1
|
Randolph LN, Castiglioni C, Tavian M, Sturgeon CM, Ditadi A. Bloodhounds chasing the origin of blood cells. Trends Cell Biol 2025:S0962-8924(25)00067-4. [PMID: 40221343 DOI: 10.1016/j.tcb.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
The generation of blood cells during embryonic development involves a process resembling lineage reprogramming, where specialized cells within the vasculature become blood forming, or hemogenic. These hemogenic cells undergo rapid transcriptional and morphological changes as they appear to switch from an endothelial to blood identity. What controls this process and the exact nature of the hemogenic cells remains debated, with evidence supporting several hypotheses. In this opinion, we synthesize current knowledge and propose a model reconciling conflicting observations, integrating evolutionary and mechanistic insights into blood cell emergence.
Collapse
Affiliation(s)
- Lauren N Randolph
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Castiglioni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Manuela Tavian
- University of Strasbourg, INSERM UMR-S1109, FMTS, Strasbourg, France
| | - Christopher M Sturgeon
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Zheng SL, Fowler JL, Chen JY, Li C, Lin E, Nguyen AT, Chen A, Daley GQ, Ang LT, Loh KM. Protocol for the generation of HLF+ HOXA+ human hematopoietic progenitor cells from pluripotent stem cells. STAR Protoc 2025; 6:103592. [PMID: 39864063 PMCID: PMC11969413 DOI: 10.1016/j.xpro.2024.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025] Open
Abstract
Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media. This 10-day protocol enables the manufacturing of blood and immune cells in monolayer cultures. For complete details on the use and execution of this protocol, please refer to Fowler and Zheng et al.1.
Collapse
Affiliation(s)
- Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Jonas L Fowler
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Julie Y Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Christopher Li
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Belfer Center for Science and International Affairs, Harvard Kennedy School, Cambridge, MA 02138, USA
| | - Elaine Lin
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alana T Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - George Q Daley
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Sánchez-Lanzas R, Jiménez-Pompa A, Ganuza M. The evolving hematopoietic niche during development. Front Mol Biosci 2024; 11:1488199. [PMID: 39417006 PMCID: PMC11480086 DOI: 10.3389/fmolb.2024.1488199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Mammalian hematopoietic stem cells (HSCs) emerge from the hemogenic endothelium in the major embryonic arteries. HSCs undergo a complex journey first migrating to the fetal liver (FL) and from there to the fetal bone marrow (FBM), where they mostly remain during adult life. In this process, a pool of adult HSCs is produced, which sustains lifelong hematopoiesis. Multiple cellular components support HSC maturation and expansion and modulate their response to environmental and developmental cues. While the adult HSC niche has been extensively studied over the last two decades, the niches present in the major embryonic arteries, FL, FBM and perinatal bone marrow (BM) are poorly described. Recent investigations highlight important differences among FL, FBM and adult BM niches and emphasize the important role that inflammation, microbiota and hormonal factors play regulating HSCs and their niches. We provide a review on our current understanding of these important cellular microenvironments across ontogeny. We mainly focused on mice, as the most widely used research model, and, when possible, include relevant insights from other vertebrates including birds, zebrafish, and human. Developing a comprehensive picture on these processes is critical to understand the earliest origins of childhood leukemia and to achieve multiple goals in regenerative medicine, such as mimicking HSC development in vitro to produce HSCs for broad transplantation purposes in leukemia, following chemotherapy, bone marrow failure, and in HSC-based gene therapy.
Collapse
Affiliation(s)
| | | | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Hou S, Guo X, Du J, Ding X, Ning X, Wang H, Chen H, Liu B, Lan Y. New insights into the endothelial origin of hematopoietic system inspired by "TIF" approaches. BLOOD SCIENCE 2024; 6:e00199. [PMID: 39027902 PMCID: PMC11254119 DOI: 10.1097/bs9.0000000000000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/07/2024] [Indexed: 07/20/2024] Open
Abstract
Hematopoietic stem progenitor cells (HSPCs) are derived from a specialized subset of endothelial cells named hemogenic endothelial cells (HECs) via a process of endothelial-to-hematopoietic transition during embryogenesis. Recently, with the usage of multiple single-cell technologies and advanced genetic lineage tracing techniques, namely, "TIF" approaches that combining transcriptome, immunophenotype and function/fate analyses, massive new insights have been achieved regarding the cellular and molecular evolution underlying the emergence of HSPCs from embryonic vascular beds. In this review, we focus on the most recent advances in the enrichment markers, functional characteristics, developmental paths, molecular controls, and the embryonic site-relevance of the key intermediate cell populations bridging embryonic vascular and hematopoietic systems, namely HECs and pre-hematopoietic stem cells, the immediate progenies of some HECs, in mouse and human embryos. Specifically, using expression analyses at both transcriptional and protein levels and especially efficient functional assays, we propose that the onset of Kit expression is at the HEC stage, which has previously been controversial.
Collapse
Affiliation(s)
- Siyuan Hou
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xia Guo
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Junjie Du
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
| | - Xiaochen Ding
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaowei Ning
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haizhen Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Haifeng Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Bing Liu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yu Lan
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Xiong M, Xiu Y, Long J, Zhao X, Wang Q, Yang H, Yu H, Bian L, Ju Y, Yin H, Hou Q, Liang F, Liu N, Chen F, Fan R, Sun Y, Zeng Y. Proteomics reveals dynamic metabolic changes in human hematopoietic stem progenitor cells from fetal to adulthood. Stem Cell Res Ther 2024; 15:303. [PMID: 39278906 PMCID: PMC11403967 DOI: 10.1186/s13287-024-03930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Hematopoietic stem progenitor cells (HSPCs) undergo phenotypical and functional changes during their emergence and development. Although the molecular programs governing the development of human hematopoietic stem cells (HSCs) have been investigated broadly, the relationships between dynamic metabolic alterations and their functions remain poorly characterized. METHODS In this study, we comprehensively described the proteomics of HSPCs in the human fetal liver (FL), umbilical cord blood (UCB), and adult bone marrow (aBM). The metabolic state of human HSPCs was assessed via a Seahorse assay, RT‒PCR, and flow cytometry-based metabolic-related analysis. To investigate whether perturbing glutathione metabolism affects reactive oxygen species (ROS) production, the metabolic state, and the expansion of human HSPCs, HSPCs were treated with buthionine sulfoximine (BSO), an inhibitor of glutathione synthetase, and N-acetyl-L-cysteine (NAC). RESULTS We investigated the metabolomic landscape of human HSPCs from the fetal, perinatal, and adult developmental stages by in-depth quantitative proteomics and predicted a metabolic switch from the oxidative state to the glycolytic state during human HSPC development. Seahorse assays, mitochondrial activity, ROS level, glucose uptake, and protein synthesis rate analysis supported our findings. In addition, immune-related pathways and antigen presentation were upregulated in UCB or aBM HSPCs, indicating their functional maturation upon development. Glutathione-related metabolic perturbations resulted in distinct responses in human HSPCs and progenitors. Furthermore, the molecular and immunophenotypic differences between human HSPCs at different developmental stages were revealed at the protein level for the first time. CONCLUSION The metabolic landscape of human HSPCs at three developmental stages (FL, UCB, and aBM), combined with proteomics and functional validations, substantially extends our understanding of HSC metabolic regulation. These findings provide valuable resources for understanding human HSC function and development during fetal and adult life.
Collapse
Affiliation(s)
- Mingfang Xiong
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Yanyu Xiu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Juan Long
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Xiao Zhao
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Qianqian Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Haoyu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hang Yu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Lihong Bian
- Department of Gynecology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yan Ju
- Department of Gynecology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Hongyu Yin
- Department of Gynecology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Qingxiang Hou
- Department of Obstetrics and Gynecology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Fei Liang
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Nan Liu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Fudong Chen
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yuying Sun
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| | - Yang Zeng
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China.
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
6
|
Ng ES, Sarila G, Li JY, Edirisinghe HS, Saxena R, Sun S, Bruveris FF, Labonne T, Sleebs N, Maytum A, Yow RY, Inguanti C, Motazedian A, Calvanese V, Capellera-Garcia S, Ma F, Nim HT, Ramialison M, Bonifer C, Mikkola HKA, Stanley EG, Elefanty AG. Long-term engrafting multilineage hematopoietic cells differentiated from human induced pluripotent stem cells. Nat Biotechnol 2024:10.1038/s41587-024-02360-7. [PMID: 39223325 DOI: 10.1038/s41587-024-02360-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
Hematopoietic stem cells (HSCs) derived from human induced pluripotent stem cells (iPS cells) have important biomedical applications. We identified differentiation conditions that generate HSCs defined by robust long-term multilineage engraftment in immune-deficient NOD,B6.Prkdcscid Il2rgtm1Wjl/SzJ KitW41/W41 mice. We guided differentiating iPS cells, as embryoid bodies in a defined culture medium supplemented with retinyl acetate, through HOXA-patterned mesoderm to hemogenic endothelium specified by bone morphogenetic protein 4 and vascular endothelial growth factor (VEGF). Removal of VEGF facilitated an efficient endothelial-to-hematopoietic transition, evidenced by release into the culture medium of CD34+ blood cells, which were cryopreserved. Intravenous transplantation of two million thawed CD34+ cells differentiated from four independent iPS cell lines produced multilineage bone marrow engraftment in 25-50% of immune-deficient recipient mice. These functionally defined, multipotent CD34+ hematopoietic cells, designated iPS cell-derived HSCs (iHSCs), produced levels of engraftment similar to those achieved following umbilical cord blood transplantation. Our study provides a step toward the goal of generating HSCs for clinical translation.
Collapse
Grants
- GNT1117596,GNT1068866, GNT1129861,GNT2012535 Department of Health | National Health and Medical Research Council (NHMRC)
- GNT1164577, GNT2012936 Department of Health | National Health and Medical Research Council (NHMRC)
- GNT2012535 Department of Health | National Health and Medical Research Council (NHMRC)
- GNT1186019 Department of Health | National Health and Medical Research Council (NHMRC)
- GNT1068866, GNT1129861, GNT2012535 Department of Health | National Health and Medical Research Council (NHMRC)
- GNT1068866, GNT1129861, GNT1186019 Department of Health | National Health and Medical Research Council (NHMRC)
- GNT1079004, GNT1068866, GNT1129861, GNT1186019 Department of Health | National Health and Medical Research Council (NHMRC)
- RT3-07763 California Institute for Regenerative Medicine (CIRM)
- NNF21CC0073729 Novo Nordisk Fonden (Novo Nordisk Foundation)
- NIH 1RO1DK125097-01 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- IPD2 2018-06635 Vetenskapsrådet (Swedish Research Council)
- BB/R014809/1 RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
Collapse
Affiliation(s)
- Elizabeth S Ng
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| | - Gulcan Sarila
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jacky Y Li
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Hasindu S Edirisinghe
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Ritika Saxena
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Shicheng Sun
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Changping Laboratory, Beijing, China
| | - Freya F Bruveris
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Tanya Labonne
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Nerida Sleebs
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Alexander Maytum
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Raymond Y Yow
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Chantelle Inguanti
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Ali Motazedian
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Vincenzo Calvanese
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Sandra Capellera-Garcia
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hieu T Nim
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Mirana Ramialison
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Constanze Bonifer
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| |
Collapse
|
7
|
Clements WK, Khoury H. The molecular and cellular hematopoietic stem cell specification niche. Exp Hematol 2024; 136:104280. [PMID: 39009276 PMCID: PMC11338702 DOI: 10.1016/j.exphem.2024.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Hematopoietic stem cells (HSCs) are a population of tissue-specific stem cells that reside in the bone marrow of adult mammals, where they self-renew and continuously regenerate the adult hematopoietic lineages over the life of the individual. Prominence as a stem cell model and clinical usefulness have driven interest in understanding the physiologic processes that lead to the specification of HSCs during embryonic development. High-efficiency directed differentiation of HSCs by the instruction of defined progenitor cells using sequentially defined instructive molecules and conditions remains impossible, indicating that comprehensive knowledge of the complete set of precursor intermediate identities and required inductive inputs remains incompletely understood. Recently, interest in the molecular and cellular microenvironment where HSCs are specified from endothelial precursors-the "specification niche"-has increased. Here we review recent progress in understanding these niche spaces across vertebrate phyla, as well as how a better characterization of the origin and molecular phenotypes of the niche cell populations has helped inform and complicate previous understanding of signaling required for HSC emergence and maturation.
