1
|
Scoon WA, Mancio-Silva L, Suder EL, Villacorta-Martin C, Lindstrom-Vautrin J, Bernbaum JG, Mazur S, Johnson RF, Olejnik J, Flores EY, Mithal A, Wang F, Hume AJ, Kaserman JE, March-Riera S, Wilson AA, Bhatia SN, Mühlberger E, Mostoslavsky G. Ebola virus infection induces a delayed type I IFN response in bystander cells and the shutdown of key liver genes in human iPSC-derived hepatocytes. Stem Cell Reports 2022; 17:2286-2302. [PMID: 36084636 PMCID: PMC9561183 DOI: 10.1016/j.stemcr.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/26/2023] Open
Abstract
Liver damage and an exacerbated inflammatory response are hallmarks of Ebola virus (EBOV) infection. Little is known about the intrinsic response to infection in human hepatocytes and their contribution to inflammation. Here, we present an induced pluripotent stem cell (iPSC)-derived hepatocyte-like cell (HLC) platform to define the hepato-intrinsic response to EBOV infection. We used this platform to show robust EBOV infection, with characteristic ultrastructural changes and evidence for viral replication. Transcriptomics analysis revealed a delayed response with minimal early transcriptomic changes, followed by a general downregulation of hepatic function and upregulation of interferon signaling, providing a potential mechanism by which hepatocytes participate in disease severity and liver damage. Using RNA-fluorescence in situ hybridization (FISH), we showed that IFNB1 and CXCL10 were mainly expressed in non-infected bystander cells. We did not observe an inflammatory signature during infection. In conclusion, iPSC-HLCs are an immune competent platform to study responses to EBOV infection.
Collapse
Affiliation(s)
- Whitney A. Scoon
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA,Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA
| | - Liliana Mancio-Silva
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, MA 02139, USA
| | - Ellen L. Suder
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA,Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA
| | - Jonathan Lindstrom-Vautrin
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA
| | - John G. Bernbaum
- Integrated Research Facility, Division of Clinical Research, National Institute for Allergy and Infectious Disease, National Institutes of Health, Frederick, MD 21702, USA
| | - Steve Mazur
- Integrated Research Facility, Division of Clinical Research, National Institute for Allergy and Infectious Disease, National Institutes of Health, Frederick, MD 21702, USA
| | - Reed F. Johnson
- Integrated Research Facility, Division of Clinical Research, National Institute for Allergy and Infectious Disease, National Institutes of Health, Frederick, MD 21702, USA,Emerging Viral Pathogens Section, Laboratory of Immunoregulation, Division of Intramural Research, National Institute for Allergy and Infectious Disease, National Institutes of Health, Frederick, MD 21702, USA
| | - Judith Olejnik
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA,Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA
| | - Elizabeth Y. Flores
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA,Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA
| | - Aditya Mithal
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA,Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA
| | - Adam J. Hume
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA,Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA
| | - Joseph E. Kaserman
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sandra March-Riera
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, MA 02139, USA
| | - Andrew A. Wilson
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sangeeta N. Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, MA 02139, USA,Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA,Broad Institute, Cambridge, MA 02139, USA,Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Elke Mühlberger
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA; Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA.
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA; Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA; Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, 670 Albany Street, Suite 209, Boston, MA 02118, USA.
| |
Collapse
|
2
|
The interplay between non-alcoholic fatty liver disease and innate immunity in hepatitis B virus patients. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-021-00084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Non-alcoholic fatty liver disease (NAFLD) is the most epidemic liver disorder worldwide as a result of rapid lifestyle transformation over the past few decades and is expected to elevate in the next few years as well as it is ranging from plain hepatic steatosis via non-alcoholic steatohepatitis (NASH) to liver cirrhosis and hepatocellular carcinoma (HCC).
Main text
NAFLD can also stimulate the diseases progression as diabetes and cardiovascular. Therefore, understanding the NAFLD pathogenesis is of vital clinical interest additionally is a crucial for disease treatment and prevention. After analyzing NAFLD and liver diseases prevalence, it has been a belief regarding the interaction between NAFLD and chronic hepatitis B (CHB).
Conclusion
The liver is an essential innate immune organ with large numbers of innate immune cells that contribute in NAFLD pathogenesis, additionally play the influential role that control NAFLD progression in the hepatitis B patients. Here, we summarized the recent advances in understanding and managing the NAFLD patients with chronic hepatitis B infection and interplay with innate immunity.
Collapse
|
3
|
Khoshdel-Rad N, Zahmatkesh E, Bikmulina P, Peshkova M, Kosheleva N, Bezrukov EA, Sukhanov RB, Solovieva A, Shpichka A, Timashev P, Vosough M. Modeling Hepatotropic Viral Infections: Cells vs. Animals. Cells 2021; 10:1726. [PMID: 34359899 PMCID: PMC8305759 DOI: 10.3390/cells10071726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The lack of an appropriate platform for a better understanding of the molecular basis of hepatitis viruses and the absence of reliable models to identify novel therapeutic agents for a targeted treatment are the two major obstacles for launching efficient clinical protocols in different types of viral hepatitis. Viruses are obligate intracellular parasites, and the development of model systems for efficient viral replication is necessary for basic and applied studies. Viral hepatitis is a major health issue and a leading cause of morbidity and mortality. Despite the extensive efforts that have been made on fundamental and translational research, traditional models are not effective in representing this viral infection in a laboratory. In this review, we discuss in vitro cell-based models and in vivo animal models, with their strengths and weaknesses. In addition, the most important findings that have been retrieved from each model are described.
Collapse
Affiliation(s)
- Niloofar Khoshdel-Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Ensieh Zahmatkesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Nastasia Kosheleva
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- FSBSI ‘Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Evgeny A. Bezrukov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Roman B. Sukhanov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Anna Solovieva
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| |
Collapse
|
4
|
Bove G, Mehnert AK, Dao Thi VL. iPSCs for modeling hepatotropic pathogen infections. IPSCS FOR STUDYING INFECTIOUS DISEASES 2021:149-213. [DOI: 10.1016/b978-0-12-823808-0.00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Carpentier A, Sheldon J, Vondran FWR, Brown RJ, Pietschmann T. Efficient acute and chronic infection of stem cell-derived hepatocytes by hepatitis C virus. Gut 2020; 69:1659-1666. [PMID: 32114504 PMCID: PMC7456736 DOI: 10.1136/gutjnl-2019-319354] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE AND DESIGN Human stem cell-derived hepatocyte-like cells (HLCs) have shown high potential as authentic model for dissection of the HCV life cycle and virus-induced pathogenesis. However, modest HCV replication, possibly due to robust innate immune responses, limits their broader use. To overcome these limitations and to dissect the mechanisms responsible for control of HCV, we analysed expression of key components of the interferon (IFN) system in HLCs, assessed permissiveness for different HCV strains and blocked innate immune signalling by pharmacological intervention. RESULTS Transcriptional profiling revealed that HLCs constitutively express messenger RNA of RLRs, and members of the IFN pathway. Moreover, HLCs upregulated IFNs and canonical interferon-regulated genes (IRGs) upon transfection with the double-stranded RNA mimic poly(I:C). Infection of HLCs with Jc1-HCVcc produced only limited viral progeny. In contrast, infection with p100, a Jc1-derived virus population with enhanced replication fitness and partial resistance to IFN, resulted in robust yet transient viraemia. Viral titres declined concomitant with a peak of IRG induction. Addition of ruxolitinib, a JAK/STAT inhibitor, permitted chronic infection and raised p100 infectious virus titres to 1×105 FFU/mL. IRGs expression profiling in infected HLCs revealed a landscape of HCV-dependent transcriptional changes similar to HCV-infected primary human hepatocytes, but distinct from Huh-7.5 cells. Withdrawal of ruxolitinib restored innate immune responses and resulted in HCV clearance. CONCLUSION This authentic human cell model is well suited to examine acute and chronic host-HCV interactions, particularly IFN-triggered antiviral effector functions and mechanisms of innate immune control of HCV infection.
Collapse
Affiliation(s)
- Arnaud Carpentier
- Institute of Experimental Virology, Twincore, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julie Sheldon
- Institute of Experimental Virology, Twincore, Hannover, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Richard Jp Brown
- Institute of Experimental Virology, Twincore, Hannover, Germany
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, Twincore, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| |
Collapse
|
6
|
Fischer L, Lucendo-Villarin B, Hay DC, O’Farrelly C. Human PSC-Derived Hepatocytes Express Low Levels of Viral Pathogen Recognition Receptors, but Are Capable of Mounting an Effective Innate Immune Response. Int J Mol Sci 2020; 21:ijms21113831. [PMID: 32481600 PMCID: PMC7312201 DOI: 10.3390/ijms21113831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/30/2020] [Accepted: 05/24/2020] [Indexed: 01/19/2023] Open
Abstract
Hepatocytes are key players in the innate immune response to liver pathogens but are challenging to study because of inaccessibility and a short half-life. Recent advances in in vitro differentiation of hepatocyte-like cells (HLCs) facilitated studies of hepatocyte-pathogen interactions. Here, we aimed to define the anti-viral innate immune potential of human HLCs with a focus on toll-like receptor (TLR)-expression and the presence of a metabolic switch. We analysed cytoplasmic pattern recognition receptor (PRR)- and endosomal TLR-expression and activity and adaptation of HLCs to an inflammatory environment. We found that transcript levels of retinoic acid inducible gene I (RIG-I), melanoma differentiation antigen 5 (MDA5), and TLR3 became downregulated during differentiation, indicating the acquisition of a more tolerogenic phenotype, as expected in healthy hepatocytes. HLCs responded to activation of RIG-I by producing interferons (IFNs) and IFN-stimulated genes. Despite low-level expression of TLR3, receptor expression was upregulated in an inflammatory environment. TLR3 signalling induced expression of proinflammatory cytokines at the gene level, indicating that several PRRs need to interact for successful innate immune activation. The inflammatory responsiveness of HLCs was accompanied by the downregulation of cytochrome P450 3A and 1A2 activity and decreased serum protein production, showing that the metabolic switch seen in primary hepatocytes during anti-viral responses is also present in HLCs.
