1
|
Shiraishi M, Sowa Y, Sunaga A, Yamamoto K, Okazaki M. Bioengineering strategies for regeneration of skin integrity: A literature review. Regen Ther 2025; 28:153-160. [PMID: 39790492 PMCID: PMC11713503 DOI: 10.1016/j.reth.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Objective The skin is a complex organ that includes various stem cell populations. Current approaches for non-healing skin defects are sometimes inadequate and many attempts have been made to regenerate skin integrity. The aim of this review is to bridge the gap between basic research and clinical application of skin integrity regeneration. Methods A literature search was carried out in PubMed using combinations of the keywords "skin integrity", "tissue-engineered skin", "bioengineered skin", and "skin regeneration". Articles published from 1968 to 2023 reporting evidence from in vivo and in vitro skin regeneration experiments were included. Results These articles showed that stem cells can be differentiated into normal skin cells, including keratinocytes, and are a significant source of skin organoids, which are useful for investigating skin biology; and that emerging direct reprogramming methods have great potential to regenerate skin from the wounded skin surface. Conclusion Recent advances in skin regeneration will facilitate further advancement of both basic and clinical research in skin biology.
Collapse
Affiliation(s)
- Makoto Shiraishi
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Japan
| | - Ataru Sunaga
- Department of Plastic Surgery, Jichi Medical University, Japan
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mutsumi Okazaki
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Zhang YX, Zhou Y, Xiong YY, Li YM. Beyond skin deep: Revealing the essence of iPS cell-generated skin organoids in regeneration. Burns 2024; 50:107194. [PMID: 39317530 DOI: 10.1016/j.burns.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/13/2024] [Accepted: 06/23/2024] [Indexed: 09/26/2024]
Abstract
Various methods have been used for in vivo and in vitro skin regeneration, including stem cell therapy, tissue engineering, 3D printing, and platelet-rich plasma (PRP) injection therapy. However, these approaches are rooted in the existing knowledge of skin structures, which overlook the normal physiological processes of skin development and fall short of replicating the skin's regenerative processes outside the body. This comprehensive review primarily focuses on skin organoids derived from human pluripotent stem cells, which have the capacity to regenerate human skin tissue by restoring the embryonic skin structure, thus offering a novel avenue for producing in vitro skin substitutes. Furthermore, they contribute to the repair of damaged skin lesions in patients with systemic sclerosis or severe burns. Particular emphasis will be placed on the origins, generations, and applications of skin organoids, especially in dermatology, and the challenges that must be addressed before clinical implementation.
Collapse
Affiliation(s)
- Yu-Xuan Zhang
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yuan Zhou
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yu-Yun Xiong
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.
| | - Yu-Mei Li
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
3
|
Lu H, Zuo X, Yuan J, Xie Z, Yin L, Pu Y, Chen Z, Zhang J. Research progress in the development of 3D skin models and their application to in vitro skin irritation testing. J Appl Toxicol 2024; 44:1302-1316. [PMID: 38711121 DOI: 10.1002/jat.4618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024]
Abstract
Toxicological assessment of chemicals is crucial for safeguarding human health and the environment. However, traditional animal experiments are associated with ethical, technical, and predictive limitations in assessing the toxicity of chemicals to the skin. With the recent development of bioengineering and tissue engineering, three-dimensional (3D) skin models have been commonly used as an alternative for toxicological studies. The skin consists of the subcutaneous, dermis, and epidermis. All these layers have crucial functions such as physical and biological protection and thermoregulation. The epidermis is the shallowest layer protecting against external substances and media. Because the skin is the first contact point for many substances, this organ is very significant for assessing local toxicity following skin exposure. According to the classification of the United Nations Global Harmonized System, skin irritation is a major potentially hazardous characteristic of chemicals, and this characteristic must be accurately assessed and classified for enhancing chemical safety management and preventing and reducing chemical accidents. This review discusses the research progress of 3D skin models and introduces their application in assessing chemical skin irritation.
Collapse
Affiliation(s)
- Hongxia Lu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, P. R. China
| | - Xulei Zuo
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, P. R. China
| | - Jiayu Yuan
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, P. R. China
| | - Zhuoying Xie
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, P. R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, P. R. China
| | - Zaozao Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, P. R. China
- Jiangsu Institute for Sport and Health (JISH), Nanjing, P. R. China
| |
Collapse
|
4
|
Ismayilzada N, Tarar C, Dabbagh SR, Tokyay BK, Dilmani SA, Sokullu E, Abaci HE, Tasoglu S. Skin-on-a-chip technologies towards clinical translation and commercialization. Biofabrication 2024; 16:042001. [PMID: 38964314 DOI: 10.1088/1758-5090/ad5f55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Skin is the largest organ of the human body which plays a critical role in thermoregulation, metabolism (e.g. synthesis of vitamin D), and protection of other organs from environmental threats, such as infections, microorganisms, ultraviolet radiation, and physical damage. Even though skin diseases are considered to be less fatal, the ubiquity of skin diseases and irritation caused by them highlights the importance of skin studies. Furthermore, skin is a promising means for transdermal drug delivery, which requires a thorough understanding of human skin structure. Current animal andin vitrotwo/three-dimensional skin models provide a platform for disease studies and drug testing, whereas they face challenges in the complete recapitulation of the dynamic and complex structure of actual skin tissue. One of the most effective methods for testing pharmaceuticals and modeling skin diseases are skin-on-a-chip (SoC) platforms. SoC technologies provide a non-invasive approach for examining 3D skin layers and artificially creating disease models in order to develop diagnostic or therapeutic methods. In addition, SoC models enable dynamic perfusion of culture medium with nutrients and facilitate the continuous removal of cellular waste to further mimic thein vivocondition. Here, the article reviews the most recent advances in the design and applications of SoC platforms for disease modeling as well as the analysis of drugs and cosmetics. By examining the contributions of different patents to the physiological relevance of skin models, the review underscores the significant shift towards more ethical and efficient alternatives to animal testing. Furthermore, it explores the market dynamics ofin vitroskin models and organ-on-a-chip platforms, discussing the impact of legislative changes and market demand on the development and adoption of these advanced research tools. This article also identifies the existing obstacles that hinder the advancement of SoC platforms, proposing directions for future improvements, particularly focusing on the journey towards clinical adoption.
Collapse
Affiliation(s)
- Nilufar Ismayilzada
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | - Ceren Tarar
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | | | - Begüm Kübra Tokyay
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Sara Asghari Dilmani
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Emel Sokullu
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University, New York City, NY, United States of America
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
5
|
Williams FM. New approaches build upon historical studies in dermal toxicology. Toxicol Res (Camb) 2023; 12:1007-1013. [PMID: 38145096 PMCID: PMC10734571 DOI: 10.1093/toxres/tfad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 12/26/2023] Open
Abstract
These are my personal reflections on the history of approaches to understanding dermal toxicology brought together for the Paton Prize Award. This is not a comprehensive account of all publications from in vivo studies in humans to development of in vitro and in silico approaches but highlghts important progress. I will consider what is needed now to influence approaches to understanding dermal exposure with the current development and use of NAMs (new approach methodologies).
Collapse
Affiliation(s)
- Faith M Williams
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle NE24HH, United Kingdom
| |
Collapse
|
6
|
Lee YJ, Yassa C, Park SH, Song SW, Jung WH, Lee YW, Kang H, Kim JE. Interactions between Malassezia and New Therapeutic Agents in Atopic Dermatitis Affecting Skin Barrier and Inflammation in Recombinant Human Epidermis Model. Int J Mol Sci 2023; 24:ijms24076171. [PMID: 37047166 PMCID: PMC10094540 DOI: 10.3390/ijms24076171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Several studies have reported the pathogenic role of Malassezia in atopic dermatitis (AD); the significance of Malassezia’s influence on AD needs to be further investigated. Dupilumab, a monoclonal antibody to anti-Interleukin (IL) 4Rα, and ruxolitinib, a Janus kinase (JAK)1/2 inhibitor, are the first approved biologics and inhibitors widely used for AD treatment. In this study, we aimed to investigate how Malassezia Restricta (M. restricta) affects the skin barrier and inflammation in AD and interacts with the AD therapeutic agents ruxolitinib and anti-IL4Rα. To induce an in vitro AD model, a reconstructed human epidermis (RHE) was treated with IL-4 and IL-13. M. restricta was inoculated on the surface of RHE, and anti-IL4Rα or ruxolitinib was supplemented to model treated AD lesions. Histological and molecular analyses were performed. Skin barrier and ceramide-related molecules were downregulated by M. restricta and reverted by anti-IL4Rα and ruxolitinib. Antimicrobial peptides, VEGF, Th2-related, and JAK/STAT pathway molecules were upregulated by M. restricta and suppressed by anti-IL4Rα and ruxolitinib. These findings show that M. restricta aggravated skin barrier function and Th2 inflammation and decreased the efficacy of anti-IL4Rα and ruxolitinib.
