, China
| | - Lu Tao
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, China
| | - Xinai Li
- Department of Respiratory Medicine, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, China
| |
Collapse
|
30
|
Lopez RB, Ochsner KN, Kober H. Brief training in regulation of craving reduces cigarette smoking. J Subst Abuse Treat 2022; 138:108749. [PMID: 35216868 DOI: 10.1016/j.jsat.2022.108749] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/31/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Craving is an important contributing factor in cigarette smoking and has been added as a diagnostic criterion for addiction in the DSM-5. Cognitive-behavioral therapy and other treatments that incorporate craving regulation strategies reduce smoking and the likelihood of relapse. Although this finding suggests that the regulation of craving is an important mechanism underlying smoking cessation, whether targeted interventions that train smokers to regulate craving can directly impact real-world smoking behaviors is unclear. METHOD Across two pilot studies (N = 33; N = 60), we tested whether a brief, computer-delivered training session in the cognitive regulation of craving altered subsequent smoking behaviors in daily life. The study first randomly assigned participants to either a no training (control) group, or one of two Regulation of Craving Training (ROC-T) conditions. Next, all participants came into the lab and those assigned to ROC-T conditions were trained to implement a cognitive strategy to regulate their craving, by either focusing on the negative consequences of smoking, or by distracting themselves. Then, these participants underwent ROC-T during which they practiced using the strategy to regulate their craving during cue exposure. The study subsequently assessed participants' smoking via daily diaries for 3-6 days, and via self-report up to 1-month follow-up. RESULTS Across both studies, ROC-T conditions were associated with significant reductions in average cigarettes smoked per day, with effects persisting through follow-up. CONCLUSION These results confirm that the regulation of craving is an important mechanism of smoking cessation, and can be targeted via easily administered training procedures, such as ROC-T.
Collapse
Affiliation(s)
- Richard B Lopez
- Department of Psychology, Bard College, Annandale on Hudson, NY, USA
| | - Kevin N Ochsner
- Department of Psychology, Columbia University, New York, NY, USA
| | - Hedy Kober
- Department of Psychiatry, Yale University, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
31
|
Cui T, Miao G, Jin X, Yu H, Zhang Z, Xu L, Wu Y, Qu G, Liu G, Zheng Y, Jiang G. The adverse inflammatory response of tobacco smoking in COVID-19 patients: biomarkers from proteomics and metabolomics. J Breath Res 2022; 16. [PMID: 35772384 DOI: 10.1088/1752-7163/ac7d6b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023]
Abstract
Whether tobacco smoking affects the occurrence and development of COVID-19 is still a controversial issue, and potential biomarkers to predict the adverse outcomes of smoking in the progression of COVID-19 patients have not yet been elucidated. To further uncover their linkage and explore the effective biomarkers, three proteomics and metabolomics databases (i.e. smoking status, COVID-19 status, and basic information of population) from human serum proteomic and metabolomic levels were established by literature search. Bioinformatics analysis was then performed to analyze the interactions of proteins or metabolites among the above three databases and their biological effects. Potential confounding factors (age, BMI, and gender) were controlled to improve the reliability. The obtained data indicated that smoking may increase the relative risk of conversion from non-severe to severe COVID-19 patients by inducing the dysfunctional immune response. Seven interacting proteins (C8A, LBP, FCN2, CRP, SAA1, SAA2, and VTN) were found to promote the deterioration of COVID-19 by stimulating the complement pathway and macrophage phagocytosis as well as inhibiting the associated negative regulatory pathways, which can be biomarkers to reflect and predict adverse outcomes in smoking COVID-19 patients. Three crucial pathways related to immunity and inflammation, including tryptophan, arginine, and glycerophospholipid metabolism, were considered to affect the effect of smoking on the adverse outcomes of COVID-19 patients. Our study provides novel evidence and corresponding biomarkers as potential predictors of severe disease progression in smoking COVID-19 patients, which is of great significance for preventing further deterioration in these patients.