Collapse
Affiliation(s)
- Lena Fischer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland;
| | | | - David C. Hay
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK;
- Correspondence: (D.C.H.); (C.O.)
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland;
- School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
- Correspondence: (D.C.H.); (C.O.)
| |
Collapse
|
7
|
Megahed FAK, Zhou X, Sun P. The Interactions between HBV and the Innate Immunity of Hepatocytes. Viruses 2020; 12:v12030285. [PMID: 32151000 PMCID: PMC7150781 DOI: 10.3390/v12030285] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection affects ~350 million people and poses a major public health problem worldwide. HBV is a major cause of cirrhosis and hepatocellular carcinoma. Fewer than 5% of HBV-infected adults (but up to 90% of HBV-infected infants and children) develop chronic HBV infection as indicated by continued, detectable expression of hepatitis B surface antigen (HBsAg) for at least 6 months after the initial infection. Increasing evidence indicates that HBV interacts with innate immunity signaling pathways of hepatocytes to suppress innate immunity. However, it is still not clear how HBV avoids monitoring by the innate immunity of hepatocytes and whether the innate immunity of hepatocytes can be effective against HBV if re-triggered. Moreover, a deep understanding of virus-host interactions is important in developing new therapeutic strategies for the treatment of HBV infection. In this review, we summarize the current knowledge regarding how HBV represses innate immune recognition, as well as recent progress with respect to in vitro models for studying HBV infection and innate immunity.
Collapse
Affiliation(s)
- Fayed Attia Koutb Megahed
- Stem Cell Research Center, Research Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China;
- Department of Nucleic Acid Researches, Genetic Engineering and Biotechnology Research Institute, General Autority-City of Scientific Researches and Technological Applications, Alexandria 21934, Egypt
| | - Xiaoling Zhou
- Stem Cell Research Center, Research Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China;
- Correspondence: (X.Z.); (P.S.)
| | - Pingnan Sun
- Stem Cell Research Center, Research Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China;
- Correspondence: (X.Z.); (P.S.)
| |
Collapse
|
8
|
Wang J, Qu B, Zhang F, Zhang C, Deng W, Dao Thi VL, Xia Y. Stem Cell-Derived Hepatocyte-Like Cells as Model for Viral Hepatitis Research. Stem Cells Int 2019; 2019:9605252. [PMID: 31281392 PMCID: PMC6594266 DOI: 10.1155/2019/9605252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis, the leading cause of liver diseases worldwide, is induced upon infection with hepatotropic viruses, including hepatitis A, B, C, D, and E virus. Due to their obligate intracellular lifestyles, culture systems for efficient viral replication are vital. Although basic and translational research on viral hepatitis has been performed for many years, conventional hepatocellular culture systems are not optimal. These studies have greatly benefited from recent efforts on improving cell culture models for virus replication and infection studies. Here we summarize the use of human stem cell-derived hepatocyte-like cells for hepatotropic virus infection studies, including the dissection of virus-host interactions and virus-induced pathogenesis as well as the identification and validation of novel antiviral agents.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bingqian Qu
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Fang Zhang
- Department of Translational Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Cindy Zhang
- Schaller Research Group at Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Wanyan Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Viet Loan Dao Thi
- Schaller Research Group at Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Yuchen Xia
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Hay DC, O'Farrelly C. Designer human tissue: coming to a lab near you. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0212. [PMID: 29786548 PMCID: PMC5974436 DOI: 10.1098/rstb.2017.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 11/12/2022] Open
Abstract
Human pluripotent stem cells (PSCs) offer a scalable alternative to primary and transformed human tissue. PSCs include human embryonic stem cells, derived from the inner cell mass of blastocysts unsuitable for human implantation; and induced PSCs, generated by the reprogramming of somatic cells. Both cell types display the ability to self-renew and retain pluripotency, promising an unlimited supply of human somatic cells for biomedical application. A distinct advantage of using PSCs is the ability to select for genetic background, promising personalized modelling of human biology ‘in a dish’ or immune-matched cell-based therapies for the clinic. This special issue will guide the reader through stem cell self-renewal, pluripotency and differentiation. The first articles focus on improving cell fidelity, understanding the innate immune system and the importance of materials chemistry, biofabrication and bioengineering. These are followed by articles that focus on industrial application, commercialization and label-free assessment of tissue formation. The special issue concludes with an article discussing human liver cell-based therapies past, present and future. This article is part of the theme issue ‘Designer human tissue: coming to a lab near you’.
Collapse
Affiliation(s)
- David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Cliona O'Farrelly
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Dublin, Republic of Ireland
| |
Collapse
|
10
|
Fischer L, Hay DC, O'Farrelly C. Innate immunity in stem cell-derived hepatocytes. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0220. [PMID: 29786555 DOI: 10.1098/rstb.2017.0220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/24/2022] Open
Abstract
Stem cell-derived hepatocyte-like cells (HLCs) offer great opportunities for studies of host-pathogen interactions and tissue regeneration, as well as hepatotoxicity. To reliably predict the outcome of infection or to enhance graft survival, a finely tuned innate immune system is essential. Hepatocytes have long been considered solely metabolic and their critical innate immune potential is only recently gaining attention. Viral infection studies show that pathogen detection by cytosolic receptors leads to interferon (IFN) induction in primary hepatocytes and HLCs. IFN expression in HLCs is characterized by strong expression of type III IFN and low expression of type I IFN which is also a characteristic of primary hepatocytes. The response to IFN differs in HLCs with lower interferon-stimulated gene (ISG)-expression levels than in primary hepatocytes. Tumour necrosis factor-alpha (TNF-α) signalling is less studied in HLCs, but appears to be functional. Expression of toll-like receptors (TLR) 2-5, 7 and 9 has been reported in primary hepatocytes but has been poorly studied in HLCs. In summary, although they retain some immature features, HLCs are in many ways superior to hepatoma cell lines for cell-based modelling. In this review, we will provide an overview of innate immune signalling in HLCs and how this compares with primary hepatocytes.This article is part of the themed issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Lena Fischer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Republic of Ireland
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
11
|
Wu X, Dao Thi VL. Embryonic or Induced Pluripotent Stem Cell-Derived Hepatocellular Systems for HCV Culture. Methods Mol Biol 2019; 1911:121-135. [PMID: 30593622 DOI: 10.1007/978-1-4939-8976-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human-induced pluripotent stem cell-derived hepatocyte-like cells (iHeps) constitute a powerful tool for modeling hepatotropic pathogen infections in cell culture. Meanwhile, CRISPR-Cas9 technology enables precise editing of stem cell genomes to generate patient-specific disease models and thus development of personalized experimental systems. Here we present a detailed stepwise protocol for the differentiation of stem cells to hepatocyte-like cells for HCV studies in cell culture. We also outline the use of an inducible iCRISPR platform for the rapid and efficient modification of host factors of interest to better understand their function during HCV infection.
Collapse
Affiliation(s)
- Xianfang Wu
- Laboratory of Virology and Infectious Diseases, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, USA.
| | - Viet Loan Dao Thi
- Center for Integrative Infectious Disease Research, University Hospital Heidelberg, Heidelberg, Germany. .,Laboratory of Virology and Infectious Diseases, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
12
|
Tricot T, Helsen N, Kaptein SJF, Neyts J, Verfaillie CM. Human stem cell-derived hepatocyte-like cells support Zika virus replication and provide a relevant model to assess the efficacy of potential antivirals. PLoS One 2018; 13:e0209097. [PMID: 30566505 PMCID: PMC6300258 DOI: 10.1371/journal.pone.0209097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/29/2018] [Indexed: 01/30/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy has been extensively linked to microcephaly in newborns. High levels of ZIKV RNA were, however, also detected in mice and non-human primates in organs other than the brain, such as the liver. As ZIKV is a flavivirus closely related to the dengue and yellow fever virus, which are known to cause hepatitis, we here examined whether human hepatocytes are susceptible to ZIKV infection. We demonstrated that both human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) and the Huh7 hepatoma cell line support the complete ZIKV replication cycle. Of three antiviral molecules that inhibit ZIKV infection in Vero cells, only 7-deaza-2'-C-methyladenosine (7DMA) inhibited ZIKV replication in hPSC-HLCs, while all drugs inhibited ZIKV infection in Huh7 cells. ZIKV-infected hPSC-HLCs but not Huh7 cells mounted an innate immune and NFκβ response, which may explain the more extensive cytopathic effect observed in Huh7 cells. In conclusion, ZIKV productively infects human hepatocytes in vitro. However, significant differences in the innate immune response against ZIKV and antiviral drug sensitivity were observed when comparing hPSC-HLCs and hepatoma cells, highlighting the need to assess ZIKV infection as well as antiviral activity not only in hepatoma cells, but also in more physiologically relevant systems.