Collapse
Affiliation(s)
- Wilson K Clements
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN.
| | - Hanane Khoury
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
8
|
Summers BS, Thomas Broome S, Pang TWR, Mundell HD, Koh Belic N, Tom NC, Ng ML, Yap M, Sen MK, Sedaghat S, Weible MW, Castorina A, Lim CK, Lovelace MD, Brew BJ. A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease. Int J Tryptophan Res 2024; 17:11786469241248287. [PMID: 38757094 PMCID: PMC11097742 DOI: 10.1177/11786469241248287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.
Collapse
Affiliation(s)
- Benjamin Sebastian Summers
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Sarah Thomas Broome
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | | | - Hamish D Mundell
- Faculty of Medicine and Health, New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Naomi Koh Belic
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Nicole C Tom
- Formerly of the Department of Physiology, University of Sydney, NSW, Australia
| | - Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maylin Yap
- Formerly of the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Monokesh K Sen
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine, Western Sydney University, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sara Sedaghat
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Michael W Weible
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Alessandro Castorina
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
- Departments of Neurology and Immunology, St. Vincent’s Hospital, Sydney, NSW, Australia
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
9
|
Fowler JL, Zheng SL, Nguyen A, Chen A, Xiong X, Chai T, Chen JY, Karigane D, Banuelos AM, Niizuma K, Kayamori K, Nishimura T, Cromer MK, Gonzalez-Perez D, Mason C, Liu DD, Yilmaz L, Miquerol L, Porteus MH, Luca VC, Majeti R, Nakauchi H, Red-Horse K, Weissman IL, Ang LT, Loh KM. Lineage-tracing hematopoietic stem cell origins in vivo to efficiently make human HLF+ HOXA+ hematopoietic progenitors from pluripotent stem cells. Dev Cell 2024; 59:1110-1131.e22. [PMID: 38569552 PMCID: PMC11072092 DOI: 10.1016/j.devcel.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (∼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.
Collapse
Affiliation(s)
- Jonas L Fowler
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Alana Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Xiaochen Xiong
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Timothy Chai
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Julie Y Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Daiki Karigane
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Allison M Banuelos
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kouta Niizuma
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kensuke Kayamori
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Toshinobu Nishimura
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - M Kyle Cromer
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Charlotte Mason
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Daniel Dan Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Leyla Yilmaz
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille 13288, France
| | - Matthew H Porteus
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Vincent C Luca
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Crosse EI, Binagui-Casas A, Gordon-Keylock S, Rybtsov S, Tamagno S, Olofsson D, Anderson RA, Medvinsky A. An interactive resource of molecular signalling in the developing human haematopoietic stem cell niche. Development 2023; 150:dev201972. [PMID: 37840454 PMCID: PMC10730088 DOI: 10.1242/dev.201972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
The emergence of definitive human haematopoietic stem cells (HSCs) from Carnegie Stage (CS) 14 to CS17 in the aorta-gonad-mesonephros (AGM) region is a tightly regulated process. Previously, we conducted spatial transcriptomic analysis of the human AGM region at the end of this period (CS16/CS17) and identified secreted factors involved in HSC development. Here, we extend our analysis to investigate the progression of dorso-ventral polarised signalling around the dorsal aorta over the entire period of HSC emergence. Our results reveal a dramatic increase in ventral signalling complexity from the CS13-CS14 transition, coinciding with the first appearance of definitive HSCs. We further observe stage-specific changes in signalling up to CS17, which may underpin the step-wise maturation of HSCs described in the mouse model. The data-rich resource is also presented in an online interface enabling in silico analysis of molecular interactions between spatially defined domains of the AGM region. This resource will be of particular interest for researchers studying mechanisms underlying human HSC development as well as those developing in vitro methods for the generation of clinically relevant HSCs from pluripotent stem cells.
Collapse
Affiliation(s)
- Edie I. Crosse
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Anahi Binagui-Casas
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Stanislav Rybtsov
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sara Tamagno
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Didrik Olofsson
- Omiqa Bioinformatics GmbH, Altensteinstraße 40, 14195 Berlin, Germany
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alexander Medvinsky
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
11
|
Chang Y, Hummel SN, Jung J, Jin G, Deng Q, Bao X. Engineered hematopoietic and immune cells derived from human pluripotent stem cells. Exp Hematol 2023; 127:14-27. [PMID: 37611730 PMCID: PMC10615717 DOI: 10.1016/j.exphem.2023.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
For the past decade, significant advances have been achieved in human hematopoietic stem cell (HSC) transplantation for treating various blood diseases and cancers. However, challenges remain with the quality control, amount, and cost of HSCs and HSC-derived immune cells. The advent of human pluripotent stem cells (hPSCs) may transform HSC transplantation and cancer immunotherapy by providing a cost-effective and scalable cell source for fundamental studies and translational applications. In this review, we discuss the current developments in the field of stem cell engineering for hematopoietic stem and progenitor cell (HSPC) differentiation and further differentiation of HSPCs into functional immune cells. The key advances in stem cell engineering include the generation of HSPCs from hPSCs, genetic modification of hPSCs, and hPSC-derived HSPCs for improved function, further differentiation of HPSCs into functional immune cells, and applications of cell culture platforms for hematopoietic cell manufacturing. Current challenges impeding the translation of hPSC-HSPCs and immune cells as well as further directions to address these challenges are also discussed.
Collapse
Affiliation(s)
- Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Sydney N Hummel
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Juhyung Jung
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Qing Deng
- Purdue University Institute for Cancer Research, West Lafayette, Indiana; Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana.
| |
Collapse
|
12
|
Maytum A, Edginton-White B, Bonifer C. Identification and characterization of enhancer elements controlling cell type-specific and signalling dependent chromatin programming during hematopoietic development. Stem Cell Investig 2023; 10:14. [PMID: 37404470 PMCID: PMC10316067 DOI: 10.21037/sci-2023-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023]
Abstract
The development of multi-cellular organisms from a single fertilized egg requires to differentially execute the information encoded in our DNA. This complex process is regulated by the interplay of transcription factors with a chromatin environment, both of which provide the epigenetic information maintaining cell-type specific gene expression patterns. Moreover, transcription factors and their target genes form vast interacting gene regulatory networks which can be exquisitely stable. However, all developmental processes originate from pluripotent precursor cell types. The production of terminally differentiated cells from such cells, therefore, requires successive changes of cell fates, meaning that genes relevant for the next stage of differentiation must be switched on and genes not relevant anymore must be switched off. The stimulus for the change of cell fate originates from extrinsic signals which set a cascade of intracellular processes in motion that eventually terminate at the genome leading to changes in gene expression and the development of alternate gene regulatory networks. How developmental trajectories are encoded in the genome and how the interplay between intrinsic and extrinsic processes regulates development is one of the major questions in developmental biology. The development of the hematopoietic system has long served as model to understand how changes in gene regulatory networks drive the differentiation of the various blood cell types. In this review, we highlight the main signals and transcription factors and how they are integrated at the level of chromatin programming and gene expression control. We also highlight recent studies identifying the cis-regulatory elements such as enhancers at the global level and explain how their developmental activity is regulated by the cooperation of cell-type specific and ubiquitous transcription factors with extrinsic signals.
Collapse
Affiliation(s)
- Alexander Maytum
- Institute of Cancer and Genomic Sciences, School of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Ben Edginton-White
- Institute of Cancer and Genomic Sciences, School of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, School of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Jung HS, Suknuntha K, Kim YH, Liu P, Dettle ST, Sedzro DM, Smith PR, Thomson JA, Ong IM, Slukvin II. SOX18-enforced expression diverts hemogenic endothelium-derived progenitors from T towards NK lymphoid pathways. iScience 2023; 26:106621. [PMID: 37250328 PMCID: PMC10214392 DOI: 10.1016/j.isci.2023.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 04/01/2023] [Indexed: 05/31/2023] Open
Abstract
Hemogenic endothelium (HE) is the main source of blood cells in the embryo. To improve blood manufacturing from human pluripotent stem cells (hPSCs), it is essential to define the molecular determinants that enhance HE specification and promote development of the desired blood lineage from HE. Here, using SOX18-inducible hPSCs, we revealed that SOX18 forced expression at the mesodermal stage, in contrast to its homolog SOX17, has minimal effects on arterial specification of HE, expression of HOXA genes and lymphoid differentiation. However, forced expression of SOX18 in HE during endothelial-to-hematopoietic transition (EHT) greatly increases NK versus T cell lineage commitment of hematopoietic progenitors (HPs) arising from HE predominantly expanding CD34+CD43+CD235a/CD41a-CD45- multipotent HPs and altering the expression of genes related to T cell and Toll-like receptor signaling. These studies improve our understanding of lymphoid cell specification during EHT and provide a new tool for enhancing NK cell production from hPSCs for immunotherapies.
