1
|
Chaudhary JK, Danga AK, Kumari A, Bhardwaj A, Rath PC. Role of stem cells in ageing and age-related diseases. Mech Ageing Dev 2025; 225:112069. [PMID: 40324541 DOI: 10.1016/j.mad.2025.112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Stem cell functions and ageing are deeply interconnected, continually influencing each other in multiple ways. Stem cells play a vital role in organ maintenance, regeneration, and homeostasis, all of which decline over time due to gradual reduction in their self-renewal, differentiation, and growth factor secretion potential. The functional decline is attributed to damaging extrinsic environmental factors and progressively worsening intrinsic genetic and biochemical processes. These ageing-associated deteriorative changes have been extensively documented, paving the way for the discovery of novel biomarkers of ageing for detection, diagnosis, and treatment of age-related diseases. Age-dependent changes in adult stem cells include numerical decline, loss of heterogeneity, and reduced self-renewal and differentiation, leading to a drastic reduction in regenerative potential and thereby driving the ageing process. Conversely, ageing also adversely alters the stem cell niche, disrupting the molecular pathways underlying stem cell homing, self-renewal, differentiation, and growth factor secretion, all of which are critical for tissue repair and regeneration. A holistic understanding of these molecular mechanisms, through empirical research and clinical trials, is essential for designing targeted therapies to modulate ageing and improve health parameters in older individuals.
Collapse
Affiliation(s)
- Jitendra Kumar Chaudhary
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Zoology, Shivaji College, University of Delhi, New Delhi 110027, India.
| | - Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Bhardwaj
- Global Research Alliances, Ashoka University, Rajiv Gandhi Education City, Sonepat, Haryana 131029, India.
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Borok MJ, Zaidan L, Relaix F. Transposon expression and repression in skeletal muscle. Mob DNA 2025; 16:18. [PMID: 40217332 PMCID: PMC11992895 DOI: 10.1186/s13100-025-00352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/13/2025] [Indexed: 04/14/2025] Open
Abstract
Transposons and their derivatives make up a major proportion of the human genome, but they are not just relics of ancient genomes. They can still be expressed, potentially affecting the transcription of adjacent genes, and can sometimes even contribute to their coding sequence. Active transposons can integrate into new sites in the genome, potentially modifying the expression of nearby loci and leading to genetic disorders. In this review, we highlight work exploring the expression of transposons in skeletal muscles and transcriptional regulation by the KRAB-ZFP/KAP1/SETDB1 complex. We next focus on specific cases of transposon insertion causing phenotypic variation and distinct muscular dystrophies, as well as the implication of transposon expression in immune myopathies. Finally, we discuss the dysregulation of transposons in facioscapulohumeral dystrophy and aging.
Collapse
Affiliation(s)
- Matthew J Borok
- University Paris-Est Créteil, INSERM U955 IMRB, Créteil, 94010, France.
| | - Louai Zaidan
- University Paris-Est Créteil, INSERM U955 IMRB, Créteil, 94010, France
| | - Frederic Relaix
- University Paris-Est Créteil, INSERM U955 IMRB, Créteil, 94010, France.
- École Nationale Vétérinaire d'Alfort U955 IMRB, Maisons-Alfort, 94700, France.
- EFS IMRB, Créteil, 94010, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Mondor, Service d'Histologie, Créteil, 94010, France.
| |
Collapse
|
3
|
Yates J, Kraft A, Boeva V. Filtering cells with high mitochondrial content depletes viable metabolically altered malignant cell populations in cancer single-cell studies. Genome Biol 2025; 26:91. [PMID: 40205439 PMCID: PMC11983838 DOI: 10.1186/s13059-025-03559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Single-cell transcriptomics has transformed our understanding of cellular diversity, yet noise from technical artifacts and low-quality cells can obscure key biological signals. A common practice is filtering out cells with a high percentage of mitochondrial RNA counts (pctMT), typically indicative of cell death. However, commonly used filtering thresholds, primarily derived from studies on healthy tissues, may be overly stringent for malignant cells, which often naturally exhibit higher baseline mitochondrial gene expression. RESULTS We examine nine public single-cell RNA-seq datasets from various cancers, including 441,445 cells from 134 patients, and public spatial transcriptomics data, assessing the viability of malignant cells with high pctMT. Our analysis reveals that malignant cells exhibit significantly higher pctMT than nonmalignant cells, without a notable increase in dissociation-induced stress scores. Malignant cells with high pctMT show metabolic dysregulation, including increased xenobiotic metabolism, relevant to therapeutic response. Analysis of pctMT in cancer cell lines further reveals links to drug resistance. We also observe associations between pctMT and malignant cell transcriptional heterogeneity, as well as patient clinical features. CONCLUSIONS This study provides insights into the functional characteristics of malignant cells with elevated pctMT, challenging current quality control practices in tumor single-cell RNA-seq analyses and offering potential improvements in data interpretation for future cancer studies.
Collapse
Affiliation(s)
- Josephine Yates
- Department of Computer Science, Institute for Machine Learning, ETH Zürich, Zurich, CH-8092, Switzerland
- ETH AI Center, Zurich, Switzerland
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
| | - Agnieszka Kraft
- Department of Computer Science, Institute for Machine Learning, ETH Zürich, Zurich, CH-8092, Switzerland
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Valentina Boeva
- Department of Computer Science, Institute for Machine Learning, ETH Zürich, Zurich, CH-8092, Switzerland.
- ETH AI Center, Zurich, Switzerland.
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland.
- Cochin Institute, Inserm U1016, CNRS UMR 8104, Paris Descartes University UMR-S1016, Paris, 75014, France.
| |
Collapse
|
4
|
Hirano K, Nakabayashi C, Sasaki M, Suzuki M, Aoyagi Y, Tanaka K, Murakami A, Tsuchiya M, Umemoto E, Takabayashi S, Kitajima Y, Ono Y, Matsukawa T, Matsushita M, Ohkawa Y, Mori Y, Hara Y. Mg 2+ influx mediated by TRPM7 triggers the initiation of muscle stem cell activation. SCIENCE ADVANCES 2025; 11:eadu0601. [PMID: 40184450 PMCID: PMC11970462 DOI: 10.1126/sciadv.adu0601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
Muscle satellite cells (MuSCs) respond immediately to environmental cues upon skeletal muscle injuries. Despite decades of research into muscle regeneration, the specific molecular factors that trigger the transition of MuSCs from a quiescent to an active state remain largely unidentified. Here, we identify transient receptor potential melastatin 7 (TRPM7), an Mg2+-permeable ion channel, as a critical regulator of MuSC activation. Trpm7 deletion in MuSCs reduced Mg2+ influx, impairing myofiber regeneration and leading to decreased MuSC numbers and cell cycle arrest during regeneration. These changes were linked to disrupted mTOR signaling, which drives the transition of MuSCs from G0 to GAlert phase. In addition, Trpm7-deficient MuSCs exhibited impaired early responses, including quiescent projection retraction and AP-1 induction. Mg2+ supplementation rescued these defects, restoring normal MuSC activation. Our findings reveal a previously unrecognized mechanism where Mg2+ permeation through TRPM7 is essential for MuSC activation and efficient skeletal muscle regeneration, highlighting TRPM7 as a critical regulator of muscle repair.
Collapse
Affiliation(s)
- Kotaro Hirano
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Chika Nakabayashi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Mao Sasaki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Miki Suzuki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Faculty of Pharmacy, Laboratory of Hygienic Chemistry, Juntendo University, Chiba 279-0013, Japan
| | - Yuta Aoyagi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kaori Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Murakami
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Masaki Tsuchiya
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- PRESTO, JST, Kawaguchi, Saitama 332-0012, Japan
| | - Eiji Umemoto
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Shuji Takabayashi
- Institute of Photonics Medicine, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Yasuo Kitajima
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takehisa Matsukawa
- Faculty of Pharmacy, Laboratory of Hygienic Chemistry, Juntendo University, Chiba 279-0013, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Yasuyuki Ohkawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yuji Hara
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
5
|
Marefati M, Fernandez-Vallone V, Leprovots M, Vasile G, Libert F, Lefort A, Dinsart G, Weber A, Jetzer J, Garcia MI, Vassart G. A Lgr5-independent developmental lineage is involved in mouse intestinal regeneration. Development 2025; 152:dev204654. [PMID: 40013494 PMCID: PMC12045596 DOI: 10.1242/dev.204654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 02/28/2025]
Abstract
Collagenase and dispase treatment of intestinal tissue from adult mice generates cells growing in matrigel as stably replatable cystic spheroids, in addition to differentiated organoids. Contrary to classical EDTA-derived organoids, these spheroids display poor intestinal differentiation and grow independently of Rspondin, noggin and EGF. Their transcriptome strikingly resembles that of fetal intestinal spheroids, with downregulation of crypt base columnar cell (CBC) markers (Lgr5, Ascl2, Smoc2 and Olfm4). In addition, they display upregulation of inflammatory and mesenchymal genetic programs, together with robust expression of YAP target genes. Lineage tracing, cell-sorting and single cell RNA sequencing experiments demonstrate that adult spheroid-generating cells belong to a hitherto undescribed developmental lineage, independent of Lgr5-positive CBCs, and are involved in regeneration of the epithelium following CBC ablation.
Collapse
Affiliation(s)
- Maryam Marefati
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Valeria Fernandez-Vallone
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Morgane Leprovots
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Gabriella Vasile
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Frédérick Libert
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Anne Lefort
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Gilles Dinsart
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Achim Weber
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Jasna Jetzer
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
- Institute of Molecular Cancer Research, University of Zurich, CH-8091 Zurich, Switzerland
| | - Marie-Isabelle Garcia
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Gilbert Vassart
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
6
|
Kang J, Kanugovi A, Stella MPJ, Frimand Z, Farup J, Urtasun A, Liu S, Clausen AS, Ishak H, Bui S, Kim S, Ezran C, Botvinnik O, Porpiglia E, Krasnow M, de Morree A, Rando TA. In vivo self-renewal and expansion of quiescent stem cells from a non-human primate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645793. [PMID: 40196588 PMCID: PMC11974844 DOI: 10.1101/2025.03.27.645793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The development of non-human primate models is essential for the fields of developmental and regenerative biology because those models will more closely approximate human biology than do murine models. Based on single cell RNAseq and fluorescence-activated cell sorting, we report the identification and functional characterization of two quiescent stem cell populations (skeletal muscle stem cells (MuSCs) and mesenchymal stem cells termed fibro-adipogenic progenitors (FAPs)) in the non-human primate Microcebus murinus (the gray mouse lemur). We demonstrate in vivo proliferation, differentiation, and self-renewal of both MuSCs and FAPs. By combining cell phenotyping with cross-species molecular profiling and pharmacological interventions, we show that mouse lemur MuSCs and FAPs are more similar to human than to mouse counterparts. We identify unexpected gene targets involved in regulating primate MuSC proliferation and primate FAP adipogenic differentiation. Moreover, we find that the cellular composition of mouse lemur muscle better models human muscle than does macaque ( Macaca fascicularis ) muscle. Finally, we note that our approach presents as a generalizable pipeline for the identification, isolation, and characterization of stem cell populations in new animal models.