Collapse
Affiliation(s)
- Tine Tricot
- Stem Cell Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Nicky Helsen
- Stem Cell Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Suzanne J F Kaptein
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | | |
Collapse
|
13
|
Lyall MJ, Cartier J, Thomson JP, Cameron K, Meseguer-Ripolles J, O'Duibhir E, Szkolnicka D, Villarin BL, Wang Y, Blanco GR, Dunn WB, Meehan RR, Hay DC, Drake AJ. Modelling non-alcoholic fatty liver disease in human hepatocyte-like cells. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0362. [PMID: 29786565 PMCID: PMC5974453 DOI: 10.1098/rstb.2017.0362] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease in developed countries. An in vitro NAFLD model would permit mechanistic studies and enable high-throughput therapeutic screening. While hepatic cancer-derived cell lines are a convenient, renewable resource, their genomic, epigenomic and functional alterations mean their utility in NAFLD modelling is unclear. Additionally, the epigenetic mark 5-hydroxymethylcytosine (5hmC), a cell lineage identifier, is rapidly lost during cell culture, alongside expression of the Ten-eleven-translocation (TET) methylcytosine dioxygenase enzymes, restricting meaningful epigenetic analysis. Hepatocyte-like cells (HLCs) derived from human embryonic stem cells can provide a non-neoplastic, renewable model for liver research. Here, we have developed a model of NAFLD using HLCs exposed to lactate, pyruvate and octanoic acid (LPO) that bear all the hallmarks, including 5hmC profiles, of liver functionality. We exposed HLCs to LPO for 48 h to induce lipid accumulation. We characterized the transcriptome using RNA-seq, the metabolome using ultra-performance liquid chromatography-mass spectrometry and the epigenome using 5-hydroxymethylation DNA immunoprecipitation (hmeDIP) sequencing. LPO exposure induced an NAFLD phenotype in HLCs with transcriptional and metabolomic dysregulation consistent with those present in human NAFLD. HLCs maintain expression of the TET enzymes and have a liver-like epigenome. LPO exposure-induced 5hmC enrichment at lipid synthesis and transport genes. HLCs treated with LPO recapitulate the transcriptional and metabolic dysregulation seen in NAFLD and additionally retain TET expression and 5hmC. This in vitro model of NAFLD will be useful for future mechanistic and therapeutic studies.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Marcus J Lyall
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jessy Cartier
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - John P Thomson
- MRC Human Genetics Unit, IGMM, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Kate Cameron
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Eoghan O'Duibhir
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Dagmara Szkolnicka
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Yu Wang
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Giovanny Rodriguez Blanco
- Phenome Centre Birmingham, School of Biosciences and Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Warwick B Dunn
- Phenome Centre Birmingham, School of Biosciences and Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Richard R Meehan
- MRC Human Genetics Unit, IGMM, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
14
|
Schöbel A, Rösch K, Herker E. Functional innate immunity restricts Hepatitis C Virus infection in induced pluripotent stem cell-derived hepatocytes. Sci Rep 2018; 8:3893. [PMID: 29497123 PMCID: PMC5832748 DOI: 10.1038/s41598-018-22243-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/20/2018] [Indexed: 12/15/2022] Open
Abstract
Knowledge of activation and interplay between the hepatitis C virus (HCV) and the hosts’ innate immunity is essential to understanding the establishment of chronic HCV infection. Human hepatoma cell lines, widely used as HCV cell culture system, display numerous metabolic alterations and a defective innate immunity, hindering the detailed study of virus-host interactions. Here, we analysed the suitability of induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iHLCs) as a physiologically relevant model to study HCV replication in vitro. Density gradients and triglyceride analysis revealed that iHLCs secreted very-low density lipoprotein (VLDL)-like lipoproteins, providing a putative platform for bona fide lipoviroparticles. iHLCs supported the full HCV life cycle, but in contrast to Huh7 and Huh7.5 cells, replication and viral RNA levels decreased continuously. Following HCV infection, interferon-stimulated gene (ISG)-expression significantly increased in iHLCs, whereas induction was almost absent in Huh7/7.5 cells. However, IFNα-stimulation equally induced ISGs in iHLCs and hepatoma cells. JAK-STAT pathway inhibition increased HCV replication in mature iHLCs, but not in Huh7 cells. Additionally, HCV replication levels where higher in STAT2-, but not STAT1-knockdown iHLCs. Our findings support iHLCs as a suitable model for HCV-host interaction regarding a functional innate immunity and lipoprotein synthesis.
Collapse
Affiliation(s)
- Anja Schöbel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Kathrin Rösch
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Eva Herker
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.
| |
Collapse
|
15
|
Manickam C, Martinot AJ, Jones RA, Varner V, Reeves RK. Hepatic immunopathology during occult hepacivirus re-infection. Virology 2017; 512:48-55. [PMID: 28915405 DOI: 10.1016/j.virol.2017.08.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022]
Abstract
Despite drug advances for Hepatitis C virus (HCV), re-infections remain prevalent in high-risk populations. Unfortunately, the role of preexisting viral immunity and how it modulates re-infection is unclear. GBV-B infection of common marmosets is a useful model to study tissue immune responses in hepacivirus infections, and in this study we re-challenged 4 animals after clearance of primary viremia. Although only low-to-absent viremia was observed following re-challenge, GBV-B viral RNA was detectable in liver, confirming re-infection. Microscopic hepatic lesions indicated severe-to-mild lymphocyte infiltration and fibrosis in 3 out of 4 animals. Further, GBV-B-specific T cells were elevated in animals with moderate-to-severe hepatopathology, and up to 3-fold increases in myeloid dendritic and activated natural killer cells were observed after infection. Our data indicate that occult hepacivirus re-infections occur and that new liver pathology is possible even in the presence of anti-hepacivirus T cells and in the absence of high viremia.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amanda J Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rhianna A Jones
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Valerie Varner
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
16
|
Hepatitis C virus-induced innate immune responses in human iPS cell-derived hepatocyte-like cells. Virus Res 2017; 242:7-15. [PMID: 28893653 DOI: 10.1016/j.virusres.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/21/2017] [Accepted: 09/07/2017] [Indexed: 12/17/2022]
Abstract
Hepatitis C virus (HCV) infection is a major cause of liver-related morbidity and mortality. In order to develop effective remedies for hepatitis C, it is important to understand the HCV infection profile and host-HCV interaction. HCV-induced innate immune responses play a crucial role in spontaneous HCV clearance; however, HCV-induced innate immune responses have not been fully evaluated in hepatocytes, partly because there are few in vitro models of HCV-induced innate immunity. Recently, human induced pluripotent stem (iPS) cells have received much attention as an in vitro model of infection with various pathogens, including HCV. We previously established highly functional hepatocyte-like cells differentiated from human iPS cells (iPS-HLCs). Here, we examined the potential of iPS-HLCs as an in vitro HCV infection model, especially for evaluation of the relationship between HCV infection levels and HCV-induced innate immunity. Significant expressions of type I and III interferons (IFNs) and IFN-stimulated genes (ISGs) were induced following transfection with HCV genomic replicon RNA in iPS-HLCs. Following inoculation with the HCV JFH-1 strain in iPS-HLCs, peaks of HCV genome replication and HCV protein expression were observed on day 2, and then both the HCV genome and protein levels gradually declined, while the mRNA levels of type III IFNs and ISGs peaked at day 2 following inoculation. These results suggest that the HCV genome efficiently replicates in iPS-HLCs, resulting in HCV genome-induced up-regulation of IFNs and ISGs, and thereafter, HCV genome-induced up-regulation of IFNs and ISGs mediates a reduction in the HCV genome and protein levels in iPS-HLCs.