Collapse
|
7
|
Naso G, Gkazi S, Georgiadis C, Jayarajan V, Jacków J, Fleck R, Allison L, Ogunbiyi O, McGrath J, Ilic D, Di W, Petrova A, Qasim W. Cytosine deaminase base editing to restore COL7A1 in dystrophic epidermolysis bullosa human:murine skin model. JID INNOVATIONS 2023; 3:100191. [DOI: 10.1016/j.xjidi.2023.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 02/22/2023] Open
|
8
|
Ahmadi S, Pachis ST, Kalogeropoulos K, McGeoghan F, Canbay V, Hall SR, Crittenden EP, Dawson CA, Bartlett KE, Gutiérrez JM, Casewell NR, Keller UAD, Laustsen AH. Proteomics and histological assessment of an organotypic model of human skin following exposure to Naja nigricollis venom. Toxicon 2022; 220:106955. [DOI: 10.1016/j.toxicon.2022.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
9
|
Allenby MC, Woodruff MA. Image analyses for engineering advanced tissue biomanufacturing processes. Biomaterials 2022; 284:121514. [DOI: 10.1016/j.biomaterials.2022.121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
|
10
|
Koch PJ, Webb S, Gugger JA, Salois MN, Koster MI. Differentiation of Human Induced Pluripotent Stem Cells into Keratinocytes. Curr Protoc 2022; 2:e408. [PMID: 35384405 PMCID: PMC9011197 DOI: 10.1002/cpz1.408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Investigating basic biological mechanisms underlying human diseases relies on the availability of sufficient quantities of patient cells. As most primary somatic cells have a limited lifespan, obtaining sufficient material for biological studies has been a challenge. The development of induced pluripotent stem cell (iPSC) technology has been a game changer, especially in the field of rare genetic disorders. iPSC are essentially immortal, can be stored indefinitely, and can thus be used to generate defined somatic cells in unlimited quantities. Further, the availability of genome editing technologies, such as CRISPR/CAS, has provided us with the opportunity to create “designer” iPSC lines with defined genetic characteristics. A major advancement in biological research stems from the development of methods to direct iPSC differentiation into defined cell types. In this article, we provide the basic protocol for the generation of human iPSC‐derived keratinocytes (iPSC‐K). These cells have the characteristics of basal epidermal keratinocytes and represent a tool for the investigation of normal epidermal biology, as well as genetic and acquired skin disorders. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Directed differentiation of human iPSC into keratinocytes Support Protocol 1: Coating cell culture dishes or plates with Vitronectin XF™ Support Protocol 2: Freezing iPSC Support Protocol 3: Preparing AggreWell™400 6‐well plates for EB formation Support Protocol 4: Coating cell culture dishes or plates with Collagen IV Support Protocol 5: Immunofluorescence staining of cells
Collapse
Affiliation(s)
- Peter J Koch
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), 600 Moye Blvd, Greenville, North Carolina
| | - Saiphone Webb
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), 600 Moye Blvd, Greenville, North Carolina
| | - Jessica A Gugger
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), 600 Moye Blvd, Greenville, North Carolina
| | - Maddison N Salois
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), 600 Moye Blvd, Greenville, North Carolina
| | - Maranke I Koster
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), 600 Moye Blvd, Greenville, North Carolina
| |
Collapse
|
11
|
Zoio P, Oliva A. Skin-on-a-Chip Technology: Microengineering Physiologically Relevant In Vitro Skin Models. Pharmaceutics 2022; 14:pharmaceutics14030682. [PMID: 35336056 PMCID: PMC8955316 DOI: 10.3390/pharmaceutics14030682] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
The increased demand for physiologically relevant in vitro human skin models for testing pharmaceutical drugs has led to significant advancements in skin engineering. One of the most promising approaches is the use of in vitro microfluidic systems to generate advanced skin models, commonly known as skin-on-a-chip (SoC) devices. These devices allow the simulation of key mechanical, functional and structural features of the human skin, better mimicking the native microenvironment. Importantly, contrary to conventional cell culture techniques, SoC devices can perfuse the skin tissue, either by the inclusion of perfusable lumens or by the use of microfluidic channels acting as engineered vasculature. Moreover, integrating sensors on the SoC device allows real-time, non-destructive monitoring of skin function and the effect of topically and systemically applied drugs. In this Review, the major challenges and key prerequisites for the creation of physiologically relevant SoC devices for drug testing are considered. Technical (e.g., SoC fabrication and sensor integration) and biological (e.g., cell sourcing and scaffold materials) aspects are discussed. Recent advancements in SoC devices are here presented, and their main achievements and drawbacks are compared and discussed. Finally, this review highlights the current challenges that need to be overcome for the clinical translation of SoC devices.
Collapse
Affiliation(s)
- Patrícia Zoio
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal;
| | - Abel Oliva
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal;
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
12
|
Zarrintaj P, Saeb MR, Stadler FJ, Yazdi MK, Nezhad MN, Mohebbi S, Seidi F, Ganjali MR, Mozafari M. Human Organs-on-Chips: A Review of the State-of-the-Art, Current Prospects, and Future Challenges. Adv Biol (Weinh) 2022; 6:e2000526. [PMID: 34837667 DOI: 10.1002/adbi.202000526] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/03/2021] [Indexed: 01/09/2023]
Abstract
New emerging technologies, remarkably miniaturized 3D organ models and microfluidics, enable simulation of the real in vitro microenvironment ex vivo more closely. There are many fascinating features of innovative organ-on-a-chip (OOC) technology, including the possibility of integrating semipermeable and/or stretchable membranes, creating continuous perfusion of fluids into microchannels and chambers (while maintaining laminar flow regime), embedding microdevices like microsensors, microstimulators, micro heaters, or different cell lines, along with other 3D cell culture technologies. OOC systems are designed to imitate the structure and function of human organs, ranging from breathing lungs to beating hearts. This technology is expected to be able to revolutionize cell biology studies, personalized precision medicine, drug development process, and cancer diagnosis/treatment. OOC systems can significantly reduce the cost associated with tedious drug development processes and the risk of adverse drug reactions in the body, which makes drug screening more effective. The review mainly focus on presenting an overview of the several previously developed OOC systems accompanied by subjects relevant to pharmacy-, cancer-, and placenta-on-a-chip. The challenging issues and opportunities related to these systems are discussed, along with a future perspective for this technology.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Mojtaba Nasiri Nezhad
- Department of Chemical Engineering, Urmia University of Technology, Urmia, 57166-419, Iran
| | - Shabnam Mohebbi
- Department of Chemical Engineering, Tabriz University, Tabriz, 51335-1996, Iran
| | - Farzad Seidi
- Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 14395-1179, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
13
|
Kolundzic N, Khurana P, Crumrine D, Celli A, Mauro TM, Ilic D. Epidermal Basement Membrane Substitutes for Bioengineering of Human Epidermal Equivalents. JID INNOVATIONS 2021; 2:100083. [PMID: 35199088 PMCID: PMC8844655 DOI: 10.1016/j.xjidi.2021.100083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 10/26/2022] Open
|
14
|
Koch PJ, Koster MI. Rare Genetic Disorders: Novel Treatment Strategies and Insights Into Human Biology. Front Genet 2021; 12:714764. [PMID: 34422015 PMCID: PMC8378213 DOI: 10.3389/fgene.2021.714764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
The last decade has seen a dramatic increase in innovative ideas for the treatment of genetic disorders for which no curative therapies exist. Gene and protein replacement therapies stand out as novel approaches to treat a select group of these diseases, such as certain tissue fragility disorders. Further, the advent of stem cell approaches, such as induced pluripotent stem cells (iPSC) technology, has led to the development of new methods of creating replacement tissues for regenerative medicine. This coincided with the discovery of genome editing techniques, which allow for the correction of disease-causing mutations. The culmination of these discoveries suggests that new and innovative therapies for monogenetic disorders affecting single organs or tissues are on the horizon. Challenges remain, however, especially with diseases that simultaneously affect several tissues and organs during development. Examples of this group of diseases include ectodermal dysplasias, genetic disorders affecting the development of tissues and organs such as the skin, cornea, and epithelial appendages. Gene or protein replacement strategies are unlikely to be successful in addressing the multiorgan phenotype of these diseases. Instead, we believe that a more effective approach will be to focus on correcting phenotypes in the most severely affected tissues. This could include the generation of replacement tissues or the identification of pharmaceutical compounds that correct disease pathways in specific tissues.
Collapse
Affiliation(s)
- Peter J Koch
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), Greenville, NC, United States
| | - Maranke I Koster
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), Greenville, NC, United States
| |
Collapse
|
15
|
Ruiz-Torres S, Lambert PF, Wikenheiser-Brokamp KA, Wells SI. Directed differentiation of human pluripotent stem cells into epidermal stem and progenitor cells. Mol Biol Rep 2021; 48:6213-6222. [PMID: 34350551 PMCID: PMC8504442 DOI: 10.1007/s11033-021-06588-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Pluripotent stem cells (PSCs) produced by somatic cell reprogramming self-renew in culture and can differentiate into any cell type, representing a powerful tool for disease modeling, drug screening, regenerative medicine, and the discovery of personalized therapies to treat tissue-specific pathologies. We previously reported the directed differentiation of human PSCs into epidermal stem and progenitor cells (ESPCs) and 3D epidermis to model the inherited syndrome Fanconi anemia (FA), wherein epidermal cell-junctional defects discovered using this system were validated in patient populations. Here, we describe in detail the corresponding protocol for generating PSC-derived keratinocytes using a distinct, normal PSC line (209.2 PSC). METHODS AND RESULTS Our approach modifies previous protocols to minimize spontaneous cell death and terminal differentiation, eliminate cell stress-inducing keratinocyte selection steps, and reduce total protocol duration and cost. Independent donor-derived PSC lines were converted into ESPCs through the addition of relevant morphogens and a ROCK inhibitor. Results for the 209.2 PSC line highlight consistencies in 2D and also variable features in 3D epidermis compared to the previously published FA-PSC lines. 209.2 PSC-derived ESPCs exhibited a basal cell phenotype while maintaining the capacity to form epidermal organotypic rafts with morphology consistent with fetal epidermis. Transcriptional analyses demonstrated 209.2 ESPCs express epidermis-selective markers and not early endoderm markers, thus supporting an immature stage of p63+ epidermal development. CONCLUSIONS This protocol provides an accelerated path for the generation of human ESPCs and 3D epidermal models to study normal epidermal development and homeostasis, elucidate mechanisms of epidermal disease pathogenesis, and provides a platform for developing personalized therapies.