Collapse
|
7
|
Fang X, Zhong Y, Zheng R, Wu Q, Liu Y, Zhang D, Wang Y, Ding W, Wang K, Zhong F, Lin K, Yao X, Hu Q, Li X, Xu G, Liu N, Nie J, Li D, Geng H, Guan Y. PPDPF preserves integrity of proximal tubule by modulating NMNAT activity in chronic kidney diseases. SCIENCE ADVANCES 2025; 11:eadr8648. [PMID: 40106551 PMCID: PMC11922016 DOI: 10.1126/sciadv.adr8648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/24/2024] [Indexed: 03/22/2025]
Abstract
Genome-wide association studies (GWAS) have identified loci associated with kidney diseases, but the causal variants, genes, and pathways involved remain elusive. Here, we identified a kidney disease gene called pancreatic progenitor cell differentiation and proliferation factor (PPDPF) through integrating GWAS on kidney function and multiomic analysis. PPDPF was predominantly expressed in healthy proximal tubules of human and mouse kidneys via single-cell analysis. Further investigations revealed that PPDPF functioned as a thiol-disulfide oxidoreductase to maintain cellular NAD+ levels. Deficiency in PPDPF disrupted NAD+ and mitochondrial homeostasis by impairing the activities of nicotinamide mononucleotide adenylyl transferases (NMNATs), thereby compromising the function of proximal tubules during injuries. Consequently, knockout of PPDPF notably accelerated the progression of chronic kidney disease (CKD) in mouse models induced by aging, chemical exposure, and obstruction. These findings strongly support targeting PPDPF as a potential therapy for kidney fibrosis, offering possibilities for future CKD interventions.
Collapse
Affiliation(s)
- Xiaoliang Fang
- Department of Urology, Children’s Hospital of Fudan University, Shanghai, 201102, China
| | - Yi Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Rui Zheng
- Department of Urology, Children’s Hospital of Fudan University, Shanghai, 201102, China
| | - Qihui Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Yu Liu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Dexin Zhang
- Department of Pediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuwei Wang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Wubing Ding
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kaiyuan Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Fengbo Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kai Lin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaohui Yao
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong, 266000, China
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - Qingxun Hu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaofei Li
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, 17164, Sweden
| | - Guofeng Xu
- Department of Pediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jing Nie
- Biobank of Peking University First Hospital, Peking University First Hospital, Peking University, Beijing, 100034, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hongquan Geng
- Department of Urology, Children’s Hospital of Fudan University, Shanghai, 201102, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| |
Collapse
|
8
|
Chen L, Tong X, Wu Y, Liu C, Tang C, Qi X, Kong F, Li M, Jin L, Zeng B. A dataset of single-cell transcriptomic atlas of Bama pig and potential marker genes across seven tissues. BMC Genom Data 2025; 26:16. [PMID: 40075302 PMCID: PMC11899051 DOI: 10.1186/s12863-025-01308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
The use of single-cell sequencing technology for single-cell transcriptomics studies in pigs is expanding progressively. However, the comprehensive classification of cell types across different anatomical tissues and organs of pig in multiple datasets remains relatively limited. This study employs single-cell and single-nucleus sequencing technologies in Bama pig to identify unique marker genes and their corresponding transcriptomic profiles across diverse cell types in various anatomical tissues and organs, including subcutaneous fat, visceral fat, psoas major muscle, liver, spleen, lung, and kidney. Through detailed data analyses, we observed widespread cellular diversity across various anatomical tissues and organs of Bama pig. This work contributes a comprehensive dataset that supports physiological studies and aids in the identification and prediction of potential marker genes through single-cell transcriptomics of these tissues. The methodologies and data employed in this study are designed to improve the accuracy of cell type identification and ensure consistent cell type allocation.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyan Tong
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujie Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Can Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuang Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya'an, 625099, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Bo Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
9
|
Gulati GS, D'Silva JP, Liu Y, Wang L, Newman AM. Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics. Nat Rev Mol Cell Biol 2025; 26:11-31. [PMID: 39169166 DOI: 10.1038/s41580-024-00768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Single-cell transcriptomics has broadened our understanding of cellular diversity and gene expression dynamics in healthy and diseased tissues. Recently, spatial transcriptomics has emerged as a tool to contextualize single cells in multicellular neighbourhoods and to identify spatially recurrent phenotypes, or ecotypes. These technologies have generated vast datasets with targeted-transcriptome and whole-transcriptome profiles of hundreds to millions of cells. Such data have provided new insights into developmental hierarchies, cellular plasticity and diverse tissue microenvironments, and spurred a burst of innovation in computational methods for single-cell analysis. In this Review, we discuss recent advancements, ongoing challenges and prospects in identifying and characterizing cell states and multicellular neighbourhoods. We discuss recent progress in sample processing, data integration, identification of subtle cell states, trajectory modelling, deconvolution and spatial analysis. Furthermore, we discuss the increasing application of deep learning, including foundation models, in analysing single-cell and spatial transcriptomics data. Finally, we discuss recent applications of these tools in the fields of stem cell biology, immunology, and tumour biology, and the future of single-cell and spatial transcriptomics in biological research and its translation to the clinic.
Collapse
Affiliation(s)
- Gunsagar S Gulati
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Aaron M Newman
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Suzuki T, Kadoya K, Endo T, Yamasaki M, Watanabe M, Iwasaki N. GFRα1 Promotes Axon Regeneration after Peripheral Nerve Injury by Functioning as a Ligand. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2400812. [PMID: 39630029 PMCID: PMC11775530 DOI: 10.1002/advs.202400812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 11/04/2024] [Indexed: 01/30/2025]
Abstract
The neurotrophic factor, Glial cell line derived neurotrophi factor (GDNF), exerts a variety of biological effects through binding to its receptors, GDNF family receptor alpha-1 (GFRα1), and RET. However, the existence of cells expressing GFRα1 but not RET raises the possibility that GFRα1 can function independently from RET. Here, it is shown that GFRα1 released from repair Schwann cells (RSCs) functions as a ligand in a GDNF-RET-independent manner to promote axon regeneration after peripheral nerve injury (PNI). Local administration of GFRα1 into injured nerve promoted axon regeneration, even more when combined with GDNF blockade. GFRα1 bound to a receptor complex consisting of NCAM and integrin α7β1 of dorsal root ganglion neurons in a GDNF-RET independent manner. This is further confirmed by the Ret Y1062F knock-in mice, which cannot transmit most of GDNF-RET signaling. Finally, local administration of GFRα1 into injured sciatic nerve promoted functional recovery. These findings reveal a novel role of GFRα1 as a ligand, the molecular mechanism supporting axon regeneration by RSCs, and a novel therapy for peripheral nerve repair.
Collapse
Affiliation(s)
- Tomoaki Suzuki
- Department of Orthopaedic SurgeryGraduate School of MedicineHokkaido UniversitySapporoHokkaido0608638Japan
| | - Ken Kadoya
- Department of Orthopaedic SurgeryGraduate School of MedicineHokkaido UniversitySapporoHokkaido0608638Japan
| | - Takeshi Endo
- Department of Orthopaedic SurgeryGraduate School of MedicineHokkaido UniversitySapporoHokkaido0608638Japan
| | - Miwako Yamasaki
- Department of AnatomyGraduate School of Medicine, Hokkaido UniversitySapporoHokkaido0608638Japan
| | - Masahiko Watanabe
- Department of AnatomyGraduate School of Medicine, Hokkaido UniversitySapporoHokkaido0608638Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic SurgeryGraduate School of MedicineHokkaido UniversitySapporoHokkaido0608638Japan
| |
Collapse
|
11
|
Perrin S, Ethel M, Bretegnier V, Goachet C, Wotawa CA, Luka M, Coulpier F, Masson C, Ménager M, Colnot C. Single-nucleus transcriptomics reveal the differentiation trajectories of periosteal skeletal/stem progenitor cells in bone regeneration. eLife 2024; 13:RP92519. [PMID: 39642053 PMCID: PMC11623931 DOI: 10.7554/elife.92519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
Bone regeneration is mediated by skeletal stem/progenitor cells (SSPCs) that are mainly recruited from the periosteum after bone injury. The composition of the periosteum and the steps of SSPC activation and differentiation remain poorly understood. Here, we generated a single-nucleus atlas of the periosteum at steady state and of the fracture site during the early stages of bone repair (https://fracture-repair-atlas.cells.ucsc.edu). We identified periosteal SSPCs expressing stemness markers (Pi16 and Ly6a/SCA1) and responding to fracture by adopting an injury-induced fibrogenic cell (IIFC) fate, prior to undergoing osteogenesis or chondrogenesis. We identified distinct gene cores associated with IIFCs and their engagement into osteogenesis and chondrogenesis involving Notch, Wnt, and the circadian clock signaling, respectively. Finally, we show that IIFCs are the main source of paracrine signals in the fracture environment, suggesting a crucial paracrine role of this transient IIFC population during fracture healing. Overall, our study provides a complete temporal topography of the early stages of fracture healing and the dynamic response of periosteal SSPCs to injury, redefining our knowledge of bone regeneration.
Collapse
Affiliation(s)
- Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRBCreteilFrance
| | - Maria Ethel
- Univ Paris Est Creteil, INSERM, IMRBCreteilFrance
| | | | | | | | - Marine Luka
- Paris Cité University, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163ParisFrance
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163ParisFrance
| | | | - Cécile Masson
- Bioinformatics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163ParisFrance
- INSERM US24/CNRS UAR3633, Paris Cité UniversityParisFrance
| | - Mickael Ménager
- Paris Cité University, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163ParisFrance
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163ParisFrance
| | | |
Collapse
|
12
|
Song D, Chen Y, Wang P, Cheng Y, Shyh‐Chang N. Lin28a forms an RNA-binding complex with Igf2bp3 to regulate m 6A-modified stress response genes in stress granules of muscle stem cells. Cell Prolif 2024; 57:e13707. [PMID: 39021312 PMCID: PMC11628740 DOI: 10.1111/cpr.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
In the early embryonic stages, Lin-28 homologue A (Lin28a) is highly expressed and declines as the embryo matures. As an RNA-binding protein, Lin28a maintains some adult muscle stem cells (MuSCs) in an embryonic-like state, but its RNA metabolism regulation mechanism remains unclear. BioGPS analysis revealed that Lin28a expression is significantly higher in muscle tissues than in other tissues. Lin28a-positive muscle stem cells (Lin28a+ MuSCs) were sorted from Lin28a-CreERT2; LSL-tdTomato mouse skeletal muscle tissue, which exhibited a higher proliferation rate than the control group. Lin28a-bound transcripts are enriched in various biological processes such as DNA repair, cell cycle, mitochondrial tricarboxylic acid cycle and oxidative stress response. The expression of insulin-like growth factor 2 mRNA-binding protein 3 (Igf2bp3) was markedly elevated in the presence of Lin28a. Co-immunoprecipitation analysis further demonstrated that Lin28a associates with Igf2bp3. Immunofluorescence analyses confirmed that Lin28a, Igf2bp3 and G3bp1 colocalize to form stress granules (SG), and N6-methyladenosine (m6A) modification promotes the formation of Lin28a-SG. Sequencing of the transcriptome and RNAs immunoprecipitated by Lin28a, Igf2bp3 and m6A antibodies in Lin28a+ MuSCs further revealed that Lin28a and Igf2bp3 collaboratively regulate the expression of DNA repair-related genes, including Fancm and Usp1. Lin28a stabilises Igf2bp3, Usp1, and Fancm mRNAs, enhancing DNA repair against oxidative or proteotoxic stress, thus promoting MuSCs self-renewal. Understanding the intricate mechanisms through which Lin28a and Igf2bp3 regulate MuSCs provides a deeper understanding of stem cell self-renewal, with potential implications for regenerative medicine.
