1
|
Liu Y, Ding X, Jia S, Gu X. Current understanding and prospects for targeting neurogenesis in the treatment of cognitive impairment. Neural Regen Res 2026; 21:141-155. [PMID: 39820472 PMCID: PMC12094536 DOI: 10.4103/nrr.nrr-d-24-00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 07/24/2024] [Accepted: 10/31/2024] [Indexed: 01/19/2025] Open
Abstract
Adult hippocampal neurogenesis is linked to memory formation in the adult brain, with new neurons in the hippocampus exhibiting greater plasticity during their immature stages compared to mature neurons. Abnormal adult hippocampal neurogenesis is closely associated with cognitive impairment in central nervous system diseases. Targeting and regulating adult hippocampal neurogenesis have been shown to improve cognitive deficits. This review aims to expand the current understanding and prospects of targeting neurogenesis in the treatment of cognitive impairment. Recent research indicates the presence of abnormalities in AHN in several diseases associated with cognitive impairment, including cerebrovascular diseases, Alzheimer's disease, aging-related conditions, and issues related to anesthesia and surgery. The role of these abnormalities in the cognitive deficits caused by these diseases has been widely recognized, and targeting AHN is considered a promising approach for treating cognitive impairment. However, the underlying mechanisms of this role are not yet fully understood, and the effectiveness of targeting abnormal adult hippocampal neurogenesis for treatment remains limited, with a need for further development of treatment methods and detection techniques. By reviewing recent studies, we classify the potential mechanisms of adult hippocampal neurogenesis abnormalities into four categories: immunity, energy metabolism, aging, and pathological states. In immunity-related mechanisms, abnormalities in meningeal, brain, and peripheral immunity can disrupt normal adult hippocampal neurogenesis. Lipid metabolism and mitochondrial function disorders are significant energy metabolism factors that lead to abnormal adult hippocampal neurogenesis. During aging, the inflammatory state of the neurogenic niche and the expression of aging-related microRNAs contribute to reduced adult hippocampal neurogenesis and cognitive impairment in older adult patients. Pathological states of the body and emotional disorders may also result in abnormal adult hippocampal neurogenesis. Among the current strategies used to enhance this form of neurogenesis, physical therapies such as exercise, transcutaneous electrical nerve stimulation, and enriched environments have proven effective. Dietary interventions, including energy intake restriction and nutrient optimization, have shown efficacy in both basic research and clinical trials. However, drug treatments, such as antidepressants and stem cell therapy, are primarily reported in basic research, with limited clinical application. The relationship between abnormal adult hippocampal neurogenesis and cognitive impairment has garnered widespread attention, and targeting the former may be an important strategy for treating the latter. However, the mechanisms underlying abnormal adult hippocampal neurogenesis remain unclear, and treatments are lacking. This highlights the need for greater focus on translating research findings into clinical practice.
Collapse
Affiliation(s)
- Ye Liu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Second School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong Province, China
| | - Xibing Ding
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Shushan Jia
- Second School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong Province, China
| | - Xiyao Gu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Second School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong Province, China
| |
Collapse
|
2
|
Kokkali M, Karali K, Thanou E, Papadopoulou MA, Zota I, Tsimpolis A, Efstathopoulos P, Calogeropoulou T, Li KW, Sidiropoulou K, Gravanis A, Charalampopoulos I. Multimodal beneficial effects of BNN27, a nerve growth factor synthetic mimetic, in the 5xFAD mouse model of Alzheimer's disease. Mol Psychiatry 2025; 30:2265-2283. [PMID: 39587294 PMCID: PMC12092300 DOI: 10.1038/s41380-024-02833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
Alzheimer's Disease (AD) is an incurable and debilitating progressive, neurodegenerative disorder which is the leading cause of dementia worldwide. Neuropathologically, AD is characterized by the accumulation of Aβ amyloid plaques in the microenvironment of brain cells and neurovascular walls, chronic neuroinflammation, resulting in neuronal and synaptic loss, myelin and axonal failure, as well as significant reduction in adult hippocampal neurogenesis. The hippocampal formation is particularly vulnerable to this degenerative process, due to early dysfunction of the cholinergic circuit. Neurotrophic factors consist major regulatory molecules and their decline in AD is considered as an important cause of disease onset and progression. Novel pharmacological approaches are targeting the downstream pathways controlled by neurotrophins, such as nerve growth factor (NGF) receptors, TrkA and p75NTR, which enhance hippocampal neurogenic capacity and neuroprotective mechanisms, and potentially counteract the neurotoxic effects of amyloid deposition. BNN27 is a non-toxic, newly developed 17-spiro-steroid analog, penetrating the blood-brain-barrier (BBB) and mimicking the neuroprotective effects of NGF, acting as selective activator of its receptors, both TrkA and p75NTR, thus promoting survival of various neuronal cell types. Our present research aims at determining whether and which aspects of the AD-related pathology, BNN27 is able to alleviate, exploring the cellular and molecular AD components and link these changes with improvements in the cognitive performance of an animal AD model, the 5xFAD mice. Our results clearly indicate that BNN27 administration significantly reduced amyloid-β load in whole brain of the animals, enhanced adult hippocampal neurogenesis, restored cholinergic function and synaptogenesis, reducing inflammatory activation and leading to significant restoration of cognitive functions. BNN27 may represent a new lead multimodal molecule with neuroprotective, neurogenic and anti-neuroinflammatory actions for developing druggable anti-Alzheimeric agents. Proteomics data are available via ProteomeXchange with the identifier PXD044699.
Collapse
Affiliation(s)
- Maria Kokkali
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Kanelina Karali
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Evangelia Thanou
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Maria Anna Papadopoulou
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Ioanna Zota
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Alexandros Tsimpolis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | | | | | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Kyriaki Sidiropoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, 71003, Greece
| | - Achille Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece.
| |
Collapse
|
3
|
Aggarwal R, Kumar P, Kumar S, Tiwari S, Chaturvedi RK. Synthesis and biological evaluation of novel Trifluoromethylated Arylidene-hydrazinyl-thiazoles as neuroprotective agents. Bioorg Chem 2025; 159:108390. [PMID: 40139118 DOI: 10.1016/j.bioorg.2025.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Neurodegenerative diseases, a substantial global health challenge affecting millions, underscore the pressing need for novel and effective pharmacotherapeutic drugs to address these disorders. In this concern, a library of novel trifluoromethylated arylidene-hydrazinyl-thiazoles has been synthesized and assessed for their anti-neurodegenerative potential. Multicomponent regioselective chemical transformation has been carried out utilizing thiosemicarbazide, trifluoromethylated 1,3-diketones and heteroaryl aldehydes in the presence of N-bromosuccinimide (NBS) in refluxing ethanol. The regioisomeric structure of the synthesized products was unambiguously characterized by employing heteronuclear 2D NMR spectroscopic studies. All the synthesized derivatives were evaluated for their anti-neurodegenerative properties on rat brain hippocampus-derived Neural Stem Cells (NSCs), examining their impact on survival, proliferation and neuronal differentiation in vitro. Among the tested thiazole derivatives, compounds 4a, 4b, 4c, 4f, 4 g, 4b' and 4i' demonstrated a remarkable increase in the number of neuronal cells as compared to the control group within the NSC culture and also exhibited the ability to promote NSC differentiation towards the neuronal lineage. Additionally, the selected compounds showed protection against amyloid beta (Aβ)-induced neurotoxicity in NSCs culture. Incorporating the trifluoromethyl group into the thiazole scaffold is a pivotal factor in augmenting biopotency, resulting in a marked increase in the count of neuronal cells compared to their non-fluorinated thiazole counterparts.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India; Council of Scientific and Industrial Research-National Institute of Science Communication and Policy Research, New Delhi 110012, India.
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Saurabh Tiwari
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajnish Kumar Chaturvedi
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Campbell FC. Diet, dementia, and the hippocampus. Stem Cells Transl Med 2025; 14:szaf007. [PMID: 40387785 PMCID: PMC12087336 DOI: 10.1093/stcltm/szaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 01/19/2025] [Indexed: 05/20/2025] Open
|
5
|
Cho J, Bae S, Jeon J, Transfeld J, Lee C, Nott A, Gao F, Seo J. Enhanced differentiation of neural progenitor cells in Alzheimer's disease into vulnerable immature neurons. iScience 2025; 28:112446. [PMID: 40384927 PMCID: PMC12084003 DOI: 10.1016/j.isci.2025.112446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 05/20/2025] Open
Abstract
Focusing on the early stages of Alzheimer's disease (AD) holds great promise. However, the specific events in neural cells preceding AD onset remain elusive. To address this, we utilized human-induced pluripotent stem cells carrying APPswe mutation to explore the initial changes associated with AD progression. We observed enhanced neural activity and early neuronal differentiation in APPswe cerebral organoids cultured for one month. This phenomenon was also evident when neural progenitor cells (NPCs) were differentiated into neurons. Furthermore, transcriptomic analyses of NPCs and neurons confirmed altered expression of neurogenesis-related genes in APPswe NPCs. We also found that the upregulation of reactive oxygen species (ROS) is crucial for early neuronal differentiation in these cells. In addition, APPswe neurons remained immature after initial differentiation with increased susceptibility to toxicity, providing valuable insights into the premature exit from the neural progenitor state and the increased vulnerability of neural cells in AD.
Collapse
Affiliation(s)
- Joonho Cho
- Department of Brain Sciences, DGIST, Daegu 42988, South Korea
| | - Simsung Bae
- Department of Brain Sciences, DGIST, Daegu 42988, South Korea
| | - Juyeong Jeon
- Department of Brain Sciences, DGIST, Daegu 42988, South Korea
| | - Janis Transfeld
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Changyeob Lee
- Department of Brain Sciences, DGIST, Daegu 42988, South Korea
| | - Alexi Nott
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Fan Gao
- Bioinformatics Resource Center, Beckman Institute of Caltech, Pasadena, CA 91125, USA
| | - Jinsoo Seo
- Department of Brain Sciences, DGIST, Daegu 42988, South Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
6
|
Butovsky O, Rosenzweig N. Alzheimer's disease and age-related macular degeneration: Shared and distinct immune mechanisms. Immunity 2025; 58:1120-1139. [PMID: 40324382 DOI: 10.1016/j.immuni.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
Alzheimer's disease (AD) and age-related macular degeneration (AMD) represent the leading causes of dementia and vision impairment in the elderly, respectively. The retina is an extension of the brain, yet these two central nervous system (CNS) compartments are often studied separately. Despite affecting cognition vs. vision, AD and AMD share neuroinflammatory pathways. By comparing these diseases, we can identify converging immune mechanisms and potential cross-applicable therapies. Here, we review immune mechanisms highlighting the shared and distinct aspects of these two age-related neurodegenerative conditions, focusing on responses to hallmark disease manifestations, the opposite role of overlapping immune risk loci, and potential unified therapeutic approaches. We also discuss unique tissue requirements that may dictate different outcomes of conserved immune mechanisms and how we can reciprocally utilize lessons from AD therapeutics to AMD. Looking forward, we suggest promising directions for research, including the exploration of regenerative medicine, gene therapies, and innovative diagnostics.
Collapse
Affiliation(s)
- Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Neta Rosenzweig
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Duenias D, Nichyporuk B, Arbel T, Riklin Raviv T. Hyperfusion: A hypernetwork approach to multimodal integration of tabular and medical imaging data for predictive modeling. Med Image Anal 2025; 102:103503. [PMID: 40037055 DOI: 10.1016/j.media.2025.103503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
The integration of diverse clinical modalities such as medical imaging and the tabular data extracted from patients' Electronic Health Records (EHRs) is a crucial aspect of modern healthcare. Integrative analysis of multiple sources can provide a comprehensive understanding of the clinical condition of a patient, improving diagnosis and treatment decision. Deep Neural Networks (DNNs) consistently demonstrate outstanding performance in a wide range of multimodal tasks in the medical domain. However, the complex endeavor of effectively merging medical imaging with clinical, demographic and genetic information represented as numerical tabular data remains a highly active and ongoing research pursuit. We present a novel framework based on hypernetworks to fuse clinical imaging and tabular data by conditioning the image processing on the EHR's values and measurements. This approach aims to leverage the complementary information present in these modalities to enhance the accuracy of various medical applications. We demonstrate the strength and generality of our method on two different brain Magnetic Resonance Imaging (MRI) analysis tasks, namely, brain age prediction conditioned by subject's sex and multi-class Alzheimer's Disease (AD) classification conditioned by tabular data. We show that our framework outperforms both single-modality models and state-of-the-art MRI tabular data fusion methods. A link to our code can be found at https://github.com/daniel4725/HyperFusion.