Collapse
Affiliation(s)
- Tenglong Cui
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Gan Miao
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Xiaoting Jin
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Haiyi Yu
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Ze Zhang
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Liting Xu
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Yili Wu
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Guangbo Qu
- Research Centre for Eco-Environmental Sciences Chinese Academy of Sciences, Beijing, Beijing, Beijing, 100085, CHINA
| | - Guoliang Liu
- China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, China., Beijing, 100029, CHINA
| | - Yuxin Zheng
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Guibin Jiang
- Research Centre for Eco-Environmental Sciences Chinese Academy of Sciences, State Key Laboratory of Environmental Chemistry and Ecotoxicology , PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085 PR CHINA, Beijing, Beijing, 100085, CHINA
| |
Collapse
|
32
|
Rovito R, Augello M, Ben-Haim A, Bono V, d'Arminio Monforte A, Marchetti G. Hallmarks of Severe COVID-19 Pathogenesis: A Pas de Deux Between Viral and Host Factors. Front Immunol 2022; 13:912336. [PMID: 35757770 PMCID: PMC9231592 DOI: 10.3389/fimmu.2022.912336] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Two years into Coronavirus Disease 2019 (COVID-19) pandemic, a comprehensive characterization of the pathogenesis of severe and critical forms of COVID-19 is still missing. While a deep dysregulation of both the magnitude and functionality of innate and adaptive immune responses have been described in severe COVID-19, the mechanisms underlying such dysregulations are still a matter of scientific debate, in turn hampering the identification of new therapies and of subgroups of patients that would most benefit from individual clinical interventions. Here we review the current understanding of viral and host factors that contribute to immune dysregulation associated with COVID-19 severity in the attempt to unfold and broaden the comprehension of COVID-19 pathogenesis and to define correlates of protection to further inform strategies of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Assaf Ben-Haim
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Petcherski A, Sharma M, Satta S, Daskou M, Vasilopoulos H, Hugo C, Ritou E, Dillon BJ, Fung E, Garcia G, Scafoglio C, Purkayastha A, Gomperts BN, Fishbein GA, Arumugaswami V, Liesa M, Shirihai OS, Kelesidis T. Mitoquinone mesylate targets SARS-CoV-2 infection in preclinical models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.22.481100. [PMID: 35233569 PMCID: PMC8887067 DOI: 10.1101/2022.02.22.481100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To date, there is no effective oral antiviral against SARS-CoV-2 that is also anti-inflammatory. Herein, we show that the mitochondrial antioxidant mitoquinone/mitoquinol mesylate (Mito-MES), a dietary supplement, has potent antiviral activity against SARS-CoV-2 and its variants of concern in vitro and in vivo . Mito-MES had nanomolar in vitro antiviral potency against the Beta and Delta SARS-CoV-2 variants as well as the murine hepatitis virus (MHV-A59). Mito-MES given in SARS-CoV-2 infected K18-hACE2 mice through oral gavage reduced viral titer by nearly 4 log units relative to the vehicle group. We found in vitro that the antiviral effect of Mito-MES is attributable to its hydrophobic dTPP+ moiety and its combined effects scavenging reactive oxygen species (ROS), activating Nrf2 and increasing the host defense proteins TOM70 and MX1. Mito-MES was efficacious reducing increase in cleaved caspase-3 and inflammation induced by SARS-CoV2 infection both in lung epithelial cells and a transgenic mouse model of COVID-19. Mito-MES reduced production of IL-6 by SARS-CoV-2 infected epithelial cells through its antioxidant properties (Nrf2 agonist, coenzyme Q10 moiety) and the dTPP moiety. Given established safety of Mito-MES in humans, our results suggest that Mito-MES may represent a rapidly applicable therapeutic strategy that can be added in the therapeutic arsenal against COVID-19. Its potential long-term use by humans as diet supplement could help control the SARS-CoV-2 pandemic, especially in the setting of rapidly emerging SARS-CoV-2 variants that may compromise vaccine efficacy. One-Sentence Summary Mitoquinone/mitoquinol mesylate has potent antiviral and anti-inflammatory activity in preclinical models of SARS-CoV-2 infection.
Collapse
|
34
|
Raza SA, Zhang X, Oluyomi A, Adepoju OE, King B, Amos CI, Badr H. Predictors of COVID-19 perceived susceptibility: insights from population-based self-reported survey during lockdown in the United States. J Infect Public Health 2022; 15:508-514. [PMID: 35429789 PMCID: PMC8941860 DOI: 10.1016/j.jiph.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/01/2021] [Accepted: 03/16/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic during lockdown has highlighted the importance of identifying individuals most at risk of infection with SARS-CoV-2, underscoring the need to assess factors contributing to susceptibility to disease. With the rapidly evolving nature of the pandemic and its new variants, there is an inadequate understanding on whether there are certain factors such as a specific symptom or collection of symptoms that combined with life-style behaviors may be useful to predict susceptibility. The study aims to explore such factors from pre-vaccination data to guide public health response to potential new waves. METHODS An anonymous electronic survey was distributed through social media during the lockdown period in the United States from April to June 2020. Respondents were questioned regarding COVID testing, presenting symptoms, demographic information, comorbidities, and confirmation of COVID-19 test results. Stepwise logistic regression was used to identify predictors for COVID-19 perceived susceptibility. Selected classifiers were assessed for prediction performance using area under receiver operating characteristic (AUROC) curve analysis. RESULTS A total of 130 participants deemed as susceptible because they self-reported their perception of having COVID-19 (but without the evidence of positive test) were compared with 130 individuals with documented negative test results. Participants had a mean age of 45 years, and 165 (63%) were female. Final multivariable model showed significant associations with perceived susceptibility for the following variables: fever (OR:33.5; 95%CI: 3.9,85.9), body ache (OR:3.0; 95%CI:1.1,6.4), contact history (OR:2.7; 95%CI:1.1,6.4), age> 50 (OR:2.7; 95%CI:1.1, 6.6) and smoking (OR:3.3; 95%CI: 1.2,9.1) after adjusting for other symptoms and presence of comorbid conditions. The AUROC ranged from poor to fair (0.65-0.76) for cluster of symptoms but improved to a good model (AUROC = 0.803) after inclusion of sociodemographic and lifestyle behaviors e.g., age and smoking tobacco. CONCLUSIONS Fever and body aches suggest association with perceived COVID-19 susceptibility in the presence of demographic and lifestyle behaviors. Using other constitutional and respiratory symptoms with fever and body aches, the parsimonious classifier correctly predicts 80.3% of COVID-19 perceived susceptibility. A larger cohort of respondents will be needed to study and refine classifier performance in future lockdowns and with expected surge of new variants of COVID-19 pandemic.
