1
|
Bahrami M, Darabi S, Roozbahany NA, Abbaszadeh HA, Moghadasali R. Great potential of renal progenitor cells in kidney: From the development to clinic. Exp Cell Res 2024; 434:113875. [PMID: 38092345 DOI: 10.1016/j.yexcr.2023.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
The mammalian renal organ represents a pinnacle of complexity, housing functional filtering units known as nephrons. During embryogenesis, the depletion of niches containing renal progenitor cells (RPCs) and the subsequent incapacity of adult kidneys to generate new nephrons have prompted the formulation of protocols aimed at isolating residual RPCs from mature kidneys and inducing their generation from diverse cell sources, notably pluripotent stem cells. Recent strides in the realm of regenerative medicine and the repair of tissues using stem cells have unveiled critical signaling pathways essential for the maintenance and generation of human RPCs in vitro. These findings have ushered in a new era for exploring novel strategies for renal protection. The present investigation delves into potential transcription factors and signaling cascades implicated in the realm of renal progenitor cells, focusing on their protection and differentiation. The discourse herein elucidates contemporary research endeavors dedicated to the acquisition of progenitor cells, offering crucial insights into the developmental mechanisms of these cells within the renal milieu and paving the way for the formulation of innovative treatment modalities.
Collapse
Affiliation(s)
- Maryam Bahrami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Hojjat Allah Abbaszadeh
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Bone marrow mesenchymal stem cells ameliorated kidney fibrosis by attenuating TLR4/NF-κB in diabetic rats. Life Sci 2020; 262:118385. [DOI: 10.1016/j.lfs.2020.118385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 01/30/2023]
|
3
|
Al-Hasani K, Khurana I, Farhat T, Eid A, El-Osta A. Epigenetics of Diabetic Nephropathy: From Biology to Therapeutics. EUROPEAN MEDICAL JOURNAL 2020. [DOI: 10.33590/emj/19-00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a lethal microvascular complication associated with Type 1 and Type 2 diabetes mellitus, and is the leading single cause of end-stage renal disease. Although genetic influences are important, epigenetic mechanisms have been implicated in several aspects of the disease. The current therapeutic methods to treat DN are limited to slowing disease progression without repair and regeneration of the damaged nephrons. Replacing dying or diseased kidney cells with new nephrons is an attractive strategy. This review considers the genetic and epigenetic control of nephrogenesis, together with the epigenetic mechanisms that accompany kidney development and recent advances in induced reprogramming and kidney cell regeneration in the context of DN.
Collapse
Affiliation(s)
- Keith Al-Hasani
- Department of Diabetes, Epigenetics in Human Health and Disease Laboratory, Monash University, Melbourne, Australia
| | - Ishant Khurana
- Department of Diabetes, Epigenetics in Human Health and Disease Laboratory, Monash University, Melbourne, Australia
| | - Theresa Farhat
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assam El-Osta
- Department of Diabetes, Epigenetics in Human Health and Disease Laboratory, Monash University, Melbourne, Australia; Department of Clinical Pathology, The University of Melbourne, Victoria, Australia; Faculty of Health, Department of Technology, Biomedical Laboratory Science, University College Copenhagen, Copenhagen, Denmark; Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong
| |
Collapse
|
4
|
RNA-Based Strategies for Cardiac Reprogramming of Human Mesenchymal Stromal Cells. Cells 2020; 9:cells9020504. [PMID: 32098400 PMCID: PMC7072829 DOI: 10.3390/cells9020504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
Multipotent adult mesenchymal stromal cells (MSCs) could represent an elegant source for the generation of patient-specific cardiomyocytes needed for regenerative medicine, cardiovascular research, and pharmacological studies. However, the differentiation of adult MSC into a cardiac lineage is challenging compared to embryonic stem cells or induced pluripotent stem cells. Here we used non-integrative methods, including microRNA and mRNA, for cardiac reprogramming of adult MSC derived from bone marrow, dental follicle, and adipose tissue. We found that MSC derived from adipose tissue can partly be reprogrammed into the cardiac lineage by transient overexpression of GATA4, TBX5, MEF2C, and MESP1, while cells isolated from bone marrow, and dental follicle exhibit only weak reprogramming efficiency. qRT-PCR and transcriptomic analysis revealed activation of a cardiac-specific gene program and up-regulation of genes known to promote cardiac development. Although we did not observe the formation of fully mature cardiomyocytes, our data suggests that adult MSC have the capability to acquire a cardiac-like phenotype when treated with mRNA coding for transcription factors that regulate heart development. Yet, further optimization of the reprogramming process is mandatory to increase the reprogramming efficiency.