Collapse
Affiliation(s)
- Dan Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Yu Chen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Peng Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yeqian Cheng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ng Shyh‐Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
13
|
Furrer R, Handschin C. Molecular aspects of the exercise response and training adaptation in skeletal muscle. Free Radic Biol Med 2024; 223:53-68. [PMID: 39059515 PMCID: PMC7617583 DOI: 10.1016/j.freeradbiomed.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Skeletal muscle plasticity enables an enormous potential to adapt to various internal and external stimuli and perturbations. Most notably, changes in contractile activity evoke a massive remodeling of biochemical, metabolic and force-generating properties. In recent years, a large number of signals, sensors, regulators and effectors have been implicated in these adaptive processes. Nevertheless, our understanding of the molecular underpinnings of training adaptation remains rudimentary. Specifically, the mechanisms that underlie signal integration, output coordination, functional redundancy and other complex traits of muscle adaptation are unknown. In fact, it is even unclear how stimulus-dependent specification is brought about in endurance or resistance exercise. In this review, we will provide an overview on the events that describe the acute perturbations in single endurance and resistance exercise bouts. Furthermore, we will provide insights into the molecular principles of long-term training adaptation. Finally, current gaps in knowledge will be identified, and strategies for a multi-omic and -cellular analyses of the molecular mechanisms of skeletal muscle plasticity that are engaged in individual, acute exercise bouts and chronic training adaptation discussed.
Collapse
Affiliation(s)
- Regula Furrer
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| | - Christoph Handschin
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| |
Collapse
|
14
|
Byun WS, Lee J, Baek JH. Beyond the bulk: overview and novel insights into the dynamics of muscle satellite cells during muscle regeneration. Inflamm Regen 2024; 44:39. [PMID: 39327631 PMCID: PMC11426090 DOI: 10.1186/s41232-024-00354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Skeletal muscle possesses remarkable regenerative capabilities, fully recovering within a month following severe acute damage. Central to this process are muscle satellite cells (MuSCs), a resident population of somatic stem cells capable of self-renewal and differentiation. Despite the highly predictable course of muscle regeneration, evaluating this process has been challenging due to the heterogeneous nature of myogenic precursors and the limited insight provided by traditional markers with overlapping expression patterns. Notably, recent advancements in single-cell technologies, such as single-cell (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), have revolutionized muscle research. These approaches allow for comprehensive profiling of individual cells, unveiling dynamic heterogeneity among myogenic precursors and their contributions to regeneration. Through single-cell transcriptome analyses, researchers gain valuable insights into cellular diversity and functional dynamics of MuSCs post-injury. This review aims to consolidate classical and new insights into the heterogeneity of myogenic precursors, including the latest discoveries from novel single-cell technologies.
Collapse
Affiliation(s)
- Woo Seok Byun
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jinu Lee
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jea-Hyun Baek
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
| |
Collapse
|
15
|
Zhang Q, Han W, Wu R, Deng S, Meng J, Yang Y, Li L, Sun M, Ai H, Chen Y, Liu Q, Gao T, Niu X, Liu H, Zhang L, Zhang D, Chen M, Yin P, Zhang L, Tang P, Zhu D, Zhang Y, Li H. Spermidine-eIF5A axis is essential for muscle stem cell activation via translational control. Cell Discov 2024; 10:94. [PMID: 39251577 PMCID: PMC11383958 DOI: 10.1038/s41421-024-00712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/13/2024] [Indexed: 09/11/2024] Open
Abstract
Adult skeletal muscle stem cells, also known satellite cells (SCs), are quiescent and activate in response to injury. However, the activation mechanisms of quiescent SCs (QSCs) remain largely unknown. Here, we investigated the metabolic regulation of SC activation by identifying regulatory metabolites that promote SC activation. Using targeted metabolomics, we found that spermidine acts as a regulatory metabolite to promote SC activation and muscle regeneration in mice. Mechanistically, spermidine activates SCs via generating hypusinated eIF5A. Using SC-specific eIF5A-knockout (KO) and Myod-KO mice, we further found that eIF5A is required for spermidine-mediated SC activation by controlling MyoD translation. More significantly, depletion of eIF5A in SCs results in impaired muscle regeneration in mice. Together, the findings of our study define a novel mechanism that is essential for SC activation and acts via spermidine-eIF5A-mediated MyoD translation. Our findings suggest that the spermidine-eIF5A axis represents a promising pharmacological target in efforts to activate endogenous SCs for the treatment of muscular disease.
Collapse
Affiliation(s)
- Qianying Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wanhong Han
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Rimao Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Shixian Deng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Jiemiao Meng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Yuanping Yang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Lili Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Mingwei Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Heng Ai
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Yingxi Chen
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qinyao Liu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tian Gao
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xingchen Niu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haixia Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Li Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Dan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Meihong Chen
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Pengbin Yin
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Licheng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Peifu Tang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Hu Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Friess D, Brauer S, Pöysti A, Choudhury C, Harris L. Tools to study neural and glioma stem cell quiescence. Trends Neurosci 2024; 47:736-748. [PMID: 39191628 DOI: 10.1016/j.tins.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Quiescence is a prolonged but reversible state of cell-cycle arrest that is an adaptive feature of most adult stem cell populations. In the brain, quiescence helps to protect adult neural stem cells from stress and supports lifelong neurogenesis. Unfortunately however, entry into a quiescent or a slow-cycling state is also a malignant feature of brain cancer stem cells. In glioblastoma, where the process has been best characterised, quiescent glioma stem cells preferentially survive chemoradiation, and after therapy, reactivate to regrow the tumour and drive recurrence. In this Review, we discuss the in vitro and in vivo models that have been developed for studying neural stem cell quiescence and how these tools may be used to deepen biological understanding and to develop novel therapies targeting quiescent glioma stem cells.
Collapse
Affiliation(s)
- Dana Friess
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; The University of Queensland, Brisbane, School of Biomedical Sciences, QLD, 4067, Australia
| | - Stephanie Brauer
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; Queensland University of Technology, School of Biomedical Sciences, QLD, 4059, Australia
| | - Anni Pöysti
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, WC1E 6DD London, UK
| | - Chandra Choudhury
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; The University of Queensland, Brisbane, School of Biomedical Sciences, QLD, 4067, Australia
| | - Lachlan Harris
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; The University of Queensland, Brisbane, School of Biomedical Sciences, QLD, 4067, Australia; Queensland University of Technology, School of Biomedical Sciences, QLD, 4059, Australia.
| |
Collapse
|
17
|
Sun P, Kraus CN, Zhao W, Xu J, Suh S, Nguyen Q, Jia Y, Nair A, Oakes M, Tinoco R, Shiu J, Sun B, Elsensohn A, Atwood SX, Nie Q, Dai X. Single-cell and spatial transcriptomics of vulvar lichen sclerosus reveal multi-compartmental alterations in gene expression and signaling cross-talk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607986. [PMID: 39211101 PMCID: PMC11361165 DOI: 10.1101/2024.08.14.607986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Vulvar diseases are a critical yet often neglected area of women's health, profoundly affecting patients' quality of life and frequently resulting in long-term physical and psychological challenges. Lichen sclerosus (LS) is a chronic inflammatory skin disorder that predominantly affects the vulva, leading to severe itching, pain, scarring, and an increased risk of malignancy. Despite its profound impact on affected individuals, the molecular pathogenesis of vulvar LS (VLS) is not well understood, hindering the development of FDA-approved therapies. Here, we utilize single-cell and spatial transcriptomics to analyze lesional and non-lesional skin from VLS patients, as well as healthy control vulvar skin. Our findings demonstrate histologic, cellular, and molecular heterogeneities within VLS, yet highlight unifying molecular changes across keratinocytes, fibroblasts, immune cells, and melanocytes in lesional skin. They reveal cellular stress and damage in fibroblasts and keratinocytes, enhanced T cell activation and cytotoxicity, aberrant cell-cell signaling, and increased activation of the IFN, JAK/STAT, and p53 pathways in specific cell types. Using both monolayer and organotypic culture models, we also demonstrate that knockdown of select genes, which are downregulated in VLS lesional keratinocytes, partially recapitulates VLS-like stress-associated changes. Collectively, these data provide novel insights into the pathogenesis of VLS, identifying potential biomarkers and therapeutic targets for future research.
Collapse
|
18
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
19
|
Perrin S, Ethel M, Bretegnier V, Goachet C, Wotawa CA, Luka M, Coulpier F, Masson C, Ménager M, Colnot C. Single nuclei transcriptomics reveal the differentiation trajectories of periosteal skeletal/stem progenitor cells in bone regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.23.546220. [PMID: 39211065 PMCID: PMC11361009 DOI: 10.1101/2023.06.23.546220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bone regeneration is mediated by skeletal stem/progenitor cells (SSPCs) that are mainly recruited from the periosteum after bone injury. The composition of the periosteum and the steps of SSPC activation and differentiation remain poorly understood. Here, we generated a single-nuclei atlas of the periosteum at steady-state and of the fracture site during early stages of bone repair ( https://fracture-repair-atlas.cells.ucsc.edu ). We identified periosteal SSPCs expressing stemness markers ( Pi16 and Ly6a /SCA1) and responding to fracture by adopting an injury-induced fibrogenic cell (IIFC) fate, prior to undergoing osteogenesis or chondrogenesis. We identified distinct gene cores associated with IIFCs and their engagement into osteogenesis and chondrogenesis involving Notch, Wnt and the circadian clock signaling respectively. Finally, we show that IIFCs are the main source of paracrine signals in the fracture environment, suggesting a crucial paracrine role of this transient IIFC population during fracture healing. Overall, our study provides a complete temporal topography of the early stages of fracture healing and the dynamic response of periosteal SSPCs to injury, redefining our knowledge of bone regeneration.