Collapse
Affiliation(s)
- Ho Sun Jung
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Kran Suknuntha
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, 600 Highland Avenue, Madison, WI 53792, USA
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Yun Hee Kim
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, 600 Highland Avenue, Madison, WI 53792, USA
| | - Peng Liu
- Departments of Statistics and of Biostatistics and Medical Informatics, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel T. Dettle
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Divine Mensah Sedzro
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Portia R. Smith
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - James A. Thomson
- Morgridge Institute for Research, 330 N. Orchard Street, Madison, WI 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53707-7365, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Irene M. Ong
- Departments of Statistics and of Biostatistics and Medical Informatics, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Igor I. Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, 600 Highland Avenue, Madison, WI 53792, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53707-7365, USA
| |
Collapse
|
14
|
Shevyrev D, Tereshchenko V, Berezina TN, Rybtsov S. Hematopoietic Stem Cells and the Immune System in Development and Aging. Int J Mol Sci 2023; 24:ijms24065862. [PMID: 36982935 PMCID: PMC10056303 DOI: 10.3390/ijms24065862] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Hematopoietic stem cells (HSCs) support haematopoiesis throughout life and give rise to the whole variety of cells of the immune system. Developing in the early embryo, passing through the precursor stage, and maturing into the first HSCs, they undergo a fairly large number of divisions while maintaining a high regenerative potential due to high repair activity. This potential is greatly reduced in adult HSCs. They go into a state of dormancy and anaerobic metabolism to maintain their stemness throughout life. However, with age, changes occur in the pool of HSCs that negatively affect haematopoiesis and the effectiveness of immunity. Niche aging and accumulation of mutations with age reduces the ability of HSCs to self-renew and changes their differentiation potential. This is accompanied by a decrease in clonal diversity and a disturbance of lymphopoiesis (decrease in the formation of naive T- and B-cells) and the predominance of myeloid haematopoiesis. Aging also affects mature cells, regardless of HSC, therefore, phagocytic activity and the intensity of the oxidative burst decrease, and the efficiency of processing and presentation of antigens by myeloid cells is impaired. Aging cells of innate and adaptive immunity produce factors that form a chronic inflammatory background. All these processes have a serious negative impact on the protective properties of the immune system, increasing inflammation, the risk of developing autoimmune, oncological, and cardiovascular diseases with age. Understanding the mechanisms of reducing the regenerative potential in a comparative analysis of embryonic and aging HSCs, the features of inflammatory aging will allow us to get closer to deciphering the programs for the development, aging, regeneration and rejuvenation of HSCs and the immune system.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Valeriy Tereshchenko
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Tatiana N Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia
| | - Stanislav Rybtsov
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
| |
Collapse
|
15
|
Hou S, Liu C, Yao Y, Bai Z, Gong Y, Wang C, He J, You G, Zhang G, Liu B, Lan Y. Hematopoietic Stem Cell Development in Mammalian Embryos. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:1-16. [PMID: 38228955 DOI: 10.1007/978-981-99-7471-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are situated at the top of the adult hematopoietic hierarchy in mammals and give rise to the majority of blood cells throughout life. Recently, with the advance of multiple single-cell technologies, researchers have unprecedentedly deciphered the cellular and molecular evolution, the lineage relationships, and the regulatory mechanisms underlying HSC emergence in mammals. In this review, we describe the precise vascular origin of HSCs in mouse and human embryos, emphasizing the conservation in the unambiguous arterial characteristics of the HSC-primed hemogenic endothelial cells (HECs). Serving as the immediate progeny of some HECs, functional pre-HSCs of mouse embryos can now be isolated at single-cell level using defined surface marker combinations. Heterogeneity regrading cell cycle status or lineage differentiation bias within HECs, pre-HSCs, or emerging HSCs in mouse embryos has been figured out. Several epigenetic regulatory mechanisms of HSC generation, including long noncoding RNA, DNA methylation modification, RNA splicing, and layered epigenetic modifications, have also been recently uncovered. In addition to that of HSCs, the cellular and molecular events underlying the development of multiple hematopoietic progenitors in human embryos/fetus have been unraveled with the use of series of single-cell technologies. Specifically, yolk sac-derived myeloid-biased progenitors have been identified as the earliest multipotent hematopoietic progenitors in human embryo, serving as an important origin of fetal liver monocyte-derived macrophages. Moreover, the development of multiple hematopoietic lineages in human embryos such as T and B lymphocytes, innate lymphoid cells, as well as myeloid cells like monocytes, macrophages, erythrocytes, and megakaryocytes has also been depicted and reviewed here.
Collapse
Affiliation(s)
- Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chen Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yingpeng Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhijie Bai
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chaojie Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jian He
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guoju You
- State Key Laboratory of Primate Biomedical Research, State Key Laboratory of Experimental Hematology, School of Medicine, Tsinghua University, Beijing, China
| | - Guangyu Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bing Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Mimicry of embryonic circulation enhances the hoxa hemogenic niche and human blood development. Cell Rep 2022; 40:111339. [PMID: 36103836 DOI: 10.1016/j.celrep.2022.111339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/11/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Precursors of the adult hematopoietic system arise from the aorta-gonad-mesonephros (AGM) region shortly after the embryonic circulation is established. Here, we develop a microfluidic culture system to mimic the primitive embryonic circulation and address the hypothesis that circulatory flow and shear stress enhance embryonic blood development. Embryonic (HOXA+) hematopoiesis was derived from human pluripotent stem cells and induced from mesoderm by small-molecule manipulation of TGF-β and WNT signaling (SB/CHIR). Microfluidic and orbital culture promoted the formation of proliferative CD34+RUNX1C-GFP+SOX17-mCHERRY+ precursor cells that were released into the artificial circulation from SOX17+ arterial-like structures. Single-cell transcriptomic analysis delineated extra-embryonic (yolk sac) and HOXA+ embryonic blood differentiation pathways. SB/CHIR and circulatory flow enhance hematopoiesis by the formation of proliferative HOXA+RUNX1C+CD34+ precursor cells that differentiate into monocyte/macrophage, granulocyte, erythrocyte, and megakaryocyte progenitors.
Collapse
|
17
|
Kitajima K, Shingai M, Ando H, Hamasaki M, Hara T. An interferon-γ/FLT3 axis positively regulates hemopoietic progenitor cell expansion from human pluripotent stem cells. Stem Cells 2022; 40:906-918. [PMID: 35901509 DOI: 10.1093/stmcls/sxac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/14/2022] [Indexed: 11/12/2022]
Abstract
Since it became possible to differentiate human pluripotent stem cells (hPSCs) into hematopoietic cells in vitro, great efforts have been made to obtain highly potent hematopoietic stem/progenitor cells (HSPCs) from hPSCs. Immunophenotypical HSPCs can be obtained from hPSCs, but their repopulating potential in vivo is low. Here, we developed a novel hematopoietic differentiation method for human induced pluripotent stem cells (hiPSCs) to determine why the existing hPSC differentiation systems are inadequate. hiPSC-derived CD45 +CD34 + cells in our system were mostly CD38 - immunophenotypical HSPCs. The vast majority of human CD45 +CD34 + cells in umbilical cord blood, fetal liver, and bone marrow are CD38 + hematopoietic progenitor cells (HPCs); therefore, the poor production of CD38 + HPCs was indicative of a systematic problem. hiPSC-derived CD45 +CD34 + cells did not express FLT3, a receptor tyrosine kinase. Exogenous FLT3 activity significantly enhanced production of CD38 + HPCs from hiPSCs. Thus, poor production of CD38 + HPCs was due to a lack of FLT3 expression. Interferon-γ upregulated expression of FLT3 and increased the number of CD38 + HPCs among hiPSC-derived CD45 +CD34 + cells. These results suggest that poor production of CD38 + HPCs with hPSC differentiation systems is due to a lack of FLT3 expression, and that addition of interferon-γ can solve this problem.
Collapse
Affiliation(s)
- Kenji Kitajima
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Minako Shingai
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hikaru Ando
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mako Hamasaki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Graduate School of Science, Department of Biological Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Graduate School of Science, Department of Biological Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
18
|
Ganuza M, Clements W, McKinney-Freeman S. Specification of hematopoietic stem cells in mammalian embryos: a rare or frequent event? Blood 2022; 140:309-320. [PMID: 35737920 PMCID: PMC9335503 DOI: 10.1182/blood.2020009839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are the blood-forming stem cells thought to be responsible for supporting the blood system throughout life. Transplantability has long been the flagship assay used to define and characterize HSCs throughout ontogeny. However, it has recently become clear that many cells emerge during ontogeny that lack transplantability yet nevertheless are fated to ultimately contribute to the adult HSC pool. Here, we explore recent advances in understanding the numbers and kinetics of cells that emerge during development to support lifelong hematopoiesis; these advances are made possible by new technologies allowing interrogation of lifelong blood potential without embryo perturbation or transplantation. Illuminating the dynamics of these cells during normal development informs efforts to better understand the origins of hematologic disease and engineer HSCs from differentiating pluripotent stem cells.
Collapse
Affiliation(s)
- Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; and
| | - Wilson Clements
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
19
|
Vargas-Valderrama A, Ponsen AC, Le Gall M, Clay D, Jacques S, Manoliu T, Rouffiac V, Ser-le-Roux K, Quivoron C, Louache F, Uzan G, Mitjavila-Garcia MT, Oberlin E, Guenou H. Endothelial and hematopoietic hPSCs differentiation via a hematoendothelial progenitor. Stem Cell Res Ther 2022; 13:254. [PMID: 35715824 PMCID: PMC9205076 DOI: 10.1186/s13287-022-02925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background hPSC-derived endothelial and hematopoietic cells (ECs and HCs) are an interesting source of cells for tissue engineering. Despite their close spatial and temporal embryonic development, current hPSC differentiation protocols are specialized in only one of these lineages. In this study, we generated a hematoendothelial population that could be further differentiated in vitro to both lineages.
Methods Two hESCs and one hiPSC lines were differentiated into a hematoendothelial population, hPSC-ECs and blast colonies (hPSC-BCs) via CD144+-embryoid bodies (hPSC-EBs). hPSC-ECs were characterized by endothelial colony-forming assay, LDL uptake assay, endothelial activation by TNF-α, nitric oxide detection and Matrigel-based tube formation. Hematopoietic colony-forming cell assay was performed from hPSC-BCs. Interestingly, we identified a hPSC-BC population characterized by the expression of both CD144 and CD45. hPSC-ECs and hPSC-BCs were analyzed by flow cytometry and RT-qPCR; in vivo experiments have been realized by ischemic tissue injury model on a mouse dorsal skinfold chamber and hematopoietic reconstitution in irradiated immunosuppressed mouse from hPSC-ECs and hPSC-EB-CD144+, respectively. Transcriptomic analyses were performed to confirm the endothelial and hematopoietic identity of hESC-derived cell populations by comparing them against undifferentiated hESC, among each other’s (e.g. hPSC-ECs vs. hPSC-EB-CD144+) and against human embryonic liver (EL) endothelial, hematoendothelial and hematopoietic cell subpopulations.
Results A hematoendothelial population was obtained after 84 h of hPSC-EBs formation under serum-free conditions and isolated based on CD144 expression. Intrafemorally injection of hPSC-EB-CD144+ contributed to the generation of CD45+ human cells in immunodeficient mice suggesting the existence of hemogenic ECs within hPSC-EB-CD144+. Endothelial differentiation of hPSC-EB-CD144+ yields a population of > 95% functional ECs in vitro. hPSC-ECs derived through this protocol participated at the formation of new vessels in vivo in a mouse ischemia model. In vitro, hematopoietic differentiation of hPSC-EB-CD144+ generated an intermediate population of > 90% CD43+ hPSC-BCs capable to generate myeloid and erythroid colonies. Finally, the transcriptomic analyses confirmed the hematoendothelial, endothelial and hematopoietic identity of hPSC-EB-CD144+, hPSC-ECs and hPSC-BCs, respectively, and the similarities between hPSC-BC-CD144+CD45+, a subpopulation of hPSC-BCs, and human EL hematopoietic stem cells/hematopoietic progenitors.
Conclusion The present work reports a hPSC differentiation protocol into functional hematopoietic and endothelial cells through a hematoendothelial population. Both lineages were proven to display characteristics of physiological human cells, and therefore, they represent an interesting rapid source of cells for future cell therapy and tissue engineering. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02925-w.