Collapse
|
5
|
HORISAWA K, SUZUKI A. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:131-158. [PMID: 32281550 PMCID: PMC7247973 DOI: 10.2183/pjab.96.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cells of multicellular organisms have diverse characteristics despite having the same genetic identity. The distinctive phenotype of each cell is determined by molecular mechanisms such as epigenetic changes that occur throughout the lifetime of an individual. Recently, technologies that enable modification of the fate of somatic cells have been developed, and the number of studies using these technologies has increased drastically in the last decade. Various cell types, including neuronal cells, cardiomyocytes, and hepatocytes, have been generated using these technologies. Although most direct reprogramming methods employ forced transduction of a defined sets of transcription factors to reprogram cells in a manner similar to induced pluripotent cell technology, many other strategies, such as methods utilizing chemical compounds and microRNAs to change the fate of somatic cells, have also been developed. In this review, we summarize transcription factor-based reprogramming and various other reprogramming methods. Additionally, we describe the various industrial applications of direct reprogramming technologies.
Collapse
Affiliation(s)
- Kenichi HORISAWA
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi SUZUKI
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence should be addressed: A. Suzuki, Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
6
|
Goligorsky MS. New Trends in Regenerative Medicine: Reprogramming and Reconditioning. J Am Soc Nephrol 2019; 30:2047-2051. [PMID: 31540964 DOI: 10.1681/asn.2019070722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Michael S Goligorsky
- Departments of Medicine, .,Pharmacology, and.,Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, New York
| |
Collapse
|
7
|
Steentoft C, Yang Z, Wang S, Ju T, Vester-Christensen MB, Festari MF, King SL, Moremen K, Larsen ISB, Goth CK, Schjoldager KT, Hansen L, Bennett EP, Mandel U, Narimatsu Y. A validated collection of mouse monoclonal antibodies to human glycosyltransferases functioning in mucin-type O-glycosylation. Glycobiology 2019; 29:645-656. [PMID: 31172184 PMCID: PMC6704369 DOI: 10.1093/glycob/cwz041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 01/09/2023] Open
Abstract
Complex carbohydrates serve a wide range of biological functions in cells and tissues, and their biosynthesis involves more than 200 distinct glycosyltransferases (GTfs) in human cells. The kinetic properties, cellular expression patterns and subcellular topology of the GTfs direct the glycosylation capacity of a cell. Most GTfs are ER or Golgi resident enzymes, and their specific subcellular localization is believed to be distributed in the secretory pathway according to their sequential role in the glycosylation process, although detailed knowledge for individual enzymes is still highly fragmented. Progress in quantitative transcriptome and proteome analyses has greatly advanced our understanding of the cellular expression of this class of enzymes, but availability of appropriate antibodies for in situ monitoring of expression and subcellular topology have generally been limited. We have previously used catalytically active GTfs produced as recombinant truncated secreted proteins in insect cells for generation of mouse monoclonal antibodies (mAbs) to human enzymes primarily involved in mucin-type O-glycosylation. These mAbs can be used to probe subcellular topology of active GTfs in cells and tissues as well as their presence in body fluids. Here, we present several new mAbs to human GTfs and provide a summary of our entire collection of mAbs, available to the community. Moreover, we present validation of specificity for many of our mAbs using human cell lines with CRISPR/Cas9 or zinc finger nuclease (ZFN) knockout and knockin of relevant GTfs.
Collapse
Affiliation(s)
- Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Shengjun Wang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Malene B Vester-Christensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Mammalian Expression, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark
| | - María F Festari
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Avenida Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Sarah L King
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Kelley Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, B122 Life Sciences Bldg., Athens, GA, 30602, USA
| | - Ida S B Larsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
8
|
Mansoori-Moghadam Z, Totonchi M, Hesaraki M, Aghdami N, Baharvand H, Moghadasali R. Programming of ES cells and reprogramming of fibroblasts into renal lineage-like cells. Exp Cell Res 2019; 379:225-234. [PMID: 30981668 DOI: 10.1016/j.yexcr.2019.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023]
Abstract
This study aims to prepare intermediate mesoderm-like cells from mouse embryonic fibroblasts (MEFs). In the first step, intermediate mesoderm-like cells (IMLCs) and renal epithelial-like cells (RELCs) were extracted from mouse embryonic stem cells (mESCs) in a specified media that contained two small molecules, CHIR99021 and TTNPB, along with growth factors, FGF9and BMP7. Then, MEFs were directly converted into IM by genes for the pluripotency factors, which encode the transcription factors; Oct4, Sox2, Klf4, and c-Myc (OSKM). These unstable intermediate cells were quickly encouraged to form IM with the assistance of CHIR99021 and TTNPB. The results showed that exogenous expression of OSKM factors for four days was adequate to generate partially reprogrammed cells (SSEA1+/Nanog-). Real-time PCR and immunocytochemistry analysis confirmed the presence of the MEF-derived IMs. This study introduced a method for mESCs differentiation to RELCs followed by MEF conversion in an attempt to generate IM by circumventing pluripotency.