Collapse
|
20
|
Ozturk T, Mignot J, Gattazzo F, Gervais M, Relaix F, Rouard H, Didier N. Dual inhibition of P38 MAPK and JNK pathways preserves stemness markers and alleviates premature activation of muscle stem cells during isolation. Stem Cell Res Ther 2024; 15:179. [PMID: 38902774 PMCID: PMC11191274 DOI: 10.1186/s13287-024-03795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Adult skeletal muscle contains resident muscle stem cells (MuSC) with high myogenic and engraftment potentials, making them suitable for cell therapy and regenerative medicine approaches. However, purification process of MuSC remains a major hurdle to their use in the clinic. Indeed, muscle tissue enzymatic dissociation triggers a massive activation of stress signaling pathways, among which P38 and JNK MAPK, associated with a premature loss of MuSC quiescence. While the role of these pathways in the myogenic progression of MuSC is well established, the extent to which their dissociation-induced activation affects the functionality of these cells remains unexplored. METHODS We assessed the effect of P38 and JNK MAPK induction on stemness marker expression and MuSC activation state during isolation by pharmacological approaches. MuSC functionality was evaluated by in vitro assays and in vivo transplantation experiments. We performed a comparative analysis of the transcriptome of human MuSC purified with pharmacological inhibitors of P38 and JNK MAPK (SB202190 and SP600125, respectively) versus available RNAseq resources. RESULTS We monitored PAX7 protein levels in murine MuSC during muscle dissociation and demonstrated a two-step decline partly dependent on P38 and JNK MAPK activities. We showed that simultaneous inhibition of these pathways throughout the MuSC isolation process preserves the expression of stemness markers and limits their premature activation, leading to improved survival and amplification in vitro as well as increased engraftment in vivo. Through a comparative RNAseq analysis of freshly isolated human MuSC, we provide evidence that our findings in murine MuSC could be relevant to human MuSC. Based on these findings, we implemented a purification strategy, significantly improving the recovery yields of human MuSC. CONCLUSION Our study highlights the pharmacological limitation of P38 and JNK MAPK activities as a suitable strategy to qualitatively and quantitatively ameliorate human MuSC purification process, which could be of great interest for cell-based therapies.
Collapse
Affiliation(s)
- Teoman Ozturk
- Univ Paris Est Creteil, INSERM, EFS, IMRB, 94010, Creteil, France
| | - Julien Mignot
- Univ Paris Est Creteil, INSERM, EFS, IMRB, 94010, Creteil, France
| | | | - Marianne Gervais
- Univ Paris Est Creteil, INSERM, EFS, IMRB, 94010, Creteil, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EFS, IMRB, 94010, Creteil, France
- EnvA, IMRB, 94700, Maisons-Alfort, France
- AP-HP, Hopital Mondor, Service d'histologie, 94010, Creteil, France
| | - Hélène Rouard
- Univ Paris Est Creteil, INSERM, EFS, IMRB, 94010, Creteil, France
- AP-HP, Hopital Mondor, Service d'histologie, 94010, Creteil, France
| | - Nathalie Didier
- Univ Paris Est Creteil, INSERM, EFS, IMRB, 94010, Creteil, France.
| |
Collapse
|
21
|
Wang D, Baghoomian A, Zhang Z, Cui Y, Whang EC, Li X, Fraga J, Spellman RA, Dong TS, Li W, Gupta A, Benhammou JN, Sallam T. Hepatic lipopolysaccharide binding protein partially uncouples inflammation from fibrosis in MAFLD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599212. [PMID: 38948798 PMCID: PMC11212925 DOI: 10.1101/2024.06.17.599212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic-associated fatty liver disease (MAFLD), is the most common liver disease worldwide. The progression to fibrosis, occurring against a backdrop of hepatic steatosis and inflammation, critically determines liver-related morbidity and mortality. Inflammatory processes contribute to various stages of MAFLD and thought to instigate hepatic fibrosis. For this reason, targeting inflammation has been heavily nominated as a strategy to mitigate liver fibrosis. Lipopolysaccharide binding protein (LBP) is a secreted protein that plays an established role in innate immune responses. Here, using adoptive transfer studies and tissue-specific deletion models we show that hepatocytes are the dominant contributors to circulating LBP. In a murine model of MAFLD, hepatocyte-specific deletion of LBP restrained hepatic inflammation and improved liver function abnormalities, but not measures of fibrosis. Human studies, including genetic evidence, corroborate an important role for LBP in hepatic inflammation with minimal impact on fibrosis. Collectively, our data argues against the idea that targeting hepatic inflammation is a viable approach to reducing fibrosis.
Collapse
|
22
|
Tan YC, Low TY, Lee PY, Lim LC. Single-cell proteomics by mass spectrometry: Advances and implications in cancer research. Proteomics 2024; 24:e2300210. [PMID: 38727198 DOI: 10.1002/pmic.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024]
Abstract
Cancer harbours extensive proteomic heterogeneity. Inspired by the prior success of single-cell RNA sequencing (scRNA-seq) in characterizing minute transcriptomics heterogeneity in cancer, researchers are now actively searching for information regarding the proteomics counterpart. Therefore recently, single-cell proteomics by mass spectrometry (SCP) has rapidly developed into state-of-the-art technology to cater the need. This review aims to summarize application of SCP in cancer research, while revealing current development progress of SCP technology. The review also aims to contribute ideas into research gaps and future directions, ultimately promoting the application of SCP in cancer research.
Collapse
Affiliation(s)
- Yong Chiang Tan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Lay Cheng Lim
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Fang Y, Yuan C, Li C, Lu C, Yu W, Wang G. The Mediator Med23 controls a transcriptional switch for muscle stem cell proliferation and differentiation in muscle regeneration. Cell Rep 2024; 43:114177. [PMID: 38691453 DOI: 10.1016/j.celrep.2024.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/14/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Muscle stem cells (MuSCs) contribute to a robust muscle regeneration process after injury, which is highly orchestrated by the sequential expression of multiple key transcription factors. However, it remains unclear how key transcription factors and cofactors such as the Mediator complex cooperate to regulate myogenesis. Here, we show that the Mediator Med23 is critically important for MuSC-mediated muscle regeneration. Med23 is increasingly expressed in activated/proliferating MuSCs on isolated myofibers or in response to muscle injury. Med23 deficiency reduced MuSC proliferation and enhanced its precocious differentiation, ultimately compromising muscle regeneration. Integrative analysis revealed that Med23 oppositely impacts Ternary complex factor (TCF)-targeted MuSC proliferation genes and myocardin-related transcription factor (MRTF)-targeted myogenic differentiation genes. Consistently, Med23 deficiency decreases the ETS-like transcription factor 1 (Elk1)/serum response factor (SRF) binding at proliferation gene promoters but promotes MRTF-A/SRF binding at myogenic gene promoters. Overall, our study reveals the important transcriptional control mechanism of Med23 in balancing MuSC proliferation and differentiation in muscle regeneration.
Collapse
Affiliation(s)
- Yi Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunlei Yuan
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chonghui Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chengjiang Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| |
Collapse
|
24
|
Huang S, Shi W, Li S, Fan Q, Yang C, Cao J, Wu L. Advanced sequencing-based high-throughput and long-read single-cell transcriptome analysis. LAB ON A CHIP 2024; 24:2601-2621. [PMID: 38669201 DOI: 10.1039/d4lc00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Cells are the fundamental building blocks of living systems, exhibiting significant heterogeneity. The transcriptome connects the cellular genotype and phenotype, and profiling single-cell transcriptomes is critical for uncovering distinct cell types, states, and the interplay between cells in development, health, and disease. Nevertheless, single-cell transcriptome analysis faces daunting challenges due to the low abundance and diverse nature of RNAs in individual cells, as well as their heterogeneous expression. The advent and continuous advancements of next-generation sequencing (NGS) and third-generation sequencing (TGS) technologies have solved these problems and facilitated the high-throughput, sensitive, full-length, and rapid profiling of single-cell RNAs. In this review, we provide a broad introduction to current methodologies for single-cell transcriptome sequencing. First, state-of-the-art advancements in high-throughput and full-length single-cell RNA sequencing (scRNA-seq) platforms using NGS are reviewed. Next, TGS-based long-read scRNA-seq methods are summarized. Finally, a brief conclusion and perspectives for comprehensive single-cell transcriptome analysis are discussed.
Collapse
Affiliation(s)
- Shanqing Huang
- Discipline of Intelligent Instrument and Equipment, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weixiong Shi
- Discipline of Intelligent Instrument and Equipment, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiyu Li
- Discipline of Intelligent Instrument and Equipment, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qian Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
- Discipline of Intelligent Instrument and Equipment, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiao Cao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
25
|
Zhang C, Wang L, Qin L, Luo Y, Wen Z, Vignon AS, Zheng C, Zhu X, Chu H, Deng S, Hong L, Zhang J, Yang H, Zhang J, Ma Y, Wu G, Sun C, Liu X, Pu L. Overexpression of GPX2 gene regulates the development of porcine preadipocytes and skeletal muscle cells through MAPK signaling pathway. PLoS One 2024; 19:e0298827. [PMID: 38722949 PMCID: PMC11081289 DOI: 10.1371/journal.pone.0298827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/30/2024] [Indexed: 05/13/2024] Open
Abstract
Glutathione peroxidase 2 (GPX2) is a selenium-dependent enzyme and protects cells against oxidative damage. Recently, GPX2 has been identified as a candidate gene for backfat and feed efficiency in pigs. However, it is unclear whether GPX2 regulates the development of porcine preadipocytes and skeletal muscle cells. In this study, adenoviral gene transfer was used to overexpress GPX2. Our findings suggest that overexpression of GPX2 gene inhibited proliferation of porcine preadipocytes. And the process is accompanied by the reduction of the p-p38. GPX2 inhibited adipogenic differentiation and promoted lipid degradation, while ERK1/2 was reduced and p-p38 was increased. Proliferation of porcine skeletal muscle cells was induced after GPX2 overexpression, was accompanied by activation in JNK, ERK1/2, and p-p38. Overexpression methods confirmed that GPX2 has a promoting function in myoblastic differentiation. ERK1/2 pathway was activated and p38 was suppressed during the process. This study lays a foundation for the functional study of GPX2 and provides theoretical support for promoting subcutaneous fat reduction and muscle growth.
Collapse
Affiliation(s)
- Chunguang Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Lei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Lei Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Yunyan Luo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Zuochen Wen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Akpaca Samson Vignon
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Chunting Zheng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xueli Zhu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Han Chu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Shifan Deng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Liang Hong
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
- Tianjin modern Tianjiao Agricultural Technology Co, LTD, Tianjin Key Laboratory of Green Ecological Feed, Tianjin, China
| | - Jianbin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
- Tianjin modern Tianjiao Agricultural Technology Co, LTD, Tianjin Key Laboratory of Green Ecological Feed, Tianjin, China
| | - Hua Yang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Jianbo Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Yuhong Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Guofang Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Chao Sun
- Tianjin modern Tianjiao Agricultural Technology Co, LTD, Tianjin Key Laboratory of Green Ecological Feed, Tianjin, China
| | - Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Pu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
- Tianjin modern Tianjiao Agricultural Technology Co, LTD, Tianjin Key Laboratory of Green Ecological Feed, Tianjin, China
| |
Collapse
|
26
|
Lai Y, Ramírez-Pardo I, Isern J, An J, Perdiguero E, Serrano AL, Li J, García-Domínguez E, Segalés J, Guo P, Lukesova V, Andrés E, Zuo J, Yuan Y, Liu C, Viña J, Doménech-Fernández J, Gómez-Cabrera MC, Song Y, Liu L, Xu X, Muñoz-Cánoves P, Esteban MA. Multimodal cell atlas of the ageing human skeletal muscle. Nature 2024; 629:154-164. [PMID: 38649488 PMCID: PMC11062927 DOI: 10.1038/s41586-024-07348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.