Collapse
Affiliation(s)
- Daniel Duenias
- Ben Gurion University of the Negev, blvd 1, Beer Sheva 84105, Israel
| | - Brennan Nichyporuk
- Centre for Intelligent Machines, McGill University, 3480 University St, Montreal, QC, H3A 0E9, Canada; Mila - Quebec AI Institute, 6666 Rue Saint-Urbain, Montréal, QC H2S 3H1, Canada
| | - Tal Arbel
- Centre for Intelligent Machines, McGill University, 3480 University St, Montreal, QC, H3A 0E9, Canada; Mila - Quebec AI Institute, 6666 Rue Saint-Urbain, Montréal, QC H2S 3H1, Canada
| | | |
Collapse
|
8
|
Slade B, Williams B, Engelbrecht R, Ciorciari J. Improving executive functioning and reducing the risk of Alzheimer's disease with music therapy: A narrative review of potential neural mechanisms. J Alzheimers Dis 2025; 105:319-330. [PMID: 40123371 DOI: 10.1177/13872877251327762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The incidence of Alzheimer's disease (AD) and the concurrent cost of healthcare will increase as the population continues to age. Pharmaceutical interventions effectively manage symptoms of AD but carry side effects and ineffectively address underlying causes and disease prevention. Non-pharmaceutical interventions for AD, such as music training and therapy do not carry these side effects and can improve symptoms, and should therefore be explored as stand-alone or co-therapy for AD. In addition, music encapsulates modifiable lifestyle factors, such as cognitive stimulation, that have been shown to delay progression of and prevent AD. However, the neural mechanisms underpinning how music improves AD symptoms are not fully understood and whether music can target compensatory processes, activate neural networks, or even slow or prevent AD needs further research. Research suggests neural mechanism may involve stimulating brain areas to promote neurogenesis, dopaminergic rewards systems, and the default mode network (DMN). Alternatively, this review proposes that music improve symptoms of AD via the fronto-parietal control network (FPCN), the salience network (SN) and DMN, and neural compensation. This review will then present evidence for how music could activate the FPCN, SN, and DMN to improve their efficiency, organization, and cognitive functions they govern, protecting the brain from damage, slowing progression, and possibly preventing AD. Establishing how music improves symptoms of AD can lead to tailored music therapy protocols that target functional neural networks responsible for impaired executive functions common in AD.
Collapse
Affiliation(s)
- Benjamin Slade
- Centre for Mental Health and Brain Science, Swinburne University of Technology, John Street Hawthorn VIC, Melbourne, Australia
| | - Ben Williams
- School of Health Sciences, Swinburne University of Technology, John Street Hawthorn VIC, Melbourne, Australia
| | - Romy Engelbrecht
- Department of Psychological Sciences, Swinburne University of Technology, John Street Hawthorn VIC, Melbourne, Australia
| | - Joseph Ciorciari
- Centre for Mental Health and Brain Science, Swinburne University of Technology, John Street Hawthorn VIC, Melbourne, Australia
- Department of Psychological Sciences, Swinburne University of Technology, John Street Hawthorn VIC, Melbourne, Australia
| |
Collapse
|
9
|
Morrissey ZD, Kumar P, Phan TX, Maienschein-Cline M, Leow A, Lazarov O. Neurogenesis drives hippocampal formation-wide spatial transcription alterations in health and Alzheimer's disease. FRONTIERS IN DEMENTIA 2025; 4:1546433. [PMID: 40309339 PMCID: PMC12041076 DOI: 10.3389/frdem.2025.1546433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
The mechanism by which neurogenesis regulates the profile of neurons and glia in the hippocampal formation is not known. Further, the effect of neurogenesis on neuronal vulnerability characterizing the entorhinal cortex in Alzheimer's disease (AD) is unknown. Here, we used in situ sequencing to investigate the spatial transcription profile of neurons and glia in the hippocampal circuitry in wild-type mice and in familial AD (FAD) mice expressing varying levels of neurogenesis. This approach revealed that in addition to the dentate gyrus, neurogenesis modulates the cellular profile in the entorhinal cortex and CA regions of the hippocampus. Notably, enhancing neurogenesis in FAD mice led to partial restoration of neuronal and cellular profile in these brain areas, resembling the profile of their wild-type counterparts. This approach provides a platform for the examination of the cellular dynamics in the hippocampal formation in health and in AD.
Collapse
Affiliation(s)
- Zachery D. Morrissey
- Graduate Program in Neuroscience, University of Illinois Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, United States
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Pavan Kumar
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Trongha X. Phan
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| | | | - Alex Leow
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, United States
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Azargoonjahromi A. Plasma tryptophan levels are linked to hippocampal integrity and cognitive function in individuals with mild cognitive impairment. Brain Imaging Behav 2025; 19:485-496. [PMID: 40035916 DOI: 10.1007/s11682-025-00992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Tryptophan has been shown to improve cognitive functions, but whether these benefits emanate from changes in hippocampal structure or other mechanisms like enhanced serotonin pathways remains unclear. This study aimed to examine the relationship between tryptophan levels and hippocampal volumes in individuals with mild cognitive impairment (MCI) and to determine if changes in hippocampal volume correlate with cognitive function. A total of 499 individuals with MCI were recruited based on ADNI's clinical criteria. Cognitive function was assessed using the ADAS-Cog scale, and hippocampal volumes were measured through MRI using semi-automated Medtronic Surgical Navigation Technologies (SNT). Tryptophan levels in plasma were analyzed using a nuclear magnetic resonance (NMR)-based assay. This study used two models: One unadjusted and another adjusted for covariates such as age, gender, handedness, and ApoE ɛ3 and ɛ4. In both models, higher tryptophan levels were significantly associated with increased bilateral hippocampal volumes, with a stronger effect in the left hippocampus. Furthermore, larger hippocampal volumes were linked to improved cognitive performance. Mediation analysis showed that hippocampal volumes mediated the relationship between plasma tryptophan levels and cognitive function. These findings suggested that elevated plasma tryptophan levels support cognitive health by maintaining hippocampal structural integrity, underscoring its potential role in preserving cognitive function in individuals with MCI.
Collapse
|
11
|
Gautam AS, Pandey SK, Balki S, Panda ES, Singh RK. IL-17 A Exacerbated Neuroinflammatory and Neurodegenerative Biomarkers in Intranasal Amyloid-Beta Model of Alzheimer's Disease. J Neuroimmune Pharmacol 2025; 20:29. [PMID: 40163129 DOI: 10.1007/s11481-025-10192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Proinflammatory cytokines, especially interleukin-17 A (IL-17 A) have been found to be significantly associated with AD patients. IL-17 A amplifies neuroinflammation during AD pathology. This study highlighted the ability of IL-17 A to exacerbate amyloid-beta-induced pathology in animals. The AD pathology was induced with repeated intranasal administration of Aβ along with recombinant mouse IL-17 A (rmIL-17) at 1, 2 and 4 µg/kg for seven alternate days. Although, the combination of rmIL-17 and Aβ did not have severe effects on memory of the animals, but it drastically increased the IL-17 A mediated signaling, level of proinflammatory cytokines, oxidative stress and reduced antioxidants in the hippocampus and cortex regions of the animal brains. Interestingly, combining rmIL-17 with Aβ also triggered the expression of AD structural markers like pTau, amyloid-beta and BACE1 in the brain regions. Furthermore, rmIL-17 with Aβ exposure stimulated astrocytes and microglia leading to activation of proinflammatory signaling in the brain of the animals. These results showed the propensity of IL-17 A to promote severity of AD pathology and suggest IL-17 A as potent therapeutic target to control AD progression.
Collapse
Affiliation(s)
- Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Shivam Kumar Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Sneha Balki
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Ekta Swarnmayee Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Raebareli, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
12
|
Tseriotis VS, Liampas A, Lazaridou IZ, Karachrysafi S, Vavougios GD, Hadjigeorgiou GM, Papamitsou T, Kouvelas D, Arnaoutoglou M, Pourzitaki C, Mavridis T. Repulsive Guidance Molecule-A as a Therapeutic Target Across Neurological Disorders: An Update. Int J Mol Sci 2025; 26:3221. [PMID: 40244061 PMCID: PMC11989242 DOI: 10.3390/ijms26073221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Repulsive guidance molecule-a (RGMa) has emerged as a significant therapeutic target in a variety of neurological disorders, including neurodegenerative diseases and acute conditions. This review comprehensively examines the multifaceted role of RGMa in central nervous system (CNS) pathologies such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, neuromyelitis optica spectrum disorder, spinal cord injury, stroke, vascular dementia, auditory neuropathy, and epilepsy. The mechanisms through which RGMa contributes to neuroinflammation, neuronal degeneration, and impaired axonal regeneration are herein discussed. Evidence from preclinical studies associate RGMa overexpression with negative outcomes, such as increased neuroinflammation and synaptic loss, while RGMa inhibition, particularly the use of agents like elezanumab, has shown promise in enhancing neuronal survival and functional recovery. RGMa's responses concerning immunomodulation and neurogenesis highlight its potential as a therapeutic avenue. We emphasize RGMa's critical role in CNS pathology and its potential to pave the way for innovative treatment strategies in neurological disorders. While preclinical findings are encouraging so far, further clinical trials are needed to validate the safety and efficacy of RGMa-targeted therapies.
Collapse
Affiliation(s)
- Vasilis-Spyridon Tseriotis
- Department of Neurology, Agios Pavlos General Hospital of Thessaloniki, 55134 Thessaloniki, Greece
- Laboratory of Clinical Pharmacology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (C.P.)
| | - Andreas Liampas
- Department of Neurology, Nicosia General Hospital, Strovolos, 2031 Nicosia, Cyprus; (A.L.); (G.D.V.); (G.M.H.)
- Department of Neurology, Medical School, University of Cyprus, 1678 Nicosia, Cyprus
| | | | - Sofia Karachrysafi
- Research Team “Histologistas”, Interinstitutional Postgraduate Program “Health and Environmental Factors”, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.); (T.P.)
- Laboratory of Histology-Embryology, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George D. Vavougios
- Department of Neurology, Nicosia General Hospital, Strovolos, 2031 Nicosia, Cyprus; (A.L.); (G.D.V.); (G.M.H.)
- Department of Neurology, Medical School, University of Cyprus, 1678 Nicosia, Cyprus
| | - Georgios M. Hadjigeorgiou
- Department of Neurology, Nicosia General Hospital, Strovolos, 2031 Nicosia, Cyprus; (A.L.); (G.D.V.); (G.M.H.)
- Department of Neurology, Medical School, University of Cyprus, 1678 Nicosia, Cyprus
| | - Theodora Papamitsou
- Research Team “Histologistas”, Interinstitutional Postgraduate Program “Health and Environmental Factors”, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.); (T.P.)
- Laboratory of Histology-Embryology, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Laboratory of Clinical Pharmacology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (C.P.)
| | - Marianthi Arnaoutoglou
- First Department of Neurology, AHEPA General Hospital of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Chryssa Pourzitaki
- Laboratory of Clinical Pharmacology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (C.P.)
| | - Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Incorporating the National Children’s Hospital (AMNCH), D24 NR0A Dublin, Ireland;
- 1st Neurology Department, Eginition Hospital, Medical School, National & Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
13
|
Lee WS, Kokubo T, Choi Y, Hamano T, Zaboronok A, Ishikawa T, Kwon OD, Kim E, Kim JK. Carbon ion stimulation therapy reverses iron deposits and microglia driven neuroinflammation and induces cognitive improvement in an Alzheimer's disease mouse model. Sci Rep 2025; 15:7938. [PMID: 40050677 PMCID: PMC11885615 DOI: 10.1038/s41598-025-91689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Insoluble iron deposits often exist as iron oxide nanoparticles in protein aggregates, impaired ferritin, or activated microglia and have been implicated as major causes of neuroinflammation in Alzheimer's disease. However, no crucial evidence has been reported to support the therapeutic effects of current iron chelators on the deposition of various molecular forms of insoluble iron. We investigated the therapeutic effect of carbon ion stimulation (CIS) via a transmission beam on insoluble iron deposits, iron inclusion bodies, and the associated biological response in 5xFAD AD mouse brains. Compared with no treatment, CIS dose-dependently induced a 33-60% reduction in the amount of ferrous-containing iron species and associated inclusion bodies in the brains of AD mice. CIS induced considerable neuroinflammation downregulation and, conversely, anti-inflammatory upregulation, which was associated with improved memory and enhanced hippocampal neurogenesis. In conclusion, our results suggest that the effective degradation of insoluble iron deposits in combination with pathogenic inclusion bodies promotes AD-modifying properties and offers a potential CIS treatment option for AD.