Collapse
Affiliation(s)
- Zohreh Mansoori-Moghadam
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
9
|
Begum S. Engineering renal epithelial cells: programming and directed differentiation towards glomerular podocyte's progenitor and mature podocyte. Am J Transl Res 2019; 11:1102-1115. [PMID: 30899410 PMCID: PMC6413241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Current knowledge of normal developmental physiology and identification of specific cell types of the kidney at molecular levels enables us to generate various cells of the kidney. The generation of renal specialized cells in vitro with its correct molecular and functional implications is the urgent need for cellular therapy in chronic kidney diseases and for organ formation. Glomerular podocytes are one of the major renal cells lose its functionality to maintain glomerular blood filtration function. In vitro, many inductions or reprogramming methods have been established for podocytes development. In these methods transcription factors, small molecules, and growth factors play the major role to remodel stem cells into podocyte progenitors and towards mature podocytes. Micro ribonucleic acids (miRNAs) have been utilizing as another strategy to generate podocyte. In this review, current protocols for in vitro glomerular podocyte differentiation have summarized emphasizing programming methods, signaling modulation, and cytoskeletal changes. Novel ideas are also pointed out, which are required for efficient optimal glomerular podocyte generation and their functional characterization in vitro with nanoarchitecture impression of the glomerular basement membrane.
Collapse
Affiliation(s)
- Sumreen Begum
- Stem Cells Research Laboratory (SCRL), Sindh Institute of Urology and Transplantation (SIUT) Karachi, Sindh, Pakistan
| |
Collapse
|
10
|
Benedetti V, Brizi V, Xinaris C. Generation of Functional Kidney Organoids In Vivo Starting from a Single-Cell Suspension. Methods Mol Biol 2019; 1576:101-112. [PMID: 27539457 DOI: 10.1007/7651_2016_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Novel methods in developmental biology and stem cell research have made it possible to generate complex kidney tissues in vitro that resemble whole organs and are termed organoids. In this chapter we describe a technique using suspensions of fully dissociated mouse kidney cells to yield organoids that can become vascularized in vivo and mature and display physiological functions. This system can be used to produce fine-grained human-mouse chimeric organoids in which the renal differentiation potential of human cells can be assessed. It can also be an excellent method for growing chimeric organoids in vivo using human stem cells, which can differentiate into specialized kidney cells and exert nephron-specific functions. We provide detailed methods, a brief discussion of critical points, and describe some successfully implemented examples of the system.
Collapse
Affiliation(s)
- Valentina Benedetti
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano, 87, 24126, Bergamo, Italy
| | - Valerio Brizi
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano, 87, 24126, Bergamo, Italy
| | - Christodoulos Xinaris
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano, 87, 24126, Bergamo, Italy.
| |
Collapse
|
11
|
Legallais C, Kim D, Mihaila SM, Mihajlovic M, Figliuzzi M, Bonandrini B, Salerno S, Yousef Yengej FA, Rookmaaker MB, Sanchez Romero N, Sainz-Arnal P, Pereira U, Pasqua M, Gerritsen KGF, Verhaar MC, Remuzzi A, Baptista PM, De Bartolo L, Masereeuw R, Stamatialis D. Bioengineering Organs for Blood Detoxification. Adv Healthc Mater 2018; 7:e1800430. [PMID: 30230709 DOI: 10.1002/adhm.201800430] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/23/2018] [Indexed: 12/11/2022]
Abstract
For patients with severe kidney or liver failure the best solution is currently organ transplantation. However, not all patients are eligible for transplantation and due to limited organ availability, most patients are currently treated with therapies using artificial kidney and artificial liver devices. These therapies, despite their relative success in preserving the patients' life, have important limitations since they can only replace part of the natural kidney or liver functions. As blood detoxification (and other functions) in these highly perfused organs is achieved by specialized cells, it seems relevant to review the approaches leading to bioengineered organs fulfilling most of the native organ functions. There, the culture of cells of specific phenotypes on adapted scaffolds that can be perfused takes place. In this review paper, first the functions of kidney and liver organs are briefly described. Then artificial kidney/liver devices, bioartificial kidney devices, and bioartificial liver devices are focused on, as well as biohybrid constructs obtained by decellularization and recellularization of animal organs. For all organs, a thorough overview of the literature is given and the perspectives for their application in the clinic are discussed.