Collapse
Affiliation(s)
- Syed Ahsan Raza
- Department of Medicine, Section of Epidemiology and Population Science, Baylor College of Medicine, Houston, TX, United States.
| | - Xiaotao Zhang
- Department of Medicine, Section of Epidemiology and Population Science, Baylor College of Medicine, Houston, TX, United States; Humana Integrated Health Systems Sciences Institute, Houston, TX, United States.
| | - Abiodun Oluyomi
- Department of Medicine, Section of Epidemiology and Population Science, Baylor College of Medicine, Houston, TX, United States.
| | - Omolola E Adepoju
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Health Systems and Population Health Science, University of Houston College of Medicine, Houston, TX, United States.
| | - Ben King
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Health Systems and Population Health Science, University of Houston College of Medicine, Houston, TX, United States.
| | - Christopher I Amos
- Department of Medicine, Section of Epidemiology and Population Science, Baylor College of Medicine, Houston, TX, United States.
| | - Hoda Badr
- Department of Medicine, Section of Epidemiology and Population Science, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
35
|
Three-dimensional models of the lung: past, present and future: a mini review. Biochem Soc Trans 2022; 50:1045-1056. [PMID: 35411381 DOI: 10.1042/bst20190569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 01/09/2023]
Abstract
Respiratory diseases are a major reason for death in both men and women worldwide. The development of therapies for these diseases has been slow and the lack of relevant human models to understand lung biology inhibits therapeutic discovery. The lungs are structurally and functionally complex with many different cell types which makes designing relevant lung models particularly challenging. The traditional two-dimensional (2D) cell line cultures are, therefore, not a very accurate representation of the in vivo lung tissue. The recent development of three-dimensional (3D) co-culture systems, popularly known as organoids/spheroids, aims to bridge the gap between 'in-dish' and 'in-tissue' cell behavior. These 3D cultures are modeling systems that are widely divergent in terms of culturing techniques (bottom-up/top-down) that can be developed from stem cells (adult/embryonic/pluripotent stem cells), primary cells or from two or more types of cells, to build a co-culture system. Lung 3D models have diverse applications including the understanding of lung development, lung regeneration, disease modeling, compound screening, and personalized medicine. In this review, we discuss the different techniques currently being used to generate 3D models and their associated cellular and biological materials. We further detail the potential applications of lung 3D cultures for disease modeling and advances in throughput for drug screening.
Collapse
|
36
|
Garcia G, Wang Y, Ignatius Irudayam J, Jeyachandran AV, Cario SC, Sen C, Li S, Li Y, Kumar A, Nielsen-Saines K, French SW, Shah PS, Morizono K, Gomperts B, Deb A, Ramaiah A, Arumugaswami V. Hippo Signaling Pathway Activation during SARS-CoV-2 Infection Contributes to Host Antiviral Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.07.487520. [PMID: 35441167 PMCID: PMC9016637 DOI: 10.1101/2022.04.07.487520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2, responsible for the COVID-19 pandemic, causes respiratory failure and damage to multiple organ systems. The emergence of viral variants poses a risk of vaccine failures and prolongation of the pandemic. However, our understanding of the molecular basis of SARS-CoV-2 infection and subsequent COVID-19 pathophysiology is limited. In this study, we have uncovered a critical role for the evolutionarily conserved Hippo signaling pathway in COVID-19 pathogenesis. Given the complexity of COVID-19 associated cell injury and immunopathogenesis processes, we investigated Hippo pathway dynamics in SARS-CoV-2 infection by utilizing COVID-19 lung samples, and human cell models based on pluripotent stem cell-derived cardiomyocytes (PSC-CMs) and human primary lung air-liquid interface (ALI) cultures. SARS-CoV-2 infection caused activation of the Hippo signaling pathway in COVID-19 lung and in vitro cultures. Both parental and Delta variant of concern (VOC) strains induced Hippo pathway. The chemical inhibition and gene knockdown of upstream kinases MST1/2 and LATS1 resulted in significantly enhanced SARS-CoV-2 replication, indicating antiviral roles. Verteporfin a pharmacological inhibitor of the Hippo pathway downstream transactivator, YAP, significantly reduced virus replication. These results delineate a direct antiviral role for Hippo signaling in SARS-CoV-2 infection and the potential for this pathway to be pharmacologically targeted to treat COVID-19.
Collapse
Affiliation(s)
- Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Yijie Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Joseph Ignatius Irudayam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Sebastian Castillo Cario
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Chandani Sen
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Shen Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Yunfeng Li
- Translational Pathology Core Laboratory, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI USA
| | - Karin Nielsen-Saines
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Samuel W. French
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Priya S Shah
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA
| | - Kouki Morizono
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Brigitte Gomperts
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA.,Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.,California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Arunachalam Ramaiah
- Tata Institute for Genetics and Society, Centre at inStem, Bangalore, KA 560065, India,Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.,Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA.,To whom correspondence should be addressed: Vaithilingaraja Arumugaswami, DVM, PhD., 10833 Le Conte Ave, CHS B2-049A, Los Angeles, California 90095, Phone: (310) 794-9568, ; Arunachalam Ramaiah, PhD., 321 Steinhaus Hall, UCI, Irvine, CA 92697-2525,
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA.,Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.,California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA.,Lead Contact,To whom correspondence should be addressed: Vaithilingaraja Arumugaswami, DVM, PhD., 10833 Le Conte Ave, CHS B2-049A, Los Angeles, California 90095, Phone: (310) 794-9568, ; Arunachalam Ramaiah, PhD., 321 Steinhaus Hall, UCI, Irvine, CA 92697-2525,
| |
Collapse
|
37
|
Guo W, Porter LM, Crozier TW, Coates M, Jha A, McKie M, Nathan JA, Lehner PJ, Greenwood EJ, McCaughan F. Topical TMPRSS2 inhibition prevents SARS-CoV-2 infection in differentiated human airway cultures. Life Sci Alliance 2022; 5:e202101116. [PMID: 35110354 PMCID: PMC8814636 DOI: 10.26508/lsa.202101116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND There are limited effective prophylactic/early treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Viral entry requires spike protein binding to the angiotensin-converting enzyme-2 receptor and cleavage by transmembrane serine protease 2 (TMPRSS2), a cell surface serine protease. Targeting of TMPRSS2 by either androgen blockade or direct inhibition is in clinical trials in early SARS-CoV-2 infection. METHODS We used differentiated primary human airway epithelial cells at the air-liquid interface to test the impact of targeting TMPRSS2 on the prevention of SARS-CoV-2 infection. RESULTS We first modelled the systemic delivery of compounds. Enzalutamide, an oral androgen receptor antagonist, had no impact on SARS-CoV-2 infection. By contrast, camostat mesylate, an orally available serine protease inhibitor, blocked SARS-CoV-2 entry. However, oral camostat is rapidly metabolised in the circulation, with poor airway bioavailability. We therefore modelled local airway administration by applying camostat to the apical surface of differentiated airway cultures. We demonstrated that a brief exposure to topical camostat effectively restricts SARS-CoV-2 infection. CONCLUSION These experiments demonstrate a potential therapeutic role for topical camostat for pre- or post-exposure prophylaxis of SARS-CoV-2, which can now be evaluated in a clinical trial.