Collapse
|
17
|
Yan F, Wang Y, Zhang W, Chang M, He Z, Xu J, Shang C, Chen T, Liu J, Wang X, Pei X, Wang Y. Human embryonic stem cell-derived hepatoblasts are an optimal lineage stage for hepatitis C virus infection. Hepatology 2017; 66:717-735. [PMID: 28236326 DOI: 10.1002/hep.29134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/10/2017] [Accepted: 02/22/2017] [Indexed: 12/29/2022]
Abstract
UNLABELLED Maturation of hepatic cells can be gradually acquired through multiple stages of hepatic lineage specification, while it is unclear whether hepatitis C virus (HCV) infection is maturationally lineage-dependent. We investigated the susceptibility to HCV at multiple stages of human embryonic stem cells, definitive endodermal cells, hepatic stem cells, hepatoblasts (hHBs), and mature hepatocytes. Susceptibility to infection occurred initially at the stage of human hepatic stem cells; however, hHBs proved to have the highest permissiveness and infectivity compared with all other stages. The hHBs' susceptibility to HCV correlated with the translocation of occludin, an HCV receptor, from cytoplasm to plasma membrane of HBs. Vascular endothelial cell growth factor enhanced the HCV susceptibility of hHBs through rearrangement of occludin by dephosphorylation; this minimized hHB polarization and prevented hHBs from further maturation. The transcription profiles of different hepatic lineage stages indicated that expression of innate immune response genes was correlated with hepatic maturation; interferon β played an important role in protecting hHBs from HCV infection. HCV-infected hHBs were able to engraft and integrate into the livers of Fah-/- Rag2-/- mice and maintained an hHB phenotype for over 12 weeks during the time when HCV antigen was evident. After suppression of interferon β in hHBs, HCV infection was significantly enhanced in the engrafted humanized liver tissue of host mice. CONCLUSION Human embryonic stem cell-derived hHBs are the optimal hosts for HCV infectivity; the realization that HCV entry and replication occur primarily at a particular hepatic lineage stage enables us to understand the HCV infection factors, life cycle, and infection dynamics that are facets of the pathogenesis as well as suggesting targets for anti-HCV treatment. (Hepatology 2017;66:717-735).
Collapse
Affiliation(s)
- Fang Yan
- Stem Cell and Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, China.,Transfusion Immunology Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Yi Wang
- Stem Cell and Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Wencheng Zhang
- Stem Cell and Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Mingyang Chang
- Stem Cell and Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Zhiying He
- Department of Cell Biology, Second Military Medical University, Shanghai, China
| | - Jinbo Xu
- Transfusion Immunology Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Changzhen Shang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- Key Laboratory of National Education, Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Huhhot, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China.,South China Research Center for Stem Cell & Regenerative Medicine, AMMS, Guangzhou, China
| | - Yunfang Wang
- Stem Cell and Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| |
Collapse
|
18
|
Xiao Y, Dolan PT, Goldstein EF, Li M, Farkov M, Brodsky L, Andino R. Poliovirus intrahost evolution is required to overcome tissue-specific innate immune responses. Nat Commun 2017; 8:375. [PMID: 28851882 PMCID: PMC5575128 DOI: 10.1038/s41467-017-00354-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/15/2017] [Indexed: 01/01/2023] Open
Abstract
RNA viruses, such as poliovirus, have a great evolutionary capacity, allowing them to quickly adapt and overcome challenges encountered during infection. Here we show that poliovirus infection in immune-competent mice requires adaptation to tissue-specific innate immune microenvironments. The ability of the virus to establish robust infection and virulence correlates with its evolutionary capacity. We further identify a region in the multi-functional poliovirus protein 2B as a hotspot for the accumulation of minor alleles that facilitate a more effective suppression of the interferon response. We propose that population genetic dynamics enables poliovirus spread between tissues through optimization of the genetic composition of low frequency variants, which together cooperate to circumvent tissue-specific challenges. Thus, intrahost virus evolution determines pathogenesis, allowing a dynamic regulation of viral functions required to overcome barriers to infection. RNA viruses, such as polioviruses, have a great evolutionary capacity and can adapt quickly during infection. Here, the authors show that poliovirus infection in mice requires adaptation to innate immune microenvironments encountered in different tissues.
Collapse
Affiliation(s)
- Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94158, USA
| | - Patrick Timothy Dolan
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94158, USA.,Department of Biology, Stanford University, Stanford, CA, 94158, USA
| | - Elizabeth Faul Goldstein
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94158, USA
| | - Min Li
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94158, USA
| | - Mikhail Farkov
- Tauber Bioinformatics Research Center and Department of Evolutionary & Environmental Biology, University of Haifa, Mount Carmel, Haifa, 31905, Israel
| | - Leonid Brodsky
- Tauber Bioinformatics Research Center and Department of Evolutionary & Environmental Biology, University of Haifa, Mount Carmel, Haifa, 31905, Israel
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
19
|
Kiamehr M, Viiri LE, Vihervaara T, Koistinen KM, Hilvo M, Ekroos K, Käkelä R, Aalto-Setälä K. Lipidomic profiling of patient-specific iPSC-derived hepatocyte-like cells. Dis Model Mech 2017; 10:1141-1153. [PMID: 28733363 PMCID: PMC5611970 DOI: 10.1242/dmm.030841] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
Hepatocyte-like cells (HLCs) differentiated from human induced pluripotent stem cells (iPSCs) offer an alternative model to primary human hepatocytes to study lipid aberrations. However, the detailed lipid profile of HLCs is yet unknown. In the current study, functional HLCs were differentiated from iPSCs generated from dermal fibroblasts of three individuals by a three-step protocol through the definitive endoderm (DE) stage. In parallel, detailed lipidomic analyses as well as gene expression profiling of a set of lipid-metabolism-related genes were performed during the entire differentiation process from iPSCs to HLCs. Additionally, fatty acid (FA) composition of the cell culture media at different stages was determined. Our results show that major alterations in the molecular species of lipids occurring during DE and early hepatic differentiation stages mainly mirror the quality and quantity of the FAs supplied in culture medium at each stage. Polyunsaturated phospholipids and sphingolipids with a very long FA were produced in the cells at a later stage of differentiation. This work uncovers the previously unknown lipid composition of iPSC-HLCs and its alterations during the differentiation in conjunction with the expression of key lipid-associated genes. Together with biochemical, functional and gene expression measurements, the lipidomic analyses allowed us to improve our understanding of the concerted influence of the exogenous metabolite supply and cellular biosynthesis essential for iPSC-HLC differentiation and function. Importantly, the study describes in detail a cell model that can be applied in exploring, for example, the lipid metabolism involved in the development of fatty liver disease or atherosclerosis.
Collapse
Affiliation(s)
- Mostafa Kiamehr
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33520, Finland
| | - Leena E Viiri
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33520, Finland
| | | | | | | | | | - Reijo Käkelä
- Department of Biosciences, University of Helsinki, Helsinki, 00014, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33520, Finland.,Heart Hospital, Tampere University Hospital, Tampere, 33520, Finland
| |
Collapse
|
20
|
Wang Y, Alhaque S, Cameron K, Meseguer-Ripolles J, Lucendo-Villarin B, Rashidi H, Hay DC. Defined and Scalable Generation of Hepatocyte-like Cells from Human Pluripotent Stem Cells. J Vis Exp 2017:55355. [PMID: 28287600 PMCID: PMC5409275 DOI: 10.3791/55355] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) possess great value for biomedical research. hPSCs can be scaled and differentiated to all cell types found in the human body. The differentiation of hPSCs to human hepatocyte-like cells (HLCs) has been extensively studied, and efficient differentiation protocols have been established. The combination of extracellular matrix and biological stimuli, including growth factors, cytokines, and small molecules, have made it possible to generate HLCs that resemble primary human hepatocytes. However, the majority of procedures still employ undefined components, giving rise to batch-to-batch variation. This serves as a significant barrier to the application of the technology. To tackle this issue, we developed a defined system for hepatocyte differentiation using human recombinant laminins as extracellular matrices in combination with a serum-free differentiation process. Highly efficient hepatocyte specification was achieved, with demonstrated improvements in both HLC function and phenotype. Importantly, this system is easy to scale up using research and GMP-grade hPSC lines promising advances in cell-based modelling and therapies.
Collapse
Affiliation(s)
- Yu Wang
- MRC Centre for Regenerative Medicine, University of Edinburgh
| | - Sharmin Alhaque
- MRC Centre for Regenerative Medicine, University of Edinburgh
| | - Kate Cameron
- MRC Centre for Regenerative Medicine, University of Edinburgh
| | | | | | - Hassan Rashidi
- MRC Centre for Regenerative Medicine, University of Edinburgh
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh;
| |
Collapse
|
21
|
Rashidi H, Hay D. Generation and Application of 3DCulture Systems in Human Drug Discovery and Medicine. STEM CELLS IN TOXICOLOGY AND MEDICINE 2016:265-287. [DOI: 10.1002/9781119135449.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Yanagihara K, Liu Y, Kanie K, Takayama K, Kokunugi M, Hirata M, Fukuda T, Suga M, Nikawa H, Mizuguchi H, Kato R, Furue MK. Prediction of Differentiation Tendency Toward Hepatocytes from Gene Expression in Undifferentiated Human Pluripotent Stem Cells. Stem Cells Dev 2016; 25:1884-1897. [PMID: 27733097 PMCID: PMC5165660 DOI: 10.1089/scd.2016.0099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Functional hepatocytes derived from human pluripotent stem cells (hPSCs) have potential as tools for predicting drug-induced hepatotoxicity in the early phases of drug development. However, the propensity of hPSC lines to differentiate into specific lineages is reported to differ. The ability to predict low propensity of hPSCs to differentiate into hepatocytes would facilitate the selection of useful hPSC clones and substantially accelerate development of hPSC-derived hepatocytes for pharmaceutical research. In this study, we compared the expression of genes associated with hepatic differentiation in five hPSC lines including human ES cell line, H9, which is known to differentiate into hepatocytes, and an hPSC line reported with a poor propensity for hepatic differentiation. Genes distinguishing between undifferentiated hPSCs, hPSC-derived hepatoblast-like differentiated cells, and primary human hepatocytes were drawn by two-way cluster analysis. The order of expression levels of genes in undifferentiated hPSCs was compared with that in hPSC-derived hepatoblast-like cells. Three genes were selected as predictors of low propensity for hepatic differentiation. Expression of these genes was investigated in 23 hPSC clones. Review of representative cells by induction of hepatic differentiation suggested that low prediction scores were linked with low hepatic differentiation. Thus, our model using gene expression ranking and bioinformatic analysis could reasonably predict poor differentiation propensity of hPSC lines.