Collapse
Affiliation(s)
- Won-Seok Lee
- Department of Biochemistry, Daegu Catholic University, Daegu, 42472, South Korea
| | | | - Younshick Choi
- Department of a Biomedical Engineering & Radiology, Daegu Catholic University, Daegu, 42472, South Korea
| | | | - Alexander Zaboronok
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takaaki Ishikawa
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Oh-Dae Kwon
- Department of Neurology, School of Medicine, Daegu Catholic University, Daegu, 42472, South Korea
| | - EunHo Kim
- Department of Biochemistry, Daegu Catholic University, Daegu, 42472, South Korea.
| | - Jong-Ki Kim
- Department of a Biomedical Engineering & Radiology, Daegu Catholic University, Daegu, 42472, South Korea.
| |
Collapse
|
14
|
Al-Kuraishy HM, Al-Gareeb AI, Zekry SH, Alruwaili M, Alexiou A, Papadakis M, Batiha GES. The possible role of cerebrolysin in the management of vascular dementia: Leveraging concepts. Neuroscience 2025; 568:202-208. [PMID: 39832667 DOI: 10.1016/j.neuroscience.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Cerebrolysin (CBL) is a combination of neurotrophic peptides and amino acids derived from pig brains. CBL can cross the blood-brain barrier (BBB) and its biological effect is similar to the effect of endogenous neurotrophic effects. The mechanism of action of CBL is related to the induction of neurogenesis, neuroplasticity, neuroprotection, and neurotrophicity. Therefore, CBL may be effective against the development and progression of neurodegenerative diseases such as Alzheimer disease (AD) and cerebrovascular disorders such as vascular dementia (VD). Moreover, many studies highlighted that CBL is effective in the improvement of cognitive impairment in patients with neurodegenerative diseases. However, the underlying neuroprotective effects of CBL against the VD neuropathology were not fully elucidated. Thus, this review aims to discuss the possible therapeutic efficacy of CBL in the management of VD. In conclusion, CBL could be effective therapeutic strategy in preventing and treating VD by targeting neuroinflammation, BBB injury, and chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine College of Medicine Mustansiriyah University Baghdad Iraq.
| | - Ali I Al-Gareeb
- FRCP Jabir ibn Hayyan Medical University Al-Ameer Qu./Najaf - Iraq Po. Box (13) Kufa Iraq.
| | - Salwa H Zekry
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511 Egypt.
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India
| | - Marios Papadakis
- University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke 42283 Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511 AlBeheira, Egypt
| |
Collapse
|
15
|
Yamamoto M, Itokazu T, Uno H, Maki T, Shibuya N, Yamashita T. Anti-RGMa neutralizing antibody ameliorates vascular cognitive impairment in mice. Neurotherapeutics 2025; 22:e00500. [PMID: 39613526 PMCID: PMC12014345 DOI: 10.1016/j.neurot.2024.e00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024] Open
Abstract
Repulsive Guidance Molecule A (RGMa) is well-recognized for its role in axon guidance. Recent studies have unveiled its diverse functions under pathological conditions within the central nervous system, such as spinal cord injury, multiple sclerosis, and Parkinson's disease. In this study, we explored the involvement of RGMa and the therapeutic effects of an anti-RGMa neutralizing antibody in a mouse model of vascular dementia (VaD). The VaD mouse model was established using the bilateral common carotid artery stenosis (BCAS) method. Immunohistochemical analysis revealed that these mice exhibited increased RGMa expression in the hippocampus, which coincided with reduced neurogenesis and impaired cholinergic innervation. These alterations manifested as cognitive impairments in the BCAS mice. Significantly, treatment with anti-RGMa neutralizing antibody reversed these pathological changes and cognitive deficits. Our findings suggest that RGMa plays a pivotal role in VaD pathology within the hippocampus and propose the anti-RGMa antibody as a promising therapeutic avenue for treating VaD.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Hiroki Uno
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nao Shibuya
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan; WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.
| |
Collapse
|
16
|
Chang WL, Tegang K, Samuels BA, Saxe M, Wichmann J, David DJ, David IM, Augustin A, Fischer H, Golling S, Lamerz J, Roth D, Graf M, Zoffmann S, Santarelli L, Jagasia R, Hen R. Pharmacological Enhancement of Adult Hippocampal Neurogenesis Improves Behavioral Pattern Separation in Young and Aged Male Mice. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100419. [PMID: 39830600 PMCID: PMC11741898 DOI: 10.1016/j.bpsgos.2024.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025] Open
Abstract
Background Impairments in behavioral pattern separation (BPS)-the ability to distinguish between similar contexts or experiences-contribute to memory interference and overgeneralization seen in many neuropsychiatric conditions, including depression, anxiety, posttraumatic stress disorder, dementia, and age-related cognitive decline. Although BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis, its significance as a pharmacological target has not been tested. Methods In this study, we applied a human neural stem cell high-throughput screening cascade to identify compounds that increase human neurogenesis. One compound with a favorable profile, RO6871135, was then tested in young and aged mice for effects on BPS and anxiety-related behaviors. Results Chronic treatment with RO6871135 (7.5 mg/kg) increased adult hippocampal neurogenesis and improved BPS in a fear discrimination task in both young and aged mice. RO6871135 treatment also lowered innate anxiety-like behavior, which was more apparent in mice exposed to chronic corticosterone. Ablation of adult hippocampal neurogenesis by hippocampal irradiation supported a neurogenesis-dependent mechanism for RO6871135-induced improvements in BPS. To identify possible mechanisms of action, in vitro and in vivo kinase inhibition and chemical proteomics assays were performed. These tests indicated that RO6871135 inhibited CDK8, CDK11, CaMKIIa, CaMKIIb, MAP2K6, and GSK-3β. An analog compound also demonstrated high affinity for CDK8, CaMKIIa, and GSK-3β. Conclusions These studies demonstrate a method for empirical identification and preclinical testing of novel neurogenic compounds that can improve BPS and point to possible novel mechanisms that can be interrogated for the development of new therapies to improve specific endophenotypes such as impaired BPS.
Collapse
Affiliation(s)
- Wei-li Chang
- Department of Psychiatry, Division of Systems Neuroscience, Columbia University, New York State Psychiatric Institute, New York, New York
| | | | | | | | - Juergen Wichmann
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Denis J. David
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations, UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri MOISSAN, Orsay, France
| | - Indira Mendez David
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations, UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri MOISSAN, Orsay, France
| | - Angélique Augustin
- Roche Pharma Research and Early Development, Pharmaceutical Science, Translational PKPD and Clinical Pharmacology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Holger Fischer
- Roche Pharma Research and Early Development, Pharmaceutical Science, Translational PKPD and Clinical Pharmacology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Sabrina Golling
- Roche Pharma Research and Early Development, Pharmaceutical Science, Translational PKPD and Clinical Pharmacology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jens Lamerz
- Roche Pharma Research and Early Development, Predictive Modelling & Data Analytics, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Doris Roth
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Martin Graf
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Sannah Zoffmann
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - René Hen
- Department of Psychiatry, Division of Systems Neuroscience, Columbia University, New York State Psychiatric Institute, New York, New York
| |
Collapse
|
17
|
Li X, Liu C, Li W, Qi G, Dai Y, Gu C, Sun Y, Zhou W, Ciliberto VC, Liang J, Kumar S U, Guan D, Hu Z, Zheng H, Liu Z, Chen H, Wan Y, Sun Z. Multi-omics delineate growth factor network underlying exercise effects in an Alzheimer's mouse model. Alzheimers Dement 2025; 21:e70024. [PMID: 40156268 PMCID: PMC11953571 DOI: 10.1002/alz.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION Physical exercise is a primary defense against age-related cognitive decline and Alzheimer's disease (AD). METHODS We conducted single-nucleus transcriptomic and chromatin accessibility analyses (snRNA-seq and snATAC-seq) on the hippocampus of mice carrying mutations in the amyloid precursor protein gene (APPNL-G-F) following prolonged voluntary wheel-running exercise. RESULTS Exercise mitigates amyloid-induced changes in transcriptome and chromatin accessibility through cell type-specific regulatory networks converging on growth factor signaling, particularly the epidermal growth factor receptor (EGFR) signaling. The beneficial effects of exercise on neurocognition can be blocked by pharmacological inhibition of EGFR and its downstream PI3K signaling. Exercise leads to elevated levels of heparin-binding EGF (HB-EGF), and intranasal administration of HB-EGF enhances memory function in sedentary APPNL-G-F mice. DISCUSSION These findings offer a panoramic delineation of cell type-specific hippocampal transcriptional networks activated by exercise and suggest EGFR signaling as a druggable contributor to exercise-induced memory enhancement to combat AD-related cognitive decline. HIGHLIGHTS snRNA-seq and snATAC-seq analysis of APPNL-G-F mice after prolonged wheel-running. Exercise counteracts amyloid-induced transcriptomic and accessibility changes. Networks converge on the activation of EGFR and insulin signaling. Pharmacological inhibition of EGFR and PI3K blocked cognitive benefits of exercise. Intranasal HB-EGF administration enhances memory in sedentary APPNL-G-F mice.
Collapse
Affiliation(s)
- Xin Li
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Chaozhong Liu
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
- Graduate School of Biomedical Sciences, Program in Quantitative & Computational BiosciencesBaylor College of MedicineHoustonTexasUSA
| | - Wenbo Li
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Guantong Qi
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
- Graduate School of Biomedical Sciences, Program in GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Yanwan Dai
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
| | - Chaohao Gu
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
- Graduate School of Biomedical Sciences, Program in Quantitative & Computational BiosciencesBaylor College of MedicineHoustonTexasUSA
| | - Yuxiang Sun
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Wenjun Zhou
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Veronica C. Ciliberto
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Jing Liang
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
| | - Udhaya Kumar S
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Dongyin Guan
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Zhaoyong Hu
- Department of Medicine – NephrologyBaylor College of MedicineHoustonTexasUSA
| | - Hui Zheng
- Huffington Center on AgingBaylor College of MedicineHoustonTexasUSA
| | - Zhandong Liu
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hu Chen
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Ying‐Wooi Wan
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Zheng Sun
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
- Huffington Center on AgingBaylor College of MedicineHoustonTexasUSA
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
18
|
Chen D, Guo Y, Zhang M, Liu X, Zhang B, Kou X. Exercise alleviates cognitive decline of natural aging rats by upregulating Notch-mediated autophagy signaling. Brain Res 2025; 1850:149398. [PMID: 39667553 DOI: 10.1016/j.brainres.2024.149398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Notch signaling, a classical signaling pathway of neurogenesis, is downregulated during the aging and age-related neurodegenerative diseases. Exercise has been proposed as an effective lifestyle intervention for delaying cognitive decline. However, it remains unclear whether exercise intervention could alleviate cognitive decline by modulating neurogenesis in naturally aging rats. In this study, 21-month-old natural aging rats were used to study brain aging. The natural aging rats underwent different forms of exercise training (aerobic exercise or strength training or comprehensive exercise with aerobic exercise and strength training) for 12 consecutive weeks. The cognitive function of natural aging rats was determined by Morris Water Maze. Notch signaling, autophagy-related proteins and hippocampal neurogenesis were examined by immunofluorescence, qRT-PCR and Western blot. Results showed that natural aging rats exhibited cognitive decline, accumulation of AD pathological proteins (APP and Aβ), and decreased neurogenesis (decreased DCX, Ki67 and GFAP), compared with the young control rats. Moreover, a significant decline in Notch signaling and autophagy was found in the hippocampus of natural aging rats. However, different forms of exercise upregulated Notch signaling and its downstream target genes, as well as autophagy-related proteins, including LC3, Beclin1, and p62. In summary, our data suggest that different forms of exercise can mitigate brain aging by upregulating Notch signaling and autophagy, thereby increasing hippocampal neurogenesis and improves spatial learning and memory abilities.
Collapse
Affiliation(s)
- Dandan Chen
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; College of Physical Education, Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Yuan Guo
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; Wuhan Wuchang Hospital, Wuhan 430063, China
| | - Meng Zhang
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Xingran Liu
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; College of Physical Education and Health, Guangxi Medical University, Nanning 530021, China
| | - Baowen Zhang
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Xianjuan Kou
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan 430079, China.
| |
Collapse
|
19
|
Reddi Sree R, Kalyan M, Anand N, Mani S, Gorantla VR, Sakharkar MK, Song BJ, Chidambaram SB. Newer Therapeutic Approaches in Treating Alzheimer's Disease: A Comprehensive Review. ACS OMEGA 2025; 10:5148-5171. [PMID: 39989768 PMCID: PMC11840625 DOI: 10.1021/acsomega.4c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 02/25/2025]
Abstract
Alzheimer's disease (AD) is an aging-related irreversible neurodegenerative disease affecting mostly the elderly population. The main pathological features of AD are the extracellular Aβ plaques generated by APP cleavage through the amyloidogenic pathway, the intracellular neurofibrillary tangles (NFT) resulting from the hyperphosphorylated tau proteins, and cholinergic neurodegeneration. However, the actual causes of AD are unknown, but several studies suggest hereditary mutations in PSEN1 and -2, APOE4, APP, and the TAU genes are the major perpetrators. In order to understand the etiology and pathogenesis of AD, various hypotheses are proposed. These include the following hypotheses: amyloid accumulation, tauopathy, inflammation, oxidative stress, mitochondrial dysfunction, glutamate/excitotoxicity, cholinergic deficiency, and gut dysbiosis. Currently approved therapeutic interventions are donepezil, galantamine, and rivastigmine, which are cholinesterase inhibitors (ChEIs), and memantine, which is an N-methyl-d-aspartate (NMDA) antagonist. These treatment strategies focus on only symptomatic management of AD by attenuating symptoms but not regeneration of neurons or clearance of Aβ plaques and hyperphosphorylated Tau. This review focuses on the pathophysiology, novel therapeutic targets, and disease-altering treatments such as α-secretase modulators, active immunotherapy, passive immunotherapy, natural antioxidant products, nanomaterials, antiamyloid therapy, tau aggregation inhibitors, transplantation of fecal microbiota or stem cells, and microtubule stabilizers that are in clinical trials or still under investigation.