Collapse
Affiliation(s)
- Wenrui Guo
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Linsey M Porter
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Thomas Wm Crozier
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Matthew Coates
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Akhilesh Jha
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Mikel McKie
- Medical Research Council, Biostatistic Unit, Cambridge, UK
| | - James A Nathan
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Paul J Lehner
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Edward Jd Greenwood
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Frank McCaughan
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Peng Y, Wang ZN, Chen SY, Xu AR, Fang ZF, Sun J, Zhou ZQ, Hou XT, Cen LJ, Ma JJ, Zhao JC, Guan WJ, Wang DY, Zhong NS. Angiotensin-converting enzyme 2 in peripheral lung club cells modulates the susceptibility to SARS-CoV-2 in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2022; 322:L712-L721. [PMID: 35318858 PMCID: PMC9054324 DOI: 10.1152/ajplung.00305.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accumulating evidence has confirmed that chronic obstructive pulmonary disease (COPD) is a risk factor for development of severe pathological changes in the peripheral lungs of patients with COVID-19. However, the underlying molecular mechanisms remain unclear. Because bronchiolar club cells are crucial for maintaining small airway homeostasis, we sought to explore whether the altered susceptibility to SARS-CoV-2 infection of the club cells might have contributed to the severe COVID-19 pneumonia in COPD patients. Our investigation on the quantity and distribution patterns of angiotensin-converting enzyme 2 (ACE2) in airway epithelium via immunofluorescence staining revealed that the mean fluorescence intensity of the ACE2-positive epithelial cells was significantly higher in club cells than those in other epithelial cells (including ciliated cells, basal cells, goblet cells, neuroendocrine cells, and alveolar type 2 cells). Compared with nonsmokers, the median percentage of club cells in bronchiolar epithelium and ACE2-positive club cells was significantly higher in COPD patients. In vitro, SARS-CoV-2 infection (at a multiplicity of infection of 1.0) of primary small airway epithelial cells, cultured on air-liquid interface, confirmed a higher percentage of infected ACE2-positive club cells in COPD patients than in nonsmokers. Our findings have indicated the role of club cells in modulating the pathogenesis of SARS-CoV-2-related severe pneumonia and the poor clinical outcomes, which may help physicians to formulate a novel therapeutic strategy for COVID-19 patients with coexisting COPD.
Collapse
Affiliation(s)
- Yang Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhao-Ni Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shi-Ying Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ai-Ru Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhang-Fu Fang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zi-Qing Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-Tao Hou
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Lai-Jian Cen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian-Juan Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jin-Cun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China.,Department of Respiratory and Critical Care Medicine, Foshan Second People's Hospital, Affiliated Foshan Hospital of Southern Medical University, Foshan, Guangdong, China
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Upadhya S, Rehman J, Malik AB, Chen S. Mechanisms of Lung Injury Induced by SARS-CoV-2 Infection. Physiology (Bethesda) 2022; 37:88-100. [PMID: 34698589 PMCID: PMC8873036 DOI: 10.1152/physiol.00033.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
The lung is the major target organ of SARS-CoV-2 infection, which causes COVID-19. Here, we outline the multistep mechanisms of lung epithelial and endothelial injury induced by SARS-CoV-2: direct viral infection, chemokine/cytokine-mediated damage, and immune cell-mediated lung injury. Finally, we discuss the recent progress in terms of antiviral therapeutics as well as the development of anti-inflammatory or immunomodulatory therapeutic approaches. This review also provides a systematic overview of the models for studying SARS-CoV-2 infection and discusses how an understanding of mechanisms of lung injury will help identify potential targets for future drug development to mitigate lung injury.
Collapse
Affiliation(s)
- Samsara Upadhya
- Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Asrar B Malik
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, New York
| |
Collapse
|
40
|
Langel SN, Kelly FL, Brass DM, Nagler AE, Carmack D, Tu JJ, Travieso T, Goswami R, Permar SR, Blasi M, Palmer SM. E-cigarette and food flavoring diacetyl alters airway cell morphology, inflammatory and antiviral response, and susceptibility to SARS-CoV-2. Cell Death Dis 2022; 8:64. [PMID: 35169120 PMCID: PMC8847558 DOI: 10.1038/s41420-022-00855-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/09/2022]
Abstract
Diacetyl (DA) is an α-diketone that is used to flavor microwave popcorn, coffee, and e-cigarettes. Occupational exposure to high levels of DA causes impaired lung function and obstructive airway disease. Additionally, lower levels of DA exposure dampen host defenses in vitro. Understanding DA’s impact on lung epithelium is important for delineating exposure risk on lung health. In this study, we assessed the impact of DA on normal human bronchial epithelial cell (NHBEC) morphology, transcriptional profiles, and susceptibility to SARS-CoV-2 infection. Transcriptomic analysis demonstrated cilia dysregulation, an increase in hypoxia and sterile inflammation associated pathways, and decreased expression of interferon-stimulated genes after DA exposure. Additionally, DA exposure resulted in cilia loss and increased hyaluronan production. After SARS-CoV-2 infection, both genomic and subgenomic SARS-CoV-2 RNA were increased in DA vapor- compared to vehicle-exposed NHBECs. This work suggests that transcriptomic and physiologic changes induced by DA vapor exposure damage cilia and increase host susceptibility to SARS-CoV-2.