Collapse
Affiliation(s)
- Kana Yanagihara
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Yujung Liu
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Kei Kanie
- 2 Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| | - Kazuo Takayama
- 3 Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan .,4 The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University , Kyoto, Japan .,5 Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Minako Kokunugi
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan .,6 Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Mitsuhi Hirata
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Takayuki Fukuda
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Mika Suga
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Hiroki Nikawa
- 6 Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Hiroyuki Mizuguchi
- 3 Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan .,5 Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan .,7 Global Center for Medical Engineering and Informatics, Osaka University , Osaka, Japan
| | - Ryuji Kato
- 2 Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| | - Miho K Furue
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| |
Collapse
|
23
|
Vasconcellos R, Alvarenga ÉC, Parreira RC, Lima SS, Resende RR. Exploring the cell signalling in hepatocyte differentiation. Cell Signal 2016; 28:1773-88. [DOI: 10.1016/j.cellsig.2016.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
|
24
|
Yang S, Shi H, Chu X, Zhou X, Sun P. A rapid and efficient polyethylenimine-based transfection method to prepare lentiviral or retroviral vectors: useful for making iPS cells and transduction of primary cells. Biotechnol Lett 2016; 38:1631-41. [PMID: 27193760 DOI: 10.1007/s10529-016-2123-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/11/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To improve the efficiency, reproducibility and consistency of the PEI-based transfection method that is often used in preparation of recombinant lentiviral or retroviral vectors. RESULTS The contributions to transfection efficiency of multi-factors including concentration of PEI or DNA, dilution buffer for PEI/DNA, manner to prepare PEI/DNA complexes, influence of serum, incubation time for PEI/DNA complexes, and transfection time were studied. Gentle mixing during the preparation of PEI/DNA transfection complexes is critical for a high transfection efficiency. PEI could be stored at room temperature or 4 °C, and most importantly, multigelation should be avoided. The transfection efficiency of the PEI-based new method in different types of cells, such as 293T, Cos-7, HeLa, HepG2, Hep3B, Huh7 and L02, was also higher than that of the previous method. After optimization, the titer of our lentiviral system or retroviral system produced by PEI-based new method was about 10- or 3-times greater than that produced by PEI-based previous method, respectively. CONCLUSION We provide a rapid and efficient PEI-based method for preparation of recombinant lentiviral or retroviral vectors which is useful for making iPS cells as well as transduction of primary cell cultures.
Collapse
Affiliation(s)
- Shaozhe Yang
- Stem Cell P2 Laboratory, Shantou University Medical College, Shantou, 515041, People's Republic of China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou, 515041, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Haijun Shi
- Stem Cell P2 Laboratory, Shantou University Medical College, Shantou, 515041, People's Republic of China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou, 515041, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Xinran Chu
- Stem Cell P2 Laboratory, Shantou University Medical College, Shantou, 515041, People's Republic of China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou, 515041, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Xiaoling Zhou
- Stem Cell P2 Laboratory, Shantou University Medical College, Shantou, 515041, People's Republic of China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou, 515041, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Pingnan Sun
- Stem Cell P2 Laboratory, Shantou University Medical College, Shantou, 515041, People's Republic of China.
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou, 515041, People's Republic of China.
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People's Republic of China.
| |
Collapse
|
25
|
Schwartz RE, Bram Y, Frankel A. Pluripotent Stem Cell-Derived Hepatocyte-like Cells: A Tool to Study Infectious Disease. CURRENT PATHOBIOLOGY REPORTS 2016; 4:147-156. [PMID: 29910973 DOI: 10.1007/s40139-016-0113-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review Liver disease is an important clinical and global problem and is the 16th leading cause of death worldwide and responsible for 1 million deaths worldwide each year. Infectious disease is a major cause of liver disease specifically and overall is even a greater cause of patient morbidity and mortality. Tools to study human liver disease and infectious disease have been lacking which has significantly hampered the study of liver disease generally and hepatotropic pathogens more specifically. Historically, hepatoma cell lines have been used for in vitro cell culture models to study infectious disease. Significant differences between human hepatoma cell lines and the human hepatocyte has hampered our understanding of hepatocyte pathogen infection and hepatocyte--pathogen interactions. Recent Findings Despite these limitations, great progress was made in the understanding of specific aspects of the life cycle of the canonical hepatocyte viral pathogen, Hepatitis C Virus. Over time various specific drugs targeting various proteins of the HCV virion or aspects of the HCV viral life cycle have been created that enable almost complete elimination of the virus in vitro and clinically. These drugs, direct-acting antivirals have enabled achieving sustained virologic response in over 90-95 percent of patients. Summary Despite the development of direct-acting antivirals and the extreme success in achieving sustained virologic response, there has only been limited success elucidating host-pathogen interactions largely due to the poor nature of the hepatoma platform. Alternative approaches are needed. Pluripotent stem cells are renewable, can be derived from a single donor and can be efficiently and reproducibly differentiated towards many cell types including ectodermal-, endodermal-, and mesodermal-derived lineages. The development of pluripotent stem cell-derived hepatocyte-like cells (iHLCS) changes the paradigm as robust cells with the phenotype and function of hepatocytes can be readily created on demand with a variety of genetic background or alterations. iHLCs are readily used as models to study human drug metabolism, human liver disease, and human hepatotropic infectious disease. In this review, we discuss the biology of the HCV virus, the use of iHLCs as models to study human liver disease, and review the current work on using iHLCs to study HCV infection.
Collapse
Affiliation(s)
| | - Yaron Bram
- Weill Cornell School of Medicine, New York, NY, USA
| | | |
Collapse
|
26
|
Lagaye S, Brun S, Gaston J, Shen H, Stranska R, Camus C, Dubray C, Rousseau G, Massault PP, Courcambeck J, Bassisi F, Halfon P, Pol S. Anti-hepatitis C virus potency of a new autophagy inhibitor using human liver slices model. World J Hepatol 2016; 8:902-14. [PMID: 27478540 PMCID: PMC4958700 DOI: 10.4254/wjh.v8.i21.902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/01/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the antiviral potency of a new anti-hepatitis C virus (HCV) antiviral agent targeting the cellular autophagy machinery. METHODS Non-infected liver slices, obtained from human liver resection and cut in 350 μm-thick slices (2.7 × 10(6) cells per slice) were infected with cell culture-grown HCV Con1b/C3 supernatant (multiplicity of infection = 0.1) cultivated for up to ten days. HCV infected slices were treated at day 4 post-infection with GNS-396 for 6 d at different concentrations. HCV replication was evaluated by strand-specific real-time quantitative reverse transcription - polymerase chain reaction. The infectivity titers of supernatants were evaluated by foci formation upon inoculation into naive Huh-7.5.1 cells. The cytotoxic effect of the drugs was evaluated by lactate dehydrogenase leakage assays. RESULTS The antiviral efficacy of a new antiviral drug, GNS-396, an autophagy inhibitor, on HCV infection of adult human liver slices was evidenced in a dose-dependent manner. At day 6 post-treatment, GNS-396 EC50 was 158 nmol/L without cytotoxic effect (compared to hydroxychloroquine EC50 = 1.17 μmol/L). CONCLUSION Our results demonstrated that our ex vivo model is efficient for evaluation the potency of autophagy inhibitors, in particular a new quinoline derivative GNS-396 as antiviral could inhibit HCV infection in a dose-dependent manner without cytotoxic effect.