Collapse
Affiliation(s)
- Radhakrishna Reddi Sree
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Manjunath Kalyan
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre
for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department
of Pharmacology, American University of
Antigua College of Medicine, University Park, Jabberwock Beach Road, Coolidge, Antigua, Barbuda
| | - Sangeetha Mani
- Department
of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and
Research, Porur, Chennai 600116, India
| | - Vasavi Rakesh Gorantla
- Department
of Anatomical Sciences, St. George’s University School of Medicine, St. George’s University, Saint George, Grenada
| | - Meena Kishore Sakharkar
- College
of
Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Byoung-Joon Song
- Section
of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry
and Biophysics, National Institute on Alcohol
Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Saravana Babu Chidambaram
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre
for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
20
|
Zhou Y, Su Y, Yang Q, Li J, Hong Y, Gao T, Zhong Y, Ma X, Jin M, Liu X, Yuan N, Kennedy BC, Wang L, Yan L, Viaene AN, Helbig I, Kessler SK, Kleinman JE, Hyde TM, Nauen DW, Liu C, Liu Z, Shen Z, Li C, Xu S, He J, Weinberger DR, Ming GL, Song H. Comparative molecular landscapes of immature neurons in the mammalian dentate gyrus across species reveal special features in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.16.638557. [PMID: 40027814 PMCID: PMC11870590 DOI: 10.1101/2025.02.16.638557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Immature dentate granule cells (imGCs) arising from adult hippocampal neurogenesis contribute to plasticity, learning and memory, but their evolutionary changes across species and specialized features in humans remain poorly understood. Here we performed machine learning-augmented analysis of published single-cell RNA-sequencing datasets and identified macaque imGCs with transcriptome-wide immature neuronal characteristics. Our cross-species comparisons among humans, monkeys, pigs, and mice showed few shared (such as DPYSL5), but mostly species-specific gene expression in imGCs that converged onto common biological processes regulating neuronal development. We further identified human-specific transcriptomic features of imGCs and demonstrated functional roles of human imGC-enriched expression of a family of proton-transporting vacuolar-type ATPase subtypes in development of imGCs derived from human pluripotent stem cells. Our study reveals divergent gene expression patterns but convergent biological processes in the molecular characteristics of imGCs across species, highlighting the importance of conducting independent molecular and functional analyses for adult neurogenesis in different species.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qian Yang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiaqi Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Hong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taosha Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanqing Zhong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xueting Ma
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Mengmeng Jin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Xinglan Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Nini Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Benjamin C. Kennedy
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lizhou Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Longying Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sudha K. Kessler
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, The Solomon H. Snyder Department of Neuroscience, Department of Neurology, and Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, The Solomon H. Snyder Department of Neuroscience, Department of Neurology, and Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David W. Nauen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cirong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiming Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shengjin Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, The Solomon H. Snyder Department of Neuroscience, Department of Neurology, and Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Lucassen PJ, Korosi A, de Rooij SR, Smit AB, Van Dam AM, Daskalakis NP, Van Kesteren RE, Verheijen MHG, Lesuis SL, Kessels HW, Krugers HJ. How Can Early Stress Influence Later Alzheimer's Disease Risk? Possible Mediators and Underlying Mechanisms. Biol Psychiatry 2025; 97:372-381. [PMID: 39577793 DOI: 10.1016/j.biopsych.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Alzheimer's disease (AD) is a progressive, age-related neurodegenerative disorder to which genetic mutations and risk factors contribute. Evidence is increasing that environmental and lifestyle-related factors, such as exercise, nutrition, education, and exposure to (early-life) stress modify the onset, incidence, and progression of AD. Here, we discuss recent preclinical findings on putative substrates that can explain or contribute to the effects of stress early in life on the risk of developing AD. We focus in particular on stress hormones, neural networks, synapses, mitochondria, nutrient and lipid metabolism, adult neurogenesis, engram cell ensembles, and neuroinflammation. We discuss the idea that stress exposure early in life can alter these processes, either combined or in isolation, thereby reducing the capacity of the brain to resist deleterious consequences of, for example, amyloid-β accumulation, thereby accelerating cognitive decline and progression of Alzheimer-related changes in model systems of the disease. A better understanding of whether experiences early in life also modify trajectories of cognitive decline and pathology in AD and how the substrates discussed translate to humans may help develop novel preventive and/or therapeutic strategies to mitigate the consequences of stressors early in life and increase resilience to developing dementia.
Collapse
Affiliation(s)
- Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Aniko Korosi
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Anne-Marie Van Dam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Nikolaos P Daskalakis
- Neurogenomics and Translational Bioinformatics Laboratory, McLean Hospital, Harvard University, Boston, Massachusetts
| | - Ronald E Van Kesteren
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sylvie L Lesuis
- Department of Cellular & Computational Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Helmut W Kessels
- Department of Cellular & Computational Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Lee BH, Cevizci M, Lieblich SE, Galea LAM. Sex-specific influences of APOEε4 genotype on hippocampal neurogenesis and progenitor cells in middle-aged rats. Biol Sex Differ 2025; 16:10. [PMID: 39910616 PMCID: PMC11796140 DOI: 10.1186/s13293-025-00694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) disproportionately and uniquely affects females, and these sex differences are further exacerbated by the presence of Apolipoprotein (APOE) ε4 alleles, the top genetic risk factor for late-onset AD. To expand our understanding about how late-onset AD risk might differentially influence males and females, this study explores how APOEε4 affects hippocampal neurogenesis and microglia, key neuroplastic markers involved in AD pathogenesis, differently by sex in middle-aged rats. METHODS A rat model expressing the humanized (h) APOEε4 allele was characterized to examine markers of adult neurogenesis (neural progenitor cells and new-born neurons) and immune cells (microglia) in the dentate gyrus of the hippocampus in 13 month-old male and female rats. RESULTS We observed basal sex differences in neurogenesis at middle age, as wildtype male rats had greater densities of neural progenitor cells and new-born neurons in the dentate gyrus than wildtype female rats. Male hAPOEε4 rats exhibited fewer neural progenitor cells, fewer new-born neurons, and more microglia than male wildtype rats. On the other hand, female hAPOEε4 rats exhibited more new-born neurons than female wildtype rats. Interestingly, females had more microglia than males regardless of genotype. Correlations were conducted to further elucidate any sex differences in the relationships between these biomarkers. Notably, there was a significant positive correlation between neural progenitor cells and new-born neurons, and a significant negative correlation between new-born neurons and microglia, but only in male rats. CONCLUSION In contrast to the clear pattern of effects of the hAPOEε4 risk factor on hippocampal neurogenesis in males, females had unaltered levels of neural progenitor cells and increased density of new-born neurons. Furthermore, relationships between neurogenesis and microglia were significantly correlated within males, and not females. This suggests that females may be presenting a compensatory response to the hAPOEε4 genotype at middle age. Collectively, these results exemplify the importance of thoroughly examining influences of sex on AD endophenotypes, as it may reveal sex-specific pathways and protective mechanisms relevant to AD.
Collapse
Affiliation(s)
- Bonnie H Lee
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Melike Cevizci
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie E Lieblich
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Han X, Zhang Y, Zhang L, Zhuang Y, Wang Y. Efficacy and molecular mechanisms of hesperidin in mitigating Alzheimer's disease: A systematic review. Eur J Med Chem 2025; 283:117144. [PMID: 39647419 DOI: 10.1016/j.ejmech.2024.117144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Hesperidin, a flavonoid glycoside, is a natural phenolic compound that has broad biological effects. Increasing evidence suggests that hesperidin inhibits the occurrence and development of neurodegenerative diseases, including Alzheimer's disease (AD). This article reviews the neuropharmacological mechanisms of hesperidin in the prevention and treatment of AD through in vitro and in vivo studies. A systematic review of preclinical studies was conducted using PubMed, Web of Science, Scopus, and Google Scholar (up to July 1, 2024). The neuroprotective potential of hesperidin was mediated through mechanisms such as inhibition of β-amyloid (Aβ) aggregation, enhancement of endogenous antioxidant defense functions, reduction of neuroinflammation and apoptosis, improvement of mitochondrial dysfunction, regulation of autophagy, and promotion of neurogenesis. Despite various preclinical studies on the role of hesperidin in AD, its exact effects on humans remain unclear. Few clinical trials have indicated that dietary supplements rich in hesperidin can improve cerebral blood flow, cognition, and memory performance. The neuroprotective effect of hesperidin may be exerted via regulating different molecular pathways, including the RAGE/NF-κB, Akt/Nrf2, and AMPK/BDNF/CREB pathways. However, further clinical trials are needed to confirm the neuroprotective effects of this natural flavonoid compound and to assess its safety.
Collapse
Affiliation(s)
- Xu Han
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, PR China.
| | - Yuting Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, PR China.
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, PR China.
| | - Yanyan Zhuang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, PR China.
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, PR China.
| |
Collapse
|
24
|
Azargoonjahromi A, Abutalebian F, Hoseinpour F. The role of resveratrol in neurogenesis: a systematic review. Nutr Rev 2025; 83:e257-e272. [PMID: 38511504 DOI: 10.1093/nutrit/nuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
CONTEXT Resveratrol (RV) is a natural compound found in grapes, wine, berries, and peanuts and has potential health benefits-namely, neurogenesis improvement. Neurogenesis, which is the process through which new neurons or nerve cells are generated in the brain, occurs in the subventricular zone and hippocampus and is influenced by various factors. RV has been shown to increase neural stem cell proliferation and survival, improving cognitive function in hippocampus-dependent tasks. Thus, to provide a convergent and unbiased conclusion of the available evidence on the correlation between the RV and neurogenesis, a systematic review needs to be undertaken meticulously and with appropriate attention. OBJECTIVE This study aimed to systematically review any potential connection between the RV and neurogenesis in animal models. DATA SOURCES AND EXTRACTION Based on the particular selection criteria, 8 original animal studies that investigated the relationship between RV and neurogenesis were included. Studies written in English and published in peer-reviewed journals with no restrictions on the starting date of publication on August 17, 2023, were searched in the Google Scholar and PubMed databases. Furthermore, data were extracted and analyzed independently by 2 researchers and then reviewed by a third researcher, and discrepancies were resolved by consensus. This project followed PRISMA reporting standards. DATA ANALYSIS In the studies analyzed in this review, there is a definite correlation between RV and neurogenesis, meaning that RV intake, irrespective of the mechanisms thereof, can boost neurogenesis in both the subventricular zone and hippocampus. CONCLUSION This finding, albeit with some limitations, provides a plausible indication of RV's beneficial function in neurogenesis. Indeed, RV intake may result in neurogenesis benefits-namely, cognitive function, mood regulation, stress resilience, and neuroprotection, potentially preventing cognitive decline.
Collapse
Affiliation(s)
| | - Fatemeh Abutalebian
- Department of Biotechnology and Medicine, Islamic Azad University of Tehran Central Branch, Tehran, Iran
| | - Fatemeh Hoseinpour
- Department of Occupational Therapy, Semnan University of Medical Sciences and Health Services, Semnan, Iran
| |
Collapse
|
25
|
Zhao H, Mu Y, Liang A, Wei J, Lai S, Li X, Chen P, Li H, He H, Liu X, Liu H. Suppressing DUSP16 overexpression induced by ELK1 promotes neural progenitor cell differentiation in mouse models of Alzheimer's disease. Aging Cell 2025; 24:e14372. [PMID: 39434411 PMCID: PMC11822628 DOI: 10.1111/acel.14372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Emerged evidence indicated that stimulating hippocampal neurogenesis is a potential strategy for restoring cognition in AD. Mitogen-activated protein kinases (MAPKs) play an essential role in neurogenesis. Meanwhile, the enzymatic power of the phosphatases is much greater than that of kinases. Dual-specificity phosphatase 16 (DUSP16), known to as a phosphatase negatively regulate MAPKs, may be implicated in neural differentiation. Nevertheless, the effect of DUSP16 on cognitive disorders by stimulating neural progenitor cell (NPC) differentiation in AD mice remains unclear. Our study demonstrates an association between DUSP16 SNPs and clinical progression in individuals with mild cognitive impairment (MCI). Besides, increased DUSP16 expression was detected in both 3xTg and SAMP8 mouse models of AD, accompanied by NPC neural differentiation impairments. By silencing DUSP16, the induction of neural differentiation, synaptic transmission, and cognitive benefits were observed in both AD mice. Furthermore, DUSP16 was involved in the process of NPC differentiation through regulating c-Jun N-terminal kinase (JNK) phosphorylation and SOX2 expression. Moreover, ETS transcription factor (ELK1) was involved in the DUSP16 transcription, which resulted in the upregulation of DUSP16 at the state of AD. Our data uncovers a potential regulatory role for DUSP16 in adult hippocampal neurogenesis (AHN) and provides a possibility to find a novel strategy for AD intervention.