Collapse
Affiliation(s)
- Yiwei Lai
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ignacio Ramírez-Pardo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Juan An
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Eusebio Perdiguero
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Antonio L Serrano
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Jinxiu Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Esther García-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Jessica Segalés
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pengcheng Guo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Vera Lukesova
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eva Andrés
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jing Zuo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Julio Doménech-Fernández
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova y Hospital de Liria and Health Care Department Arnau-Lliria, Valencia, Spain
- Department of Orthopedic Surgery, Clinica Universidad de Navarra, Pamplona, Spain
| | - Mari Carmen Gómez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Yancheng Song
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Longqi Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA.
- ICREA, Barcelona, Spain.
| | - Miguel A Esteban
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Jilin, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Riuzzi F, Mocciaro E. Report and Abstracts of the 20th Meeting of IIM, the Interuniversity Institute of Myology: Assisi, October 12-15, 2023. Eur J Transl Myol 2024; 34:12490. [PMID: 38651523 PMCID: PMC11264231 DOI: 10.4081/ejtm.2024.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
The 2023 represented a milestone for the Interuniversity Institute of Myology (IIM) since it marked twenty years of IIM activity joined with the 20th annual meeting organized by the association. The 20th IIM meeting took place in the fascinating town of Assisi, in the heart of central Italy, from 12 to 15 October. The commemorative 20th edition of the meeting represented a success in terms of participation and contributions as it brought together 160 myologists, clinicians, pharmaceutical companies, and patient organization representatives from Italy, several European countries (especially France), the United Kingdom, Brazil, and the USA. Four main scientific sessions hosted 36 oral communications and 54 always-on-display posters reporting original and unpublished results. Four main lectures from internationally renowned invited speakers and talks from delegates of the Societé Française de Myologie gave particular interest and emphasis to the scientific discussion. In line with the traditional policy of the IIM to encourage the participation of young researchers, about 50% of the attendees were under 35 years old. Moreover, the 20th IIM meeting was part of the high-training course in "Advanced Myology Update 2023", reserved to young trainees and managed by the University of Perugia (Italy) in collaboration with the IIM. In addition to the meeting scientific sessions, the 29 attendees to the course had a dedicated round table and dedicated lessons with the IIM invited speakers as teachers. Awards for the best talk, best poster blitz, and best poster have been conferred to young attendees, who became part of the IIM Young Committee, involved in the scientific organization of the IIM meetings. To celebrate the 20th IIM anniversary, a special free-access educational convention on "Causes and mechanisms of muscle atrophy. From terrestrial disuse to Space flights" has been organized, in which IIM experts in the field have illustrated the current knowledge about the muscle atrophy process in several atrophying conditions, and the former Italian astronaut, Paolo Nespoli shared his incredible experience in Space fascinating the large audience attending both in presence and online live stream. The meeting was characterized by a vibrant, friendly, and inclusive atmosphere, and stimulated discussion on emerging areas of muscle research, fostering international collaborations, and confirming the IIM meeting as an ideal venue to discuss around muscle development, function, and diseases pointing to the development of efficacious therapeutic strategies. Here, the abstracts of the meeting illustrate the most recent results on basic, translational, and clinical research in the myology field. Some abstracts are missing as per authors' decision due to the patentability of the results.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Section of Anatomy, Department of Medicine and Surgery, University of Perugia, Perugia, .
| | - Emanuele Mocciaro
- Gene Expression and Regulation Unit, San Raffaele Scientific Institute, DIBIT2, Milano.
| |
Collapse
|
28
|
Tan VWT, Salmi TM, Karamalakis AP, Gillespie A, Ong AJS, Balic JJ, Chan YC, Bladen CE, Brown KK, Dawson MA, Cox AG. SLAM-ITseq identifies that Nrf2 induces liver regeneration through the pentose phosphate pathway. Dev Cell 2024; 59:898-910.e6. [PMID: 38366599 DOI: 10.1016/j.devcel.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/07/2023] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The liver exhibits a remarkable capacity to regenerate following injury. Despite this unique attribute, toxic injury is a leading cause of liver failure. The temporal processes by which the liver senses injury and initiates regeneration remain unclear. Here, we developed a transgenic zebrafish model wherein hepatocyte-specific expression of uracil phosphoribosyltransferase (UPRT) enabled the implementation of SLAM-ITseq to investigate the nascent transcriptome during initiation of liver injury and regeneration. Using this approach, we identified a rapid metabolic transition from the fed to the fasted state that was followed by induction of the nuclear erythroid 2-related factor (Nrf2) antioxidant program. We find that activation of Nrf2 in hepatocytes is required to induce the pentose phosphate pathway (PPP) and improve survival following liver injury. Mechanistically, we demonstrate that inhibition of the PPP disrupts nucleotide biosynthesis to prevent liver regeneration. Together, these studies provide fundamental insights into the mechanism by which early metabolic adaptation to injury facilitates tissue regeneration.
Collapse
Affiliation(s)
- Vicky W T Tan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Talhah M Salmi
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anthony P Karamalakis
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrea Gillespie
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Athena Jessica S Ong
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jesse J Balic
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yih-Chih Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Cerys E Bladen
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kristin K Brown
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; Centre for Cancer Research, The University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Andrew G Cox
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
29
|
Hung M, Lo HF, Beckmann AG, Demircioglu D, Damle G, Hasson D, Radice GL, Krauss RS. Cadherin-dependent adhesion is required for muscle stem cell niche anchorage and maintenance. Development 2024; 151:dev202387. [PMID: 38456551 PMCID: PMC11057819 DOI: 10.1242/dev.202387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/25/2024] [Indexed: 03/09/2024]
Abstract
Adhesion between stem cells and their niche provides stable anchorage and signaling cues to sustain properties such as quiescence. Skeletal muscle stem cells (MuSCs) adhere to an adjacent myofiber via cadherin-catenin complexes. Previous studies on N- and M-cadherin in MuSCs revealed that although N-cadherin is required for quiescence, they are collectively dispensable for MuSC niche localization and regenerative activity. Although additional cadherins are expressed at low levels, these findings raise the possibility that cadherins are unnecessary for MuSC anchorage to the niche. To address this question, we conditionally removed from MuSCs β- and γ-catenin, and, separately, αE- and αT-catenin, factors that are essential for cadherin-dependent adhesion. Catenin-deficient MuSCs break quiescence similarly to N-/M-cadherin-deficient MuSCs, but exit the niche and are depleted. Combined in vivo, ex vivo and single cell RNA-sequencing approaches reveal that MuSC attrition occurs via precocious differentiation, re-entry to the niche and fusion to myofibers. These findings indicate that cadherin-catenin-dependent adhesion is required for anchorage of MuSCs to their niche and for preservation of the stem cell compartment. Furthermore, separable cadherin-regulated functions govern niche localization, quiescence and MuSC maintenance.
Collapse
Affiliation(s)
- Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hsiao-Fan Lo
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aviva G. Beckmann
- Pathos AI, 600 West Chicago Avenue, Suite 510, Chicago, IL 60654, USA
| | - Deniz Demircioglu
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gargi Damle
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Hasson
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Glenn L. Radice
- Cardiovascular Research Center, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
30
|
Jiménez-Gracia L, Marchese D, Nieto JC, Caratù G, Melón-Ardanaz E, Gudiño V, Roth S, Wise K, Ryan NK, Jensen KB, Hernando-Momblona X, Bernardes JP, Tran F, Sievers LK, Schreiber S, van den Berge M, Kole T, van der Velde PL, Nawijn MC, Rosenstiel P, Batlle E, Butler LM, Parish IA, Plummer J, Gut I, Salas A, Heyn H, Martelotto LG. FixNCut: single-cell genomics through reversible tissue fixation and dissociation. Genome Biol 2024; 25:81. [PMID: 38553769 PMCID: PMC10979608 DOI: 10.1186/s13059-024-03219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
The use of single-cell technologies for clinical applications requires disconnecting sampling from downstream processing steps. Early sample preservation can further increase robustness and reproducibility by avoiding artifacts introduced during specimen handling. We present FixNCut, a methodology for the reversible fixation of tissue followed by dissociation that overcomes current limitations. We applied FixNCut to human and mouse tissues to demonstrate the preservation of RNA integrity, sequencing library complexity, and cellular composition, while diminishing stress-related artifacts. Besides single-cell RNA sequencing, FixNCut is compatible with multiple single-cell and spatial technologies, making it a versatile tool for robust and flexible study designs.
Collapse
Affiliation(s)
- Laura Jiménez-Gracia
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Domenica Marchese
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Juan C Nieto
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Ginevra Caratù
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Elisa Melón-Ardanaz
- Inflammatory Bowel Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Victoria Gudiño
- Inflammatory Bowel Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Sara Roth
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Monash University Department of Surgery, Alfred Hospital, Melbourne, VIC, Australia
| | - Kellie Wise
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia
- Australian Genomics Research Facility, Adelaide, South Australia, Australia
| | - Natalie K Ryan
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kirk B Jensen
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia
- Australian Genomics Research Facility, Adelaide, South Australia, Australia
| | - Xavier Hernando-Momblona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Joana P Bernardes
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Internal Medicine I, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Laura Katharina Sievers
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Internal Medicine I, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Internal Medicine I, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tessa Kole
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Petra L van der Velde
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Lisa M Butler
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jasmine Plummer
- St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ivo Gut
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain.
- Universitat de Barcelona (UB), Barcelona, Spain.
- Omniscope, Barcelona, Spain.
| | - Luciano G Martelotto
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, Adelaide, South Australia, Australia.
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia.
- Omniscope, Barcelona, Spain.
| |
Collapse
|
31
|
Zhao J, Rui L, Ouyang W, Hao Y, Liu Y, Tang J, Ding Z, Teng Z, Liu X, Zhu H, Ding Z. Cardiac commitment driven by MyoD expression in pericardial stem cells. Front Cell Dev Biol 2024; 12:1369091. [PMID: 38601082 PMCID: PMC11004306 DOI: 10.3389/fcell.2024.1369091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 04/12/2024] Open
Abstract
Cellular therapy holds immense promise to remuscularize the damaged myocardium but is practically hindered by limited allogeneic sources of cardiac-committed cells that engraft stably in the recipient heart after transplantation. Here, we demonstrate that the pericardial tissue harbors myogenic stem cells (pSCs) that are activated in response to inflammatory signaling after myocardial infarction (MI). The pSCs derived from the MI rats (MI-pSCs) show in vivo and in vitro cardiac commitment characterized by cardiac-specific Tnnt2 expression and formation of rhythmic contraction in culture. Bulk RNA-seq analysis reveals significant upregulation of a panel of genes related to cardiac/myogenic differentiation, paracrine factors, and extracellular matrix in the activated pSCs compared to the control pSCs (Sham-pSCs). Notably, we define MyoD as a key factor that governs the process of cardiac commitment, as siRNA-mediated MyoD gene silencing results in a significant reduction of myogenic potential. Injection of the cardiac-committed cells into the infarcted rat heart leads to long-term survival and stable engraftment in the recipient myocardium. Therefore, these findings point to pericardial myogenic progenitors as an attractive candidate for cardiac cell-based therapy to remuscularize the damaged myocardium.