Collapse
Affiliation(s)
- Stephanie N Langel
- Duke Center for Human Systems Immunology and Department of Surgery, Durham, NC, USA
| | - Francine L Kelly
- Duke Clinical Research Institute and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - David M Brass
- Duke Clinical Research Institute and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Andrew E Nagler
- Duke Clinical Research Institute and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Dylan Carmack
- Duke Clinical Research Institute and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Joshua J Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.,Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Tatianna Travieso
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.,Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA. .,Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA.
| | - Scott M Palmer
- Duke Clinical Research Institute and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
41
|
McFadden DD, Bornstein SL, Vassallo R, Salonen BR, Bhuiyan MN, Schroeder DR, Croghan IT. Symptoms COVID 19 Positive Vapers Compared to COVID 19 Positive Non-vapers. J Prim Care Community Health 2022; 13:21501319211062672. [PMID: 34986700 PMCID: PMC8744181 DOI: 10.1177/21501319211062672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objectives: The purpose of the present study was to assess and describe the severity of
symptoms reported by Covid-19 positive patients who vaped (smoked
e-cigarettes) when compared to those who did not vape or smoke at the time
of the diagnosis of Covid-19. Methods: Patients from this study are from a well-characterized patient cohort
collected at Mayo Clinic between March 1, 2020 and February 28, 2021; with
confirmed COVID-19 diagnosis defined as a positive result on
reverse-transcriptase–polymerase-chain-reaction (RT-PCR) assays from
nasopharyngeal swab specimens. Among the 1734 eligible patients, 289
patients reported current vaping. The cohort of vapers (N = 289) was age and
gender matched to 1445 covid-19 positive patients who did not vape. The data
analyzed included: date of birth, gender, ethnicity, race, marital status,
as well as lifestyle history such as vaping and smoking and reported
covid-19 symptoms experienced. Results: A logistic regression analysis was performed separately for each symptom
using generalized estimating equations (GEE) with robust variance estimates
in order to account for the 1:5 age, sex, and race matched set study design.
Patients who vaped and developed Covid-19 infection were more likely to have
chest pain or tightness (16% vs 10%, vapers vs non vapers,
P = .005), chills (25% vs 19%, vapers vs non vapers,
P = .0016), myalgia (39% vs 32%, vapers vs non vapers,
P = .004), headaches (49% vs 41% vapers vs non vapers,
P = .026), anosmia/dysgeusia (37% vs 30%, vapers vs non
vapers, P = .009), nausea/vomiting/abdominal pain (16% vs
10%, vapers vs non vapers, P = .003), diarrhea (16% vs 10%,
vapers vs non vapers, P = .004), and non-severe
light-headedness (16% vs 9%, vapers vs non vapers,
P < .001). Conclusion: Vapers experience higher frequency of covid-19 related symptoms when compared
with age and gender matched non-vapers. Further work should examine the
impact vaping has on post-covid symptom experience.
Collapse
|
42
|
Tosta E. The seven constitutive respiratory defense barriers against SARS-CoV-2 infection. Rev Soc Bras Med Trop 2021; 54:e04612021. [PMID: 34932765 PMCID: PMC8687496 DOI: 10.1590/0037-8682-0461-2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
Before eliciting an adaptive immune response, SARS-CoV-2 must overcome seven constitutive respiratory defense barriers. The first is the mucus covering the respiratory tract's luminal surface, which entraps inhaled particles, including infectious agents, and eliminates them by mucociliary clearance. The second barrier comprises various components present in the airway lining fluid, the surfactants. Besides providing low surface tension that allows efficient gas exchange at the alveoli, surfactants inhibit the invasion of epithelial cells by respiratory viruses, enhance pathogen uptake by phagocytes, and regulate immune cells' functions. The respiratory tract microbiota constitutes the third defense barrier against SARS-CoV-2. It activates the innate and adaptive immune cells and elicits anti-infectious molecules such as secretory IgA antibodies, defensins, and interferons. The fourth defense barrier comprises the antimicrobial peptides defensins, and lactoferrin. They show direct antiviral activity, inhibit viral fusion, and modulate the innate and adaptive immune responses. Secretory IgA antibodies, the fifth defense barrier, besides protecting the local microbiota against noxious agents, also inhibit SARS-CoV-2 cell invasion. If the virus overcomes this barrier, it reaches its target, the respiratory epithelial cells. However, these cells also act as a defense barrier, the sixth one, since they hinder the virus' access to receptors and produce antiviral and immunomodulatory molecules such as interferons, lactoferrin, and defensins. Finally, the sensing of the virus by the cells of innate immunity, the last constitutive defense barrier, elicits a cascade of signals that activate adaptive immune cells and may inhibit the development of productive infection. The subject of the present essay is discussing these mechanisms.