Collapse
Affiliation(s)
- Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology and Laboratory Medicine and The Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
16
|
Sierra-Sánchez Á, Kim KH, Blasco-Morente G, Arias-Santiago S. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. NPJ Regen Med 2021; 6:35. [PMID: 34140525 PMCID: PMC8211795 DOI: 10.1038/s41536-021-00144-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Wound healing is an important function of skin; however, after significant skin injury (burns) or in certain dermatological pathologies (chronic wounds), this important process can be deregulated or lost, resulting in severe complications. To avoid these, studies have focused on developing tissue-engineered skin substitutes (TESSs), which attempt to replace and regenerate the damaged skin. Autologous cultured epithelial substitutes (CESs) constituted of keratinocytes, allogeneic cultured dermal substitutes (CDSs) composed of biomaterials and fibroblasts and autologous composite skin substitutes (CSSs) comprised of biomaterials, keratinocytes and fibroblasts, have been the most studied clinical TESSs, reporting positive results for different pathological conditions. However, researchers' purpose is to develop TESSs that resemble in a better way the human skin and its wound healing process. For this reason, they have also evaluated at preclinical level the incorporation of other human cell types such as melanocytes, Merkel and Langerhans cells, skin stem cells (SSCs), induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs). Among these, MSCs have been also reported in clinical studies with hopeful results. Future perspectives in the field of human-TESSs are focused on improving in vivo animal models, incorporating immune cells, designing specific niches inside the biomaterials to increase stem cell potential and developing three-dimensional bioprinting strategies, with the final purpose of increasing patient's health care. In this review we summarize the use of different human cell populations for preclinical and clinical TESSs under research, remarking their strengths and limitations and discuss the future perspectives, which could be useful for wound healing purposes.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.
| | - Kevin H Kim
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
| | - Gonzalo Blasco-Morente
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
17
|
Khurana P, Kolundzic N, Flohr C, Ilic D. Human pluripotent stem cells: An alternative for 3D in vitro modelling of skin disease. Exp Dermatol 2021; 30:1572-1587. [PMID: 33864704 DOI: 10.1111/exd.14358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Accepted: 04/05/2021] [Indexed: 01/05/2023]
Abstract
To effectively study the skin and its pathology, various platforms have been used to date, with in vitro 3D skin models being considered the future gold standard. These models have generally been engineered from primary cell lines. However, their short life span leading to the use of various donors, imposes issues with genetic variation. Human pluripotent stem cell (hPSC)-technology holds great prospects as an alternative to the use of primary cell lines to study the pathophysiology of human skin diseases. This is due to their potential to generate an unlimited number of genetically identical skin models that closely mimic the complexity of in vivo human skin. During the past decade, researchers have therefore started to use human embryonic and induced pluripotent stem cells (hESC/iPSC) to derive skin resident-like cells and components. These have subsequently been used to engineer hPSC-derived 3D skin models. In this review, we focus on the advantages, recent developments, and future perspectives in using hPSCs as an alternative cell source for modelling human skin diseases in vitro.
Collapse
Affiliation(s)
- Preeti Khurana
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Assisted Conception Unit, Guy's Hospital, London, UK
| | - Nikola Kolundzic
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Assisted Conception Unit, Guy's Hospital, London, UK
| | - Carsten Flohr
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Dusko Ilic
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Assisted Conception Unit, Guy's Hospital, London, UK
| |
Collapse
|
18
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
19
|
Ruiz-Torres S, Brusadelli MG, Witte DP, Wikenheiser-Brokamp KA, Sauter S, Nelson AS, Sertorio M, Chlon TM, Lane A, Mehta PA, Myers KC, Bedard MC, Pal B, Supp DM, Lambert PF, Komurov K, Kovacic MB, Davies SM, Wells SI. Inherited DNA Repair Defects Disrupt the Structure and Function of Human Skin. Cell Stem Cell 2021; 28:424-435.e6. [PMID: 33232662 PMCID: PMC7935766 DOI: 10.1016/j.stem.2020.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/30/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
Squamous cell carcinoma (SCC) is a global public health burden originating in epidermal stem and progenitor cells (ESPCs) of the skin and mucosa. To understand how genetic risk factors contribute to SCC, studies of ESPC biology are imperative. Children with Fanconi anemia (FA) are a paradigm for extreme SCC susceptibility caused by germline loss-of-function mutations in FA DNA repair pathway genes. To discover epidermal vulnerabilities, patient-derived pluripotent stem cells (PSCs) conditional for the FA pathway were differentiated into ESPCs and PSC-derived epidermal organotypic rafts (PSC-EORs). FA PSC-EORs harbored diminished cell-cell junctions and increased proliferation in the basal cell compartment. Furthermore, desmosome and hemidesmosome defects were identified in the skin of FA patients, and these translated into accelerated blistering following mechanically induced stress. Together, we demonstrate that a critical DNA repair pathway maintains the structure and function of human skin and provide 3D epidermal models wherein SCC prevention can now be explored.
Collapse
Affiliation(s)
- Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - David P Witte
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Sharon Sauter
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Adam S Nelson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mathieu Sertorio
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Timothy M Chlon
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Adam Lane
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Parinda A Mehta
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kasiani C Myers
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mary C Bedard
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bidisha Pal
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Research Department, Shriners Hospitals for Children, Cincinnati, OH 45229, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kakajan Komurov
- Division of Oncology Discovery, Champions Oncology, Inc., University Plaza Dr #307, Hackensack, NJ 07601, USA
| | - Melinda Butsch Kovacic
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Rehabilitative, Exercise, and Nutrition Sciences, University of Cincinnati College of Allied Health Sciences, Cincinnati, OH 45267, USA
| | - Stella M Davies
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
20
|
Lima Cunha D, Oram A, Gruber R, Plank R, Lingenhel A, Gupta MK, Altmüller J, Nürnberg P, Schmuth M, Zschocke J, Šarić T, Eckl KM, Hennies HC. hiPSC-Derived Epidermal Keratinocytes from Ichthyosis Patients Show Altered Expression of Cornification Markers. Int J Mol Sci 2021; 22:1785. [PMID: 33670118 PMCID: PMC7916893 DOI: 10.3390/ijms22041785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited ichthyoses represent a large heterogeneous group of skin disorders characterised by impaired epidermal barrier function and disturbed cornification. Current knowledge about disease mechanisms has been uncovered mainly through the use of mouse models or human skin organotypic models. However, most mouse lines suffer from severe epidermal barrier defects causing neonatal death and human keratinocytes have very limited proliferation ability in vitro. Therefore, the development of disease models based on patient derived human induced pluripotent stem cells (hiPSCs) is highly relevant. For this purpose, we have generated hiPSCs from patients with congenital ichthyosis, either non-syndromic autosomal recessive congenital ichthyosis (ARCI) or the ichthyosis syndrome trichothiodystrophy (TTD). hiPSCs were successfully differentiated into basal keratinocyte-like cells (hiPSC-bKs), with high expression of epidermal keratins. In the presence of higher calcium concentrations, terminal differentiation of hiPSC-bKs was induced and markers KRT1 and IVL expressed. TTD1 hiPSC-bKs showed reduced expression of FLG, SPRR2B and lipoxygenase genes. ARCI hiPSC-bKs showed more severe defects, with downregulation of several cornification genes. The application of hiPSC technology to TTD1 and ARCI demonstrates the successful generation of in vitro models mimicking the disease phenotypes, proving a valuable system both for further molecular investigations and drug development for ichthyosis patients.
Collapse
Affiliation(s)
- Dulce Lima Cunha
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; (D.L.C.); (A.O.); (R.P.)
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria; (A.L.); (J.Z.); (K.M.E.)
- Cologne Center for Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; (J.A.); (P.N.)
| | - Amanda Oram
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; (D.L.C.); (A.O.); (R.P.)
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (R.G.); (M.S.)
| | - Roswitha Plank
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; (D.L.C.); (A.O.); (R.P.)
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria; (A.L.); (J.Z.); (K.M.E.)
| | - Arno Lingenhel
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria; (A.L.); (J.Z.); (K.M.E.)
| | - Manoj K. Gupta
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University Hospital Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany; (M.K.G.); (T.Š.)
| | - Janine Altmüller
- Cologne Center for Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; (J.A.); (P.N.)
| | - Peter Nürnberg
- Cologne Center for Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; (J.A.); (P.N.)
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (R.G.); (M.S.)
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria; (A.L.); (J.Z.); (K.M.E.)
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University Hospital Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany; (M.K.G.); (T.Š.)
| | - Katja M. Eckl
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria; (A.L.); (J.Z.); (K.M.E.)
- Department of Biology, Edge Hill University, St Helens Road, Ormskirk L39 4QP, UK
| | - Hans C. Hennies
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; (D.L.C.); (A.O.); (R.P.)
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria; (A.L.); (J.Z.); (K.M.E.)