Collapse
Affiliation(s)
- Jianfeng Zhao
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Limei Rui
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Weili Ouyang
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Yingcai Hao
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Yusong Liu
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Jianfeng Tang
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Zheheng Ding
- Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Zenghui Teng
- Institute Neuro and Sensory Physiology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Xueqing Liu
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Hongtao Zhu
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Zhaoping Ding
- Institute of Molecular Cardiology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
32
|
Ma N, Mourkioti F. Ex vivo two-photon imaging of whole-mount skeletal muscles to visualize stem cell behavior. STAR Protoc 2024; 5:102772. [PMID: 38085638 PMCID: PMC10733746 DOI: 10.1016/j.xpro.2023.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Quiescent skeletal muscle stem cells (MuSCs) are morphologically and functionally heterogeneous and exhibit different lengths of cellular extensions, which we call protrusions. Here, we present a protocol for ex vivo two-photon imaging of MuSCs in their native environment. We describe steps for muscle dissection, fixation, embedding, imaging, and analysis of datasets. This protocol allows the examination of MuSC morphology and protrusions at the single-cell level as well as stem cell numbers. For complete details on the use and execution of this protocol, please refer to Ma et al. (2022).1.
Collapse
Affiliation(s)
- Nuoying Ma
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Regenerative Medicine, Musculoskeletal Regeneration Program, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Chrysostomou E, Mourikis P. The extracellular matrix niche of muscle stem cells. Curr Top Dev Biol 2024; 158:123-150. [PMID: 38670702 DOI: 10.1016/bs.ctdb.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Preserving the potency of stem cells in adult tissues is very demanding and relies on the concerted action of various cellular and non-cellular elements in a precise stoichiometry. This balanced microenvironment is found in specific anatomical "pockets" within the tissue, known as the stem cell niche. In this review, we explore the interplay between stem cells and their niches, with a primary focus on skeletal muscle stem cells and the extracellular matrix (ECM). Quiescent muscle stem cells, known as satellite cells are active producers of a diverse array of ECM molecules, encompassing major constituents like collagens, laminins, and integrins, some of which are explored in this review. The conventional perception of ECM as merely a structural scaffold is evolving. Collagens can directly interact as ligands with receptors on satellite cells, while other ECM proteins have the capacity to sequester growth factors and regulate their release, especially relevant during satellite cell turnover in homeostasis or activation upon injury. Additionally, we explore an evolutionary perspective on the ECM across a range of multicellular organisms and discuss a model wherein satellite cells are self-sustained by generating their own niche. Considering the prevalence of ECM proteins in the connective tissue of various organs it is not surprising that mutations in ECM genes have pathological implications, including in muscle, where they can lead to myopathies. However, the particular role of certain disease-related ECM proteins in stem cell maintenance highlights the potential contribution of stem cell deregulation to the progression of these disorders.
Collapse
Affiliation(s)
- Eleni Chrysostomou
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France
| | - Philippos Mourikis
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France.
| |
Collapse
|
34
|
Geara P, Dilworth FJ. Epigenetic integration of signaling from the regenerative environment. Curr Top Dev Biol 2024; 158:341-374. [PMID: 38670712 DOI: 10.1016/bs.ctdb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle has an extraordinary capacity to regenerate itself after injury due to the presence of tissue-resident muscle stem cells. While these muscle stem cells are the primary contributor to the regenerated myofibers, the process occurs in a regenerative microenvironment where multiple different cell types act in a coordinated manner to clear the damaged myofibers and restore tissue homeostasis. In this regenerative environment, immune cells play a well-characterized role in initiating repair by establishing an inflammatory state that permits the removal of dead cells and necrotic muscle tissue at the injury site. More recently, it has come to be appreciated that the immune cells also play a crucial role in communicating with the stem cells within the regenerative environment to help coordinate the timing of repair events through the secretion of cytokines, chemokines, and growth factors. Evidence also suggests that stem cells can help modulate the extent of the inflammatory response by signaling to the immune cells, demonstrating a cross-talk between the different cells in the regenerative environment. Here, we review the current knowledge on the innate immune response to sterile muscle injury and provide insight into the epigenetic mechanisms used by the cells in the regenerative niche to integrate the cellular cross-talk required for efficient muscle repair.
Collapse
Affiliation(s)
- Perla Geara
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States
| | - F Jeffrey Dilworth
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States.
| |
Collapse
|
35
|
Girolamo DD, Benavente-Diaz M, Murolo M, Grimaldi A, Lopes PT, Evano B, Kuriki M, Gioftsidi S, Laville V, Tinevez JY, Letort G, Mella S, Tajbakhsh S, Comai G. Extraocular muscle stem cells exhibit distinct cellular properties associated with non-muscle molecular signatures. Development 2024; 151:dev202144. [PMID: 38240380 DOI: 10.1242/dev.202144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Maria Benavente-Diaz
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Melania Murolo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Alexandre Grimaldi
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Priscilla Thomas Lopes
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Brendan Evano
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Mao Kuriki
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Stamatia Gioftsidi
- Université Paris-Est, 77420 Champs-sur- Marne, France
- Freie Universität Berlin, 14195 Berlin, Germany
- Inserm, IMRB U955-E10, 94000 Créteil, France
| | - Vincent Laville
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015 Paris, France
| | - Gaëlle Letort
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Sebastian Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Glenda Comai
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| |
Collapse
|
36
|
Liu C, Xu Y, Yang G, Tao Y, Chang J, Wang S, Cheung TH, Chen J, Zeng YA. Niche inflammatory signals control oscillating mammary regeneration and protect stem cells from cytotoxic stress. Cell Stem Cell 2024; 31:89-105.e6. [PMID: 38141612 DOI: 10.1016/j.stem.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/03/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
Stem cells are known for their resilience and enhanced activity post-stress. The mammary gland undergoes frequent remodeling and is subjected to recurring stress during the estrus cycle, but it remains unclear how mammary stem cells (MaSCs) respond to the stress and contribute to regeneration. We discovered that cytotoxic stress-induced activation of CD11c+ ductal macrophages aids stem cell survival and prevents differentiation. These macrophages boost Procr+ MaSC activity through IL1β-IL1R1-NF-κB signaling during the estrus cycle in an oscillating manner. Deleting IL1R1 in MaSCs results in stem cell loss and skewed luminal differentiation. Moreover, under cytotoxic stress from the chemotherapy agent paclitaxel, ductal macrophages secrete higher IL1β levels, promoting MaSC survival and preventing differentiation. Inhibiting IL1R1 sensitizes MaSCs to paclitaxel. Our findings reveal a recurring inflammatory process that regulates regeneration, providing insights into stress-induced inflammation and its impact on stem cell survival, potentially affecting cancer therapy efficacy.
Collapse
Affiliation(s)
- Chunye Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yishu Xu
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guowei Yang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Tao
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiali Chang
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shihui Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research Center for Systems Biology and Human Health, the State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518057, Guangdong, China
| | - Jianfeng Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yi Arial Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
37
|
Kang J, Benjamin DI, Kim S, Salvi JS, Dhaliwal G, Lam R, Goshayeshi A, Brett JO, Liu L, Rando TA. Depletion of SAM leading to loss of heterochromatin drives muscle stem cell ageing. Nat Metab 2024; 6:153-168. [PMID: 38243132 PMCID: PMC10976122 DOI: 10.1038/s42255-023-00955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
The global loss of heterochromatin during ageing has been observed in eukaryotes from yeast to humans, and this has been proposed as one of the causes of ageing. However, the cause of this age-associated loss of heterochromatin has remained enigmatic. Here we show that heterochromatin markers, including histone H3K9 di/tri-methylation and HP1, decrease with age in muscle stem cells (MuSCs) as a consequence of the depletion of the methyl donor S-adenosylmethionine (SAM). We find that restoration of intracellular SAM in aged MuSCs restores heterochromatin content to youthful levels and rejuvenates age-associated features, including DNA damage accumulation, increased cell death, and defective muscle regeneration. SAM is not only a methyl group donor for transmethylation, but it is also an aminopropyl donor for polyamine synthesis. Excessive consumption of SAM in polyamine synthesis may reduce its availability for transmethylation. Consistent with this premise, we observe that perturbation of increased polyamine synthesis by inhibiting spermidine synthase restores intracellular SAM content and heterochromatin formation, leading to improvements in aged MuSC function and regenerative capacity in male and female mice. Together, our studies demonstrate a direct causal link between polyamine metabolism and epigenetic dysregulation during murine MuSC ageing.
Collapse
Affiliation(s)
- Jengmin Kang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel I Benjamin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jayesh S Salvi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Gurkamal Dhaliwal
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard Lam
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Armon Goshayeshi
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jamie O Brett
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology and Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Neurology Service, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
- Department of Neurology and Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Andriamboavonjy L, MacDonald A, Hamilton LK, Labrecque M, Boivin MN, Karamchandani J, Stratton JA, Tetreault M. Comparative analysis of methods to reduce activation signature gene expression in PBMCs. Sci Rep 2023; 13:23086. [PMID: 38155174 PMCID: PMC10754832 DOI: 10.1038/s41598-023-49611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/10/2023] [Indexed: 12/30/2023] Open
Abstract
Preserving the in vivo cell transcriptome is essential for accurate profiling, yet factors during cell isolation including time ex vivo and temperature induce artifactual gene expression, particularly in stress-responsive immune cells. In this study, we investigated two methods to mitigate ex vivo activation signature gene (ASG) expression in peripheral blood mononuclear cells (PBMCs): transcription and translation inhibitors (TTis) and cold temperatures during isolation. Comparative analysis of PBMCs isolated with TTis revealed reduced ASG expression. However, TTi treatment impaired responsiveness to LPS stimulation in subsequent in vitro experiments. In contrast, cold isolation methods also prevented ASG expression; up to a point where the addition of TTis during cold isolation offered minimal additional advantage. These findings highlight the importance of considering the advantages and drawbacks of different isolation methods to ensure accurate interpretation of PBMC transcriptomic profiles.
Collapse
Affiliation(s)
- Lovatiana Andriamboavonjy
- Research Center of the University of Montreal Hospital (CRCHUM), Université de Montréal, Montreal, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Adam MacDonald
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Laura K Hamilton
- Research Center of the University of Montreal Hospital (CRCHUM), Université de Montréal, Montreal, Canada
| | - Marjorie Labrecque
- Research Center of the University of Montreal Hospital (CRCHUM), Université de Montréal, Montreal, Canada
| | - Marie-Noёlle Boivin
- C-BIG Repository (C-BIG), Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Jason Karamchandani
- C-BIG Repository (C-BIG), Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- Department of Pathology, Montreal Neurological Institute, Montreal, QC, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| | - Martine Tetreault
- Research Center of the University of Montreal Hospital (CRCHUM), Université de Montréal, Montreal, Canada.