Collapse
Affiliation(s)
- Eduardo Tosta
- Professor Emeritus, Faculdade de Medicina, Universidade de Brasília, Brasília, DF , Brasil
| |
Collapse
|
43
|
Hatton CF, Botting RA, Dueñas ME, Haq IJ, Verdon B, Thompson BJ, Spegarova JS, Gothe F, Stephenson E, Gardner AI, Murphy S, Scott J, Garnett JP, Carrie S, Powell J, Khan CMA, Huang L, Hussain R, Coxhead J, Davey T, Simpson AJ, Haniffa M, Hambleton S, Brodlie M, Ward C, Trost M, Reynolds G, Duncan CJA. Delayed induction of type I and III interferons mediates nasal epithelial cell permissiveness to SARS-CoV-2. Nat Commun 2021; 12:7092. [PMID: 34876592 PMCID: PMC8651658 DOI: 10.1038/s41467-021-27318-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
The nasal epithelium is a plausible entry point for SARS-CoV-2, a site of pathogenesis and transmission, and may initiate the host response to SARS-CoV-2. Antiviral interferon (IFN) responses are critical to outcome of SARS-CoV-2. Yet little is known about the interaction between SARS-CoV-2 and innate immunity in this tissue. Here we apply single-cell RNA sequencing and proteomics to a primary cell model of human nasal epithelium differentiated at air-liquid interface. SARS-CoV-2 demonstrates widespread tropism for nasal epithelial cell types. The host response is dominated by type I and III IFNs and interferon-stimulated gene products. This response is notably delayed in onset relative to viral gene expression and compared to other respiratory viruses. Nevertheless, once established, the paracrine IFN response begins to impact on SARS-CoV-2 replication. When provided prior to infection, recombinant IFNβ or IFNλ1 induces an efficient antiviral state that potently restricts SARS-CoV-2 viral replication, preserving epithelial barrier integrity. These data imply that the IFN-I/III response to SARS-CoV-2 initiates in the nasal airway and suggest nasal delivery of recombinant IFNs to be a potential chemoprophylactic strategy.
Collapse
Affiliation(s)
- Catherine F Hatton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel A Botting
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Iram J Haq
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Bernard Verdon
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Benjamin J Thompson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jarmila Stremenova Spegarova
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Florian Gothe
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Aaron I Gardner
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sandra Murphy
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Scott
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - James P Garnett
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sean Carrie
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jason Powell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - C M Anjam Khan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lei Huang
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rafiqul Hussain
- Genomics Core Facility, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Coxhead
- Genomics Core Facility, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Department of Dermatology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Malcolm Brodlie
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Chris Ward
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gary Reynolds
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J A Duncan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
44
|
Ernzen K, Trask AJ, Peeples ME, Garg V, Zhao MT. Human Stem Cell Models of SARS-CoV-2 Infection in the Cardiovascular System. Stem Cell Rev Rep 2021; 17:2107-2119. [PMID: 34365591 PMCID: PMC8349465 DOI: 10.1007/s12015-021-10229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
The virus responsible for coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected over 190 million people to date, causing a global pandemic. SARS-CoV-2 relies on binding of its spike glycoprotein to angiotensin-converting enzyme 2 (ACE2) for infection. In addition to fever, cough, and shortness of breath, severe cases of SARS-CoV-2 infection may result in the rapid overproduction of pro-inflammatory cytokines. This overactive immune response is known as a cytokine storm, which leads to several serious clinical manifestations such as acute respiratory distress syndrome and myocardial injury. Cardiovascular disorders such as acute coronary syndrome (ACS) and heart failure not only enhance disease progression at the onset of infection, but also arise in hospitalized patients with COVID-19. Tissue-specific differentiated cells and organoids derived from human pluripotent stem cells (hPSCs) serve as an excellent model to address how SARS-CoV-2 damages the lungs and the heart. In this review, we summarize the molecular basis of SARS-CoV-2 infection and the current clinical perspectives of the bidirectional relationship between the cardiovascular system and viral progression. Furthermore, we also address the utility of hPSCs as a dynamic model for SARS-CoV-2 research and clinical translation.
Collapse
Affiliation(s)
- Kyle Ernzen
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mark E Peeples
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Center for Vaccine and Immunity, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
45
|
Rebuli ME, Brocke SA, Jaspers I. Impact of inhaled pollutants on response to viral infection in controlled exposures. J Allergy Clin Immunol 2021; 148:1420-1429. [PMID: 34252446 PMCID: PMC8569906 DOI: 10.1016/j.jaci.2021.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/09/2022]
Abstract
Air pollutants are a major source of increased risk of disease, hospitalization, morbidity, and mortality worldwide. The respiratory tract is a primary target of potential concurrent exposure to both inhaled pollutants and pathogens, including viruses. Although there are various associative studies linking adverse outcomes to co- or subsequent exposures to inhaled pollutants and viruses, knowledge about causal linkages and mechanisms by which pollutant exposure may alter human respiratory responses to viral infection is more limited. In this article, we review what is known about the impact of pollutant exposure on antiviral host defense responses and describe potential mechanisms by which pollutants can alter the viral infection cycle. This review focuses on evidence from human observational and controlled exposure, ex vivo, and in vitro studies. Overall, there are a myriad of points throughout the viral infection cycle that inhaled pollutants can alter to modulate appropriate host defense responses. These alterations may contribute to observed increases in rates of viral infection and associated morbidity and mortality in areas of the world with high ambient pollution levels or in people using tobacco products. Although the understanding of mechanisms of interaction is advancing through controlled in vivo and in vitro exposure models, more studies are needed because emerging infectious pathogens, such as severe acute respiratory syndrome coronavirus 2, present a significant threat to public health.