Collapse
Affiliation(s)
| | - Anne-Charlotte Ponsen
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | - Morgane Le Gall
- Plateforme Protéomique 3P5-Proteom'IC, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014, Paris, France
| | - Denis Clay
- INSERM UMS-44, Hôpital Paul Brousse, Université Paris Sud-Université Paris-Saclay, 94807, Villejuif, France
| | - Sébastien Jacques
- Plateforme de Génomique- GENOM'IC, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014, Paris, France
| | - Tudor Manoliu
- Plate-forme Imagerie et Cytométrie, UMS AMMICa, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Valérie Rouffiac
- Plate-forme Imagerie et Cytométrie, UMS AMMICa, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Karine Ser-le-Roux
- INSERM, UMS AMMICa, Plate-forme d'Evaluation Préclinique, Gustave Roussy, 94807, Villejuif, France
| | - Cyril Quivoron
- Laboratoire d'Hématologie Translationnelle, Gustave Roussy, 94805, Villejuif, France
| | - Fawzia Louache
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | - Georges Uzan
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | | | - Estelle Oberlin
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | - Hind Guenou
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France. .,Université d'Evry-Val-d'Essonne, Université Paris-Saclay, 91000, Evry, France.
| |
Collapse
|
20
|
Luff SA, Creamer JP, Valsoni S, Dege C, Scarfò R, Dacunto A, Cascione S, Randolph LN, Cavalca E, Merelli I, Morris SA, Ditadi A, Sturgeon CM. Identification of a retinoic acid-dependent haemogenic endothelial progenitor from human pluripotent stem cells. Nat Cell Biol 2022; 24:616-624. [PMID: 35484246 PMCID: PMC9109599 DOI: 10.1038/s41556-022-00898-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/16/2022] [Indexed: 01/12/2023]
Abstract
The generation of haematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) is a major goal for regenerative medicine. During embryonic development, HSCs derive from haemogenic endothelium (HE) in a NOTCH- and retinoic acid (RA)-dependent manner. Although a WNT-dependent (WNTd) patterning of nascent hPSC mesoderm specifies clonally multipotent intra-embryonic-like HOXA+ definitive HE, this HE is functionally unresponsive to RA. Here we show that WNTd mesoderm, before HE specification, is actually composed of two distinct KDR+ CD34neg populations. CXCR4negCYP26A1+ mesoderm gives rise to HOXA+ multilineage definitive HE in an RA-independent manner, whereas CXCR4+ ALDH1A2+ mesoderm gives rise to HOXA+ multilineage definitive HE in a stage-specific, RA-dependent manner. Furthermore, both RA-independent (RAi) and RA-dependent (RAd) HE harbour transcriptional similarity to distinct populations found in the early human embryo, including HSC-competent HE. This revised model of human haematopoietic development provides essential resolution to the regulation and origins of the multiple waves of haematopoiesis. These insights provide the basis for the generation of specific haematopoietic populations, including the de novo specification of HSCs.
Collapse
Affiliation(s)
- Stephanie A Luff
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai School of Medicine, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - J Philip Creamer
- Department of Medicine, Division of Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Sara Valsoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carissa Dege
- Department of Medicine, Division of Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Rebecca Scarfò
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Analisa Dacunto
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai School of Medicine, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Cascione
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lauren N Randolph
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Cavalca
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Samantha A Morris
- Department of Developmental Biology, Washington University in Saint Louis, St Louis, MO, USA
- Department of Genetics, Washington University in Saint Louis, St Louis, MO, USA
| | - Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Christopher M Sturgeon
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai School of Medicine, New York, NY, USA.
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medicine, Division of Hematology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
21
|
Mezu-Ndubuisi OJ, Maheshwari A. Role of the Endothelium in Neonatal Diseases. NEWBORN 2022; 1:44-57. [PMID: 35754998 PMCID: PMC9217741 DOI: 10.5005/jp-journals-11002-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In both fetal and neonatal physiologic and pathologic processes in most organs, endothelial cells are known to play critical roles. Although the endothelium is one of the most ubiquitous cell type in the body, the tight adherence to the blood vessel wall has made it difficult to study their diverse function and structure. In this article, we have reviewed endothelial cell origins and explored their heterogeneity in terms of structure, function, developmental changes, and their role in inflammatory and infectious diseases. We have also attempted to evaluate the untapped therapeutic potentials of endothelial cells in neonatal disease. This article comprises various peer-reviewed studies, including ours, and an extensive database literature search from EMBASE, PubMed, and Scopus.
Collapse
Affiliation(s)
- Olachi J Mezu-Ndubuisi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
22
|
Liu B, Tao C, Wu Z, Yao H, Wang DA. Engineering strategies to achieve efficient in vitro expansion of haematopoietic stem cells: development and improvement. J Mater Chem B 2022; 10:1734-1753. [DOI: 10.1039/d1tb02706a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Haematopoietic stem cells are the basis for building and maintaining lifelong haematopoietic mechanisms and important resources for the treatment of blood disorders. Haematopoietic niches are microenvironment in the body where...
Collapse
|
23
|
Zbinden A, Canté-Barrett K, Pike-Overzet K, Staal FJT. Stem Cell-Based Disease Models for Inborn Errors of Immunity. Cells 2021; 11:cells11010108. [PMID: 35011669 PMCID: PMC8750661 DOI: 10.3390/cells11010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
The intrinsic capacity of human hematopoietic stem cells (hHSCs) to reconstitute myeloid and lymphoid lineages combined with their self-renewal capacity hold enormous promises for gene therapy as a viable treatment option for a number of immune-mediated diseases, most prominently for inborn errors of immunity (IEI). The current development of such therapies relies on disease models, both in vitro and in vivo, which allow the study of human pathophysiology in great detail. Here, we discuss the current challenges with regards to developmental origin, heterogeneity and the subsequent implications for disease modeling. We review models based on induced pluripotent stem cell technology and those relaying on use of adult hHSCs. We critically review the advantages and limitations of current models for IEI both in vitro and in vivo. We conclude that existing and future stem cell-based models are necessary tools for developing next generation therapies for IEI.
Collapse
|
24
|
Philonenko ES, Tan Y, Wang C, Zhang B, Shah Z, Zhang J, Ullah H, Kiselev SL, Lagarkova MA, Li D, Dai Y, Samokhvalov IM. Recapitulative haematopoietic development of human pluripotent stem cells in the absence of exogenous haematopoietic cytokines. J Cell Mol Med 2021; 25:8701-8714. [PMID: 34342123 PMCID: PMC8435420 DOI: 10.1111/jcmm.16826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 02/05/2023] Open
Abstract
To improve the recapitulative quality of human pluripotent stem cell (hPSC) differentiation, we removed exogenous haematopoietic cytokines from the defined differentiation system. Here, we show that endogenous stimuli and VEGF are sufficient to induce robust hPSC-derived haematopoiesis, intensive generation of haematopoietic progenitors, maturation of blood cells and the emergence of definitive precursor cells including those that phenotypically identical to early human embryonic haematopoietic stem cells (HSCs). Moreover, the cytokine-free system produces significantly higher numbers of haematopoietic progenitors compared to the published protocols. The removal of cytokines revealed a broad developmental potential of the early blood cells, stabilized the hPSC-derived definitive precursors and led to spontaneous activation of inflammatory signalling. Our cytokine-free protocol is simple, efficient, reproducible and applicable for embryonic stem cells (ESCs) and induced PSCs. The spectrum of recapitulative features of the novel protocol makes the cytokine-free differentiation a preferred model for studying the early human haematopoietic development.
Collapse
Affiliation(s)
- Elena S. Philonenko
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
| | - Ying Tan
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Cuihua Wang
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Baoyun Zhang
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Zahir Shah
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jianguang Zhang
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Hanif Ullah
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Sergei L. Kiselev
- Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
| | - Maria A. Lagarkova
- Federal Research and Clinical Center of Physical‐Chemical Medicine of Federal Medical Biological AgencyMoscowRussia
| | - Dandan Li
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Diseases and Precision MedicineShenzhen People’s HospitalThe First Affiliated Hospital of SouthernUniversity of Science and TechnologyThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Yong Dai
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Diseases and Precision MedicineShenzhen People’s HospitalThe First Affiliated Hospital of SouthernUniversity of Science and TechnologyThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Igor M. Samokhvalov
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
| |
Collapse
|
25
|
Mannino G, Russo C, Maugeri G, Musumeci G, Vicario N, Tibullo D, Giuffrida R, Parenti R, Lo Furno D. Adult stem cell niches for tissue homeostasis. J Cell Physiol 2021; 237:239-257. [PMID: 34435361 PMCID: PMC9291197 DOI: 10.1002/jcp.30562] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022]
Abstract
Adult stem cells are fundamental to maintain tissue homeostasis, growth, and regeneration. They reside in specialized environments called niches. Following activating signals, they proliferate and differentiate into functional cells that are able to preserve tissue physiology, either to guarantee normal turnover or to counteract tissue damage caused by injury or disease. Multiple interactions occur within the niche between stem cell‐intrinsic factors, supporting cells, the extracellular matrix, and signaling pathways. Altogether, these interactions govern cell fate, preserving the stem cell pool, and regulating stem cell proliferation and differentiation. Based on their response to body needs, tissues can be largely classified into three main categories: tissues that even in normal conditions are characterized by an impressive turnover to replace rapidly exhausting cells (blood, epidermis, or intestinal epithelium); tissues that normally require only a basal cell replacement, though able to efficiently respond to increased tissue needs, injury, or disease (skeletal muscle); tissues that are equipped with less powerful stem cell niches, whose repairing ability is not able to overcome severe damage (heart or nervous tissue). The purpose of this review is to describe the main characteristics of stem cell niches in these different tissues, highlighting the various components influencing stem cell activity. Although much has been done, more work is needed to further increase our knowledge of niche interactions. This would be important not only to shed light on this fundamental chapter of human physiology but also to help the development of cell‐based strategies for clinical therapeutic applications, especially when other approaches fail.
Collapse
Affiliation(s)
- Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
26
|
Lyadova I, Gerasimova T, Nenasheva T. Macrophages Derived From Human Induced Pluripotent Stem Cells: The Diversity of Protocols, Future Prospects, and Outstanding Questions. Front Cell Dev Biol 2021; 9:640703. [PMID: 34150747 PMCID: PMC8207294 DOI: 10.3389/fcell.2021.640703] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Macrophages (Mφ) derived from induced pluripotent stem cells (iMphs) represent a novel and promising model for studying human Mφ function and differentiation and developing new therapeutic strategies based on or oriented at Mφs. iMphs have several advantages over the traditionally used human Mφ models, such as immortalized cell lines and monocyte-derived Mφs. The advantages include the possibility of obtaining genetically identical and editable cells in a potentially scalable way. Various applications of iMphs are being developed, and their number is rapidly growing. However, the protocols of iMph differentiation that are currently used vary substantially, which may lead to differences in iMph differentiation trajectories and properties. Standardization of the protocols and identification of minimum required conditions that would allow obtaining iMphs in a large-scale, inexpensive, and clinically suitable mode are needed for future iMph applications. As a first step in this direction, the current review discusses the fundamental basis for the generation of human iMphs, performs a detailed analysis of the generalities and the differences between iMph differentiation protocols currently employed, and discusses the prospects of iMph applications.