Collapse
Affiliation(s)
- Sylvie Lagaye
- Sylvie Lagaye, Jesintha Gaston, Stanislas Pol, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | - Sonia Brun
- Sylvie Lagaye, Jesintha Gaston, Stanislas Pol, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | - Jesintha Gaston
- Sylvie Lagaye, Jesintha Gaston, Stanislas Pol, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | - Hong Shen
- Sylvie Lagaye, Jesintha Gaston, Stanislas Pol, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | - Ruzena Stranska
- Sylvie Lagaye, Jesintha Gaston, Stanislas Pol, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | - Claire Camus
- Sylvie Lagaye, Jesintha Gaston, Stanislas Pol, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | - Clarisse Dubray
- Sylvie Lagaye, Jesintha Gaston, Stanislas Pol, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | - Géraldine Rousseau
- Sylvie Lagaye, Jesintha Gaston, Stanislas Pol, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | - Pierre-Philippe Massault
- Sylvie Lagaye, Jesintha Gaston, Stanislas Pol, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | - Jerôme Courcambeck
- Sylvie Lagaye, Jesintha Gaston, Stanislas Pol, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | - Firas Bassisi
- Sylvie Lagaye, Jesintha Gaston, Stanislas Pol, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | - Philippe Halfon
- Sylvie Lagaye, Jesintha Gaston, Stanislas Pol, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | - Stanislas Pol
- Sylvie Lagaye, Jesintha Gaston, Stanislas Pol, Institut Pasteur, INSERM U1223, 75015 Paris, France
| |
Collapse
|
27
|
Magri A, Ozerov AA, Tunitskaya VL, Valuev-Elliston VT, Wahid A, Pirisi M, Simmonds P, Ivanov AV, Novikov MS, Patel AH. Exploration of acetanilide derivatives of 1-(ω-phenoxyalkyl)uracils as novel inhibitors of Hepatitis C Virus replication. Sci Rep 2016; 6:29487. [PMID: 27406141 PMCID: PMC4942610 DOI: 10.1038/srep29487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/21/2016] [Indexed: 01/16/2023] Open
Abstract
Hepatitis C Virus (HCV) is a major public health problem worldwide. While highly efficacious directly-acting antiviral agents have been developed in recent years, their high costs and relative inaccessibility make their use limited. Here, we describe new 1-(ω-phenoxyalkyl)uracils bearing acetanilide fragment in 3 position of pyrimidine ring as potential antiviral drugs against HCV. Using a combination of various biochemical assays and in vitro virus infection and replication models, we show that our compounds are able to significantly reduce viral genomic replication, independently of virus genotype, with their IC50 values in the nanomolar range. We also demonstrate that our compounds can block de novo RNA synthesis and that effect is dependent on a chemical structure of the compounds. A detailed structure-activity relationship revealed that the most active compounds were the N(3)-substituted uracil derivatives containing 6-(4-bromophenoxy)hexyl or 8-(4-bromophenoxy)octyl fragment at N(1) position.
Collapse
Affiliation(s)
- Andrea Magri
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Alexander A. Ozerov
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, Volgograd, Russia
| | - Vera L. Tunitskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia
| | | | - Ahmed Wahid
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Department of Biochemistry, Faculty of Pharmacy, Minia, University, Minia, Egypt
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia
| | - Mikhail S. Novikov
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, Volgograd, Russia
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
28
|
Affiliation(s)
- Yu Wang
- a MRC Centre for Regenerative Medicine, University of Edinburgh , Edinburgh , UK
| | - David C Hay
- a MRC Centre for Regenerative Medicine, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
29
|
Szkolnicka D, Hay DC. Concise Review: Advances in Generating Hepatocytes from Pluripotent Stem Cells for Translational Medicine. Stem Cells 2016; 34:1421-6. [PMID: 27015786 PMCID: PMC4982058 DOI: 10.1002/stem.2368] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/24/2016] [Accepted: 03/10/2016] [Indexed: 12/23/2022]
Abstract
The liver is one of the major organs in the human body. Severe or prolonged exposure of the liver to different factors may cause life-threatening disease, which necessitates donor organ transplantation. While orthotopic liver transplantation can be used to effectively treat liver failure, it is an invasive procedure, which is severely limited by organ donation. Therefore, alternative sources of liver support have been proposed and studied. This includes the use of pluripotent stem cell-derived hepatocytes as a renewable source of cells for therapy. In addition to cell-based therapies, in vitro engineered liver tissue provides powerful models for human drug discovery and disease modeling. This review focuses on the generation of hepatocyte-like cells from pluripotent stem cells and their application in translational medicine. Stem Cells 2016;34:1421-1426.
Collapse
Affiliation(s)
- Dagmara Szkolnicka
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - David C Hay
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
30
|
Lucendo-Villarin B, Rashidi H, Cameron K, Hay DC. Pluripotent stem cell derived hepatocytes: using materials to define cellular differentiation and tissue engineering. J Mater Chem B 2016; 4:3433-3442. [PMID: 27746914 PMCID: PMC5024673 DOI: 10.1039/c6tb00331a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022]
Abstract
Pluripotent stem cell derived liver cells (hepatocytes) represent a promising alternative to primary tissue for biological and clinical applications. To date, most hepatocyte maintenance and differentiation systems have relied upon the use of animal derived components. This serves as a significant barrier to large scale production and application of stem cell derived hepatocytes. Recently, the use of defined biologics has overcome those limitations in two-dimensional monolayer culture. In order to improve the cell phenotype further, three-dimensional culture systems have been employed to better mimic the in vivo situation, drawing upon materials chemistry, engineering and biology. In this review we discuss efforts in the field, to differentiate pluripotent stem cells towards hepatocytes under defined conditions.
Collapse
Affiliation(s)
- B Lucendo-Villarin
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| | - H Rashidi
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| | - K Cameron
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| | - D C Hay
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| |
Collapse
|
31
|
Serum-Free Directed Differentiation of Human Embryonic Stem Cells to Hepatocytes. Methods Mol Biol 2016; 1250:105-11. [PMID: 26272137 DOI: 10.1007/978-1-4939-2074-7_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The increase in human liver disease worldwide is a major concern. At present, the only successful mode of treatment for failing liver function is organ transplantation. While highly successful, donor organs are a limited resource that cannot meet current demands. Therefore, alternative liver support strategies have been explored, including the use of the major and metabolic cell within the liver, the hepatocyte. While current approaches using human hepatocytes are very promising, donor material is still required and therefore suffers from similar limitations to whole organ transplantation. One alternative source of human hepatocytes being actively pursued in the field is pluripotent stem cells. Pluripotent stem cells are a scalable and renewable cell-based resource, which can be efficiently differentiated towards hepatocytes, including pluripotent stem cell lines that have been derived under good manufacturing practice conditions. Therefore, it is believed that this approach provides a promising model system for cell scale-up and differentiation. In the future, pluripotent stem cell-derived hepatocytes could be used in the clinic to support failing liver function if they should be deemed fit for purpose.
Collapse
|
32
|
Zhou X, Xu L, Wang W, Watashi K, Wang Y, Sprengers D, de Ruiter PE, van der Laan LJW, Metselaar HJ, Kamar N, Peppelenbosch MP, Pan Q. Disparity of basal and therapeutically activated interferon signalling in constraining hepatitis E virus infection. J Viral Hepat 2016; 23:294-304. [PMID: 26620360 DOI: 10.1111/jvh.12491] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
Hepatitis E virus (HEV) represents one of the foremost causes of acute hepatitis globally. Although there is no proven medication for hepatitis E, pegylated interferon-α (IFN-α) has been used as off-label drug for treating HEV. However, the efficacy and molecular mechanisms of how IFN signalling interacts with HEV remain undefined. As IFN-α has been approved for treating chronic hepatitis C (HCV) for decades and the role of interferon signalling has been well studied in HCV infection, this study aimed to comprehensively investigate virus-host interactions in HEV infection with focusing on the IFN signalling, in comparison with HCV infection. A comprehensive screen of human cytokines and chemokines revealed that IFN-α was the sole humoral factor inhibiting HEV replication. IFN-α treatment exerted a rapid and potent antiviral activity against HCV, whereas it had moderate and delayed anti-HEV effects in vitro and in patients. Surprisingly, blocking the basal IFN pathway by inhibiting JAK1 to phosphorylate STAT1 has resulted in drastic facilitation of HEV, but not HCV infection. Gene silencing of the key components of JAK-STAT cascade of the IFN signalling, including JAK1, STAT1 and interferon regulatory factor 9 (IRF9), stimulated HEV infection. In conclusion, compared to HCV, HEV is less sensitive to IFN treatment. In contrast, the basal IFN cascade could effectively restrict HEV infection. This bears significant implications in management of HEV patients and future therapeutic development.
Collapse
Affiliation(s)
- X Zhou
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - L Xu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - W Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - K Watashi
- Department of Virology II, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Y Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - D Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - P E de Ruiter
- Department of Surgery, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - L J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - H J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - N Kamar
- Department of Nephrology and Organ Transplantation, CHU Rangueil, TSA, Toulouse Cedex 9, France.,INSERM U1043, IFR-BMT, CHU Purpan, Toulouse, France.,Université Paul Sabatier, Toulouse, France
| | - M P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Q Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Naik AS, Palmer BA, Crosbie O, Kenny-Walsh E, Fanning LJ. A single amino acid change in the hypervariable region 1 of hepatitis C virus genotype 4a aids humoral immune escape. J Gen Virol 2016; 97:1345-1349. [PMID: 26945008 DOI: 10.1099/jgv.0.000447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Longitudinal analysis of chronic hepatitis C virus (HCV) infection has shown that the virus has several adaptive strategies that maintain persistence and infectivity over time. We examined four serum samples from the same chronically infected HCV genotype 4a patient for the presence of IgG antibody-associated virus. RNA was isolated from antibody-associated and antibody-free virions. Subsequent to sequence analysis, 27 aa hypervariable region 1 (HVR1) peptides were used to test the humoral immune escape. We demonstrated that differential peptide binding of Fab was associated with a single amino acid change. We provide direct evidence of natural humoral immune escape by HCV within HVR1.