- Cologne Center for Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; (J.A.); (P.N.)
| |
Collapse
|
21
|
Ejiugwo M, Rochev Y, Gethin G, O'Connor G. Toward Developing Immunocompetent Diabetic Foot Ulcer-on-a-Chip Models for Drug Testing. Tissue Eng Part C Methods 2021; 27:77-88. [PMID: 33406980 DOI: 10.1089/ten.tec.2020.0331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bioengineering of skin has been significantly explored, ranging from the use of traditional cell culture systems to the most recent organ-on-a-chip (OoC) technology that permits skin modeling on physiological scales among other benefits. This article presents key considerations for developing physiologically relevant immunocompetent diabetic foot ulcer (DFU) models. Diabetic foot ulceration affects hundreds of millions of individuals globally, especially the elderly, and constitutes a major socioeconomic burden. When DFUs are not treated and managed in a timely manner, 15-50% of patients tend to undergo partial or complete amputation of the affected limb. Consequently, at least 40% of such patients die within 5 years postamputation. Currently, therapeutic strategies are actively sought and developed. However, present-day preclinical platforms (animals and in vitro models) are not robust enough to provide reliable data for clinical trials. Insights from published works on immunocompetent skin-on-a-chip models and bioengineering considerations, presented in this article, can inform researchers on how to develop robust OoC models for testing topical therapies such as growth factor-based therapies for DFUs. We propose that immunocompetent DFU-on-a-chip models should be bioengineered using diseased cells derived from individuals; in particular, the pathophysiological contribution of macrophages in diabetic wound healing, along with the typical fibroblasts and keratinocytes, needs to be recapitulated. The ideal model should consist of the following components: diseased cells embedded in reproducible scaffolds, which permit endogenous "diseased" extracellular matrix deposition, and the integration of the derived immunocompetent DFU model onto a microfluidic platform. The proposed DFU platforms will eventually facilitate reliable and robust drug testing of wound healing therapeutics, coupled with reduced clinical trial failure rates. Impact statement Current animal and cell-based systems are not physiologically relevant enough to retrieve reliable results for clinical translation of diabetic foot ulcer (DFU) therapies. Organ-on-a-chip (OoC) technology offers desirable features that could finally enable the vision of modeling DFU for pathophysiological studies and drug testing at a microscale. This article brings together the significant recent findings relevant to developing a minimally functional immunocompetent DFU-on-a-chip model, as wound healing cannot occur without a proper functioning immune response. It looks feasible in the future to recapitulate the stagnant inflammation in DFU (thought to impede wound healing) using OoC, diseased cells, and an endogenously produced extracellular matrix.
Collapse
Affiliation(s)
- Mirella Ejiugwo
- SFI CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway City, Ireland.,School of Physics, and National University of Ireland Galway, Galway City, Ireland
| | - Yury Rochev
- SFI CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway City, Ireland.,School of Physics, and National University of Ireland Galway, Galway City, Ireland
| | - Georgina Gethin
- SFI CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway City, Ireland.,School of Nursing and Midwifery, National University of Ireland Galway, Galway City, Ireland
| | - Gerard O'Connor
- SFI CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway City, Ireland.,School of Physics, and National University of Ireland Galway, Galway City, Ireland
| |
Collapse
|
22
|
Hennies HC, Poumay Y. Skin Disease Models In Vitro and Inflammatory Mechanisms: Predictability for Drug Development. Handb Exp Pharmacol 2021; 265:187-218. [PMID: 33387068 DOI: 10.1007/164_2020_428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Investigative skin biology, analysis of human skin diseases, and numerous clinical and pharmaceutical applications rely on skin models characterized by reproducibility and predictability. Traditionally, such models include animal models, mainly rodents, and cellular models. While animal models are highly useful in many studies, they are being replaced by human cellular models in more and more approaches amid recent technological development due to ethical considerations. The culture of keratinocytes and fibroblasts has been used in cell biology for many years. However, only the development of co-culture and three-dimensional epidermis and full-skin models have fundamentally contributed to our understanding of cell-cell interaction and cell signalling in the skin, keratinocyte adhesion and differentiation, and mechanisms of skin barrier function. The modelling of skin diseases has highlighted properties of the skin important for its integrity and cutaneous development. Examples of monogenic as well as complex diseases including atopic dermatitis and psoriasis have demonstrated the role of skin models to identify pathomechanisms and drug targets. Recent investigations have indicated that 3D skin models are well suitable for drug testing and preclinical studies of topical therapies. The analysis of skin diseases has recognized the importance of inflammatory mechanisms and immune responses and thus other cell types such as dendritic cells and T cells in the skin. Current developments include the production of more complete skin models comprising a range of different cell types. Organ models and even multi-organ systems are being developed for the analysis of higher levels of cellular interaction and drug responses and are among the most recent innovations in skin modelling. They promise improved robustness and flexibility and aim at a body-on-a-chip solution for comprehensive pharmaceutical in vitro studies.
Collapse
Affiliation(s)
- Hans Christian Hennies
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK. .,Cologne Center for Genomics, University Hospital Cologne, Cologne, Germany.
| | - Yves Poumay
- Faculty of Medicine, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| |
Collapse
|
23
|
Naito C, Yamaguchi T, Katsumi H, Kimura S, Kamei S, Morishita M, Kawabata K, Yamamoto A. Human Induced Pluripotent Stem Cell-Based Skin for Assessing Transdermal Drug Permeability and Irritancy. Biol Pharm Bull 2021; 44:140-143. [PMID: 33390542 DOI: 10.1248/bpb.b20-00587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To establish a system for assessing drug permeation and irritation of the skin, the permeation of benzoic acid and isosorbide dinitrate, which are listed in the Pharmacopoeia, and the chemical irritation were evaluated using skin generated from human induced pluripotent stem cells (iPSCs). Multilayer structures and cellular markers (keratin 14 and 10, which are in basal and suprabasal epidermal layers) were clearly detected in our iPSC-based skin. Transepidermal water loss (TEWL) decreased after iPSC-derived keratinocytes were cultured on collagen gels from human primary fibroblasts. These results indicate that the barrier function was partly increased by formation of the living epidermis. The cumulative amount of benzoic acid and isosorbide dinitrate across human iPSC-based skin gradually increased after an initial lag time. Moreover, the irritancy of various chemicals (non-irritants: ultrapure water, allyl phenoxy-acetate, isopropanol, and hexyl salicylate and irritants: 5% sodium dodecyl sulfate (SDS), heptanal, potassium hydroxide (5% aq.) and cyclamen aldehyde) to iPSC-based skin was almost met the irritation criteria of the Organisation for Economic Co-operation and Development (OECD) guideline. The results of our iPSC-based skin evaluation provide useful basic information for developing an assessment system to predict the permeation and safety of new transdermal drugs in human skin.
Collapse
Affiliation(s)
- Chihiro Naito
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| | - Tomoko Yamaguchi
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition
| | | | - Suyo Kimura
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| | - Sachi Kamei
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| | | | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| |
Collapse
|
24
|
van den Bogaard E, Ilic D, Dubrac S, Tomic-Canic M, Bouwstra J, Celli A, Mauro T. Perspective and Consensus Opinion: Good Practices for Using Organotypic Skin and Epidermal Equivalents in Experimental Dermatology Research. J Invest Dermatol 2021; 141:203-205. [PMID: 32450074 PMCID: PMC7680418 DOI: 10.1016/j.jid.2020.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/12/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Ellen van den Bogaard
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dusko Ilic
- Stem Cell Laboratory, Department of Women and Children's Health, Kings College, London, United Kingdom
| | - Sandrine Dubrac
- Epidermal Biology Laboratory, Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, University of Miami, Miami, Florida, USA
| | - Joke Bouwstra
- Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Anna Celli
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Theodora Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA; Dermatology Service, Veterans Affairs Health Care System, San Francisco, California, USA.
| |
Collapse
|
25
|
Koterazawa Y, Koyanagi-Aoi M, Uehara K, Kakeji Y, Aoi T. Retinoic acid receptor γ activation promotes differentiation of human induced pluripotent stem cells into esophageal epithelium. J Gastroenterol 2020; 55:763-774. [PMID: 32556644 PMCID: PMC7376085 DOI: 10.1007/s00535-020-01695-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/02/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND The esophagus is known to be derived from the foregut. However, the mechanisms regulating this process remain unclear. In particular, the details of the human esophagus itself have been poorly researched. In this decade, studies using human induced pluripotent stem cells (hiPSCs) have proven powerful tools for clarifying the developmental biology of various human organs. Several studies using hiPSCs have demonstrated that retinoic acid (RA) signaling promotes the differentiation of foregut into tissues such as lung and pancreas. However, the effect of RA signaling on the differentiation of foregut into esophagus remains unclear. METHODS We established a novel stepwise protocol with transwell culture and an air-liquid interface system for esophageal epithelial cell (EEC) differentiation from hiPSCs. We then evaluated the effect of all-trans retinoic acid (ATRA), which is a retinoic acid receptor (RAR)α, RARβ and RARγ agonist, on the differentiation from the hiPSC-derived foregut. Finally, to identify which RAR subtype was involved in the differentiation, we used synthetic agonists and antagonists of RARα and RARγ, which are known to be expressed in esophagus. RESULTS We successfully generated stratified layers of cells expressing EEC marker genes that were positive for lugol staining. The enhancing effect of ATRA on EEC differentiation was clearly demonstrated with quantitative reverse transcription polymerase chain reaction, immunohistology, lugol-staining and RNA sequencing analyses. RARγ agonist and antagonist enhanced and suppressed EEC differentiation, respectively. RARα agonist had no effect on the differentiation. CONCLUSION We revealed that RARγ activation promotes the differentiation of hiPSCs-derived foregut into EECs.