Collapse
Affiliation(s)
- Meghan E Rebuli
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC; Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Stephanie A Brocke
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC; Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
46
|
Lan F, Zhu C, Jin R, Zhou L, Hu Y, Zhao J, Xu S, Xia Y, Li W. Clinical characteristics of COVID-19 patients with complications: implications for management. Ther Adv Chronic Dis 2021; 12:20406223211041924. [PMID: 34729141 PMCID: PMC8435930 DOI: 10.1177/20406223211041924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Background: A novel coronavirus disease 2019 (COVID-19) has caused outbreaks worldwide, and the number of cases is rapidly increasing through human-to-human transmission. Because of the greater transmission capacity and possible subsequent multi-organ damage caused by the virus, it is crucial to understand precisely and manage COVID-19 patients. However, the underlying differences in the clinical features of COVID-19 with and without comorbidities are not fully understood. Aim: The objective of this study was to identify the clinical features of COVID-19 patients with and without complications to guide treatment and predict the prognosis. Method: We collected the clinical characteristics of COVID-19 patients with and without different complications, including hypertension, cardiovascular disease and diabetes. Next, we performed a baseline comparison of each index and traced the dynamic changes in these factors during hospitalization to explore the potential associations. Result: A clinical index of differential expression was used for the regression to select top-ranking factors. The top-ranking clinical characteristics varied in each subgroup, such as indices of liver function, renal function and inflammatory markers. Among them, the indices of renal function were highly ranked in all subgroups and displayed significant differences during hospitalization. Conclusion: Organ functions of COVID-19 patients, particularly renal function, should be cautiously taken care of during management and might be a crucial factor for a poor prognosis of these patients with complications.
Collapse
Affiliation(s)
- Fen Lan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Jin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lingxiao Zhou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Hu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyun Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xia
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
47
|
Zhu Z, Zhang S, Wang P, Chen X, Bi J, Cheng L, Zhang X. A comprehensive review of the analysis and integration of omics data for SARS-CoV-2 and COVID-19. Brief Bioinform 2021; 23:6412396. [PMID: 34718395 PMCID: PMC8574485 DOI: 10.1093/bib/bbab446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Since the first report of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, over 100 million people have been infected by COVID-19, millions of whom have died. In the latest year, a large number of omics data have sprung up and helped researchers broadly study the sequence, chemical structure and function of SARS-CoV-2, as well as molecular abnormal mechanisms of COVID-19 patients. Though some successes have been achieved in these areas, it is necessary to analyze and mine omics data for comprehensively understanding SARS-CoV-2 and COVID-19. Hence, we reviewed the current advantages and limitations of the integration of omics data herein. Firstly, we sorted out the sequence resources and database resources of SARS-CoV-2, including protein chemical structure, potential drug information and research literature resources. Next, we collected omics data of the COVID-19 hosts, including genomics, transcriptomics, microbiology and potential drug information data. And subsequently, based on the integration of omics data, we summarized the existing data analysis methods and the related research results of COVID-19 multi-omics data in recent years. Finally, we put forward SARS-CoV-2 (COVID-19) multi-omics data integration research direction and gave a case study to mine deeper for the disease mechanisms of COVID-19.
Collapse
Affiliation(s)
- Zijun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081
| | - Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081
| | - Ping Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081
| | - Xinyu Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081
| | - Jianxing Bi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081.,NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang, China, 150028
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang, China, 150028.,McKusick-Zhang Center for Genetic Medicine, Peking Union Medical College, Beijing, China, 100005
| |
Collapse
|
48
|
Larijani B, Foroughi-Heravani N, Abedi M, Tayanloo-Beik A, Rezaei-Tavirani M, Adibi H, Arjmand B. Recent Advances of COVID-19 Modeling Based on Regenerative Medicine. Front Cell Dev Biol 2021; 9:683619. [PMID: 34760882 PMCID: PMC8573217 DOI: 10.3389/fcell.2021.683619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has caused a pandemic since December 2019 that originated in Wuhan, China. Soon after that, the world health organization declared Coronavirus disease-2019 a global health concern. SARS-CoV-2 is responsible for a lethal respiratory infection as well as the involvement of other organs due to its large tropism spectrum such as neurologic, cardiovascular, endocrine, gastrointestinal, and renal systems. Since the behavior of the virus is not fully understood, a new manifestation of the infection is revealed every day. In order to be able to design more efficient drugs and vaccines to treat the infection, finding out the exact mechanism of pathogenicity would be necessary. Although there have been some big steps toward understanding the relevant process, there are still some deficiencies in this field. Accordingly, regenerative medicine (RM), can offer promising opportunities in discovering the exact mechanisms and specific treatments. For instance, since it is not always possible to catch the pathophysiology mechanisms in human beings, several modeling methods have been introduced in this field that can be studied in three main groups: stem cell-based models, organoids, and animal models. Regarding stem cell-based models, induced pluripotent stem cells are the major study subjects, which are generated by reprogramming the somatic stem cells and then directing them into different adult cell populations to study their behavior toward the infection. In organoid models, different cell lines can be guided to produce a 3D structure including liver, heart, and brain-like platforms. Among animal models, mice are the most common species in this field. However, in order for mice models to be permissive to the virus, angiotensin-converting enzyme 2 receptors, the main receptor involved in the pathogenicity of the virus, should be introduced to the host cells through different methods. Here, the current known mechanism of SARS-CoV-2 infection, different suggested models, the specific response toward different manipulation as well as challenges and shortcomings in each case have been reviewed. Finally, we have tried to provide a quick summary of the present available RM-based models for SARS-CoV-2 infection, as an essential part of developing drugs, for future therapeutic goals.