Collapse
Affiliation(s)
- Huimin Zhao
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Yao Mu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Anqi Liang
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Jie Wei
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Sixian Lai
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Xin Li
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Peipei Chen
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Hao Li
- Acupuncture and Moxibustion DepartmentJiangsu Provincial Second Chinese Medicine Hospital/the Second Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Hua He
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Xiaoquan Liu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Haochen Liu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
26
|
Deak T, Burzynski HE, Nunes PT, Day SM, Savage LM. Adolescent Alcohol and the Spectrum of Cognitive Dysfunction in Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:257-298. [PMID: 40128483 DOI: 10.1007/978-3-031-81908-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Among the many changes associated with aging, inflammation in the central nervous system (CNS) and throughout the body likely contributes to the constellation of health-related maladies associated with aging. Genetics, lifestyle factors, and environmental experiences shape the trajectory of aging-associated inflammation, including the developmental timing, frequency, and intensity of alcohol consumption. This chapter posits that neuroinflammatory processes form a critical link between alcohol exposure and the trajectory of healthy aging, at least in part through direct or indirect interactions with cholinergic circuits that are crucial to cognitive integrity. In this chapter, we begin with a discussion of how inflammation changes from early development through late aging; discuss the role of inflammation and alcohol in the emergence of mild cognitive impairment (MCI); elaborate on critical findings on the contribution of alcohol-related thiamine deficiency to the loss of cholinergic function and subsequent development of Wernicke-Korsakoff syndrome (WKS); and present emerging findings at the intersection of alcohol and Alzheimer's disease and related dementias (ADRD). In doing so, our analysis points toward inflammation-mediated compromise of basal forebrain cholinergic function as a key culprit in cognitive dysfunction associated with chronic alcohol exposure, effects that may be rescuable through either pharmacological or behavioral approaches. Furthermore, our chapter reveals an interesting dichotomy in the effects of alcohol on neuropathological markers of ADRD that depend upon both biological sex and genetic vulnerability.
Collapse
Affiliation(s)
- Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA.
| | - Hannah E Burzynski
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Polliana T Nunes
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Stephen M Day
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Lisa M Savage
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| |
Collapse
|
27
|
Zhang J, Yang X, Wang S, Dong J, Zhang M, Zhang M, Chen L. Metformin carbon dots enhance neurogenesis and neuroprotection in Alzheimer's disease: A potential nanomedicine approach. Mater Today Bio 2024; 29:101347. [PMID: 39850274 PMCID: PMC11754139 DOI: 10.1016/j.mtbio.2024.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 01/25/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive decline due to neuronal damage and impaired neurogenesis. Preserving neuronal integrity and stimulating neurogenesis are promising therapeutic strategies to combat AD-related cognitive dysfunction. In this study, we synthesized metformin carbon dots (CMCDs) using a hydrothermal method with metformin hydrochloride and citric acid as precursors. Notably, we found that CMCDs were significantly more effective than metformin in promoting the differentiation of neural stem cells (NSCs) into functional neurons under amyloid-beta (Aβ) conditions. Moreover, CMCDs fostered NSCs proliferation, enhanced neurogenesis, reduced Aβ deposition, and inhibited glial cell activation. We also examined neuronal structure by assessing Map2/NF-H/PSD95/SYN expression in the hippocampus, finding that CMCDs robustly strengthened neuronal structure. These results suggest that CMCDs can cognitive dysfunction in AD and promote the proliferation and neurogenesis of NSCs, as well as ameliorate neuronal injury. Hence, CMCDs emerge as promising candidates for AD therapy, demonstrating superior efficacy compared to metformin alone, and offering novel insights into small molecule drug interventions for AD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xuehan Yang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Sushan Wang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jianhua Dong
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Meishuang Zhang
- School of Nursing, Jilin University, Changchun, 130021, China
| | - Ming Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Li Chen
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- School of Nursing, Jilin University, Changchun, 130021, China
| |
Collapse
|
28
|
Reddy DS, Zhu N, Challa T, Gajjela S, Desai H, Ramakrishnan S, Wu X. A Comprehensive Stereology Method for Quantitative Evaluation of Neuronal Injury, Neurodegeneration, and Neurogenesis in Brain Disorders. Curr Protoc 2024; 4:e70053. [PMID: 39698918 PMCID: PMC11706765 DOI: 10.1002/cpz1.70053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Neuronal injury, neurodegeneration, and neuroanatomical changes are key pathological features of various neurological disorders, including epilepsy, stroke, traumatic brain injury, Parkinson's disease, autism, and Alzheimer's disease. Accurate quantification of neurons and interneurons in different brain regions is critical for understanding the progression of neurodegenerative disorders in animal models. Traditional scoring methods are often superficial, biased, and unreliable for evaluating neuropathology. Stereology, a quantitative tool that uses 3-dimensional visualization of cells, provides a robust protocol for evaluating neuronal injury and neurodegeneration. This article presents a comprehensive and optimized stereology protocol for unbiased quantification of neuronal injury, neurodegeneration, and neurogenesis in rat and mouse models. This protocol involves precise counting of injured neurons, surviving neurons, and interneurons through immunohistochemical processing of brain sections for NeuN(+) principal neurons, parvalbumin (PV+) interneurons, doublecortin (DCX+) newborn neurons, and Fluoro-Jade B (FJB+)-stained injured cells. Predefined hippocampal and amygdala regions were identified and analyzed using a Visiopharm stereology software-driven compound microscope. Cell density and absolute cell numbers were determined using the optical fractionation method. Our stereology protocol accurately estimated 1.5 million total NeuN(+) principal neurons and 0.05 million PV(+) interneurons in the rat hippocampus, as well as 1.2 million total principal neurons and 0.025 million interneurons in the mouse hippocampus. FJB(+) counting provided a quantitative index of damaged neurons, and the stereology of DCX(+) neurons demonstrated the extent of neurogenesis. Overall, this stereology protocol enables precise, accurate, and unbiased counting of total neurons in any brain region. This offers a reliable quantitative tool for studying neuronal injury and protection in various models of acute brain injury, neurotoxicity, and chronic neurological disorders. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Stereological quantification of principal neurons, interneurons, and immature neurons in the hippocampus in rat brain sections Basic Protocol 2: Stereological quantification of principal neurons, interneurons, and immature neurons in the hippocampus in mouse brain sections Basic Protocol 3: Stereological quantification of injured or necrotized cells stained with Fluoro-Jade B in the hippocampus and amygdala in rats Basic Protocol 4: Stereological quantification of injured or necrotized cells stained with Fluoro-Jade B in the hippocampus and amygdala regions in mice Basic Protocol 5: Brain fixation and histology processing Basic Protocol 6: Immunochemistry of principal neurons, interneurons, and newborn neurons Basic Protocol 7: Fluoro-Jade B staining of injured neurons.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Neo Zhu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Trisha Challa
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Sai Gajjela
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Hetvi Desai
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
29
|
Ji Q, Lv Y, Hu B, Su Y, Shaikh II, Zhu X. Study on the therapeutic potential of induced neural stem cells for Alzheimer's disease in mice. Biol Res 2024; 57:89. [PMID: 39582031 PMCID: PMC11587668 DOI: 10.1186/s40659-024-00568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Induced neural stem cells (iNSCs), which have similar properties to neural stem cells and are able to self-proliferate and differentiate into neural cell lineages, are expected to be potential cells for the treatment of neurodegeneration disease. However, cell therapy based on iNSCs transplantation is limited by the inability to acquire sufficient quantities of iNSCs. Previous studies have found that mouse and human fibroblasts can be directly reprogrammed into iNSCs with a single factor, Sox2. Here, we induced mouse embryonic fibroblasts (MEFs) into iNSCs by combining valproic acid (VPA) with the induction factor Sox2, and the results showed that VPA significantly improved the conversion efficiency of fibroblasts to iNSCs. The iNSCs exhibited typical neurosphere-like structures that can express NSCs markers, such as Sox2, Nestin, Sox1, and Zbtb16, and could differentiate into neurons, astrocytes, and oligodendrocytes in vitro. Subsequently, the iNSCs were stereotactically transplanted into the hippocampus of APP/PS1 double transgenic mice (AD mice). Post-transplantation, the iNSCs showed long-term survival, migrated over long distances, and differentiated into multiple types of functional neurons and glial cells in vivo. Importantly, the cognitive abilities of APP/PS1 mice transplanted with iNSCs exhibited significant functional recovery. These findings suggest that VPA enhances the conversion efficiency of fibroblasts into iNSCs when used in combination with Sox2, and iNSCs hold promise as a potential donor material for transplantation therapy in Alzheimer's disease.
Collapse
Affiliation(s)
- Qiongqiong Ji
- Department of Medical Imaging, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yuanhao Lv
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Bei Hu
- Fuzhou Medical College of Nanchang University, Fuzhou, 344099, Jiangxi, China
| | - Yue Su
- Department of Respiratory and Critical Care Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China.
| | - Imran Ibrahim Shaikh
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People's Hospital, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China.
| | - Xu Zhu
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
30
|
Xiao Y, Wei L, Su J, Lei H, Sun F, Li M, Li S, Wang X, Zheng J, Wang JZ. A tau dephosphorylation-targeting chimeraselectively recruits protein phosphatase-1 to ameliorate Alzheimer's disease and tauopathies. Cell Chem Biol 2024; 31:1787-1799.e6. [PMID: 39353434 DOI: 10.1016/j.chembiol.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Abnormal accumulation of hyperphosphorylated tau (pTau) is a major cause of neurodegeneration in Alzheimer's disease (AD) and related tauopathies. Therefore, reducing pTau holds therapeutic promise for these diseases. Here, we developed a chimeric peptide, named D20, for selective facilitation of tau dephosphorylation by recruiting protein phosphatase 1 (PP1) to tau. PP1 is one of the active phosphatases that dephosphorylates tau. In both cultured primary hippocampal neurons and mouse models for AD or related tauopathies, we demonstrated that single-dose D20 treatment significantly reduced pTau by dephosphorylation at multiple AD-related sites and total tau (tTau) levels were also decreased. Multiple-dose administration of D20 through tail vein injection in 3xTg AD mice effectively ameliorated tau-associated pathologies with improved cognitive functions. Importantly, at therapeutic doses, D20 did not cause detectable toxicity in cultured neurons, neural cells, or peripheral organs in mice. These results suggest that D20 is a promising drug candidate for AD and related tauopathies.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Artificial Intelligence, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Linyu Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453004, China
| | - Jingfen Su
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Sun
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengzhu Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shihong Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Artificial Intelligence, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, China; Beijing Life Science Academy, Beijing 102209, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
31
|
Capocchi JK, Figueroa-Romero C, Dunham SJB, Faraci G, Rothman JA, Whiteson KL, Seo DO, Holtzman DM, Grabrucker S, Nolan YM, Kaddurah-Daouk R, Jett DA. Symposium: What Does the Microbiome Tell Us about Prevention and Treatment of AD/ADRD? J Neurosci 2024; 44:e1295242024. [PMID: 39384409 PMCID: PMC11466070 DOI: 10.1523/jneurosci.1295-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 10/11/2024] Open
Abstract
Alzheimer's disease (AD) and Alzheimer's disease-related dementias (ADRDs) are broad-impact multifactorial neurodegenerative diseases. Their complexity presents unique challenges for developing effective therapies. This review highlights research presented at the 2024 Society for Neuroscience meeting which emphasized the gut microbiome's role in AD pathogenesis by influencing brain function and neurodegeneration through the microbiota-gut-brain axis. This emerging evidence underscores the potential for targeting the gut microbiota to treat AD/ADRD.
Collapse
Affiliation(s)
| | | | | | - Gina Faraci
- University of California, Irvine, Irvine, California 92697
| | - Jason A Rothman
- University of California, Irvine, Irvine, California 92697
- University of California, Riverside, Riverside, California 92521
| | | | - Dong-Oh Seo
- Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - David M Holtzman
- Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Stefanie Grabrucker
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 XF62, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 XF62, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | | | - David A Jett
- National Institute of Neurological Disorders and Stroke, Rockville, Maryland 20852
| |
Collapse
|
32
|
Geigenmüller JN, Tari AR, Wisloff U, Walker TL. The relationship between adult hippocampal neurogenesis and cognitive impairment in Alzheimer's disease. Alzheimers Dement 2024; 20:7369-7383. [PMID: 39166771 PMCID: PMC11485317 DOI: 10.1002/alz.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Neurogenesis persists throughout adulthood in the hippocampus and contributes to specific cognitive functions. In Alzheimer's disease (AD), the hippocampus is affected by pathology and functional impairment early in the disease. Human AD patients have reduced adult hippocampal neurogenesis (AHN) levels compared to age-matched healthy controls. Similarly, rodent AD models show a decrease in AHN before the onset of the classical hallmarks of AD pathology. Conversely, enhancement of AHN can protect against AD pathology and ameliorate memory deficits in both rodents and humans. Therefore, impaired AHN may be a contributing factor of AD-associated cognitive decline, rather than an effect of it. In this review we outline the regulation and function of AHN in healthy individuals, and highlight the relationship between AHN dysfunction and cognitive impairments in AD. The existence of AHN in humans and its relevance in AD patients will also be discussed, with an outlook toward future research directions. HIGHLIGHTS: Adult hippocampal neurogenesis occurs in the brains of mammals including humans. Adult hippocampal neurogenesis is reduced in Alzheimer's disease in humans and animal models.