Collapse
Affiliation(s)
- Yasufumi Koterazawa
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Japan
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan
| | - Keiichiro Uehara
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Japan
- Division of Pathology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Takashi Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
- Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Japan.
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan.
| |
Collapse
|
26
|
Barros N, Kim H, Goudie MJ, Lee K, Bandaru P, Banton EA, Sarikhani E, Sun W, Zhang S, Cho HJ, Hartel MC, Ostrovidov S, Ahadian S, Hussain S, Ashammakhi N, Dokmeci MR, Herculano RD, Lee J, Khademhosseini A. Biofabrication of endothelial cell, dermal fibroblast, and multilayered keratinocyte layers for skin tissue engineering. Biofabrication 2020; 13. [PMID: 32650324 DOI: 10.1088/1758-5090/aba503] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023]
Abstract
The skin serves a substantial number of physiological purposes and is exposed to numerous biological and chemical agents owing to its large surface area and accessibility. Yet, current skin models are limited in emulating the multifaceted functions of skin tissues due to a lack of effort on the optimization of biomaterials and techniques at different skin layers for building skin frameworks. Here, we use biomaterial-based approaches and bioengineered techniques to develop a 3D skin model with layers of endothelial cell networks, dermal fibroblasts, and multilayered keratinocytes. Analysis of mechanical properties of gelatin methacryloyl (GelMA)-based bioinks mixed with different portions of alginate revealed bioprinted endothelium could be better modeled to optimize endothelial cell viability with a mixture of 7.5% GelMA and 2% alginate. Matrix stiffness plays a crucial role in modulating produced levels of Pro-Collagen I alpha-1 and matrix metalloproteinase-1 in human dermal fibroblasts and affecting their viability, proliferation, and spreading. Moreover, seeding human keratinocytes with gelatin-coating multiple times proves helpful in reducing culture time to create multilayered keratinocytes while maintaining their viability. The ability to fabricate selected biomaterials for each layer of skin tissues has implications in the biofabrication of skin systems for regenerative medicine and disease modeling.
Collapse
Affiliation(s)
- Natan Barros
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, UNITED STATES
| | - Hanjun Kim
- University of California Los Angeles, Los Angeles, California, 90095, UNITED STATES
| | - Marcus J Goudie
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, UNITED STATES
| | - KangJu Lee
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | - Praveen Bandaru
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | - Ethan A Banton
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | | | - Wujin Sun
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | - Shiming Zhang
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | - Hyun-Jong Cho
- Pharmacy, Kangwon National University, Chuncheon, Gangwon-do, Korea (the Republic of)
| | - Martin C Hartel
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | | | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, UNITED STATES
| | - Saber Hussain
- , Molecular Bioeffects Branch, Wright Patterson AFB, Ohio, UNITED STATES
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, UNITED STATES
| | - Mehmet R Dokmeci
- Radiology, UCLA, CNSI 4528, 570 Westwood Plaza, Los Angeles, California, 90095, UNITED STATES
| | | | - Junmin Lee
- Terasaki Institute, Los Angeles, California, UNITED STATES
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics, UCLA, Los Angeles, California, UNITED STATES
| |
Collapse
|
27
|
Huang W, Hu H, Zhang Q, Wang N, Yang X, Guo AY. Genome-Wide DNA Methylation Enhances Stemness in the Mechanical Selection of Tumor-Repopulating Cells. Front Bioeng Biotechnol 2020; 8:88. [PMID: 32258002 PMCID: PMC7090028 DOI: 10.3389/fbioe.2020.00088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
Background DNA methylation plays essential roles in tumor occurrence and stemness maintenance. Tumor-repopulating cells (TRCs) are cancer stem cell (CSC)-like cells with highly tumorigenic and self-renewing abilities, which were selected from tumor cells in soft three-dimensional (3D) fibrin gels. Methods Here, we presented a genome-wide map of methylated cytosines for time-series samples in TRC selection, in a 3D culture using whole-genome bisulfite sequencing (WGBS). Results A comparative analysis revealed that the methylation degrees of many differentially methylated genes (DMGs) were increased by the mechanical environment and changed from 2D rigid to 3D soft. DMGs were significantly enriched in stemness-related terms. In 1-day, TRCs had the highest non-CG methylation rate indicating its strong stemness. We found that genes with continuously increasing or decreasing methylation like CREB5/ADAMTS6/LMX1A may also affect the TRC screening process. Furthermore, results showed that stage-specific/common CSCs markers were biased toward changing their methylation in non-CG (CHG and CHH, where H corresponds to A, T, or C) methylation and enriched in gene body region. Conclusions WGBS provides DNA methylome in TRC screening. It was confirmed that non-CG DNA methylation plays an important role in TRC selection, which indicates that it is more sensitive to mechanical microenvironments and affects TRCs by regulating the expression of stemness genes in tumor cells.
Collapse
Affiliation(s)
- Wei Huang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Hu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhang
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - An-Yuan Guo
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Sharma A, Sances S, Workman MJ, Svendsen CN. Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell 2020; 26:309-329. [PMID: 32142662 PMCID: PMC7159985 DOI: 10.1016/j.stem.2020.02.011] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) provide a powerful platform for disease modeling and have unlocked new possibilities for understanding the mechanisms governing human biology, physiology, and genetics. However, hiPSC-derivatives have traditionally been utilized in two-dimensional monocultures, in contrast to the multi-systemic interactions that influence cells in the body. We will discuss recent advances in generating more complex hiPSC-based systems using three-dimensional organoids, tissue-engineering, microfluidic organ-chips, and humanized animal systems. While hiPSC differentiation still requires optimization, these next-generation multi-lineage technologies can augment the biomedical researcher's toolkit and enable more realistic models of human tissue function.
Collapse
Affiliation(s)
- Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Samuel Sances
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael J Workman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
29
|
Zhong H, Ren Z, Wang X, Miao K, Ni W, Meng Y, Lu L, Wang C, Liu W, Deng CX, Xu RH, Chen G. Stagewise keratinocyte differentiation from human embryonic stem cells by defined signal transduction modulators. Int J Biol Sci 2020; 16:1450-1462. [PMID: 32210732 PMCID: PMC7085224 DOI: 10.7150/ijbs.44414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 01/02/2023] Open
Abstract
Keratinocyte is the predominant cell type in the epidermis of skin, and it provides the protective barrier function for the body. Various signaling pathways have been implicated in keratinocyte differentiation in animal models; However, their temporal regulation and interactions are still to be explored in pluripotent stem cell models. In this report, we use human embryonic stem cells to demonstrate that epidermal ectoderm and subsequent keratinocyte cell fate can be determined step by step under the regulation of defined factors. The inhibition of TGFβ initiates ectodermal lineage differentiation, and the activation of BMP pathway drives epidermal TP63 expression. Meanwhile, the timely activation of WNT pathway suppresses extraembryonic lineage, and promotes epidermal cell fate. With further specification by NOTCH inhibition, more than 90% of cells become TP63-positive stage Ⅱ keratinocytes. Finally, stage Ⅲ keratinocytes are produced under defined hypo-calcium keratinocyte culture conditions, and are further matured in mouse xenograft model. This study not only establishes an in vitro platform to study keratinocyte cell fate determination, but also provides an efficient protocol to produce keratinocytes for disease models and clinical applications.
Collapse
Affiliation(s)
- Hui Zhong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Zhili Ren
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Xiaoyan Wang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Kai Miao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Wenjun Ni
- Department of Urology Surgery, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong 519000, China
| | - Ya Meng
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong 519000, China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong 519000, China.,Center of Interventional radiology, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong 519000, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau.,Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Ren-He Xu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau.,Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
30
|
Thélu A, Catoire S, Kerdine-Römer S. Immune-competent in vitro co-culture models as an approach for skin sensitisation assessment. Toxicol In Vitro 2020; 62:104691. [DOI: 10.1016/j.tiv.2019.104691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
|
31
|
Naito C, Yamaguchi T, Katsumi H, Kimura S, Kamei S, Morishita M, Sakane T, Kawabata K, Yamamoto A. Utility of Three-Dimensional Skin From Human-Induced Pluripotent Stem Cells as a Tool to Evaluate Transdermal Drug Permeation. J Pharm Sci 2019; 108:3524-3527. [DOI: 10.1016/j.xphs.2019.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022]
|
32
|
Lukács B, Bajza Á, Kocsis D, Csorba A, Antal I, Iván K, Laki AJ, Erdő F. Skin-on-a-Chip Device for Ex Vivo Monitoring of Transdermal Delivery of Drugs-Design, Fabrication, and Testing. Pharmaceutics 2019; 11:pharmaceutics11090445. [PMID: 31480652 PMCID: PMC6781558 DOI: 10.3390/pharmaceutics11090445] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
To develop proper drug formulations and to optimize the delivery of their active ingredients through the dermal barrier, the Franz diffusion cell system is the most widely used in vitro/ex vivo technique. However, different providers and manufacturers make various types of this equipment (horizontal, vertical, static, flow-through, smaller and larger chambers, etc.) with high variability and not fully comparable and consistent data. Furthermore, a high amount of test drug formulations and large size of diffusion skin surface and membranes are important requirements for the application of these methods. The aim of our study was to develop a novel Microfluidic Diffusion Chamber device and compare it with the traditional techniques. Here the design, fabrication, and a pilot testing of a microfluidic skin-on-a chip device are described. Based on this chip, further developments can also be implemented for industrial purposes to assist the characterization and optimization of drug formulations, dermal pharmacokinetics, and pharmacodynamic studies. The advantages of our device, beside the low costs, are the small drug and skin consumption, low sample volumes, dynamic arrangement with continuous flow mimicking the dermal circulation, as well as rapid and reproducible results.