Collapse
Affiliation(s)
- Amruta S Naik
- Department of Medicine, Clinical Sciences Building, University College Cork, Cork, Ireland
| | - Brendan A Palmer
- Department of Medicine, Clinical Sciences Building, University College Cork, Cork, Ireland
| | - Orla Crosbie
- Department of Hepatology, Cork University Hospital, Cork, Ireland
| | | | - Liam J Fanning
- Department of Medicine, Clinical Sciences Building, University College Cork, Cork, Ireland
| |
Collapse
|
34
|
Helsen N, Debing Y, Paeshuyse J, Dallmeier K, Boon R, Coll M, Sancho-Bru P, Claes C, Neyts J, Verfaillie CM. Stem cell-derived hepatocytes: A novel model for hepatitis E virus replication. J Hepatol 2016; 64:565-73. [PMID: 26626494 DOI: 10.1016/j.jhep.2015.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Yearly, approximately 20million people become infected with the hepatitis E virus (HEV) resulting in over 3million cases of acute hepatitis. Although HEV-mediated hepatitis is usually self-limiting, severe cases of fulminant hepatitis as well as chronic infections have been reported, resulting annually in an estimated 60,000 deaths. We studied whether pluripotent stem cell (PSC)-derived hepatocytes, mesodermal and/or neuroprogenitor cells support HEV replication. METHODS Human PSC were differentiated towards hepatocyte-like cells, mesodermal cells and neuroprogenitors and subsequently infected with HEV. Infection and replication of HEV was analyzed by qRT-PCR, RNA in situ hybridization, negative strand RT-PCR, production of infectious virions and transfection with a transient HEV reporter replicon. RESULTS PSC-derived hepatocytes supported the complete replication cycle of HEV, as demonstrated by the intracellular presence of positive and negative strand HEV RNA and the production of infectious virions. The replication of the virus in these cells was inhibited by the antiviral drugs ribavirin and interferon-α2b. In contrast to PSC-derived hepatocytes, PSC-derived mesodermal cells and neuroprogenitors only supported HEV replication upon transfection with a HEV subgenomic replicon. CONCLUSION We demonstrate that PSC can be used to study the hepatotropism of HEV infection. The complete replication cycle of HEV can be recapitulated in infected PSC-derived hepatocytes. By contrast other germ layer cells support intracellular replication but are not infectable with HEV. Thus the early steps in the viral cycle are the main determinant governing HEV tissue tropism. PSC-hepatocytes offer a physiological relevant tool to study the biology of HEV infection and replication and may aid in the design of therapeutic strategies.
Collapse
Affiliation(s)
- Nicky Helsen
- Stem Cell Institute, University of Leuven (KU Leuven), Leuven, Belgium.
| | - Yannick Debing
- Laboratory of Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven (KU Leuven), Belgium
| | - Jan Paeshuyse
- Laboratory of Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven (KU Leuven), Belgium
| | - Kai Dallmeier
- Laboratory of Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven (KU Leuven), Belgium
| | - Ruben Boon
- Stem Cell Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Mar Coll
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) - Hospital Clinic, Liver Unit, Spain
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) - Hospital Clinic, Liver Unit, Spain
| | - Christel Claes
- Stem Cell Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Johan Neyts
- Laboratory of Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven (KU Leuven), Belgium
| | | |
Collapse
|
35
|
Cameron K, Tan R, Schmidt-Heck W, Campos G, Lyall MJ, Wang Y, Lucendo-Villarin B, Szkolnicka D, Bates N, Kimber SJ, Hengstler JG, Godoy P, Forbes SJ, Hay DC. Recombinant Laminins Drive the Differentiation and Self-Organization of hESC-Derived Hepatocytes. Stem Cell Reports 2015; 5:1250-1262. [PMID: 26626180 PMCID: PMC4682209 DOI: 10.1016/j.stemcr.2015.10.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022] Open
Abstract
Stem cell-derived somatic cells represent an unlimited resource for basic and translational science. Although promising, there are significant hurdles that must be overcome. Our focus is on the generation of the major cell type of the human liver, the hepatocyte. Current protocols produce variable populations of hepatocytes that are the product of using undefined components in the differentiation process. This serves as a significant barrier to scale-up and application. To tackle this issue, we designed a defined differentiation process using recombinant laminin substrates to provide instruction. We demonstrate efficient hepatocyte specification, cell organization, and significant improvements in cell function and phenotype. This is driven in part by the suppression of unfavorable gene regulatory networks that control cell proliferation and migration, pluripotent stem cell self-renewal, and fibroblast and colon specification. We believe that this represents a significant advance, moving stem cell-based hepatocytes closer toward biomedical application.
Collapse
Affiliation(s)
- Kate Cameron
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Rosanne Tan
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Wolfgang Schmidt-Heck
- Leibniz Institute for Natural Product Research and Infection Biology eV-Hans-Knöll Institute, 07743 Jena, Germany
| | - Gisela Campos
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Ardeystraße 67, 44139 Dortmund, Germany
| | - Marcus J Lyall
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Yu Wang
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Dagmara Szkolnicka
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Nicola Bates
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Susan J Kimber
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Ardeystraße 67, 44139 Dortmund, Germany
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Ardeystraße 67, 44139 Dortmund, Germany
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
36
|
Holtzinger A, Streeter PR, Sarangi F, Hillborn S, Niapour M, Ogawa S, Keller G. New markers for tracking endoderm induction and hepatocyte differentiation from human pluripotent stem cells. Development 2015; 142:4253-65. [PMID: 26493401 DOI: 10.1242/dev.121020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 10/13/2015] [Indexed: 12/13/2022]
Abstract
The efficient generation of hepatocytes from human pluripotent stem cells (hPSCs) requires the induction of a proper endoderm population, broadly characterized by the expression of the cell surface marker CXCR4. Strategies to identify and isolate endoderm subpopulations predisposed to the liver fate do not exist. In this study, we generated mouse monoclonal antibodies against human embryonic stem cell-derived definitive endoderm with the goal of identifying cell surface markers that can be used to track the development of this germ layer and its specification to a hepatic fate. Through this approach, we identified two endoderm-specific antibodies, HDE1 and HDE2, which stain different stages of endoderm development and distinct derivative cell types. HDE1 marks a definitive endoderm population with high hepatic potential, whereas staining of HDE2 tracks with developing hepatocyte progenitors and hepatocytes. When used in combination, the staining patterns of these antibodies enable one to optimize endoderm induction and hepatic specification from any hPSC line.
Collapse
Affiliation(s)
- Audrey Holtzinger
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Philip R Streeter
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Farida Sarangi
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Scott Hillborn
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Maryam Niapour
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Shinichiro Ogawa
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2M9 Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5T 2M9
| |
Collapse
|
37
|
Godoy P, Schmidt-Heck W, Natarajan K, Lucendo-Villarin B, Szkolnicka D, Asplund A, Björquist P, Widera A, Stöber R, Campos G, Hammad S, Sachinidis A, Chaudhari U, Damm G, Weiss TS, Nüssler A, Synnergren J, Edlund K, Küppers-Munther B, Hay DC, Hengstler JG. Gene networks and transcription factor motifs defining the differentiation of stem cells into hepatocyte-like cells. J Hepatol 2015; 63:934-942. [PMID: 26022688 PMCID: PMC4580233 DOI: 10.1016/j.jhep.2015.05.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/25/2015] [Accepted: 05/11/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS The differentiation of stem cells to hepatocyte-like cells (HLC) offers the perspective of unlimited supply of human hepatocytes. However, the degree of differentiation of HLC remains controversial. To obtain an unbiased characterization, we performed a transcriptomic study with HLC derived from human embryonic and induced stem cells (ESC, hiPSC) from three different laboratories. METHODS Genome-wide gene expression profiles of ESC and HLC were compared to freshly isolated and up to 14days cultivated primary human hepatocytes. Gene networks representing successful and failed hepatocyte differentiation, and the transcription factors involved in their regulation were identified. RESULTS Gene regulatory network analysis demonstrated that HLC represent a mixed cell type with features of liver, intestine, fibroblast and stem cells. The "unwanted" intestinal features were associated with KLF5 and CDX2 transcriptional networks. Cluster analysis identified highly correlated groups of genes associated with mature liver functions (n=1057) and downregulated proliferation associated genes (n=1562) that approach levels of primary hepatocytes. However, three further clusters containing 447, 101, and 505 genes failed to reach levels of hepatocytes. Key TF of two of these clusters include SOX11, FOXQ1, and YBX3. The third unsuccessful cluster, controlled by HNF1, CAR, FXR, and PXR, strongly overlaps with genes repressed in cultivated hepatocytes compared to freshly isolated hepatocytes, suggesting that current in vitro conditions lack stimuli required to maintain gene expression in hepatocytes, which consequently also explains a corresponding deficiency of HLC. CONCLUSIONS The present gene regulatory network approach identifies key transcription factors which require modulation to improve HLC differentiation.