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
39
|
Schnell A, Huang L, Regan BML, Singh V, Vonficht D, Bollhagen A, Wang M, Hou Y, Bod L, Sobel RA, Chihara N, Madi A, Anderson AC, Regev A, Kuchroo VK. Targeting PGLYRP1 promotes antitumor immunity while inhibiting autoimmune neuroinflammation. Nat Immunol 2023; 24:1908-1920. [PMID: 37828379 PMCID: PMC10864036 DOI: 10.1038/s41590-023-01645-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Co-inhibitory and checkpoint molecules suppress T cell function in the tumor microenvironment, thereby rendering T cells dysfunctional. Although immune checkpoint blockade is a successful treatment option for multiple human cancers, severe autoimmune-like adverse effects can limit its application. Here, we show that the gene encoding peptidoglycan recognition protein 1 (PGLYRP1) is highly coexpressed with genes encoding co-inhibitory molecules, indicating that it might be a promising target for cancer immunotherapy. Genetic deletion of Pglyrp1 in mice led to decreased tumor growth and an increased activation/effector phenotype in CD8+ T cells, suggesting an inhibitory function of PGLYRP1 in CD8+ T cells. Surprisingly, genetic deletion of Pglyrp1 protected against the development of experimental autoimmune encephalomyelitis, a model of autoimmune disease in the central nervous system. PGLYRP1-deficient myeloid cells had a defect in antigen presentation and T cell activation, indicating that PGLYRP1 might function as a proinflammatory molecule in myeloid cells during autoimmunity. These results highlight PGLYRP1 as a promising target for immunotherapy that, when targeted, elicits a potent antitumor immune response while protecting against some forms of tissue inflammation and autoimmunity.
Collapse
Affiliation(s)
- Alexandra Schnell
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Linglin Huang
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Brianna M L Regan
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
| | - Vasundhara Singh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dominik Vonficht
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alina Bollhagen
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mona Wang
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yu Hou
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Lloyd Bod
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Raymond A Sobel
- Palo Alto Veteran's Administration Health Care System and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Norio Chihara
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Asaf Madi
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Ana C Anderson
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
40
|
Herrera I, Fernandes JAL, Shir-Mohammadi K, Levesque J, Mattar P. Lamin A upregulation reorganizes the genome during rod photoreceptor degeneration. Cell Death Dis 2023; 14:701. [PMID: 37880237 PMCID: PMC10600220 DOI: 10.1038/s41419-023-06224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Neurodegenerative diseases are accompanied by dynamic changes in gene expression, including the upregulation of hallmark stress-responsive genes. While the transcriptional pathways that impart adaptive and maladaptive gene expression signatures have been the focus of intense study, the role of higher order nuclear organization in this process is less clear. Here, we examine the role of the nuclear lamina in genome organization during the degeneration of rod photoreceptors. Two proteins had previously been shown to be necessary and sufficient to tether heterochromatin at the nuclear envelope. The lamin B receptor (Lbr) is expressed during development, but downregulates upon rod differentiation. A second tether is the intermediate filament lamin A (LA), which is not normally expressed in murine rods. Here, we show that in the rd1 model of retinitis pigmentosa, LA ectopically upregulates in rod photoreceptors at the onset of degeneration. LA upregulation correlated with increased heterochromatin tethering at the nuclear periphery in rd1 rods, suggesting that LA reorganizes the nucleus. To determine how heterochromatin tethering affects the genome, we used in vivo electroporation to misexpress LA or Lbr in mature rods in the absence of degeneration, resulting in the restoration of conventional nuclear architecture. Using scRNA-seq, we show that reorganizing the nucleus via LA/Lbr misexpression has relatively minor effects on rod gene expression. Next, using ATAC-seq, we show that LA and Lbr both lead to marked increases in genome accessibility. Novel ATAC-seq peaks tended to be associated with stress-responsive genes. Together, our data reveal that heterochromatin tethers have a global effect on genome accessibility, and suggest that heterochromatin tethering primes the photoreceptor genome to respond to stress.
Collapse
Affiliation(s)
- Ivana Herrera
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - José Alex Lourenço Fernandes
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Khatereh Shir-Mohammadi
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Jasmine Levesque
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Pierre Mattar
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
41
|
He Y, Heng Y, Qin Z, Wei X, Wu Z, Qu J. Intravital microscopy of satellite cell dynamics and their interaction with myeloid cells during skeletal muscle regeneration. SCIENCE ADVANCES 2023; 9:eadi1891. [PMID: 37851799 PMCID: PMC10584350 DOI: 10.1126/sciadv.adi1891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
Skeletal muscle regeneration requires the highly coordinated cooperation of muscle satellite cells (MuSCs) with other cellular components. Upon injury, myeloid cells populate the wound site, concomitant with MuSC activation. However, detailed analysis of MuSC-myeloid cell interaction is hindered by the lack of suitable live animal imaging technology. Here, we developed a dual-laser multimodal nonlinear optical microscope platform to study the dynamics of MuSCs and their interaction with nonmyogenic cells during muscle regeneration. Using three-dimensional time-lapse imaging on live reporter mice and taking advantages of the autofluorescence of reduced nicotinamide adenine dinucleotide (NADH), we studied the spatiotemporal interaction between nonmyogenic cells and muscle stem/progenitor cells during MuSC activation and proliferation. We discovered that their cell-cell contact was transient in nature. Moreover, MuSCs could activate with notably reduced infiltration of neutrophils and macrophages, and their proliferation, although dependent on macrophages, did not require constant contact with them. These findings provide a fresh perspective on myeloid cells' role during muscle regeneration.
Collapse
Affiliation(s)
- Yingzhu He
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Youshan Heng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhongya Qin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Xiuqing Wei
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhenguo Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Jianan Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
42
|
Messmer T, Dohmen RGJ, Schaeken L, Melzener L, Hueber R, Godec M, Didoss C, Post MJ, Flack JE. Single-cell analysis of bovine muscle-derived cell types for cultured meat production. Front Nutr 2023; 10:1212196. [PMID: 37781115 PMCID: PMC10535090 DOI: 10.3389/fnut.2023.1212196] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Cultured meat technologies leverage the proliferation and differentiation of animal-derived stem cells ex vivo to produce edible tissues for human consumption in a sustainable fashion. However, skeletal muscle is a dynamic and highly complex tissue, involving the interplay of numerous mono- and multinucleated cells, including muscle fibers, satellite cells (SCs) and fibro-adipogenic progenitors (FAPs), and recreation of the tissue in vitro thus requires the characterization and manipulation of a broad range of cell types. Here, we use a single-cell RNA sequencing approach to characterize cellular heterogeneity within bovine muscle and muscle-derived cell cultures over time. Using this data, we identify numerous distinct cell types, and develop robust protocols for the easy purification and proliferation of several of these populations. We note overgrowth of undesirable cell types within heterogeneous proliferative cultures as a barrier to efficient cultured meat production, and use transcriptomics to identify conditions that favor the growth of SCs in the context of serum-free medium. Combining RNA velocities computed in silico with time-resolved flow cytometric analysis, we characterize dynamic subpopulations and transitions between active, quiescent, and committed states of SCs, and demonstrate methods for modulation of these states during long-term proliferative cultures. This work provides an important reference for advancing our knowledge of bovine skeletal muscle biology, and its application in the development of cultured meat technologies.
Collapse
Affiliation(s)
- Tobias Messmer
- Mosa Meat B.V., Maastricht, Netherlands
- Maastricht University, Maastricht, Netherlands
| | - Richard G. J. Dohmen
- Mosa Meat B.V., Maastricht, Netherlands
- Maastricht University, Maastricht, Netherlands
| | | | - Lea Melzener
- Mosa Meat B.V., Maastricht, Netherlands
- Maastricht University, Maastricht, Netherlands
| | | | | | | | - Mark J. Post
- Mosa Meat B.V., Maastricht, Netherlands
- Maastricht University, Maastricht, Netherlands
| | | |
Collapse
|
43
|
Okafor AE, Lin X, Situ C, Wei X, Xiang Y, Wei X, Wu Z, Diao Y. Single-cell chromatin accessibility profiling reveals a self-renewing muscle satellite cell state. J Cell Biol 2023; 222:e202211073. [PMID: 37382627 PMCID: PMC10309185 DOI: 10.1083/jcb.202211073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
A balance between self-renewal and differentiation is critical for the regenerative capacity of tissue-resident stem cells. In skeletal muscle, successful regeneration requires the orchestrated activation, proliferation, and differentiation of muscle satellite cells (MuSCs) that are normally quiescent. A subset of MuSCs undergoes self-renewal to replenish the stem cell pool, but the features that identify and define self-renewing MuSCs remain to be elucidated. Here, through single-cell chromatin accessibility analysis, we reveal the self-renewal versus differentiation trajectories of MuSCs over the course of regeneration in vivo. We identify Betaglycan as a unique marker of self-renewing MuSCs that can be purified and efficiently contributes to regeneration after transplantation. We also show that SMAD4 and downstream genes are genetically required for self-renewal in vivo by restricting differentiation. Our study unveils the identity and mechanisms of self-renewing MuSCs, while providing a key resource for comprehensive analysis of muscle regeneration.
Collapse
Affiliation(s)
- Arinze E. Okafor
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Xin Lin
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
| | - Chenghao Situ
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xiaolin Wei
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
| | - Xiuqing Wei
- Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Zhenguo Wu
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| |
Collapse
|
44
|
Luo Y, Xiao JH. Inflammatory auxo-action in the stem cell division theory of cancer. PeerJ 2023; 11:e15444. [PMID: 37309372 PMCID: PMC10257902 DOI: 10.7717/peerj.15444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/01/2023] [Indexed: 06/14/2023] Open
Abstract
Acute inflammation is a beneficial response to the changes caused by pathogens or injuries that can eliminate the source of damage and restore homeostasis in damaged tissues. However, chronic inflammation causes malignant transformation and carcinogenic effects of cells through continuous exposure to pro-inflammatory cytokines and activation of inflammatory signaling pathways. According to the theory of stem cell division, the essential properties of stem cells, including long life span and self-renewal, make them vulnerable to accumulating genetic changes that can lead to cancer. Inflammation drives quiescent stem cells to enter the cell cycle and perform tissue repair functions. However, as cancer likely originates from DNA mutations that accumulate over time via normal stem cell division, inflammation may promote cancer development, even before the stem cells become cancerous. Numerous studies have reported that the mechanisms of inflammation in cancer formation and metastasis are diverse and complex; however, few studies have reviewed how inflammation affects cancer formation from the stem cell source. Based on the stem cell division theory of cancer, this review summarizes how inflammation affects normal stem cells, cancer stem cells, and cancer cells. We conclude that chronic inflammation leads to persistent stem cells activation, which can accumulate DNA damage and ultimately promote cancer. Additionally, inflammation not only facilitates the progression of stem cells into cancer cells, but also plays a positive role in cancer metastasis.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology & Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology & Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
45
|
Salavaty A, Azadian E, Naik SH, Currie PD. Clonal selection parallels between normal and cancer tissues. Trends Genet 2023; 39:358-380. [PMID: 36842901 DOI: 10.1016/j.tig.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/28/2023]
Abstract
Clonal selection and drift drive both normal tissue and cancer development. However, the biological mechanisms and environmental conditions underpinning these processes remain to be elucidated. Clonal selection models are centered in Darwinian evolutionary theory, where some clones with the fittest features are selected and populate the tissue or tumor. We suggest that different subclasses of stem cells, each of which is responsible for a distinct feature of the selection process, share common features between normal and cancer conditions. While active stem cells populate the tissue, dormant cells account for tissue replenishment/regeneration in both normal and cancerous tissues. We also discuss potential mechanisms that drive clonal drift, their interactions with clonal selection, and their similarities during normal and cancer tissue development.