Collapse
Affiliation(s)
- Bence Lukács
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - Ágnes Bajza
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - Attila Csorba
- Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre u. 7, H-1092 Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - András József Laki
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47. H-1094 Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary.
| |
Collapse
|
33
|
Induced pluripotent stem cell line heterozygous for p.R501X mutation in filaggrin: KCLi003-A. Stem Cell Res 2019; 39:101527. [DOI: 10.1016/j.scr.2019.101527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 11/13/2022] Open
|
34
|
Induced pluripotent stem cell line heterozygous for p.R2447X mutation in filaggrin: KCLi002-A. Stem Cell Res 2019; 38:101462. [DOI: 10.1016/j.scr.2019.101462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 11/18/2022] Open
|
35
|
Zhang Y, Shi Q, Wei W, Xu F, Nie F, Yang H. Effects of microcystin-LR on the immune dysfunction and ultrastructure of hepatopancreas in giant freshwater prawn Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2019; 89:586-594. [PMID: 30991147 DOI: 10.1016/j.fsi.2019.04.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Microcystins (MCs), produced by cyanobacteria, can strongly inhibit the activity of protein phosphatase, and exhibit strong hepatotoxicity. Macrobrachium rosenbergii is an important aquaculture economic species. Cyanobacterial blooms occur frequently during the culture of M. rosenbergii. However, the effects of MCs on the M. rosenbergii immune function have not been studied. In the present study, M. rosenbergii were exposed to environment-related concentrations of MC-LR type (0.5 and 5 μg/L) for 3 weeks. Hepatopancreatic histology was investigated, and antioxidant enzymes activity, acid phosphatase, alkaline phosphatase and lysozyme activity in hepatopancreas were also analyzed. Results showed that MC-LR could damage M. rosenbergii hepatopancreas, induce hepatopancreatic apoptosis and antioxidant dysfunctions. The expression profiles of major immune-related genes after MC-LR exposure were also detected. Some genes with antibacterial functions were suppressed, and the expression of apoptosis-related genes were up-regulated. After MC-LR exposure, the cumulative mortality of M. rosenbergii infected with Vibrio vulnificus and Aeromonas hydrophila were much higher than the control in a time-dose dependent manner. These results indicated the potential negative influence of MC-LR on the immune function of M. rosenbergii.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qiang Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Fei Xu
- Lake Gaobaoshaobo Fishery Administrative Committee, 732 Middle Yangzijiang Road, Yangzhou, 225009, China
| | - Fubing Nie
- Lake Gaobaoshaobo Fishery Administrative Committee, 732 Middle Yangzijiang Road, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
36
|
3D-Organotypic Cultures to Unravel Molecular and Cellular Abnormalities in Atopic Dermatitis and Ichthyosis Vulgaris. Cells 2019; 8:cells8050489. [PMID: 31121896 PMCID: PMC6562513 DOI: 10.3390/cells8050489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Atopic dermatitis (AD) is characterized by dry and itchy skin evolving into disseminated skin lesions. AD is believed to result from a primary acquired or a genetically-induced epidermal barrier defect leading to immune hyper-responsiveness. Filaggrin (FLG) is a protein found in the cornified envelope of fully differentiated keratinocytes, referred to as corneocytes. Although FLG null mutations are strongly associated with AD, they are not sufficient to induce the disease. Moreover, most patients with ichthyosis vulgaris (IV), a monogenetic skin disease characterized by FLG homozygous, heterozygous, or compound heterozygous null mutations, display non-inflamed dry and scaly skin. Thus, all causes of epidermal barrier impairment in AD have not yet been identified, including those leading to the Th2-predominant inflammation observed in AD. Three dimensional organotypic cultures have emerged as valuable tools in skin research, replacing animal experimentation in many cases and precluding the need for repeated patient biopsies. Here, we review the results on IV and AD obtained with epidermal or skin equivalents and consider these findings in the context of human in vivo data. Further research utilizing complex models including immune cells and cutaneous innervation will enable finer dissection of the pathogenesis of AD and deepen our knowledge of epidermal biology.
Collapse
|
37
|
Kolundzic N, Khurana P, Hobbs C, Rogar M, Ropret S, Törmä H, Ilic D, Liovic M. Induced pluripotent stem cell (iPSC) line from an epidermolysis bullosa simplex patient heterozygous for keratin 5 E475G mutation and with the Dowling Meara phenotype. Stem Cell Res 2019; 37:101424. [DOI: 10.1016/j.scr.2019.101424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 11/24/2022] Open
|
38
|
Devito L, Klontzas ME, Cvoro A, Galleu A, Simon M, Hobbs C, Dazzi F, Mantalaris A, Khalaf Y, Ilic D. Comparison of human isogeneic Wharton's jelly MSCs and iPSC-derived MSCs reveals differentiation-dependent metabolic responses to IFNG stimulation. Cell Death Dis 2019; 10:277. [PMID: 30894508 PMCID: PMC6426992 DOI: 10.1038/s41419-019-1498-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Variability among donors, non-standardized methods for isolation, and characterization contribute to mesenchymal stem/stromal cell (MSC) heterogeneity. Induced pluripotent stem cell (iPSCs)-derived MSCs would circumvent many of current issues and enable large-scale production of standardized cellular therapy. To explore differences between native MSCs (nMSCs) and iPSC-derived MSCs (iMSCs), we developed isogeneic lines from Wharton’s jelly (WJ) from the umbilical cords of two donors (#12 and #13) under xeno-free conditions. Next, we reprogrammed them into iPSCs (iPSC12 and iPSC13) and subsequently differentiated them back into iMSCs (iMSC12 and iMSC13) using two different protocols, which we named ARG and TEX. We assessed their differentiation capability, transcriptome, immunomodulatory potential, and interferon-γ (IFNG)-induced changes in metabolome. Our data demonstrated that although both differentiation protocols yield iMSCs similar to their parental nMSCs, there are substantial differences. The ARG protocol resulted in iMSCs with a strong immunomodulatory potential and lower plasticity and proliferation rate, whereas the TEX protocol raised iMSCs with a higher proliferation rate, better differentiation potential, though weak immunomodulatory response. Our data suggest that, following a careful selection and screening of donors, nMSCs from umbilical’s cord WJ can be easily reprogrammed into iPSCs, providing an unlimited source of material for differentiation into iMSCs. However, the differentiation protocol should be chosen depending on their clinical use.
Collapse
Affiliation(s)
- Liani Devito
- Department of Women and Children's Health, King's College London, Guy's Hospital, London, UK
| | | | - Aleksandra Cvoro
- Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Antonio Galleu
- Department of Haemato-oncology, Rayne Institute, King's College London, London, UK
| | - Marisa Simon
- Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Carl Hobbs
- Histology Laboratory, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Francesco Dazzi
- Department of Haemato-oncology, Rayne Institute, King's College London, London, UK
| | - Athanasios Mantalaris
- Department of Chemical Engineering, Imperial College London, London, UK.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 950 Atlantic Drive, Engineering Biosciences Building, Rm 3016, Atlanta, GA, 30332, USA
| | - Yacoub Khalaf
- Department of Women and Children's Health, King's College London, Guy's Hospital, London, UK
| | - Dusko Ilic
- Department of Women and Children's Health, King's College London, Guy's Hospital, London, UK.
| |
Collapse
|
39
|
Kashpur O, Smith A, Gerami-Naini B, Maione AG, Calabrese R, Tellechea A, Theocharidis G, Liang L, Pastar I, Tomic-Canic M, Mooney D, Veves A, Garlick JA. Differentiation of diabetic foot ulcer-derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes. FASEB J 2019; 33:1262-1277. [PMID: 30088952 PMCID: PMC6355091 DOI: 10.1096/fj.201801059] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/23/2018] [Indexed: 01/05/2023]
Abstract
Diabetic foot ulcers (DFUs) are a major complication of diabetes, and there is a critical need to develop novel cell- and tissue-based therapies to treat these chronic wounds. Induced pluripotent stem cells (iPSCs) offer a replenishing source of allogeneic and autologous cell types that may be beneficial to improve DFU wound-healing outcomes. However, the biologic potential of iPSC-derived cells to treat DFUs has not, to our knowledge, been investigated. Toward that goal, we have performed detailed characterization of iPSC-derived fibroblasts from both diabetic and nondiabetic patients. Significantly, gene array and functional analyses reveal that iPSC-derived fibroblasts from both patients with and those without diabetes are more similar to each other than were the primary cells from which they were derived. iPSC-derived fibroblasts showed improved migratory properties in 2-dimensional culture. iPSC-derived fibroblasts from DFUs displayed a unique biochemical composition and morphology when grown as 3-dimensional (3D), self-assembled extracellular matrix tissues, which were distinct from tissues fabricated using the parental DFU fibroblasts from which they were reprogrammed. In vivo transplantation of 3D tissues with iPSC-derived fibroblasts showed they persisted in the wound and facilitated diabetic wound closure compared with primary DFU fibroblasts. Taken together, our findings support the potential application of these iPSC-derived fibroblasts and 3D tissues to improve wound healing.-Kashpur, O., Smith, A., Gerami-Naini, B., Maione, A. G., Calabrese, R., Tellechea, A., Theocharidis, G., Liang, L., Pastar, I., Tomic-Canic, M., Mooney, D., Veves, A., Garlick, J. A. Differentiation of diabetic foot ulcer-derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes.