Collapse
Affiliation(s)
- Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
27
|
Nafria M, Keane P, Ng ES, Stanley EG, Elefanty AG, Bonifer C. Expression of RUNX1-ETO Rapidly Alters the Chromatin Landscape and Growth of Early Human Myeloid Precursor Cells. Cell Rep 2021; 31:107691. [PMID: 32460028 PMCID: PMC7262600 DOI: 10.1016/j.celrep.2020.107691] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/12/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematopoietic malignancy caused by recurrent mutations in genes encoding transcriptional, chromatin, and/or signaling regulators. The t(8;21) translocation generates the aberrant transcription factor RUNX1-ETO (RUNX1-RUNX1T1), which by itself is insufficient to cause disease. t(8;21) AML patients show extensive chromatin reprogramming and have acquired additional mutations. Therefore, the genomic and developmental effects directly and solely attributable to RUNX1-ETO expression are unclear. To address this, we employ a human embryonic stem cell differentiation system capable of forming definitive myeloid progenitor cells to express RUNX1-ETO in an inducible fashion. Induction of RUNX1-ETO causes extensive chromatin reprogramming by interfering with RUNX1 binding, blocks differentiation, and arrests cellular growth, whereby growth arrest is reversible following RUNX1-ETO removal. Single-cell gene expression analyses show that RUNX1-ETO induction alters the differentiation of early myeloid progenitors, but not of other progenitor types, indicating that oncoprotein-mediated transcriptional reprogramming is highly target cell specific. RUNX1-ETO reversibly arrests the growth of human ESC-derived early myeloid cells RUNX1-ETO disrupts global RUNX1 binding and deregulates RUNX1 target genes RUNX1-ETO blocks myeloid differentiation by rapidly downregulating SPI1 and CEBPA The impact of RUNX1-ETO induction is cell type specific
Collapse
Affiliation(s)
- Monica Nafria
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK; Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter Keane
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Elizabeth S Ng
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Constanze Bonifer
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
28
|
Kreins AY, Bonfanti P, Davies EG. Current and Future Therapeutic Approaches for Thymic Stromal Cell Defects. Front Immunol 2021; 12:655354. [PMID: 33815417 PMCID: PMC8012524 DOI: 10.3389/fimmu.2021.655354] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Inborn errors of thymic stromal cell development and function lead to impaired T-cell development resulting in a susceptibility to opportunistic infections and autoimmunity. In their most severe form, congenital athymia, these disorders are life-threatening if left untreated. Athymia is rare and is typically associated with complete DiGeorge syndrome, which has multiple genetic and environmental etiologies. It is also found in rare cases of T-cell lymphopenia due to Nude SCID and Otofaciocervical Syndrome type 2, or in the context of genetically undefined defects. This group of disorders cannot be corrected by hematopoietic stem cell transplantation, but upon timely recognition as thymic defects, can successfully be treated by thymus transplantation using cultured postnatal thymic tissue with the generation of naïve T-cells showing a diverse repertoire. Mortality after this treatment usually occurs before immune reconstitution and is mainly associated with infections most often acquired pre-transplantation. In this review, we will discuss the current approaches to the diagnosis and management of thymic stromal cell defects, in particular those resulting in athymia. We will discuss the impact of the expanding implementation of newborn screening for T-cell lymphopenia, in combination with next generation sequencing, as well as the role of novel diagnostic tools distinguishing between hematopoietic and thymic stromal cell defects in facilitating the early consideration for thymus transplantation of an increasing number of patients and disorders. Immune reconstitution after the current treatment is usually incomplete with relatively common inflammatory and autoimmune complications, emphasizing the importance for improving strategies for thymus replacement therapy by optimizing the current use of postnatal thymus tissue and developing new approaches using engineered thymus tissue.
Collapse
Affiliation(s)
- Alexandra Y. Kreins
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Paola Bonfanti
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, London, United Kingdom
- Institute of Immunity & Transplantation, University College London, London, United Kingdom
| | - E. Graham Davies
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
29
|
de Miguel-Gómez L, López-Martínez S, Francés-Herrero E, Rodríguez-Eguren A, Pellicer A, Cervelló I. Stem Cells and the Endometrium: From the Discovery of Adult Stem Cells to Pre-Clinical Models. Cells 2021; 10:cells10030595. [PMID: 33800355 PMCID: PMC7998473 DOI: 10.3390/cells10030595] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells (ASCs) were long suspected to exist in the endometrium. Indeed, several types of endometrial ASCs were identified in rodents and humans through diverse isolation and characterization techniques. Putative stromal and epithelial stem cell niches were identified in murine models using label-retention techniques. In humans, functional methods (clonogenicity, long-term culture, and multi-lineage differentiation assays) and stem cell markers (CD146, SUSD2/W5C5, LGR5, NTPDase2, SSEA-1, or N-cadherin) facilitated the identification of three main types of endogenous endometrial ASCs: stromal, epithelial progenitor, and endothelial stem cells. Further, exogenous populations of stem cells derived from bone marrow may act as key effectors of the endometrial ASC niche. These findings are promoting the development of stem cell therapies for endometrial pathologies, with an evolution towards paracrine approaches. At the same time, promising therapeutic alternatives based on bioengineering have been proposed.
Collapse
Affiliation(s)
- Lucía de Miguel-Gómez
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
- Department of Pediatrics, Obstetrics, and Gynaecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Sara López-Martínez
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
| | - Emilio Francés-Herrero
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
- Department of Pediatrics, Obstetrics, and Gynaecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Adolfo Rodríguez-Eguren
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics, and Gynaecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- IVIRMA Rome Parioli, 00197 Rome, Italy
| | - Irene Cervelló
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
- Correspondence: ; Tel.: +34-963-903-305
| |
Collapse
|
30
|
Lange L, Morgan M, Schambach A. The hemogenic endothelium: a critical source for the generation of PSC-derived hematopoietic stem and progenitor cells. Cell Mol Life Sci 2021; 78:4143-4160. [PMID: 33559689 PMCID: PMC8164610 DOI: 10.1007/s00018-021-03777-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 12/02/2022]
Abstract
In vitro generation of hematopoietic cells and especially hematopoietic stem cells (HSCs) from human pluripotent stem cells (PSCs) are subject to intensive research in recent decades, as these cells hold great potential for regenerative medicine and autologous cell replacement therapies. Despite many attempts, in vitro, de novo generation of bona fide HSCs remains challenging, and we are still far away from their clinical use, due to insufficient functionality and quantity of the produced HSCs. The challenges of generating PSC-derived HSCs are already apparent in early stages of hemato-endothelial specification with the limitation of recapitulating complex, dynamic processes of embryonic hematopoietic ontogeny in vitro. Further, these current shortcomings imply the incompleteness of our understanding of human ontogenetic processes from embryonic mesoderm over an intermediate, specialized hemogenic endothelium (HE) to their immediate progeny, the HSCs. In this review, we examine the recent investigations of hemato-endothelial ontogeny and recently reported progress for the conversion of PSCs and other promising somatic cell types towards HSCs with the focus on the crucial and inevitable role of the HE to achieve the long-standing goal—to generate therapeutically applicable PSC-derived HSCs in vitro.
Collapse
Affiliation(s)
- Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, 30625, Hannover, Germany.,REBIRTH, Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625, Hannover, Germany.,REBIRTH, Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625, Hannover, Germany. .,REBIRTH, Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany. .,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
31
|
Deng Y, Chen H, Zeng Y, Wang K, Zhang H, Hu H. Leaving no one behind: tracing every human thymocyte by single-cell RNA-sequencing. Semin Immunopathol 2021; 43:29-43. [PMID: 33449155 DOI: 10.1007/s00281-020-00834-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/22/2020] [Indexed: 02/05/2023]
Abstract
The thymus is the primary organ for T-cell development, providing an essential microenvironment consisting of the appropriate cytokine milieu and specialized stromal cells. Thymus-seeding progenitors from circulation immigrate into the thymus and undergo the stepwise T-cell specification, commitment, and selection processes. The transcriptional factors, epigenetic regulators, and signaling pathways involved in the T-cell development have been intensively studied using mouse models. Despite our growing knowledge of T-cell development, major questions remain unanswered regarding the ontogeny and early events of T-cell development at the fetal stage, especially in humans. The recently developed single-cell RNA-sequencing technique provides an ideal tool to investigate the heterogeneity of T-cell precursors and the molecular mechanisms underlying the divergent fates of certain T-cell precursors at the single-cell level. In this review, we aim to summarize the current progress of the study on human thymus organogenesis and thymocyte and thymic epithelial cell development, which is to shed new lights on developing novel strategies for in vitro T-cell regeneration and thymus rejuvenation.
Collapse
Affiliation(s)
- Yujun Deng
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hong Chen
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yang Zeng
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.,State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Keyue Wang
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
32
|
Fidanza A, Stumpf PS, Ramachandran P, Tamagno S, Babtie A, Lopez-Yrigoyen M, Taylor AH, Easterbrook J, Henderson BEP, Axton R, Henderson NC, Medvinsky A, Ottersbach K, Romanò N, Forrester LM. Single-cell analyses and machine learning define hematopoietic progenitor and HSC-like cells derived from human PSCs. Blood 2020; 136:2893-2904. [PMID: 32614947 PMCID: PMC7862875 DOI: 10.1182/blood.2020006229] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/20/2020] [Indexed: 01/19/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) develop in distinct waves at various anatomical sites during embryonic development. The in vitro differentiation of human pluripotent stem cells (hPSCs) recapitulates some of these processes; however, it has proven difficult to generate functional hematopoietic stem cells (HSCs). To define the dynamics and heterogeneity of HSPCs that can be generated in vitro from hPSCs, we explored single-cell RNA sequencing (scRNAseq) in combination with single-cell protein expression analysis. Bioinformatics analyses and functional validation defined the transcriptomes of naïve progenitors and erythroid-, megakaryocyte-, and leukocyte-committed progenitors, and we identified CD44, CD326, ICAM2/CD9, and CD18, respectively, as markers of these progenitors. Using an artificial neural network that we trained on scRNAseq derived from human fetal liver, we identified a wide range of hPSC-derived HSPCs phenotypes, including a small group classified as HSCs. This transient HSC-like population decreased as differentiation proceeded, and was completely missing in the data set that had been generated using cells selected on the basis of CD43 expression. By comparing the single-cell transcriptome of in vitro-generated HSC-like cells with those generated within the fetal liver, we identified transcription factors and molecular pathways that can be explored in the future to improve the in vitro production of HSCs.
Collapse
Affiliation(s)
- Antonella Fidanza
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick S Stumpf
- Joint Research Center for Computational Biomedicine, Uniklinik Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Prakash Ramachandran
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Tamagno
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Ann Babtie
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom; and
| | - Martha Lopez-Yrigoyen
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - A Helen Taylor
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Easterbrook
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Beth E P Henderson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Axton
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C Henderson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexander Medvinsky
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Katrin Ottersbach
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicola Romanò
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lesley M Forrester
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Ivanovs A, Rybtsov S, Anderson RA, Medvinsky A. Vast Self-Renewal Potential of Human AGM Region HSCs Dramatically Declines in the Umbilical Cord Blood. Stem Cell Reports 2020; 15:811-816. [PMID: 32946804 PMCID: PMC7561509 DOI: 10.1016/j.stemcr.2020.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023] Open
Abstract
Human hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region during Carnegie stages (CS) 14-17. Although we previously reported that these HSCs can generate no less than 300 daughter HSCs, their actual number has never been established. Here, we show that a single human AGM region HSC can generate 600-1,600 functional daughter HSCs. The presence of HSCs in the CS 17 liver in one case gave us a unique opportunity to describe a reduction of HSC self-renewal potential after liver colonization. From a clinical perspective, the efficacy of long-term hematopoietic regeneration depends on HSC self-renewal capacity. We quantitatively show that this capacity dramatically declines in the umbilical cord blood compared with HSCs in the AGM region. A full appreciation of the vast regenerative potential of the first human embryo-derived HSCs sets a new bar for generation of clinically useful HSCs from pluripotent stem cells.