Collapse
Affiliation(s)
| | - Atefe R. Tari
- The Cardiac Exercise Research Group at Department of Circulation and Medical ImagingFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olavs University Hospital, Trondheim University HospitalTrondheimNorway
| | - Ulrik Wisloff
- The Cardiac Exercise Research Group at Department of Circulation and Medical ImagingFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Tara L. Walker
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
33
|
Sung KC, Wang LY, Wang CC, Chu CH, Sun HS, Hsiao YH. Enhanced hippocampal TIAM2S expression alleviates cognitive deficits in Alzheimer's disease model mice. Pharmacol Rep 2024; 76:1032-1043. [PMID: 39012419 DOI: 10.1007/s43440-024-00623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Dendritic spine dysfunction is a key feature of Alzheimer's disease (AD) pathogenesis. Human T-cell lymphoma invasion and metastasis 2 (TIAM2) is expressed in two isoforms, the full length (TIAM2L) and a short transcript (TIAM2S). Compared to TIAM2L protein, which is undetectable, TIAM2S protein is abundant in human brain tissue, especially the hippocampus, and can promote neurite outgrowth in our previous findings. However, whether enhanced hippocampal TIAM2S expression can alleviate cognitive deficits in Alzheimer's disease model mice remains unclear. METHODS We crossbred 3xTg-AD with TIAM2S mice to generate an AD mouse model that carries the human TIAM2S gene (3xTg-AD/TIAM2S mice). The Morris water maze and object location tests assessed hippocampus-dependent spatial memory. Lentiviral-driven shRNA or cDNA approaches were used to manipulate hippocampal TIAM2S expression. Golgi staining and Sholl analysis were utilized to measure neuronal dendrites and dendritic spines in the mouse hippocampi. RESULTS Compared to 3xTg-AD mice, 3xTg-AD/TIAM2S mice displayed improved cognitive functions. According to the hippocampus is one of the earliest affected brain regions by AD, we further injected TIAM2S shRNA or TIAM2S cDNA into mouse hippocampi to confirm whether manipulating hippocampal TIAM2S expression could affect AD-related cognitive functions. The results showed that the reduced hippocampal TIAM2S expression in 3xTg-AD/TIAM2S mice abolished the memory improvement effect, whereas increased hippocampal TIAM2S levels alleviated cognitive deficits in 3xTg-AD mice. Furthermore, we found that TIAM2S-mediated memory improvement was achieved by regulating dendritic plasticity. CONCLUSIONS These results will provide new insights into connecting TIAM2S with AD and support the notion that TIAM2S should be investigated as potential AD therapeutic targets.
Collapse
Affiliation(s)
- Kuan-Chin Sung
- Department of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
| | - Li-Yun Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Che-Chuan Wang
- Department of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
| | - Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Hsin Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
34
|
Penning A, Snoeck S, Garritsen O, Tosoni G, Hof A, de Boer F, van Hasenbroek J, Zhang L, Thrupp N, Craessaerts K, Fiers M, Salta E. NACC2, a molecular effector of miR-132 regulation at the interface between adult neurogenesis and Alzheimer's disease. Sci Rep 2024; 14:21163. [PMID: 39256511 PMCID: PMC11387632 DOI: 10.1038/s41598-024-72096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
The generation of new neurons at the hippocampal neurogenic niche, known as adult hippocampal neurogenesis (AHN), and its impairment, have been implicated in Alzheimer's disease (AD). MicroRNA-132 (miR-132), the most consistently downregulated microRNA (miRNA) in AD, was recently identified as a potent regulator of AHN, exerting multilayered proneurogenic effects in adult neural stem cells (NSCs) and their progeny. Supplementing miR-132 in AD mouse brain restores AHN and relevant memory deficits, yet the exact mechanisms involved are still unknown. Here, we identify NACC2 as a novel miR-132 target implicated in both AHN and AD. miR-132 deficiency in mouse hippocampus induces Nacc2 expression and inflammatory signaling in adult NSCs. We show that miR-132-dependent regulation of NACC2 is involved in the initial stages of human NSC differentiation towards astrocytes and neurons. Later, NACC2 function in astrocytic maturation becomes uncoupled from miR-132. We demonstrate that NACC2 is present in reactive astrocytes surrounding amyloid plaques in mouse and human AD hippocampus, and that there is an anticorrelation between miR-132 and NACC2 levels in AD and upon induction of inflammation. Unraveling the molecular mechanisms by which miR-132 regulates neurogenesis and cellular reactivity in AD, will provide valuable insights towards its possible application as a therapeutic target.
Collapse
Affiliation(s)
- Amber Penning
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Sarah Snoeck
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Oxana Garritsen
- UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Giorgia Tosoni
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Amber Hof
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Fleur de Boer
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | | | - Lin Zhang
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Nicky Thrupp
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | | | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Zota I, Chanoumidou K, Gravanis A, Charalampopoulos I. Stimulating myelin restoration with BDNF: a promising therapeutic approach for Alzheimer's disease. Front Cell Neurosci 2024; 18:1422130. [PMID: 39285941 PMCID: PMC11402763 DOI: 10.3389/fncel.2024.1422130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder constituting the most common form of dementia (60%-70% of cases). Although AD presents majorly a neurodegenerative pathology, recent clinical evidence highlights myelin impairment as a key factor in disease pathogenesis. The lack of preventive or restorative treatment is emphasizing the need to develop novel therapeutic approaches targeting to the causes of the disease. Recent studies in animals and patients have highlighted the loss of myelination of the neuronal axons as an extremely aggravating factor in AD, in addition to the formation of amyloid plaques and neurofibrillary tangles that are to date the main pathological hallmarks of the disease. Myelin breakdown represents an early stage event in AD. However, it is still unclear whether myelin loss is attributed only to exogenous factors like inflammatory processes of the tissue or to impaired oligodendrogenesis as well. Neurotrophic factors are well established protective molecules under many pathological conditions of the neural tissue, contributing also to proper myelination. Due to their inability to be used as drugs, many research efforts are focused on substituting neurotrophic activity with small molecules. Our research team has recently developed novel micromolecular synthetic neurotrophin mimetics (MNTs), selectively acting on neurotrophin receptors, and thus offering a unique opportunity for innovative therapies against neurodegenerative diseases. These small sized, lipophilic molecules address the underlying biological effect of these diseases (neuroprotective action), but also they exert significant neurogenic actions inducing neuronal replacement of the disease areas. One of the significant neurotrophin molecules in the Central Nervous System is Brain-Derived-Neurotrophin-Factor (BDNF). BDNF is a neurotrophin that not only supports neuroprotection and adult neurogenesis, but also mediates pro-myelinating effects in the CNS. BDNF binds with high-affinity on the TrkB neurotrophin receptor and enhances myelination by increasing the density of oligodendrocyte progenitor cells (OPCs) and playing an important role in CNS myelination. Conclusively, in the present review, we discuss the myelin pathophysiology in Alzheimer's Diseases, as well as the role of neurotrophins, and specifically BDNF, in myelin maintenance and restoration, revealing its valuable therapeutic potential against AD.
Collapse
Affiliation(s)
- Ioanna Zota
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Konstantina Chanoumidou
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
36
|
Fowler ME, Crowe M. Improving our understanding of the complex relationship between cancer-related cognitive decline and Alzheimer's disease. J Natl Cancer Inst 2024; 116:1414-1416. [PMID: 38976591 DOI: 10.1093/jnci/djae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Affiliation(s)
- Mackenzie E Fowler
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael Crowe
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
37
|
Nguyen DPQ, Pham S, Jallow AW, Ho NT, Le B, Quang HT, Lin YF, Lin YF. Multiple Transcriptomic Analyses Explore Potential Synaptic Biomarker Rabphilin-3A for Alzheimer's Disease. Sci Rep 2024; 14:18717. [PMID: 39134564 PMCID: PMC11319786 DOI: 10.1038/s41598-024-66693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder afflicting the elderly population worldwide. The identification of potential gene candidates for AD holds promises for diagnostic biomarkers and therapeutic targets. Employing a comprehensive strategy, this study integrated transcriptomic data from diverse data sources, including microarray and single-cell datasets from blood and tissue samples, enabling a detailed exploration of gene expression dynamics. Through this thorough investigation, 19 notable candidate genes were found with consistent expression changes across both blood and tissue datasets, suggesting their potential as biomarkers for AD. In addition, single cell sequencing analysis further highlighted their specific expression in excitatory and inhibitory neurons, the primary functional units in the brain, underscoring their relevance to AD pathology. Moreover, the functional enrichment analysis revealed that three of the candidate genes were downregulated in synaptic signaling pathway. Further validation experiments significantly showed reduced levels of rabphilin-3A (RPH3A) in 3xTg-AD model mice, implying its role in disease pathogenesis. Given its role in neurotransmitter exocytosis and synaptic function, further investigation into RPH3A and its interactions with neurotrophic proteins may provide valuable insights into the complex molecular mechanisms underlying synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Doan Phuong Quy Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 235, Taiwan
- Institute of Biomedicine, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Son Pham
- BioTuring Inc., San Diego, CA, 92121, USA
| | - Amadou Wurry Jallow
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 235, Taiwan
| | | | - Bao Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Hung Tran Quang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yi-Fang Lin
- Department of Laboratory Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 235, Taiwan
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 235, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 235, Taiwan.
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei City, 110, Taiwan.
| |
Collapse
|
38
|
Chittora R, Jain S, Roy A, Pandey S, Kochhar KP. Multifactorial effects of short duration early exposure low intensity magnetic field stimulation in Streptozotocin induced Alzheimer's disease rat model. Neurosci Lett 2024; 836:137878. [PMID: 38862088 DOI: 10.1016/j.neulet.2024.137878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
Alzheimer's disease (AD) is an approaching, progressive public health crisis which presently lacks an effective treatment. Various non-invasive novel therapies like repetitive transcranial magnetic stimulation have shown potential to improve cognitive performance in AD patients. In the present study, the effect of extremely low intensity magnetic field (MF) stimulation on neurogenesis and cortical electrical activity was explored. Adult Wistar rats were divided into Sham, AD and AD + MF groups. Streptozotocin (STZ) was injected intracerebroventricularly, at a dose of 3 mg/kg body weight for developing AD model. The AD rats were then exposed to MF (17.96 µT) from 8th day of STZ treatment until 15th day, followed by cognitive assessments and electrocortical recording. In brain tissue samples, cresyl violet staining and BrdU immunohistochemistry were done. MF exposure, improved passive avoidance and recognition memory, attenuated neuronal degeneration and enhanced cell proliferation (BrdU positive cells) in comparison to AD rats. It also significantly restores delta wave power from frontal lobe. Our results suggest that early-stage MF exposure could be an asset for AD research and open new avenues in slowing down the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Reena Chittora
- Neurophysiology and Nanomedicine Laboratory, Department of Physiology, AIIMS, New Delhi, India
| | - Suman Jain
- Neurophysiology and Nanomedicine Laboratory, Department of Physiology, AIIMS, New Delhi, India.
| | - Avishek Roy
- Neurophysiology and Nanomedicine Laboratory, Department of Physiology, AIIMS, New Delhi, India; Centre Broca Nouvelle-Aquitaine, Bordeaux, France
| | - Shivam Pandey
- Department of Biostatistics, AIIMS, New Delhi, India
| | | |
Collapse
|
39
|
Wang H, Xie L, Guo H, Li L, Chen S, Fan Y, Tian J, Xu L, Kong X, Xuan A. m 1A demethylase Alkbh3 regulates neurogenesis through m 1A demethylation of Mmp15 mRNA. Cell Biosci 2024; 14:92. [PMID: 39004750 PMCID: PMC11246583 DOI: 10.1186/s13578-024-01275-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND N1-Methyladenosine (m1A) is an abundant modification of transcripts regulating mRNA structure and translation efficiency. However, the characteristics and biological functions of mRNA m1A modification in adult hippocampal neurogenesis remain enigmatic. RESULTS We found that m1A demethylase Alkbh3 was dramatically enriched in neurons and neuronal genesis. Functionally, depletion of Alkbh3 in neural stem cells (NSCs) significantly decreased m1A modification, neuronal differentiation and proliferation coupling with increasing gliogenesis, whereas overexpressing Alkbh3 facilitated neuronal differentiation and proliferation. Mechanistically, the m1A demethylation of Mmp15 mRNA by Alkbh3 improved its RNA stability and translational efficacy, which promoted neurogenesis. Therapeutically, the silencing of Alkbh3 reduced hippocampal neurogenesis and impaired spatial memory in the adult mice. CONCLUSIONS We reveal a novel function of m1A demethylation on Mmp15 mRNA in Alkbh3-mediated neurogenesis, which shed light on advancing Alkbh3 regulation of neurogenesis as a novel neurotherapeutic strategy.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Linjie Xie
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Haomin Guo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Lishi Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shuwei Chen
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ye Fan
- Scientific Research Center of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jingyuan Tian
- Scientific Research Center of Guangzhou Medical University, Guangzhou, 511436, China
| | - Liping Xu
- Scientific Research Center of Guangzhou Medical University, Guangzhou, 511436, China.