Collapse
Affiliation(s)
- Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany; Department of Physiology, Faculty of Biological Sciences, University of Concepción, Chile
| | - Wolfgang Schmidt-Heck
- Leibniz Institute for Natural Product Research and Infection Biology eV-Hans-Knöll Institute, Jena, Germany
| | - Karthick Natarajan
- University of Cologne, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, 50931 Cologne, Germany
| | | | - Dagmara Szkolnicka
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Annika Asplund
- Takara Bio Europe AB (former Cellartis AB), Arvid Wallgrens Backe 20, 41346 Gothenburg, Sweden; Systems Biology Research Center, School of Bioscience, University of Skövde, Sweden
| | | | - Agata Widera
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Regina Stöber
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Gisela Campos
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Seddik Hammad
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Agapios Sachinidis
- University of Cologne, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Umesh Chaudhari
- University of Cologne, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Georg Damm
- Charité University Medicine Berlin, Department of General-, Visceral- and Transplantation Surgery, D13353 Berlin, Germany
| | - Thomas S Weiss
- Center for Liver Cell Research, Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Andreas Nüssler
- Eberhard Karls University Tübingen, BG Trauma Center, Siegfried Weller Institut, D72076 Tübingen, Germany
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, Sweden
| | - Karolina Edlund
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Barbara Küppers-Munther
- Takara Bio Europe AB (former Cellartis AB), Arvid Wallgrens Backe 20, 41346 Gothenburg, Sweden
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom.
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany.
| |
Collapse
|
38
|
Villarin BL, Cameron K, Szkolnicka D, Rashidi H, Bates N, Kimber SJ, Flint O, Forbes SJ, Iredale JP, Bradley M, Hay DC. Polymer Supported Directed Differentiation Reveals a Unique Gene Signature Predicting Stable Hepatocyte Performance. Adv Healthc Mater 2015; 4:1820-5. [PMID: 26109270 DOI: 10.1002/adhm.201500391] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Indexed: 01/14/2023]
Abstract
In theory, pluripotent stem cells can give rise to all somatic cell types found in the human body. The ability to generate renewable sources of human cells has enormous potential to improve human health and wealth. One major obstacle to the routine deployment of stem cell-derived cells is their instability in culture. To tackle this issue a synthetic polymer surface is used.
Collapse
Affiliation(s)
- Baltasar Lucendo Villarin
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Kate Cameron
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Dagmara Szkolnicka
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Hassan Rashidi
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Nicola Bates
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Susan J Kimber
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Oliver Flint
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - John P Iredale
- MRC Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Mark Bradley
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| |
Collapse
|
39
|
Irudayam JI, Contreras D, Spurka L, Subramanian A, Allen J, Ren S, Kanagavel V, Nguyen Q, Ramaiah A, Ramamoorthy K, French SW, Klein AS, Funari V, Arumugaswami V. Characterization of type I interferon pathway during hepatic differentiation of human pluripotent stem cells and hepatitis C virus infection. Stem Cell Res 2015; 15:354-364. [PMID: 26313525 DOI: 10.1016/j.scr.2015.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 06/26/2015] [Accepted: 08/13/2015] [Indexed: 01/08/2023] Open
Abstract
Pluripotent stem cells are being actively studied as a cell source for regenerating damaged liver. For long-term survival of engrafting cells in the body, not only do the cells have to execute liver-specific function but also withstand the physical strains and invading pathogens. The cellular innate immune system orchestrated by the interferon (IFN) pathway provides the first line of defense against pathogens. The objective of this study is to assess the innate immune function as well as to systematically profile the IFN-induced genes during hepatic differentiation of pluripotent stem cells. To address this objective, we derived endodermal cells (day 5 post-differentiation), hepatoblast (day 15) and hepatocyte-like cells (day 21) from human embryonic stem cells (hESCs). Day 5, 15 and 21 cells were stimulated with IFN-α and subjected to IFN pathway analysis. Transcriptome analysis was carried out by RNA sequencing. The results showed that the IFN-α treatment activated STAT-JAK pathway in differentiating cells. Transcriptome analysis indicated stage specific expression of classical and non-classical IFN-stimulated genes (ISGs). Subsequent validation confirmed the expression of novel ISGs including RASGRP3, CLMP and TRANK1 by differentiated hepatic cells upon IFN treatment. Hepatitis C virus replication in hESC-derived hepatic cells induced the expression of ISGs--LAMP3, ETV7, RASGRP3, and TRANK1. The hESC-derived hepatic cells contain intact innate system and can recognize invading pathogens. Besides assessing the tissue-specific functions for cell therapy applications, it may also be important to test the innate immune function of engrafting cells to ensure adequate defense against infections and improve graft survival.
Collapse
Affiliation(s)
- Joseph Ignatius Irudayam
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Deisy Contreras
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lindsay Spurka
- Cedars-Sinai Genomics Core, Medical Genetics Institute, Cedars-Sinai Medical Center Los Angeles, CA 90048, USA
| | - Aparna Subramanian
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jenieke Allen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Songyang Ren
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vidhya Kanagavel
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Quoclinh Nguyen
- Cedars-Sinai Genomics Core, Medical Genetics Institute, Cedars-Sinai Medical Center Los Angeles, CA 90048, USA
| | - Arunachalam Ramaiah
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Hindustan Genomics Institute, SVA Medical Center, Kadayam, Tamil Nadu 627415, India
| | - Kalidas Ramamoorthy
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India.,Hindustan Genomics Institute, SVA Medical Center, Kadayam, Tamil Nadu 627415, India
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles CA 90095, USA
| | - Andrew S Klein
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Surgery, University of California at Los Angeles, Los Angeles CA 90095, USA
| | - Vincent Funari
- Cedars-Sinai Genomics Core, Medical Genetics Institute, Cedars-Sinai Medical Center Los Angeles, CA 90048, USA
| | - Vaithilingaraja Arumugaswami
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Surgery, University of California at Los Angeles, Los Angeles CA 90095, USA
| |
Collapse
|
40
|
Möbus S, Yang D, Yuan Q, Lüdtke THW, Balakrishnan A, Sgodda M, Rani B, Kispert A, Araúzo-Bravo MJ, Vogel A, Manns MP, Ott M, Cantz T, Sharma AD. MicroRNA-199a-5p inhibition enhances the liver repopulation ability of human embryonic stem cell-derived hepatic cells. J Hepatol 2015; 62:101-10. [PMID: 25135862 DOI: 10.1016/j.jhep.2014.08.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/29/2014] [Accepted: 08/07/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Current hepatic differentiation protocols for human embryonic stem cells (ESCs) require substantial improvements. MicroRNAs (miRNAs) have been reported to regulate hepatocyte cell fate during liver development, but their utility to improve hepatocyte differentiation from ESCs remains to be investigated. Therefore, our aim was to identify and to analyse hepatogenic miRNAs for their potential to improve hepatocyte differentiation from ESCs. METHODS By miRNA profiling and in vitro screening, we identified miR-199a-5p among several potential hepatogenic miRNAs. Transplantation studies of miR-199a-5p-inhibited hepatocyte-like cells (HLCs) in the liver of immunodeficient fumarylacetoacetate hydrolase knockout mice (Fah(-/-)/Rag2(-/-)/Il2rg(-/-)) were performed to assess their in vivo liver repopulation potential. For target determination, western blot and luciferase reporter assay were carried out. RESULTS miRNA profiling revealed 20 conserved candidate hepatogenic miRNAs. By miRNA screening, only miR-199a-5p inhibition in HLCs was found to be able to enhance the in vitro hepatic differentiation of mouse as well as human ESCs. miR-199a-5p inhibition in human ESCs-derived HLCs enhanced their engraftment and repopulation capacity in the liver of Fah(-/-)/Rag2(-/-)/Il2rg(-/-) mice. Furthermore, we identified SMARCA4 and MST1 as novel targets of miR-199a-5p that may contribute to the improved hepatocyte generation and in vivo liver repopulation. CONCLUSIONS Our findings demonstrate that miR-199a-5p inhibition in ES-derived HLCs leads to improved hepatocyte differentiation. Upon transplantation, HLCs were able to engraft and repopulate the liver of Fah(-/-)/Rag2(-/-)/Il2rg(-/-) mice. Thus, our findings suggest that miRNA modulation may serve as a promising approach to generate more mature HLCs from stem cell sources for the treatment of liver diseases.
Collapse
Affiliation(s)
- Selina Möbus
- Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Dakai Yang
- Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Timo H-W Lüdtke
- Institute for Molecular Biology, Hannover Medical School, Germany
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Malte Sgodda
- Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Bhavna Rani
- Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Andreas Kispert
- Institute for Molecular Biology, Hannover Medical School, Germany
| | - Marcos J Araúzo-Bravo
- Computational Biology and Bioinformatics Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Computational Biology and Bioinformatics Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| | - Amar Deep Sharma
- Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
41
|
Szkolnicka D, Farnworth SL, Lucendo‐Villarin B, Hay DC. Deriving Functional Hepatocytes from Pluripotent Stem Cells. ACTA ACUST UNITED AC 2014; 30:1G.5.1-12. [DOI: 10.1002/9780470151808.sc01g05s30] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dagmara Szkolnicka
- MRC Centre for Regenerative Medicine, University of Edinburgh Edinburgh United Kingdom
| | - Sarah L. Farnworth
- MRC Centre for Regenerative Medicine, University of Edinburgh Edinburgh United Kingdom
| | | | - David C. Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh Edinburgh United Kingdom
| |
Collapse
|