Collapse
Affiliation(s)
- Olga Kashpur
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Avi Smith
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Behzad Gerami-Naini
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Anna G. Maione
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Rossella Calabrese
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Ana Tellechea
- Microcirculation Laboratory, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | - Georgios Theocharidis
- Microcirculation Laboratory, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | - Liang Liang
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; and
| | - Irena Pastar
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; and
| | - Marjana Tomic-Canic
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; and
| | - David Mooney
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Aristidis Veves
- Microcirculation Laboratory, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | - Jonathan A. Garlick
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Jung JP, Lin WH, Riddle MJ, Tolar J, Ogle BM. A 3D in vitro model of the dermoepidermal junction amenable to mechanical testing. J Biomed Mater Res A 2018; 106:3231-3238. [PMID: 30208260 PMCID: PMC6283247 DOI: 10.1002/jbm.a.36519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/20/2018] [Accepted: 07/31/2018] [Indexed: 01/06/2023]
Abstract
Recessive dystrophic Epidermolysis Bullosa (RDEB) is caused by mutations in collagen‐type VII gene critical for the dermoepidermal junction (DEJ) formation. Neither tissues of animal models nor currently available in vitro models are amenable to the quantitative assessment of mechanical adhesion between dermal and epidermal layers. Here, we created a 3D in vitro DEJ model using extracellular matrix (ECM) proteins of the DEJ anchored to a poly(ethylene glycol)‐based slab (termed ECM composites) and seeded with human keratinocytes and dermal fibroblasts. Keratinocytes and fibroblasts of healthy individuals were well maintained in the ECM composite and showed the expression of collagen type VII over a 2‐week period. The ECM composites with healthy keratinocytes and fibroblasts exhibited yield stress associated with the separation of the model DEJ at 0.268 ± 0.057 kPa. When we benchmarked this measure of adhesive strength with that of the model DEJ fabricated with cells of individuals with RDEB, the yield stress was significantly lower (0.153 ± 0.064 kPa) consistent with our current mechanistic understanding of RDEB. In summary, a 3D in vitro model DEJ was developed for quantification of mechanical adhesion between epidermal‐ and dermal‐mimicking layers, which can be utilized for assessment of mechanical adhesion of the model DEJ applicable for Epidermolysis Bullosa‐associated therapeutics. © 2018 The Authors. Journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3231–3238, 2018.
Collapse
Affiliation(s)
- Jangwook P Jung
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Wei-Han Lin
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Megan J Riddle
- Department of Pediatrics, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Department of Pediatrics, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Institute for Engineering in Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
41
|
The potential of human induced pluripotent stem cells for modelling diabetic wound healing in vitro. Clin Sci (Lond) 2018; 132:1629-1643. [PMID: 30108152 DOI: 10.1042/cs20171483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Impaired wound healing and ulceration caused by diabetes mellitus, is a significant healthcare burden, markedly impairs quality of life for patients, and is the major cause of amputation worldwide. Current experimental approaches used to investigate the complex wound healing process often involve cultures of fibroblasts and/or keratinocytes in vitro, which can be limited in terms of complexity and capacity, or utilisation of rodent models in which the mechanisms of wound repair differ substantively from that in humans. However, advances in tissue engineering, and the discovery of strategies to reprogramme adult somatic cells to pluripotency, has led to the possibility of developing models of human skin on a large scale. Generation of induced pluripotent stem cells (iPSCs) from tissues donated by diabetic patients allows the (epi)genetic background of this disease to be studied, and the ability to differentiate iPSCs to multiple cell types found within skin may facilitate the development of more complex skin models; these advances offer key opportunities for improving modelling of wound healing in diabetes, and the development of effective therapeutics for treatment of chronic wounds.
Collapse
|
42
|
Devito L, Donne M, Kolundzic N, Khurana P, Hobbs C, Kaddour G, Dubrac S, Gruber R, Schmuth M, Mauro T, Ilic D. Induced pluripotent stem cell line from an atopic dermatitis patient heterozygous for c.2282del4 mutation in filaggrin: KCLi001-A. Stem Cell Res 2018; 31:122-126. [PMID: 30075366 PMCID: PMC7514110 DOI: 10.1016/j.scr.2018.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 12/05/2022] Open
Abstract
We have generated an induced pluripotent stem cell (iPSC) line KCLi001-A (iOP118) from a female atopic dermatitis (AD) patient, heterozygous for the loss-of-function mutation c.2282del4 in the filaggrin gene (FLG). Epidermal keratinocytes were reprogrammed using non-integrating Sendai virus vectors. The entire process of derivation and expansion of AD-iPSCs were performed under xeno-free culture conditions. Characterization of KCLi001-A line included molecular karyotyping, mutation screening using restriction enzyme digestion and Sanger sequencing, while pluripotency and differentiation potential were confirmed by expression of associated markers in vitro and by in vivo teratoma assay.
Collapse
Affiliation(s)
- Liani Devito
- Stem Cell Laboratory, Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Assisted Conception Unit, Guy's Hospital, London, UK
| | | | - Nikola Kolundzic
- Stem Cell Laboratory, Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Assisted Conception Unit, Guy's Hospital, London, UK
| | - Preeti Khurana
- Stem Cell Laboratory, Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Assisted Conception Unit, Guy's Hospital, London, UK
| | - Carl Hobbs
- Histology Laboratory, Wolfson Centre for Age-Related Diseases, School of Biomedical Sciences, King's College London, London, UK
| | - Gabriel Kaddour
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, France
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thea Mauro
- Dermatology Services, Veteran Affairs Medical Center, University of California San Francisco, San Francisco, California, USA
| | - Dusko Ilic
- Stem Cell Laboratory, Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Assisted Conception Unit, Guy's Hospital, London, UK.
| |
Collapse
|
43
|
Liao CH, Wang YH, Chang WW, Yang BC, Wu TJ, Liu WL, Yu AL, Yu J. Leucine-Rich Repeat Neuronal Protein 1 Regulates Differentiation of Embryonic Stem Cells by Post-Translational Modifications of Pluripotency Factors. Stem Cells 2018; 36:1514-1524. [PMID: 29893054 DOI: 10.1002/stem.2862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 01/12/2023]
Abstract
Stem cell surface markers may facilitate a better understanding of stem cell biology through molecular function studies or serve as tools to monitor the differentiation status and behavior of stem cells in culture or tissue. Thus, it is important to identify additional novel stem cell markers. We used glycoproteomics to discover surface glycoproteins on human embryonic stem cells (hESCs) that may be useful stem cell markers. We found that a surface glycoprotein, leucine-rich repeat neuronal protein 1 (LRRN1), is expressed abundantly on the surface of hESCs before differentiation into embryoid bodies (EBs). Silencing of LRRN1 with short hairpin RNA (shLRRN1) in hESCs resulted in decreased capacity of self-renewal, and skewed differentiation toward endoderm/mesoderm lineages in vitro and in vivo. Meanwhile, the protein expression levels of the pluripotency factors OCT4, NANOG, and SOX2 were reduced. Interestingly, the mRNA levels of these pluripotency factors were not affected in LRRN1 silenced cells, but protein half-lives were substantially shortened. Furthermore, we found LRRN1 silencing led to nuclear export and proteasomal degradation of all three pluripotency factors. In addition, the effects on nuclear export were mediated by AKT phosphorylation. These results suggest that LRRN1 plays an important role in maintaining the protein stability of pluripotency factors through AKT phosphorylation, thus maintaining hESC self-renewal capacity and pluripotency. Overall, we found that LRRN1 contributes to pluripotency of hESC by preventing translocation of OCT4, NANOG, and SOX2 from nucleus to cytoplasm, thereby lessening their post-translational modification and degradation. Stem Cells 2018;36:1514-1524.
Collapse
Affiliation(s)
- Chien-Huang Liao
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ya-Hui Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wei-Wei Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Bei-Chia Yang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wei-Li Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
44
|
Ronaldson-Bouchard K, Vunjak-Novakovic G. Organs-on-a-Chip: A Fast Track for Engineered Human Tissues in Drug Development. Cell Stem Cell 2018; 22:310-324. [PMID: 29499151 PMCID: PMC5837068 DOI: 10.1016/j.stem.2018.02.011] [Citation(s) in RCA: 417] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Organs-on-a-chip (OOCs) are miniature tissues and organs grown in vitro that enable modeling of human physiology and disease. The technology has emerged from converging advances in tissue engineering, semiconductor fabrication, and human cell sourcing. Encompassing innovations in human stem cell technology, OOCs offer a promising approach to emulate human patho/physiology in vitro, and address limitations of current cell and animal models. Here, we review the design considerations for single and multi-organ OOCs, discuss remaining challenges, and highlight the potential impact of OOCs as a fast-track opportunity for tissue engineering to advance drug development and precision medicine.