Collapse
Affiliation(s)
- Andrejs Ivanovs
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK; Department of Morphology, Institute of Anatomy and Anthropology, Riga Stradiņš University, Riga LV-1010, Latvia; School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Stanislav Rybtsov
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Alexander Medvinsky
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK.
| |
Collapse
|
34
|
Crosse EI, Gordon-Keylock S, Rybtsov S, Binagui-Casas A, Felchle H, Nnadi NC, Kirschner K, Chandra T, Tamagno S, Webb DJ, Rossi F, Anderson RA, Medvinsky A. Multi-layered Spatial Transcriptomics Identify Secretory Factors Promoting Human Hematopoietic Stem Cell Development. Cell Stem Cell 2020; 27:822-839.e8. [PMID: 32946788 PMCID: PMC7671940 DOI: 10.1016/j.stem.2020.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/25/2020] [Accepted: 08/07/2020] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem cells (HSCs) first emerge in the embryonic aorta-gonad-mesonephros (AGM) region. Studies of model organisms defined intersecting signaling pathways that converge to promote HSC emergence predominantly in the ventral domain of the dorsal aorta. Much less is known about mechanisms driving HSC development in humans. Here, to identify secreted signals underlying human HSC development, we combined spatial transcriptomics analysis of dorsoventral polarized signaling in the aorta with gene expression profiling of sorted cell populations and single cells. Our analysis revealed a subset of aortic endothelial cells with a downregulated arterial signature and a predicted lineage relationship with the emerging HSC/progenitor population. Analysis of the ventrally polarized molecular landscape identified endothelin 1 as an important secreted regulator of human HSC development. The obtained gene expression datasets will inform future studies on mechanisms of HSC development in vivo and on generation of clinically relevant HSCs in vitro. Spatial transcriptome profiling of the human HSC developmental niche Characterization of an HSC precursor population at single-cell resolution Cardiac EGF pathway is ventrally enriched next to developing IAHCs/HSCs Ventrally secreted endothelin promotes development of HSCs
Collapse
Affiliation(s)
- Edie I Crosse
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Stanislav Rybtsov
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Anahi Binagui-Casas
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Hannah Felchle
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Nneka C Nnadi
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Kristina Kirschner
- Institute of Cancer Sciences, University of Glasgow, Bearsden G61 1QH, UK
| | - Tamir Chandra
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sara Tamagno
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - David J Webb
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Fiona Rossi
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ UK
| | - Alexander Medvinsky
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
35
|
Canu G, Athanasiadis E, Grandy RA, Garcia-Bernardo J, Strzelecka PM, Vallier L, Ortmann D, Cvejic A. Analysis of endothelial-to-haematopoietic transition at the single cell level identifies cell cycle regulation as a driver of differentiation. Genome Biol 2020; 21:157. [PMID: 32611441 PMCID: PMC7329542 DOI: 10.1186/s13059-020-02058-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Haematopoietic stem cells (HSCs) first arise during development in the aorta-gonad-mesonephros (AGM) region of the embryo from a population of haemogenic endothelial cells which undergo endothelial-to-haematopoietic transition (EHT). Despite the progress achieved in recent years, the molecular mechanisms driving EHT are still poorly understood, especially in human where the AGM region is not easily accessible. RESULTS In this study, we take advantage of a human pluripotent stem cell (hPSC) differentiation system and single-cell transcriptomics to recapitulate EHT in vitro and uncover mechanisms by which the haemogenic endothelium generates early haematopoietic cells. We show that most of the endothelial cells reside in a quiescent state and progress to the haematopoietic fate within a defined time window, within which they need to re-enter into the cell cycle. If cell cycle is blocked, haemogenic endothelial cells lose their EHT potential and adopt a non-haemogenic identity. Furthermore, we demonstrate that CDK4/6 and CDK1 play a key role not only in the transition but also in allowing haematopoietic progenitors to establish their full differentiation potential. CONCLUSION We propose a direct link between the molecular machineries that control cell cycle progression and EHT.
Collapse
Affiliation(s)
- Giovanni Canu
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Emmanouil Athanasiadis
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Rodrigo A Grandy
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | | - Paulina M Strzelecka
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Surgery, University of Cambridge, Cambridge, UK.
| | - Daniel Ortmann
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Surgery, University of Cambridge, Cambridge, UK.
| | - Ana Cvejic
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.
| |
Collapse
|
36
|
Maillard L, Sanfilippo S, Domenech C, Kasmi N, Petit L, Jacques S, Delezoide AL, Guimiot F, Eladak S, Moison D, Nicolas N, Rouiller-Fabre V, Pozzi-Godin S, Mennesson B, Brival ML, Letourneur F, Jaffredo T, Chomienne C, Souyri M. CD117 hi expression identifies a human fetal hematopoietic stem cell population with high proliferation and self-renewal potential. Haematologica 2020; 105:e43-e47. [PMID: 31248971 DOI: 10.3324/haematol.2018.207811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Loïc Maillard
- Université de Paris, Institut de Recherche Saint-Louis, Paris.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1131, Paris.,Université Pierre et Marie Curie, Sorbonne Universités, UMR 7622, Paris.,Centre National de la recherche Scientifique (CNRS) Unité 7622 et INSERM Unité 1156, Paris
| | - Sandra Sanfilippo
- Université Pierre et Marie Curie, Sorbonne Universités, UMR 7622, Paris.,Centre National de la recherche Scientifique (CNRS) Unité 7622 et INSERM Unité 1156, Paris.,present adress: Diagnostica Stago, Gennevilliers
| | - Carine Domenech
- Université de Paris, Institut de Recherche Saint-Louis, Paris.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1131, Paris.,present adress: Institut d'Hématologie et d'Oncologie Pédiatrique, Université Lyon 1, Lyon
| | - Nassima Kasmi
- Université de Paris, Institut de Recherche Saint-Louis, Paris.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1131, Paris
| | - Laurence Petit
- Université Pierre et Marie Curie, Sorbonne Universités, UMR 7622, Paris.,Centre National de la recherche Scientifique (CNRS) Unité 7622 et INSERM Unité 1156, Paris
| | - Sébastien Jacques
- Genomic, Hôpital Cochin, Université Paris Descartes, Sorbonne Paris Cité, Paris
| | - Anne-Lise Delezoide
- Service de Foetopathologie, Hôpital Robert Debré, Paris.,present adress: Service de Foetopathologie, Hôpital Cochin-Port Royal, Paris
| | | | - Soria Eladak
- Commissariat à l'énergie atomique (CEA), Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), INSERM UMR 967, Laboratoire du Développement des Gonades (LDG), Fontenay-aux-Roses
| | - Delphine Moison
- Commissariat à l'énergie atomique (CEA), Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), INSERM UMR 967, Laboratoire du Développement des Gonades (LDG), Fontenay-aux-Roses
| | - Nour Nicolas
- Commissariat à l'énergie atomique (CEA), Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), INSERM UMR 967, Laboratoire du Développement des Gonades (LDG), Fontenay-aux-Roses
| | - Virginie Rouiller-Fabre
- Commissariat à l'énergie atomique (CEA), Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), INSERM UMR 967, Laboratoire du Développement des Gonades (LDG), Fontenay-aux-Roses
| | | | | | | | - Franck Letourneur
- Genomic, Hôpital Cochin, Université Paris Descartes, Sorbonne Paris Cité, Paris
| | - Thierry Jaffredo
- Université Pierre et Marie Curie, Sorbonne Universités, UMR 7622, Paris.,Centre National de la recherche Scientifique (CNRS) Unité 7622 et INSERM Unité 1156, Paris
| | - Christine Chomienne
- Université de Paris, Institut de Recherche Saint-Louis, Paris.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1131, Paris
| | - Michèle Souyri
- Université de Paris, Institut de Recherche Saint-Louis, Paris .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1131, Paris.,Université Pierre et Marie Curie, Sorbonne Universités, UMR 7622, Paris.,Centre National de la recherche Scientifique (CNRS) Unité 7622 et INSERM Unité 1156, Paris
| |
Collapse
|
37
|
Bernecker C, Ackermann M, Lachmann N, Rohrhofer L, Zaehres H, Araúzo-Bravo MJ, van den Akker E, Schlenke P, Dorn I. Enhanced Ex Vivo Generation of Erythroid Cells from Human Induced Pluripotent Stem Cells in a Simplified Cell Culture System with Low Cytokine Support. Stem Cells Dev 2019; 28:1540-1551. [PMID: 31595840 PMCID: PMC6882453 DOI: 10.1089/scd.2019.0132] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Red blood cell (RBC) differentiation from human induced pluripotent stem cells (hiPSCs) offers great potential for developmental studies and innovative therapies. However, ex vivo erythropoiesis from hiPSCs is currently limited by low efficiency and unphysiological conditions of common culture systems. Especially, the absence of a physiological niche may impair cell growth and lineage-specific differentiation. We here describe a simplified, xeno- and feeder-free culture system for prolonged RBC generation that uses low numbers of supporting cytokines [stem cell factor (SCF), erythropoietin (EPO), and interleukin 3 (IL-3)] and is based on the intermediate development of a “hematopoietic cell forming complex (HCFC).” From this HCFC, CD43+ hematopoietic cells (purity >95%) were continuously released into the supernatant and could be collected repeatedly over a period of 6 weeks for further erythroid differentiation. The released cells were mainly CD34+/CD45+ progenitors with high erythroid colony-forming potential and CD36+ erythroid precursors. A total of 1.5 × 107 cells could be harvested from the supernatant of one six-well plate, showing 100- to 1000-fold amplification during subsequent homogeneous differentiation into GPA+ erythroid cells. Mean enucleation rates near 40% (up to 60%) further confirmed the potency of the system. These benefits may be explained by the generation of a niche within the HCFC that mimics the spatiotemporal signaling of the physiological microenvironment in which erythropoiesis occurs. Compared to other protocols, this method provides lower complexity, less cytokine and medium consumption, higher cellular output, and better enucleation. In addition, slight modifications in cytokine addition shift the system toward continuous generation of granulocytes and macrophages.