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, 510645, China.
| | - Xuejian Kong
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, China.
| | - Aiguo Xuan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- Scientific Research Center of Guangzhou Medical University, Guangzhou, 511436, China.
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, China.
| |
Collapse
|
40
|
Głowacka P, Oszajca K, Pudlarz A, Szemraj J, Witusik-Perkowska M. Postbiotics as Molecules Targeting Cellular Events of Aging Brain-The Role in Pathogenesis, Prophylaxis and Treatment of Neurodegenerative Diseases. Nutrients 2024; 16:2244. [PMID: 39064687 PMCID: PMC11279795 DOI: 10.3390/nu16142244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is the most prominent risk factor for neurodegeneration occurrence. The most common neurodegenerative diseases (NDs), Alzheimer's (AD) and Parkinson's (PD) diseases, are characterized by the incidence of proteinopathy, abnormal activation of glial cells, oxidative stress, neuroinflammation, impaired autophagy and cellular senescence excessive for the patient's age. Moreover, mitochondrial disfunction, epigenetic alterations and neurogenesis inhibition, together with increased blood-brain barrier permeability and gut dysbiosis, have been linked to ND pathogenesis. Since NDs still lack curative treatment, recent research has sought therapeutic options in restoring gut microbiota and supplementing probiotic bacteria-derived metabolites with beneficial action to the host-so called postbiotics. The current review focuses on literature explaining cellular mechanisms involved in ND pathogenesis and research addressing the impact that postbiotics as a whole mixture and particular metabolites, such as short-chain fatty acids (SCFAs), lactate, polyamines, polyphenols, tryptophan metabolites, exopolysaccharides and bacterial extracellular vesicles, have on the ageing-associated processes underlying ND occurrence. The review also discusses the issue of implementing postbiotics into ND prophylaxis and therapy, depicting them as compounds addressing senescence-triggered dysfunctions that are worth translating from bench to pharmaceutical market in response to "silver consumers" demands.
Collapse
Affiliation(s)
- Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
- International Doctoral School, Medical University of Lodz, 90-419 Lodz, Poland
| | - Katarzyna Oszajca
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Agnieszka Pudlarz
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Monika Witusik-Perkowska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| |
Collapse
|
41
|
Charou D, Rogdakis T, Latorrata A, Valcarcel M, Papadogiannis V, Athanasiou C, Tsengenes A, Papadopoulou MA, Lypitkas D, Lavigne MD, Katsila T, Wade RC, Cader MZ, Calogeropoulou T, Gravanis A, Charalampopoulos I. Comprehensive characterization of the neurogenic and neuroprotective action of a novel TrkB agonist using mouse and human stem cell models of Alzheimer's disease. Stem Cell Res Ther 2024; 15:200. [PMID: 38971770 PMCID: PMC11227723 DOI: 10.1186/s13287-024-03818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Neural stem cell (NSC) proliferation and differentiation in the mammalian brain decreases to minimal levels postnatally. Nevertheless, neurogenic niches persist in the adult cortex and hippocampus in rodents, primates and humans, with adult NSC differentiation sharing key regulatory mechanisms with development. Adult neurogenesis impairments have been linked to Alzheimer's disease (AD) pathology. Addressing these impairments by using neurotrophic factors is a promising new avenue for therapeutic intervention based on neurogenesis. However, this possibility has been hindered by technical difficulties of using in-vivo models to conduct screens, including working with scarce NSCs in the adult brain and differences between human and mouse models or ethical limitations. METHODS Here, we use a combination of mouse and human stem cell models for comprehensive in-vitro characterization of a novel neurogenic compound, focusing on the brain-derived neurotrophic factor (BDNF) pathway. The ability of ENT-A011, a steroidal dehydroepiandrosterone derivative, to activate the tyrosine receptor kinase B (TrkB) receptor was tested through western blotting in NIH-3T3 cells and its neurogenic and neuroprotective action were assessed through proliferation, cell death and Amyloid-β (Aβ) toxicity assays in mouse primary adult hippocampal NSCs, mouse embryonic cortical NSCs and neural progenitor cells (NPCs) differentiated from three human induced pluripotent stem cell lines from healthy and AD donors. RNA-seq profiling was used to assess if the compound acts through the same gene network as BDNF in human NPCs. RESULTS ENT-A011 was able to increase proliferation of mouse primary adult hippocampal NSCs and embryonic cortical NSCs, in the absence of EGF/FGF, while reducing Aβ-induced cell death, acting selectively through TrkB activation. The compound was able to increase astrocytic gene markers involved in NSC maintenance, protect hippocampal neurons from Αβ toxicity and prevent synapse loss after Aβ treatment. ENT-A011 successfully induces proliferation and prevents cell death after Aβ toxicity in human NPCs, acting through a core gene network shared with BDNF as shown through RNA-seq. CONCLUSIONS Our work characterizes a novel BDNF mimetic with preferable pharmacological properties and neurogenic and neuroprotective actions in Alzheimer's disease via stem cell-based screening, demonstrating the promise of stem cell systems for short-listing competitive candidates for further testing.
Collapse
Affiliation(s)
- Despoina Charou
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Thanasis Rogdakis
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Alessia Latorrata
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Maria Valcarcel
- Innovative Technologies in Biological Systems SL (INNOPROT), 48160, Derio, Bizkaia, Spain
| | - Vasileios Papadogiannis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece
| | - Christina Athanasiou
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120, Heidelberg, Germany
| | - Alexandros Tsengenes
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120, Heidelberg, Germany
| | - Maria Anna Papadopoulou
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Dimitrios Lypitkas
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Matthieu D Lavigne
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120, Heidelberg, Germany
| | - M Zameel Cader
- Translational Molecular Neuroscience Group, Dorothy Crowfoot Hodgkin Building, Kavli Institute for Nanoscience, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece.
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece.
| |
Collapse
|
42
|
Bielefeld P, Martirosyan A, Martín-Suárez S, Apresyan A, Meerhoff GF, Pestana F, Poovathingal S, Reijner N, Koning W, Clement RA, Van der Veen I, Toledo EM, Polzer O, Durá I, Hovhannisyan S, Nilges BS, Bogdoll A, Kashikar ND, Lucassen PJ, Belgard TG, Encinas JM, Holt MG, Fitzsimons CP. Traumatic brain injury promotes neurogenesis at the cost of astrogliogenesis in the adult hippocampus of male mice. Nat Commun 2024; 15:5222. [PMID: 38890340 PMCID: PMC11189490 DOI: 10.1038/s41467-024-49299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Traumatic brain injury (TBI) can result in long-lasting changes in hippocampal function. The changes induced by TBI on the hippocampus contribute to cognitive deficits. The adult hippocampus harbors neural stem cells (NSCs) that generate neurons (neurogenesis), and astrocytes (astrogliogenesis). While deregulation of hippocampal NSCs and neurogenesis have been observed after TBI, it is not known how TBI may affect hippocampal astrogliogenesis. Using a controlled cortical impact model of TBI in male mice, single cell RNA sequencing and spatial transcriptomics, we assessed how TBI affected hippocampal NSCs and the neuronal and astroglial lineages derived from them. We observe an increase in NSC-derived neuronal cells and a concomitant decrease in NSC-derived astrocytic cells, together with changes in gene expression and cell dysplasia within the dentate gyrus. Here, we show that TBI modifies NSC fate to promote neurogenesis at the cost of astrogliogenesis and identify specific cell populations as possible targets to counteract TBI-induced cellular changes in the adult hippocampus.
Collapse
Affiliation(s)
- P Bielefeld
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - A Martirosyan
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Martín-Suárez
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - A Apresyan
- Armenian Bioinformatics Institute, Yerevan, Armenia
| | - G F Meerhoff
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - F Pestana
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Poovathingal
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - N Reijner
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - W Koning
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - R A Clement
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Van der Veen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - E M Toledo
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - O Polzer
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Durá
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - S Hovhannisyan
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
| | - B S Nilges
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - A Bogdoll
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
| | - N D Kashikar
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - P J Lucassen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | - J M Encinas
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- IKERBASQUE, The Basque Foundation for Science, Plaza Euskadi 5, Bilbao, Spain
| | - M G Holt
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- KU Leuven-Department of Neurosciences, Leuven, Belgium.
- Instituto de Investigaçāo e Inovaçāo em Saúde (i3S), University of Porto, Porto, Portugal.
| | - C P Fitzsimons
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Nguyen DPQ, Jallow AW, Lin YF, Lin YF. Exploring the Potential Role of Oligodendrocyte-Associated PIP4K2A in Alzheimer's Disease Complicated with Type 2 Diabetes Mellitus via Multi-Omic Analysis. Int J Mol Sci 2024; 25:6640. [PMID: 38928345 PMCID: PMC11204139 DOI: 10.3390/ijms25126640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two common diseases that affect the elderly population worldwide. The identification of common genes associated with AD and T2DM holds promise for potential biomarkers and intriguing pathogenesis of these two complicated diseases. This study utilized a comprehensive approach by integrating transcriptome data from multiple cohorts, encompassing both AD and T2DM. The analysis incorporated various data types, including blood and tissue samples as well as single-cell datasets, allowing for a detailed assessment of gene expression patterns. From the brain region-specific single-cell analysis, PIP4K2A, which encodes phosphatidylinositol-5-phosphate 4-kinase type 2 alpha, was found to be expressed mainly in oligodendrocytes compared to other cell types. Elevated levels of PIP4K2A in AD and T2DM patients' blood were found to be associated with key cellular processes such as vesicle-mediated transport, negative regulation of autophagosome assembly, and cytosolic transport. The identification of PIP4K2A's potential roles in the cellular processes of AD and T2DM offers valuable insights into the development of biomarkers for diagnosis and therapy, especially in the complication of these two diseases.
Collapse
Affiliation(s)
- Doan Phuong Quy Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan; (D.P.Q.N.); (A.W.J.)
- Institute of Biomedicine, Hue University of Medicine and Pharmacy, Hue University, Hue City 49120, Vietnam
- Department of Medical Genetics, Hue University of Medicine and Pharmacy, Hue University, Hue City 49120, Vietnam
| | - Amadou Wurry Jallow
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan; (D.P.Q.N.); (A.W.J.)
| | - Yi-Fang Lin
- Department of Laboratory Medicine, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan;
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan; (D.P.Q.N.); (A.W.J.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei City 110, Taiwan
| |
Collapse
|
44
|
Huang YY, Gan YH, Yang L, Cheng W, Yu JT. Depression in Alzheimer's Disease: Epidemiology, Mechanisms, and Treatment. Biol Psychiatry 2024; 95:992-1005. [PMID: 37866486 DOI: 10.1016/j.biopsych.2023.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
Depression and Alzheimer's disease (AD) are substantial public health concerns. In the past decades, a link between the 2 disease entities has received extensive acknowledgment, yet the complex nature of this relationship demands further clarification. Some evidence indicates that midlife depression may be an AD risk factor, while a chronic course of depression in late life may be a precursor to or symptom of dementia. Recently, multiple pathophysiological mechanisms have been proposed to underlie the bidirectional relationship between depression and AD, including genetic predisposition, immune dysregulation, accumulation of AD-related biomarkers (e.g., amyloid-β and tau), and alterations in brain structure. Accordingly, numerous therapeutic approaches, such as pharmacology treatments, psychotherapy, and lifestyle interventions, have been suggested as potential means of interfering with these pathways. However, the current literature on this topic remains fragmented and lacks a comprehensive review characterizing the association between depression and AD. In this review, we aim to address these gaps by providing an overview of the co-occurrence and temporal relationship between depression and AD, as well as exploring their underlying mechanisms. We also examine the current therapeutic regimens for depression and their implications for AD management and outline key challenges facing the field.
Collapse
Affiliation(s)
- Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Han Gan
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
45
|
Han AR, Moon TK, Kang IK, Yu DB, Kim Y, Byon C, Park S, Kim HL, Lee KJ, Lee H, Woo HN, Kim SW. Integrative analysis of microRNA-mediated mitochondrial dysfunction in hippocampal neural progenitor cell death in relation with Alzheimer's disease. BMB Rep 2024; 57:281-286. [PMID: 38053296 PMCID: PMC11214893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
Adult hippocampal neurogenesis plays a pivotal role in maintaining cognitive brain function. However, this process diminishes with age, particularly in patients with neurodegenerative disorders. While small, non-coding microRNAs (miRNAs) are crucial for hippocampal neural stem (HCN) cell maintenance, their involvement in neurodegenerative disorders remains unclear. This study aimed to elucidate the mechanisms through which miRNAs regulate HCN cell death and their potential involvement in neurodegenerative disorders. We performed a comprehensive microarray-based analysis to investigate changes in miRNA expression in insulin-deprived HCN cells as an in vitro model for cognitive impairment. miR-150-3p, miR-323-5p, and miR-370-3p, which increased significantly over time following insulin withdrawal, induced pronounced mitochondrial fission and dysfunction, ultimately leading to HCN cell death. These miRNAs collectively targeted the mitochondrial fusion protein OPA1, with miR-150-3p also targeting MFN2. Data-driven analyses of the hippocampi and brains of human subjects revealed significant reductions in OPA1 and MFN2 in patients with Alzheimer's disease (AD). Our results indicate that miR-150-3p, miR-323-5p, and miR-370-3p contribute to deficits in hippocampal neurogenesis by modulating mitochondrial dynamics. Our findings provide novel insight into the intricate connections between miRNA and mitochondrial dynamics, shedding light on their potential involvement in conditions characterized by deficits in hippocampal neurogenesis, such as AD. [BMB Reports 2024; 57(6): 281-286].