Collapse
Affiliation(s)
- Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Najmeh Foroughi-Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Nakayama T, Lee IT, Jiang S, Matter MS, Yan CH, Overdevest JB, Wu CT, Goltsev Y, Shih LC, Liao CK, Zhu B, Bai Y, Lidsky P, Xiao Y, Zarabanda D, Yang A, Easwaran M, Schürch CM, Chu P, Chen H, Stalder AK, McIlwain DR, Borchard NA, Gall PA, Dholakia SS, Le W, Xu L, Tai CJ, Yeh TH, Erickson-Direnzo E, Duran JM, Mertz KD, Hwang PH, Haslbauer JD, Jackson PK, Menter T, Andino R, Canoll PD, DeConde AS, Patel ZM, Tzankov A, Nolan GP, Nayak JV. Determinants of SARS-CoV-2 entry and replication in airway mucosal tissue and susceptibility in smokers. Cell Rep Med 2021; 2:100421. [PMID: 34604819 PMCID: PMC8479532 DOI: 10.1016/j.xcrm.2021.100421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/21/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
Understanding viral tropism is an essential step toward reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, decreasing mortality from coronavirus disease 2019 (COVID-19) and limiting opportunities for mutant strains to arise. Currently, little is known about the extent to which distinct tissue sites in the human head and neck region and proximal respiratory tract selectively permit SARS-CoV-2 infection and replication. In this translational study, we discover key variabilities in expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), essential SARS-CoV-2 entry factors, among the mucosal tissues of the human proximal airways. We show that SARS-CoV-2 infection is present in all examined head and neck tissues, with a notable tropism for the nasal cavity and tracheal mucosa. Finally, we uncover an association between smoking and higher SARS-CoV-2 viral infection in the human proximal airway, which may explain the increased susceptibility of smokers to developing severe COVID-19. This is at least partially explained by differences in interferon (IFN)-β1 levels between smokers and non-smokers.
Collapse
Affiliation(s)
- Tsuguhisa Nakayama
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Ivan T. Lee
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matthias S. Matter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Carol H. Yan
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of California San Diego School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan B. Overdevest
- Department of Otolaryngology–Head and Neck Surgery, Columbia University School of Medicine, New York, NY, USA
| | - Chien-Ting Wu
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yury Goltsev
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Liang-Chun Shih
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Translational Medicine Center, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Kang Liao
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Bokai Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yunhao Bai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - David Zarabanda
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Angela Yang
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Meena Easwaran
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Christian M. Schürch
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Pauline Chu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Han Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna K. Stalder
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David R. McIlwain
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole A. Borchard
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Phillip A. Gall
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Sachi S. Dholakia
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Wei Le
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Le Xu
- Department of Pediatrics, University of California San Diego School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chih-Jaan Tai
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Te-Huei Yeh
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Elizabeth Erickson-Direnzo
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Jason M. Duran
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kirsten D. Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Peter H. Hwang
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Jasmin D. Haslbauer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Peter K. Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Peter D. Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, Irving Cancer Research Center, New York, NY, USA
| | - Adam S. DeConde
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of California San Diego School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zara M. Patel
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Garry P. Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jayakar V. Nayak
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
- Department of Otolaryngology – Head and Neck Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
50
|
Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1 upregulation in endothelial cells. Redox Biol 2021; 46:102099. [PMID: 34509916 PMCID: PMC8372492 DOI: 10.1016/j.redox.2021.102099] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of COVID-19 has remained uncontained with urgent need for robust therapeutics. We have previously reported sex difference of COVID-19 for the first time indicating male predisposition. Males are more susceptible than females, and more often to develop into severe cases with higher mortality. This predisposition is potentially linked to higher prevalence of cigarette smoking. Nonetheless, we found for the first time that cigarette smoking extract (CSE) had no effect on angiotensin converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) expression in endothelial cells. The otherwise observed worse outcomes in smokers is likely linked to baseline respiratory diseases associated with chronic smoking. Instead, we hypothesized that estrogen mediated protection might underlie lower morbidity, severity and mortality of COVID-19 in females. Of note, endothelial inflammation and barrier dysfunction are major mediators of disease progression, and development of acute respiratory distress syndrome (ARDS) and multi-organ failure in patients with COVID-19. Therefore, we investigated potential protective effects of estrogen on endothelial cells against oxidative stress induced by interleukin-6 (IL-6) and SARS-CoV-2 spike protein (S protein). Indeed, 17β-estradiol completely reversed S protein-induced selective activation of NADPH oxidase isoform 2 (NOX2) and reactive oxygen species (ROS) production that are ACE2-dependent, as well as ACE2 upregulation and induction of pro-inflammatory gene monocyte chemoattractant protein-1 (MCP-1) in endothelial cells to effectively attenuate endothelial dysfunction. Effects of IL-6 on activating NOX2-dependent ROS production and upregulation of MCP-1 were also completely attenuated by 17β-estradiol. Of note, co-treatment with CSE had no additional effects on S protein stimulated endothelial oxidative stress, confirming that current smoking status is likely unrelated to more severe disease in chronic smokers. These data indicate that estrogen can serve as a novel therapy for patients with COVID-19 via inhibition of initial viral responses and attenuation of cytokine storm induced endothelial dysfunction, to substantially alleviate morbidity, severity and mortality of the disease, especially in men and post-menopause women. Short-term administration of estrogen can therefore be readily applied to the clinical management of COVID-19 as a robust therapeutic option.
Collapse
|