Collapse
Affiliation(s)
- Claudia Bernecker
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| | - Mania Ackermann
- RG Translational Hematology of Congenital Diseases, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- RG Translational Hematology of Congenital Diseases, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Lisa Rohrhofer
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| | - Holm Zaehres
- Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, Bochum, Germany
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine Research Group, Biodonostia Health Research Institute, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| | - Isabel Dorn
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
38
|
Senserrich J, Batsivari A, Rybtsov S, Gordon-Keylock S, Souilhol C, Buchholz F, Hills D, Zhao S, Medvinsky A. Analysis of Runx1 Using Induced Gene Ablation Reveals Its Essential Role in Pre-liver HSC Development and Limitations of an In Vivo Approach. Stem Cell Reports 2019; 11:784-794. [PMID: 30208304 PMCID: PMC6135942 DOI: 10.1016/j.stemcr.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cells (HSCs) develop in the embryonic aorta-gonad-mesonephros (AGM) region and subsequently relocate to fetal liver. Runx1 transcription factor is essential for HSC development, but is largely dispensable for adult HSCs. Here, we studied tamoxifen-inducible Runx1 inactivation in vivo. Induction at pre-liver stages (up to embryonic day 10.5) reduced erythromyeloid progenitor numbers, but surprisingly did not block the appearance of Runx1-null HSCs in liver. By contrast, ex vivo analysis showed an absolute Runx1 dependency of HSC development in the AGM region. We found that, contrary to current beliefs, significant Cre-inducing tamoxifen activity persists in mouse blood for at least 72 hr after injection. This deferred recombination can hit healthy HSCs, which escaped early Runx1 ablation and result in appearance of Runx1-null HSCs in liver. Such extended recombination activity in vivo is a potential source of misinterpretation, particularly in analysis of dynamic developmental processes during embryogenesis. Runx1 ablation induced in vivo at the AGM stage yields null HSCs in fetal liver Controlled Runx1 ablation in cultured AGM region blocks HSC development Discrepancy is explained by persistence of Cre activity in vivo for at least 3 days Runx1 is essential at pre-liver stage of HSC development
Collapse
Affiliation(s)
- Jordi Senserrich
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Antoniana Batsivari
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Stanislav Rybtsov
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Celine Souilhol
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Frank Buchholz
- Max Planck Institute of Molecular Cell Biology and Genetics, Technische Universität Dresden, Dresden 01307, Germany
| | - David Hills
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Suling Zhao
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Alexander Medvinsky
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
39
|
Castaño J, Aranda S, Bueno C, Calero-Nieto FJ, Mejia-Ramirez E, Mosquera JL, Blanco E, Wang X, Prieto C, Zabaleta L, Mereu E, Rovira M, Jiménez-Delgado S, Matson DR, Heyn H, Bresnick EH, Göttgens B, Di Croce L, Menendez P, Raya A, Giorgetti A. GATA2 Promotes Hematopoietic Development and Represses Cardiac Differentiation of Human Mesoderm. Stem Cell Reports 2019; 13:515-529. [PMID: 31402335 PMCID: PMC6742600 DOI: 10.1016/j.stemcr.2019.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 02/02/2023] Open
Abstract
In vertebrates, GATA2 is a master regulator of hematopoiesis and is expressed throughout embryo development and in adult life. Although the essential role of GATA2 in mouse hematopoiesis is well established, its involvement during early human hematopoietic development is not clear. By combining time-controlled overexpression of GATA2 with genetic knockout experiments, we found that GATA2, at the mesoderm specification stage, promotes the generation of hemogenic endothelial progenitors and their further differentiation to hematopoietic progenitor cells, and negatively regulates cardiac differentiation. Surprisingly, genome-wide transcriptional and chromatin immunoprecipitation analysis showed that GATA2 bound to regulatory regions, and repressed the expression of cardiac development-related genes. Moreover, genes important for hematopoietic differentiation were upregulated by GATA2 in a mostly indirect manner. Collectively, our data reveal a hitherto unrecognized role of GATA2 as a repressor of cardiac fates, and highlight the importance of coordinating the specification and repression of alternative cell fates.
Collapse
Affiliation(s)
- Julio Castaño
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Sergi Aranda
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Fernando J Calero-Nieto
- Department of Hematology, Wellcome and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Eva Mejia-Ramirez
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Jose Luis Mosquera
- Bioinformatics Unit, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, 08908 Spain
| | - Enrique Blanco
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Xiaonan Wang
- Department of Hematology, Wellcome and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Cristina Prieto
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Lorea Zabaleta
- Laboratory of Hematological Diseases, Fundación Inbiomed, San Sebastian, 20009, Spain
| | - Elisabetta Mereu
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Meritxell Rovira
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Senda Jiménez-Delgado
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Daniel R Matson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Holger Heyn
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Berthold Göttgens
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Luciano Di Croce
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona 08003, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain; Centro de Investigación Biomedica en Red en Cancer (CIBERONIC) ISCIII, Barcelona, Spain
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Alessandra Giorgetti
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain.
| |
Collapse
|
40
|
Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res 2019; 29:881-894. [PMID: 31501518 PMCID: PMC6888893 DOI: 10.1038/s41422-019-0228-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first genome-scale gene expression landscape covering the entire course of endothelial-to-HSC transition during human embryogenesis. The transcriptomically defined HSC-primed hemogenic endothelial cells (HECs) were captured at Carnegie stage (CS) 12–14 in an unbiased way, showing an unambiguous feature of arterial endothelial cells (ECs) with the up-regulation of RUNX1, MYB and ANGPT1. Importantly, subcategorizing CD34+CD45− ECs into a CD44+ population strikingly enriched HECs by over 10-fold. We further mapped the developmental path from arterial ECs via HSC-primed HECs to hematopoietic stem progenitor cells, and revealed a distinct expression pattern of genes that were transiently over-represented upon the hemogenic fate choice of arterial ECs, including EMCN, PROCR and RUNX1T1. We also uncovered another temporally and molecularly distinct intra-embryonic HEC population, which was detected mainly at earlier CS 10 and lacked the arterial feature. Finally, we revealed the cellular components of the putative aortic niche and potential cellular interactions acting on the HSC-primed HECs. The cellular and molecular programs that underlie the generation of the first HSCs from HECs in human embryos, together with the ability to distinguish the HSC-primed HECs from others, will shed light on the strategies for the production of clinically useful HSCs from pluripotent stem cells.
Collapse
|
41
|
Rybtsov SA, Lagarkova MA. Development of Hematopoietic Stem Cells in the Early Mammalian Embryo. BIOCHEMISTRY (MOSCOW) 2019; 84:190-204. [PMID: 31221058 DOI: 10.1134/s0006297919030027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hematopoietic stem cells (HSCs) were the first stem cells discovered in humans. A. A. Maximov proposed an idea of blood stem cells that was confirmed later by McCulloch and Till experimentally. HSCs were the first type of stem cells to be used in clinics and ever since are being continually used. Indeed, a single HSC transplanted intravenously is capable of giving rise to all types of blood cells. In recent decades, human and animal HSC origin, development, hierarchy, and gene signature have been extensively investigated. Due to the constant need for donor blood and HSCs suitable for therapeutic transplants, the experimental possibility of obtaining HSCs in vitro by directed differentiation of pluripotent stem cells (PSCs) has been considered in recent years. However, despite all efforts, it is not yet possible to reproduce in vitro the ontogenesis of HSCs and obtain cells capable of long-term maintenance of hematopoiesis. The study of hematopoiesis in embryonic development facilitates the establishment and improvement of protocols for deriving blood cells from PCSs and allows a better understanding of the pathogenesis of various types of proliferative blood diseases, anemia, and immunodeficiency. This review focuses on the development of hematopoiesis in mammalian ontogenesis.
Collapse
Affiliation(s)
- S A Rybtsov
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4U, United Kingdom.
| | - M A Lagarkova
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Federal Medical-Biological Agency, Moscow, 119435, Russia.
| |
Collapse
|
42
|
Alomari M, Almohazey D, Almofty SA, Khan FA, Al Hamad M, Ababneh D. Role of Lipid Rafts in Hematopoietic Stem Cells Homing, Mobilization, Hibernation, and Differentiation. Cells 2019; 8:cells8060630. [PMID: 31234505 PMCID: PMC6627378 DOI: 10.3390/cells8060630] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are multipotent, self-renewing cells that can differentiate into myeloid or lymphoid cells. The mobilization and differentiation processes are affected by the external environment, such as extracellular matrix and soluble molecules in the niche, where the lipid rafts (LRs) of the HSCs act as the receptors and control platforms for these effectors. LRs are membrane microdomains that are enriched in cholesterol, sphingolipid, and proteins. They are involved in diverse cellular processes including morphogenesis, cytokinesis, signaling, endocytic events, and response to the environment. They are also involved in different types of diseases, such as cancer, Alzheimer's, and prion disease. LR clustering and disruption contribute directly to the differentiation, homing, hibernation, or mobilization of HSCs. Thus, characterization of LR integrity may provide a promising approach to controlling the fate of stem cells for clinical applications. In this review, we show the critical role of LR modification (clustering, disruption, protein incorporation, and signal responding) in deciding the fate of HSCs, under the effect of soluble cytokines such as stem cell factor (SCF), transforming growth factor- β (TGF-β), hematopoietic-specific phospholipase Cβ2 (PLC-β2), and granulocyte colony-stimulating factor (G-CSF).
Collapse
Affiliation(s)
- Munther Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Dana Almohazey
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Sarah Ameen Almofty
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Mohammad Al Hamad
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Deena Ababneh
- Department of Basic Sciences and Humanities, College of Engineering, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| |
Collapse
|
43
|
Zhou Y, Zhang Y, Chen B, Dong Y, Zhang Y, Mao B, Pan X, Lai M, Chen Y, Bian G, Zhou Q, Nakahata T, Zhou J, Wu M, Ma F. Overexpression of GATA2 Enhances Development and Maintenance of Human Embryonic Stem Cell-Derived Hematopoietic Stem Cell-like Progenitors. Stem Cell Reports 2019; 13:31-47. [PMID: 31178416 PMCID: PMC6626852 DOI: 10.1016/j.stemcr.2019.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
GATA2 is essential for the endothelial-to-hematopoietic transition (EHT) and generation of hematopoietic stem cells (HSCs). It is poorly understood how GATA2 controls the development of human pluripotent stem cell (hPSC)-derived HS-like cells. Here, using human embryonic stem cells (hESCs) in which GATA2 overexpression was induced by doxycycline (Dox), we elucidated the dual functions of GATA2 in definitive hematopoiesis before and after the emergence of CD34+CD45+CD90+CD38- HS-like cells. Specifically, GATA2 promoted expansion of hemogenic precursors via the EHT and then helped to maintain HS-like cells in a quiescent state by regulating cell cycle. RNA sequencing showed that hPSC-derived HS-like cells were very similar to human fetal liver-derived HSCs. Our findings will help to elucidate the mechanism that controls the early stages of human definitive hematopoiesis and may help to develop a strategy to generate hPSC-derived HSCs.
Collapse
Affiliation(s)
- Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China.
| | - Bo Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yong Dong
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yimeng Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bin Mao
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Mowen Lai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yijin Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Guohui Bian
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Qiongxiu Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks ND 58203, USA
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China; State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China.
| |
Collapse
|
44
|
Understanding the Journey of Human Hematopoietic Stem Cell Development. Stem Cells Int 2019; 2019:2141475. [PMID: 31198425 PMCID: PMC6526542 DOI: 10.1155/2019/2141475] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cells (HSCs) surface during embryogenesis leading to the genesis of the hematopoietic system, which is vital for immune function, homeostasis balance, and inflammatory responses in the human body. Hematopoiesis is the process of blood cell formation, which initiates from hematopoietic stem/progenitor cells (HSPCs) and is responsible for the generation of all adult blood cells. With their self-renewing and pluripotent properties, human pluripotent stem cells (hPSCs) provide an unprecedented opportunity to create in vitro models of differentiation that will revolutionize our understanding of human development, especially of the human blood system. The utilization of hPSCs provides newfound approaches for studying the origins of human blood cell diseases and generating progenitor populations for cell-based treatments. Current shortages in our knowledge of adult HSCs and the molecular mechanisms that control hematopoietic development in physiological and pathological conditions can be resolved with better understanding of the regulatory networks involved in hematopoiesis, their impact on gene expression, and further enhance our ability to develop novel strategies of clinical importance. In this review, we delve into the recent advances in the understanding of the various cellular and molecular pathways that lead to blood development from hPSCs and examine the current knowledge of human hematopoietic development. We also review how in vitro differentiation of hPSCs can undergo hematopoietic transition and specification, including major subtypes, and consider techniques and protocols that facilitate the generation of hematopoietic stem cells.