Collapse
Affiliation(s)
- Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Systems Biology Institute Australia, Monash University, Clayton, VIC 3800, Australia.
| | - Esmaeel Azadian
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Shalin H Naik
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
46
|
de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol 2023; 24:334-354. [PMID: 36922629 PMCID: PMC10725182 DOI: 10.1038/s41580-022-00568-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 03/18/2023]
Abstract
Adult stem cells are important for mammalian tissues, where they act as a cell reserve that supports normal tissue turnover and can mount a regenerative response following acute injuries. Quiescent stem cells are well established in certain tissues, such as skeletal muscle, brain, and bone marrow. The quiescent state is actively controlled and is essential for long-term maintenance of stem cell pools. In this Review, we discuss the importance of maintaining a functional pool of quiescent adult stem cells, including haematopoietic stem cells, skeletal muscle stem cells, neural stem cells, hair follicle stem cells, and mesenchymal stem cells such as fibro-adipogenic progenitors, to ensure tissue maintenance and repair. We discuss the molecular mechanisms that regulate the entry into, maintenance of, and exit from the quiescent state in mice. Recent studies revealed that quiescent stem cells have a discordance between RNA and protein levels, indicating the importance of post-transcriptional mechanisms, such as alternative polyadenylation, alternative splicing, and translation repression, in the control of stem cell quiescence. Understanding how these mechanisms guide stem cell function during homeostasis and regeneration has important implications for regenerative medicine.
Collapse
Affiliation(s)
- Antoine de Morree
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Thomas A Rando
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Li L, Cui L, Lin P, Liu Z, Bao S, Ma X, Nan H, Zhu W, Cen J, Mao Y, Ma X, Jiang L, Nie Y, Ginhoux F, Li Y, Li H, Hui L. Kupffer-cell-derived IL-6 is repurposed for hepatocyte dedifferentiation via activating progenitor genes from injury-specific enhancers. Cell Stem Cell 2023; 30:283-299.e9. [PMID: 36787740 DOI: 10.1016/j.stem.2023.01.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023]
Abstract
Stem cell-independent reprogramming of differentiated cells has recently been identified as an important paradigm for repairing injured tissues. Following periportal injury, mature hepatocytes re-activate reprogramming/progenitor-related genes (RRGs) and dedifferentiate into liver progenitor-like cells (LPLCs) in both mice and humans, which contribute remarkably to regeneration. However, it remains unknown which and how external factors trigger hepatocyte reprogramming. Here, by employing single-cell transcriptional profiling and lineage-specific deletion tools, we uncovered that periportal-specific LPLC formation was initiated by regionally activated Kupffer cells but not peripheral monocyte-derived macrophages. Unexpectedly, using in vivo screening, the proinflammatory factor IL-6 was identified as the niche signal repurposed for RRG induction via STAT3 activation, which drove RRG expression through binding to their pre-accessible enhancers. Notably, RRGs were activated through injury-specific rather than liver embryogenesis-related enhancers. Collectively, these findings depict an injury-specific niche signal and the inflammation-mediated transcription in driving the conversion of hepatocytes into a progenitor phenotype.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Cui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Lin
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujie Bao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolong Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Haitao Nan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wencheng Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yunuo Mao
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, Peking University, Beijing 100871, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Lingyong Jiang
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore 169856, Singapore; Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Yixue Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Guangdong Laboratory, Guangzhou 510320, China.
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
48
|
P2Y1R and P2Y2R: potential molecular triggers in muscle regeneration. Purinergic Signal 2023; 19:305-313. [PMID: 35902482 PMCID: PMC9984638 DOI: 10.1007/s11302-022-09885-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/07/2022] [Indexed: 10/16/2022] Open
Abstract
Muscle regeneration is indispensable for skeletal muscle health and daily life when injury, muscular disease, and aging occur. Among the muscle regeneration, muscle stem cells' (MuSCs) activation, proliferation, and differentiation play a key role in muscle regeneration. Purines bind to its specific receptors during muscle development, which transmit environmental stimuli and play a crucial role of modulator of muscle regeneration. Evidences proved P2R expression during development and regeneration of skeletal muscle, both in human and mouse. In contrast to P2XR, which have been extensively investigated in skeletal muscles, the knowledge of P2YR in this tissue is less comprehensive. This review summarized muscle regeneration via P2Y1R and P2Y2R and speculated that P2Y1R and P2Y2R might be potential molecular triggers for MuSCs' activation and proliferation via the p-ERK1/2 and PLC pathways, explored their cascade effects on skeletal muscle, and proposed P2Y1/2 receptors as potential pharmacological targets in muscle regeneration, to advance the purinergic signaling within muscle and provide promising strategies for alleviating muscular disease.
Collapse
|
49
|
Camps J, Noël F, Liechti R, Massenet-Regad L, Rigade S, Götz L, Hoffmann C, Amblard E, Saichi M, Ibrahim MM, Pollard J, Medvedovic J, Roider HG, Soumelis V. Meta-Analysis of Human Cancer Single-Cell RNA-Seq Datasets Using the IMMUcan Database. Cancer Res 2023; 83:363-373. [PMID: 36459564 PMCID: PMC9896021 DOI: 10.1158/0008-5472.can-22-0074] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/15/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The development of single-cell RNA sequencing (scRNA-seq) technologies has greatly contributed to deciphering the tumor microenvironment (TME). An enormous amount of independent scRNA-seq studies have been published representing a valuable resource that provides opportunities for meta-analysis studies. However, the massive amount of biological information, the marked heterogeneity and variability between studies, and the technical challenges in processing heterogeneous datasets create major bottlenecks for the full exploitation of scRNA-seq data. We have developed IMMUcan scDB (https://immucanscdb.vital-it.ch), a fully integrated scRNA-seq database exclusively dedicated to human cancer and accessible to nonspecialists. IMMUcan scDB encompasses 144 datasets on 56 different cancer types, annotated in 50 fields containing precise clinical, technological, and biological information. A data processing pipeline was developed and organized in four steps: (i) data collection; (ii) data processing (quality control and sample integration); (iii) supervised cell annotation with a cell ontology classifier of the TME; and (iv) interface to analyze TME in a cancer type-specific or global manner. This framework was used to explore datasets across tumor locations in a gene-centric (CXCL13) and cell-centric (B cells) manner as well as to conduct meta-analysis studies such as ranking immune cell types and genes correlated to malignant transformation. This integrated, freely accessible, and user-friendly resource represents an unprecedented level of detailed annotation, offering vast possibilities for downstream exploitation of human cancer scRNA-seq data for discovery and validation studies. SIGNIFICANCE The IMMUcan scDB database is an accessible supportive tool to analyze and decipher tumor-associated single-cell RNA sequencing data, allowing researchers to maximally use this data to provide new insights into cancer biology.
Collapse
Affiliation(s)
- Jordi Camps
- Biomedical Data Science, Research & Early Development Oncology, Bayer AG, Berlin, Germany
| | - Floriane Noël
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France
| | - Robin Liechti
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lucile Massenet-Regad
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France.,Université Paris-Saclay, Saint Aubin, France
| | - Sidwell Rigade
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France
| | - Lou Götz
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Caroline Hoffmann
- Institut Curie, INSERM U932 Research Unit, Department of Surgical Oncology, PSL University, Paris, France
| | - Elise Amblard
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France.,Université de Paris, Centre de Recherches Interdisciplinaires, Paris, France
| | - Melissa Saichi
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France
| | - Mahmoud M. Ibrahim
- Biomedical Data Science, Research & Early Development Premedical, Bayer AG, Wuppertal, Germany
| | - Jack Pollard
- Sanofi Research and Development, Cambridge, Massachusetts
| | - Jasna Medvedovic
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France
| | - Helge G. Roider
- Oncology Precision Medicine, Research & Early Development Oncology, Bayer AG, Berlin, Germany.,Corresponding Authors: Vassili Soumelis, Institut de Recherche St Louis (IRSL), Inserm U976, 26 rue d'Ulm, Paris 75005, France. Phone: 677-721-530; E-mail: ; and Helge G. Roider, Bayer AG, Müllerstraße 178, Berlin 13353, Germany. Phone: 152-068-42034; E-mail:
| | - Vassili Soumelis
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie, Paris, France.,Owkin, Paris, France.,Corresponding Authors: Vassili Soumelis, Institut de Recherche St Louis (IRSL), Inserm U976, 26 rue d'Ulm, Paris 75005, France. Phone: 677-721-530; E-mail: ; and Helge G. Roider, Bayer AG, Müllerstraße 178, Berlin 13353, Germany. Phone: 152-068-42034; E-mail:
| |
Collapse
|
50
|
Togninalli M, Ho ATV, Madl CM, Holbrook CA, Wang YX, Magnusson KEG, Kirillova A, Chang A, Blau HM. Machine learning-based classification of dual fluorescence signals reveals muscle stem cell fate transitions in response to regenerative niche factors. NPJ Regen Med 2023; 8:4. [PMID: 36639373 PMCID: PMC9839750 DOI: 10.1038/s41536-023-00277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
The proper regulation of muscle stem cell (MuSC) fate by cues from the niche is essential for regeneration of skeletal muscle. How pro-regenerative niche factors control the dynamics of MuSC fate decisions remains unknown due to limitations of population-level endpoint assays. To address this knowledge gap, we developed a dual fluorescence imaging time lapse (Dual-FLIT) microscopy approach that leverages machine learning classification strategies to track single cell fate decisions with high temporal resolution. Using two fluorescent reporters that read out maintenance of stemness and myogenic commitment, we constructed detailed lineage trees for individual MuSCs and their progeny, classifying each division event as symmetric self-renewing, asymmetric, or symmetric committed. Our analysis reveals that treatment with the lipid metabolite, prostaglandin E2 (PGE2), accelerates the rate of MuSC proliferation over time, while biasing division events toward symmetric self-renewal. In contrast, the IL6 family member, Oncostatin M (OSM), decreases the proliferation rate after the first generation, while blocking myogenic commitment. These insights into the dynamics of MuSC regulation by niche cues were uniquely enabled by our Dual-FLIT approach. We anticipate that similar binary live cell readouts derived from Dual-FLIT will markedly expand our understanding of how niche factors control tissue regeneration in real time.
Collapse
Affiliation(s)
- Matteo Togninalli
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Andrew T V Ho
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Department of Functional and Adaptive Biology - UMR 8251 CNRS, Université Paris Cité, 75013, Paris, France
| | - Christopher M Madl
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Colin A Holbrook
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Yu Xin Wang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Center for Genetic Disorders and Aging, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Klas E G Magnusson
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Department of Signal Processing, ACCESS Linnaeus Centre, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Anna Kirillova
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Andrew Chang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA.
| |
Collapse
|