Collapse
Affiliation(s)
- A Reum Han
- Department of Translational Medicine, Seoul 05505, Korea
- Department of Biochemistry and Molecular Biology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | | | | | - Dae Bong Yu
- Department of Microbiology, Seoul 05505, Korea
| | - Yechan Kim
- Department of Microbiology, Seoul 05505, Korea
| | | | | | - Hae Lin Kim
- Department of Microbiology, Seoul 05505, Korea
| | - Kyoung Jin Lee
- Department of Microbiology, Seoul 05505, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Heuiran Lee
- Department of Microbiology, Seoul 05505, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ha-Na Woo
- Department of Biochemistry and Molecular Biology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
46
|
Haniff ZR, Bocharova M, Mantingh T, Rucker JJ, Velayudhan L, Taylor DM, Young AH, Aarsland D, Vernon AC, Thuret S. Psilocybin for dementia prevention? The potential role of psilocybin to alter mechanisms associated with major depression and neurodegenerative diseases. Pharmacol Ther 2024; 258:108641. [PMID: 38583670 PMCID: PMC11847495 DOI: 10.1016/j.pharmthera.2024.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Major depression is an established risk factor for subsequent dementia, and depression in late life may also represent a prodromal state of dementia. Considering current challenges in the clinical development of disease modifying therapies for dementia, the focus of research is shifting towards prevention and modification of risk factors to alter the neurodegenerative disease trajectory. Understanding mechanistic commonalities underlying affective symptoms and cognitive decline may reveal biomarkers to aid early identification of those at risk of progressing to dementia during the preclinical phase of disease, thus allowing for timely intervention. Adult hippocampal neurogenesis (AHN) is a phenomenon that describes the birth of new neurons in the dentate gyrus throughout life and it is associated with spatial learning, memory and mood regulation. Microglia are innate immune system macrophages in the central nervous system that carefully regulate AHN via multiple mechanisms. Disruption in AHN is associated with both dementia and major depression and microgliosis is a hallmark of several neurodegenerative diseases. Emerging evidence suggests that psychedelics promote neuroplasticity, including neurogenesis, and may also be immunomodulatory. In this context, psilocybin, a serotonergic agonist with rapid-acting antidepressant properties has the potential to ameliorate intersecting pathophysiological processes relevant for both major depression and neurodegenerative diseases. In this narrative review, we focus on the evidence base for the effects of psilocybin on adult hippocampal neurogenesis and microglial form and function; which may suggest that psilocybin has the potential to modulate multiple mechanisms of action, and may have implications in altering the progression from major depression to dementia in those at risk.
Collapse
Affiliation(s)
- Zarah R Haniff
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Mariia Bocharova
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Tim Mantingh
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - James J Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Latha Velayudhan
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - David M Taylor
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, United Kingdom
| | - Dag Aarsland
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Wolfson Centre for Age Related Diseases, Division of Neuroscience of the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Stavanger University Hospital, Stavanger, Norway
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom.
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
47
|
Zhang Y, Li S, Li L, Huang H, Fu Z, Hua Z. Inhibition of Microglial Activation Ameliorates Inflammation, Reduced Neurogenesis in the hippocampus, and Impaired Brain Function in a Rat Model of Bilirubin Encephalopathy. J Neuroimmune Pharmacol 2024; 19:23. [PMID: 38775885 DOI: 10.1007/s11481-024-10124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/13/2024] [Indexed: 01/15/2025]
Abstract
Hyperbilirubinemia is one of the most common occurrence in newborns and is toxic to the brain, resulting in neurological sequelae such as auditory impairment, with potential to evolve to chronic bilirubin encephalopathy and long-term cognitive impairment in adults. In the early postnatal period, neurogenesis is rigorous and neuroinflammation is detrimental to the brain. What are the alterations in neurogenesis and the underlying mechanisms of bilirubin encephalopathy during the early postnatal period? This study found that, there were a reduction in the number of neuronal stem/progenitor cells, an increase in microglia in the dentate gyrus (DG) and an inflammatory state in the hippocampus, characterized by increased levels of IL-6, TNF-α, and IL-1β, as well as a decreased level of IL-10 in a rat model of bilirubin encephalopathy (BE). Furthermore, there was a significant decrease in the number of newborn neurons and the expression of neuronal differentiation-associated genes (NeuroD and Ascl1) in the BE group. Additionally, cognitive impairment was observed in this group. The administration of minocycline, an inhibitor of microglial activation, resulted in a reduction of inflammation in the hippocampus, an enhancement of neurogenesis, an increase in the expression of neuron-related genes (NeuroD and Ascl1), and an improvement in cognitive function in the BE group. These results demonstrate that microglia play a critical role in reduced neurogenesis and impaired brain function resulting from bilirubin encephalopathy model, which could inspire the development of novel pharmaceutical and therapeutic strategies.
Collapse
Affiliation(s)
- Yan Zhang
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Siyu Li
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ling Li
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Hongmei Huang
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhou Fu
- Department of Respiratory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Ziyu Hua
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
48
|
Caruso MG, Nicolas S, Lucassen PJ, Mul JD, O’Leary OF, Nolan YM. Ageing, Cognitive Decline, and Effects of Physical Exercise: Complexities, and Considerations from Animal Models. Brain Plast 2024; 9:43-73. [PMID: 38993577 PMCID: PMC11234681 DOI: 10.3233/bpl-230157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 07/13/2024] Open
Abstract
In our ageing global population, the cognitive decline associated with dementia and neurodegenerative diseases represents a major healthcare problem. To date, there are no effective treatments for age-related cognitive impairment, thus preventative strategies are urgently required. Physical exercise is gaining traction as a non-pharmacological approach to promote brain health. Adult hippocampal neurogenesis (AHN), a unique form of brain plasticity which is necessary for certain cognitive functions declines with age and is enhanced in response to exercise. Accumulating evidence from research in rodents suggests that physical exercise has beneficial effects on cognition through its proneurogenic capabilities. Given ethical and technical limitations in human studies, preclinical research in rodents is crucial for a better understanding of such exercise-induced brain and behavioural changes. In this review, exercise paradigms used in preclinical research are compared. We provide an overview of the effects of different exercise paradigms on age-related cognitive decline from middle-age until older-age. We discuss the relationship between the age-related decrease in AHN and the potential impact of exercise on mitigating this decline. We highlight the emerging literature on the impact of exercise on gut microbiota during ageing and consider the role of the gut-brain axis as a future possible strategy to optimize exercise-enhanced cognitive function. Finally, we propose a guideline for designing optimal exercise protocols in rodent studies, which would inform clinical research and contribute to developing preventative strategies for age-related cognitive decline.
Collapse
Affiliation(s)
- Maria Giovanna Caruso
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Paul J. Lucassen
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Joram D. Mul
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Olivia F. O’Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M. Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| |
Collapse
|
49
|
Du Preez A, Lefèvre-Arbogast S, González-Domínguez R, Houghton V, de Lucia C, Lee H, Low DY, Helmer C, Féart C, Delcourt C, Proust-Lima C, Pallàs M, Sánchez-Pla A, Urpi-Sardà M, Ruigrok SR, Altendorfer B, Aigner L, Lucassen PJ, Korosi A, Manach C, Andres-Lacueva C, Samieri C, Thuret S. Association of dietary and nutritional factors with cognitive decline, dementia, and depressive symptomatology in older individuals according to a neurogenesis-centred biological susceptibility to brain ageing. Age Ageing 2024; 53:ii47-ii59. [PMID: 38745492 PMCID: PMC11094407 DOI: 10.1093/ageing/afae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/15/2024] [Indexed: 05/16/2024] Open
Abstract
Hippocampal neurogenesis (HN) occurs throughout the life course and is important for memory and mood. Declining with age, HN plays a pivotal role in cognitive decline (CD), dementia, and late-life depression, such that altered HN could represent a neurobiological susceptibility to these conditions. Pertinently, dietary patterns (e.g., Mediterranean diet) and/or individual nutrients (e.g., vitamin D, omega 3) can modify HN, but also modify risk for CD, dementia, and depression. Therefore, the interaction between diet/nutrition and HN may alter risk trajectories for these ageing-related brain conditions. Using a subsample (n = 371) of the Three-City cohort-where older adults provided information on diet and blood biobanking at baseline and were assessed for CD, dementia, and depressive symptomatology across 12 years-we tested for interactions between food consumption, nutrient intake, and nutritional biomarker concentrations and neurogenesis-centred susceptibility status (defined by baseline readouts of hippocampal progenitor cell integrity, cell death, and differentiation) on CD, Alzheimer's disease (AD), vascular and other dementias (VoD), and depressive symptomatology, using multivariable-adjusted logistic regression models. Increased plasma lycopene concentrations (OR [95% CI] = 1.07 [1.01, 1.14]), higher red meat (OR [95% CI] = 1.10 [1.03, 1.19]), and lower poultry consumption (OR [95% CI] = 0.93 [0.87, 0.99]) were associated with an increased risk for AD in individuals with a neurogenesis-centred susceptibility. Increased vitamin D consumption (OR [95% CI] = 1.05 [1.01, 1.11]) and plasma γ-tocopherol concentrations (OR [95% CI] = 1.08 [1.01, 1.18]) were associated with increased risk for VoD and depressive symptomatology, respectively, but only in susceptible individuals. This research highlights an important role for diet/nutrition in modifying dementia and depression risk in individuals with a neurogenesis-centred susceptibility.
Collapse
Affiliation(s)
- Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Sophie Lefèvre-Arbogast
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Raúl González-Domínguez
- Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 0828 Barcelona, Spain
| | - Vikki Houghton
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Chiara de Lucia
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Hyunah Lee
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Dorrain Y Low
- INRA, Human Nutrition Unit, UMR1019, Université Clermont Auvergne, F-63000 Clermont Ferrand, France
| | - Catherine Helmer
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Catherine Féart
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Cécile Delcourt
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Cécile Proust-Lima
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neurosciences, University of Barcelona, E-08028 Barcelona, Spain
| | - Alex Sánchez-Pla
- Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 0828 Barcelona, Spain
| | - Mireia Urpi-Sardà
- Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 0828 Barcelona, Spain
| | - Silvie R Ruigrok
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg 5020, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg 5020, Austria
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Aniko Korosi
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Claudine Manach
- INRA, Human Nutrition Unit, UMR1019, Université Clermont Auvergne, F-63000 Clermont Ferrand, France
| | - Cristina Andres-Lacueva
- Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 0828 Barcelona, Spain
| | - Cécilia Samieri
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
50
|
Li X, Liu C, Li W, Dai Y, Gu C, Zhou W, Ciliberto VC, Liang J, Udhaya KS, Guan D, Hu Z, Zheng H, Chen H, Liu Z, Wan YW, Sun Z. Multi-omics delineate growth factor network underlying exercise effects in an Alzheimer's mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592289. [PMID: 38746443 PMCID: PMC11092636 DOI: 10.1101/2024.05.02.592289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Physical exercise represents a primary defense against age-related cognitive decline and neurodegenerative disorders like Alzheimer's disease (AD). To impartially investigate the underlying mechanisms, we conducted single-nucleus transcriptomic and chromatin accessibility analyses (snRNA-seq and ATAC-seq) on the hippocampus of mice carrying AD-linked NL-G-F mutations in the amyloid precursor protein gene (APPNL-G-F) following prolonged voluntary wheel-running exercise. Our study reveals that exercise mitigates amyloid-induced changes in both transcriptomic expression and chromatin accessibility through cell type-specific transcriptional regulatory networks. These networks converge on the activation of growth factor signaling pathways, particularly the epidermal growth factor receptor (EGFR) and insulin signaling, correlating with an increased proportion of immature dentate granule cells and oligodendrocytes. Notably, the beneficial effects of exercise on neurocognitive functions can be blocked by pharmacological inhibition of EGFR and the downstream phosphoinositide 3-kinases (PI3K). Furthermore, exercise leads to elevated levels of heparin-binding EGF (HB-EGF) in the blood, and intranasal administration of HB-EGF enhances memory function in sedentary APPNL-G-F mice. These findings offer a panoramic delineation of cell type-specific hippocampal transcriptional networks activated by exercise and suggest EGF-related growth factor signaling as a druggable contributor to exercise-induced memory enhancement, thereby suggesting therapeutic avenues for combatting AD-related cognitive decline.
Collapse
Affiliation(s)
- Xin Li
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chaozhong Liu
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wenbo Li
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yanwan Dai
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chaohao Gu
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wenjun Zhou
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Veronica C. Ciliberto
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jing Liang
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Kumar. S Udhaya
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dongyin Guan
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhaoyong Hu
- Department of Medicine – Nephrology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hu Chen
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhandong Liu
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ying-Wooi Wan
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zheng Sun
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas77030, USA
| |
Collapse
|