Collapse
|
45
|
Gomes Fernandes M, Bialecka M, Salvatori DCF, Chuva de Sousa Lopes SM. Characterization of migratory primordial germ cells in the aorta-gonad-mesonephros of a 4.5-week-old human embryo: a toolbox to evaluate in vitro early gametogenesis. Mol Hum Reprod 2019. [PMID: 29528446 PMCID: PMC6018722 DOI: 10.1093/molehr/gay011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
STUDY QUESTION Which set of antibodies can be used to identify migratory and early post-migratory human primordial germ cells (hPGCs)? STUDY FINDING We validated the specificity of 33 antibodies for 31 markers, including POU5F1, NANOG, PRDM1 and TFAP2C as specific markers of hPGCs at 4.5 weeks of development of Carnegie stage (CS12–13), whereas KIT and SOX17 also marked the intra-aortic hematopoietic stem cell cluster in the aorta-gonad-mesonephros (AGM). WHAT IS KNOWN ALREADY The dynamics of gene expression during germ cell development in mice is well characterized and this knowledge has proved crucial to allow the development of protocols for the in vitro derivation of functional gametes. Although there is a great interest in generating human gametes in vitro, it is still unclear which markers are expressed during the early stages of hPGC development and many studies use markers described in mouse to benchmark differentiation of human PGC-like cells (hPGCLCs). Early post-implantation development differs significantly between mice and humans, and so some germ cells markers, including SOX2, SOX17, IFITM3 and ITGA6 may not identify mPGCs and hPGCs equally well. STUDY DESIGN, SIZE, DURATION This immunofluorescence study investigated the expression of putative hPGC markers in the caudal part of a single human embryo at 4.5 weeks of development. PARTICIPANTS/MATERIALS, SETTING, METHODS We have investigated by immunofluorescence the expression of a set of 33 antibodies for 31 markers, including pluripotency, germ cell, adhesion, migration, surface, mesenchymal and epigenetic markers on paraffin sections of the caudal part, including the AGM region, of a single human embryo (CS12–13). The human material used was anonymously donated with informed consent from elective abortions without medical indication. MAIN RESULTS AND THE ROLE OF CHANCE We observed germ cell specific expression of NANOG, TFAP2C and PRDM1 in POU5F1+ hPGCs in the AGM. The epigenetic markers H3K27me3 and 5mC were sufficient to distinguish hPGCs from the surrounding somatic cells. Some mPGC-markers were not detected in hPGCs, but marked other tissues; whereas other markers, such as ALPL, SOX17, KIT, TUBB3, ITGA6 marked both POU5F1+ hPGCs and other cells in the AGM. We used a combination of multiple markers, immunostaining different cellular compartments when feasible, to decrease the chance of misidentifying hPGCs. LARGE SCALE DATA Non-applicable. LIMITATIONS REASONS FOR CAUTION Material to study early human development is unique and very rare thus restricting the sample size. We have used a combination of antibodies limited by the number of paraffin sections available. WIDER IMPLICATIONS OF THE FINDINGS Most of our knowledge on early gametogenesis has been obtained from model organisms such as mice and is extrapolated to humans. However, since there is a dedicated effort to produce human artificial gametes in vitro, it is of great importance to determine the expression and specificity of human-specific germ cell markers. We provide a systematic analysis of the expression of 31 different markers in paraffin sections of a CS12–13 embryo. Our results will help to set up a toolbox of markers to evaluate protocols to induce hPGCLCs in vitro. STUDY FUNDING AND COMPETING INTEREST(S) M.G.F. was funded by Fundação para a Ciência e Tecnologia (FCT) [SFRH/BD/78689/2011] and S.M.C.S.L. was funded by the Interuniversity Attraction Poles (IAP, P7/07) and the European Research Council Consolidator (ERC-CoG-725722-OVOGROWTH). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Maria Gomes Fernandes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333-ZC, The Netherlands
| | - Monika Bialecka
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333-ZC, The Netherlands
| | - Daniela C F Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, Leiden 2333-ZC, The Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333-ZC, The Netherlands.,Department for Reproductive Medicine, Ghent University Hospital, Ghent 9000, Belgium
| |
Collapse
|
46
|
Easterbrook J, Rybtsov S, Gordon-Keylock S, Ivanovs A, Taoudi S, Anderson RA, Medvinsky A. Analysis of the Spatiotemporal Development of Hematopoietic Stem and Progenitor Cells in the Early Human Embryo. Stem Cell Reports 2019; 12:1056-1068. [PMID: 30956115 PMCID: PMC6525107 DOI: 10.1016/j.stemcr.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 02/02/2023] Open
Abstract
Definitive hematopoietic stem cells (HSCs) first emerge in the aorta-gonad-mesonephros (AGM) region in both mice and humans. An ex vivo culture approach has enabled recapitulation and analysis of murine HSC development. Knowledge of early human HSC development is hampered by scarcity of tissue: analysis of both CFU-C and HSC development in the human embryo is limited. Here, we characterized the spatial distribution and temporal kinetics of CFU-C development within early human embryonic tissues. We then sought to adapt the murine ex vivo culture system to recapitulate human HSC development. We show robust expansion of CFU-Cs and maintenance, but no significant expansion, of human HSCs in culture. Furthermore, we demonstrate that HSCs emerge predominantly in the middle section of the dorsal aorta in our culture system. We conclude that there are important differences between early mouse and human hematopoiesis, which currently hinder the quest to recapitulate human HSC development ex vivo. Ex vivo culture efficiently expands CFU-Cs derived from human embryonic tissue Human AGM-derived HSCs can be maintained in explant culture Human HSCs emerge predominantly in the middle section of the dorsal aorta
Collapse
Affiliation(s)
- Jennifer Easterbrook
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Stanislav Rybtsov
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sabrina Gordon-Keylock
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrejs Ivanovs
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute of Anatomy and Anthropology, Riga Stradiņš University, Riga 1007, Latvia
| | - Samir Taoudi
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052 Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia; Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alexander Medvinsky
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
47
|
Zhang Y, Clay D, Mitjavila-Garcia MT, Alama A, Mennesson B, Berseneff H, Louache F, Bennaceur-Griscelli A, Oberlin E. VE-Cadherin and ACE Co-Expression Marks Highly Proliferative Hematopoietic Stem Cells in Human Embryonic Liver. Stem Cells Dev 2019; 28:165-185. [PMID: 30426841 DOI: 10.1089/scd.2018.0154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite advances to engineer transplantable hematopoietic stem and progenitor cells (HSPCs) for research and therapy, an in-depth characterization of the developing human hematopoietic system is still lacking. The human embryonic liver is at the crossroad of several hematopoietic sites and harbors a complex hematopoietic hierarchy, including the first actively dividing HSPCs that will further seed the definitive hematopoietic organs. However, few are known about the phenotypic and functional HSPC organization operating at these stages of development. In this study, using a combination of four endothelial and hematopoietic surface markers, that is, the endothelial-specific marker vascular endothelial-cadherin (Cdh5, CD144), the pan-leukocyte antigen CD45, the hemato-endothelial marker CD34, and the angiotensin-converting enzyme (ACE, CD143), we identified distinct HSPC subsets, and among them, a population co-expressing the four markers that uniquely harbored an outstanding proliferation potential both ex vivo and in vivo. Moreover, we traced back this population to the yolk sac (YS) and aorta-gonad-mesonephros (AGM) sites of hematopoietic emergence. Taken together, our data will help to identify human HSPC self-renewal and amplification mechanisms for future cell therapies.
Collapse
Affiliation(s)
- Yanyan Zhang
- 1 Inserm, UMR 1170, Villejuif, France.,2 Paris-Saclay University, Villejuif, France.,3 Gustave Roussy, Villejuif, France
| | - Denis Clay
- 4 Inserm UMS 33, Villejuif, France.,5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France
| | - Maria Teresa Mitjavila-Garcia
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| | - Aurélie Alama
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| | - Benoit Mennesson
- 8 Obstetrics and Gynecology Department, René-Dubos Hospital, Pontoise, France
| | - Helene Berseneff
- 8 Obstetrics and Gynecology Department, René-Dubos Hospital, Pontoise, France
| | - Fawzia Louache
- 1 Inserm, UMR 1170, Villejuif, France.,2 Paris-Saclay University, Villejuif, France.,3 Gustave Roussy, Villejuif, France
| | - Annelise Bennaceur-Griscelli
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| | - Estelle Oberlin
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| |
Collapse
|
48
|
Leung A, Zulick E, Skvir N, Vanuytsel K, Morrison TA, Naing ZH, Wang Z, Dai Y, Chui DHK, Steinberg MH, Sherr DH, Murphy GJ. Notch and Aryl Hydrocarbon Receptor Signaling Impact Definitive Hematopoiesis from Human Pluripotent Stem Cells. Stem Cells 2018; 36:1004-1019. [PMID: 29569827 PMCID: PMC6099224 DOI: 10.1002/stem.2822] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
Induced pluripotent stem cells (iPSCs) stand to revolutionize the way we study human development, model disease, and eventually, treat patients. However, these cell sources produce progeny that retain embryonic and/or fetal characteristics. The failure to mature to definitive, adult‐type cells is a major barrier for iPSC‐based disease modeling and drug discovery. To directly address these concerns, we have developed a chemically defined, serum and feeder‐free–directed differentiation platform to generate hematopoietic stem‐progenitor cells (HSPCs) and resultant adult‐type progeny from iPSCs. This system allows for strict control of signaling pathways over time through growth factor and/or small molecule modulation. Through direct comparison with our previously described protocol for the production of primitive wave hematopoietic cells, we demonstrate that induced HSPCs are enhanced for erythroid and myeloid colony forming potential, and strikingly, resultant erythroid‐lineage cells display enhanced expression of adult β globin indicating definitive pathway patterning. Using this system, we demonstrate the stage‐specific roles of two key signaling pathways, Notch and the aryl hydrocarbon receptor (AHR), in the derivation of definitive hematopoietic cells. We illustrate the stage‐specific necessity of Notch signaling in the emergence of hematopoietic progenitors and downstream definitive, adult‐type erythroblasts. We also show that genetic or small molecule inhibition of the AHR results in the increased production of CD34+CD45+ HSPCs while conversely, activation of the same receptor results in a block of hematopoietic cell emergence. Results presented here should have broad implications for hematopoietic stem cell transplantation and future clinical translation of iPSC‐derived blood cells. Stem Cells2018;36:1004–1019
Collapse
Affiliation(s)
- Amy Leung
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Elizabeth Zulick
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Nicholas Skvir
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Kim Vanuytsel
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Tasha A Morrison
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Zaw Htut Naing
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Yan Dai
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David H K Chui
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Martin H Steinberg
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - George J Murphy
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
49
|
Definitive Erythropoiesis from Pluripotent Stem Cells: Recent Advances and Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:1-13. [PMID: 29876866 DOI: 10.1007/5584_2018_228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Derivation of functional and mature red blood cells (RBCs) with adult globin expression from renewable source such as induced pluripotent stem cells (iPSCs) is of importance from the clinical point of view. Definitive RBC generation can only be succeeded through production of true hematopoietic stem cells (HSCs). There has been a great effort to obtain definitive engraftable HSCs from iPSCs but the results were mostly unsatisfactory due to low, short-term and linage-biased engraftment in mouse models. Moreover, ex vivo differentiation approaches ended up with RBCs with mostly embryonic and fetal globin expression. To establish reliable, standardized and effective laboratory protocols, we need to expand our knowledge about developmental hematopoiesis/erythropoiesis and identify critical regulatory signaling pathways and transcription factors. Once we meet these challenges, we could establish differentiation protocols for massive RBC production for transfusion purposes in the clinical setting, performing drug screening and disease modeling in ex vivo conditions, and investigating the embryological cascade of erythropoiesis. More interestingly, with the introduction of relatively efficient and facile genome editing tools, genetic correction for inherited RBC disorders such as sickle cell disease (SCD) would become possible through iPSCs that can subsequently generate definitive HSCs, which then give rise to definitive RBCs producing β-globin after transplantation.
Collapse
|
50
|
Bigas A, Porcheri C. Notch and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:235-263. [DOI: 10.1007/978-3-319-89512-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|