Collapse
Affiliation(s)
- Kacey Ronaldson-Bouchard
- Department of Biomedical Engineering, Columbia University in the City of New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University in the City of New York, NY 10032, USA; Department of Medicine, Columbia University in the City of New York, NY 10032, USA.
| |
Collapse
|
45
|
Skin-on-a-Chip: Transepithelial Electrical Resistance and Extracellular Acidification Measurements through an Automated Air-Liquid Interface. Genes (Basel) 2018; 9:genes9020114. [PMID: 29466319 PMCID: PMC5852610 DOI: 10.3390/genes9020114] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/24/2022] Open
Abstract
Skin is a critical organ that plays a crucial role in defending the internal organs of the body. For this reason, extensive work has gone into creating artificial models of the epidermis for in vitro skin toxicity tests. These tissue models, called reconstructed human epidermis (RhE), are used by researchers in the pharmaceutical, cosmetic, and environmental arenas to evaluate skin toxicity upon exposure to xenobiotics. Here, we present a label-free solution that leverages the use of the intelligent mobile lab for in vitro diagnostics (IMOLA-IVD), a noninvasive, sensor-based platform, to monitor the transepithelial electrical resistance (TEER) of RhE models and adherent cells cultured on porous membrane inserts. Murine fibroblasts cultured on polycarbonate membranes were first used as a test model to optimize procedures using a custom BioChip encapsulation design, as well as dual fluidic configurations, for continuous and automated perfusion of membrane-bound cultures. Extracellular acidification rate (EAR) and TEER of membrane-bound L929 cells were monitored. The developed protocol was then used to monitor the TEER of MatTek EpiDermTM RhE models over a period of 48 h. TEER and EAR measurements demonstrated that the designed system is capable of maintaining stable cultures on the chip, monitoring metabolic parameters, and revealing tissue breakdown over time.
Collapse
|
46
|
Silva Santisteban T, Rabajania O, Kalinina I, Robinson S, Meier M. Rapid spheroid clearing on a microfluidic chip. LAB ON A CHIP 2017; 18:153-161. [PMID: 29192297 DOI: 10.1039/c7lc01114h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spheroids are three-dimensional (3D) cell cultures that aim to bridge the gap between the use of whole animals and cellular monolayers. Microfluidics is regarded as an enabling technology to actively control the chemical environment of 3D cell cultures. Although a wide variety of platforms have been developed to handle spheroid cultures, the development of analytical systems for spheroids remains a major challenge. In this study, we engineered a microfluidic large-scale integration (mLSI) chip platform for tissue-clearing and imaging. To enable handling and culturing of spheroids on mLSI chips, with diameters within hundreds of microns, we first developed a general rapid prototyping procedure, which allows scaling up of the size of pneumatic membrane valves (PMV). The presented prototyping method makes use of milled poly(methylmethacrylate) (PMMA) molds for obtaining semi-circular microchannels with heights up to 750 μm. Semi-circular channel profiles are required for the functioning of the commonly used PMVs in normally open configuration. Height limits to tens of microns for this channel profile on photolithographic molds have hampered the application of 3D tissue models on mLSI chips. The prototyping technique was applied to produce an mLSI chip for miniaturization, automation, and integration of the steps involved in the tissue clearing method CLARITY, including spheroid fixation, acrylamide hydrogel infiltration, temperature-initiated hydrogel polymerization, lipid extraction, and immuno-fluorescence staining of the mitochondrial protein COX-IV, and metabolic enzyme GAPDH. Precise fluidic control over the liquids in the spheroid culturing chambers allowed implementation of a local hydrogel polymerization reaction, exclusively within the spheroid tissue. Hydrogel-embedded spheroids undergo swelling and shrinkage depending on the pH of the surrounding buffer solution. A pH-jump from 8.5 to 5.5 shrinks the hydrogel-embedded spheroid volume by 108% with a rate constant of 0.36 min-1. The process is reversible upon increasing the pH, with the rate constant for the shrinkage being -0.12 min-1. Repetitive cycling of the pH induces an osmotic flow within the hydrogel-embedded spheroid. Thirty cycles, performed in a total time interval of 10 minutes on-chip, reduced the clearing time of a hydrogel-embedded spheroid (with a diameter of 200 μm) from 14 days to 5 hours. Therefore, we developed a physicochemical method to decrease the clearing time of hydrogel-embedded tissues. While the osmotic pump mechanism is an alternative to electrophoretic forces for decreasing tissue clearing times, the integration of the CLARITY method on chip could enable high throughput imaging with 3D tissue cultures.
Collapse
Affiliation(s)
- Tomas Silva Santisteban
- Microfluidic and Biological Engineering, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
47
|
Effects of maternal obesity on Wharton's Jelly mesenchymal stromal cells. Sci Rep 2017; 7:17595. [PMID: 29242640 PMCID: PMC5730612 DOI: 10.1038/s41598-017-18034-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/05/2017] [Indexed: 01/03/2023] Open
Abstract
We investigated whether maternal metabolic environment affects mesenchymal stromal/stem cells (MSCs) from umbilical cord’s Wharton’s Jelly (WJ) on a molecular level, and potentially render them unsuitable for clinical use in multiple recipients. In this pilot study on umbilical cords post partum from healthy non-obese (BMI = 19–25; n = 7) and obese (BMI ≥ 30; n = 7) donors undergoing elective Cesarean section, we found that WJ MSC from obese donors showed slower population doubling and a stronger immunosuppressive activity. Genome-wide DNA methylation of triple positive (CD73+CD90+CD105+) WJ MSCs found 67 genes with at least one CpG site where the methylation difference was ≥0.2 in four or more obese donors. Only one gene, PNPLA7, demonstrated significant difference on methylome, transcriptome and protein level. Although the number of analysed donors is limited, our data suggest that the altered metabolic environment related to excessive body weight might bear consequences on the WJ MSCs.
Collapse
|
48
|
Ross K. Towards topical microRNA-directed therapy for epidermal disorders. J Control Release 2017; 269:136-147. [PMID: 29133119 DOI: 10.1016/j.jconrel.2017.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 01/09/2023]
Abstract
There remains an unmet dermatological need for innovative topical agents that achieve better longterm outcomes with fewer side effects. Modulation of the expression and activity of microRNA (miRNAs) represents an emerging translational framework for the development of such innovative therapies because changes in the expression of one miRNA can have wide-ranging effects on diverse cellular processes associated with disease. In this short review, the roles of miRNA in epidermal development, psoriasis, cutaneous squamous cell carcinoma and re-epithelisation are highlighted. Consideration is given to the delivery of oligonucleotides that mimic or inhibit miRNA function using vehicles such as cell penetrating peptides, spherical nucleic acids, deformable liposomes and liquid crystalline nanodispersions. Formulation of miRNA-directed oligonucleotides with such skin-penetrating epidermal agents will drive the development of RNA-based cutaneous therapeutics for deployment as primary or adjuvant therapies for epidermal disorders.
Collapse
Affiliation(s)
- Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
49
|
Zhang Q, Zu T, Zhou Q, Wen J, Leng X, Wu X. The patch assay reconstitutes mature hair follicles by culture-expanded human cells. Regen Med 2017; 12:503-511. [PMID: 28749726 DOI: 10.2217/rme-2017-0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM We tested whether the a simple injection known as the patch assay could reconstitute mature hair follicles by culture-expanded human cells and explored whether the assay could reflect the trichogenicity of cultured cells. MATERIALS & METHODS Dissociated culture-expanded fetal or adult scalp dermal cells combined with foreskin keratinocytes were subcutaneously injected into the back skin of immunosuppressive mice to form the patch skin. The patches were collected and characterized and were analyzed for hair formation efficiency. RESULTS Using culture-expanded human fetal cells, the patch assay can efficiently reconstitute mature hair follicles and the efficiency of hair formation in the patch assay correlates with cell trichogenicity. CONCLUSION The patch assay has the potential for testing the trichogenicity of human cells.
Collapse
Affiliation(s)
- Qun Zhang
- Suzhou Institute of Shandong University, Building H of NUSP, 388 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, China.,School of Stomatology, Shandong University, Jinan, Shandong China
| | - Tingjian Zu
- School of Stomatology, Shandong University, Jinan, Shandong China
| | - Qian Zhou
- School of Stomatology, Shandong University, Jinan, Shandong China
| | - Jie Wen
- School of Stomatology, Shandong University, Jinan, Shandong China
| | - Xue Leng
- School of Stomatology, Shandong University, Jinan, Shandong China
| | - Xunwei Wu
- Suzhou Institute of Shandong University, Building H of NUSP, 388 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, China.,School of Stomatology, Shandong University, Jinan, Shandong China
| |
Collapse
|
50
|
van den Broek LJ, Bergers LIJC, Reijnders CMA, Gibbs S. Progress and Future Prospectives in Skin-on-Chip Development with Emphasis on the use of Different Cell Types and Technical Challenges. Stem Cell Rev Rep 2017; 13:418-429. [PMID: 28536890 PMCID: PMC5486511 DOI: 10.1007/s12015-017-9737-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the healthy and diseased state of skin is important in many areas of basic and applied research. Although the field of skin tissue engineering has advanced greatly over the last years, current in vitro skin models still do not mimic the complexity of the human skin. Skin-on-chip and induced pluripotent stem cells (iPSC) might be key technologies to improve in vitro skin models. This review summarizes the state of the art of in vitro skin models with regard to cell sources (primary, cell line, iPSC) and microfluidic devices. It can be concluded that iPSC have the potential to be differentiated into many kinds of immunologically matched cells and skin-on-chip technology might lead to more physiologically relevant skin models due to the controlled environment, possible exchange of immune cells, and an increased barrier function. Therefore the combination of iPSC and skin-on-chip is expected to lead to superior healthy and diseased in vitro skin models.
Collapse
Affiliation(s)
| | | | | | - Susan Gibbs
- Department of Dermatology, VU University Medical Center, Amsterdam, The Netherlands.
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands.
| |
Collapse
|