Collapse
Affiliation(s)
- Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Dooli Kim
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Sylvia M. Mihaila
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Marina Figliuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
| | - Barbara Bonandrini
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Simona Salerno
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Fjodor A. Yousef Yengej
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | | | - Pilar Sainz-Arnal
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Instituto Aragonés de Ciencias de la Salud (IACS); 50009 Zaragoza Spain
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Andrea Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd); 28029 Barcelona Spain
- Fundación ARAID; 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; 28040 Madrid Spain. Department of Biomedical and Aerospace Engineering; Universidad Carlos III de Madrid; 28911 Madrid Spain
| | - Loredana De Bartolo
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Rosalinde Masereeuw
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Dimitrios Stamatialis
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
12
|
Lu Y, Wang Z, Chen L, Wang J, Li S, Liu C, Sun D. The In Vitro Differentiation of GDNF Gene-Engineered Amniotic Fluid-Derived Stem Cells into Renal Tubular Epithelial-Like Cells. Stem Cells Dev 2018; 27:590-599. [PMID: 29649411 DOI: 10.1089/scd.2017.0120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ying Lu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhuojun Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lu Chen
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jia Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Caixia Liu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Večerić-Haler Ž, Cerar A, Perše M. (Mesenchymal) Stem Cell-Based Therapy in Cisplatin-Induced Acute Kidney Injury Animal Model: Risk of Immunogenicity and Tumorigenicity. Stem Cells Int 2017; 2017:7304643. [PMID: 29379525 PMCID: PMC5742889 DOI: 10.1155/2017/7304643] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/12/2017] [Indexed: 12/16/2022] Open
Abstract
Pathogenesis of AKI is complex and involves both local events in the kidney as well as systemic effects in the body that are interconnected and interdependent. Despite intensive investigations there is still no pharmacological agent that could provide complete protection against cisplatin nephrotoxicity. In the last decade mesenchymal stem cells (MSCs) have been proposed as a potentially useful therapeutic strategy in various diseases, including acute kidney injury. Although MSCs have potent immunosuppressive properties, animal studies also suggest that transplanted MSCs may elicit immune response. Interestingly, tumorigenicity of transplanted MSCs in animal studies has been rarely studied. Since the risk of tumorigenicity of particular therapy as well as the immune response to solid or cell grafts is a major issue in clinical trials, the aim of the present paper is to critically summarize the results of MSC transplantation on animal models of AKI, particularly cisplatin-induced animal models, and to expose results and main concerns about immunogenicity and tumorigenicity of transplanted MSCs, two important issues that need to be addressed in future studies.
Collapse
Affiliation(s)
- Ž. Večerić-Haler
- Department of Nephrology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - A. Cerar
- Institute of Pathology, Medical Experimental Centre, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1105 Ljubljana, Slovenia
| | - M. Perše
- Institute of Pathology, Medical Experimental Centre, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1105 Ljubljana, Slovenia
| |
Collapse
|
14
|
Kasoju N, Wang H, Zhang B, George J, Gao S, Triffitt JT, Cui Z, Ye H. Transcriptomics of human multipotent mesenchymal stromal cells: Retrospective analysis and future prospects. Biotechnol Adv 2017; 35:407-418. [DOI: 10.1016/j.biotechadv.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/28/2022]
|
15
|
Kaminski MM, Tosic J, Pichler R, Arnold SJ, Lienkamp SS. Engineering kidney cells: reprogramming and directed differentiation to renal tissues. Cell Tissue Res 2017; 369:185-197. [PMID: 28560692 DOI: 10.1007/s00441-017-2629-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022]
Abstract
Growing knowledge of how cell identity is determined at the molecular level has enabled the generation of diverse tissue types, including renal cells from pluripotent or somatic cells. Recently, several in vitro protocols involving either directed differentiation or transcription-factor-based reprogramming to kidney cells have been established. Embryonic stem cells or induced pluripotent stem cells can be guided towards a kidney fate by exposing them to combinations of growth factors or small molecules. Here, renal development is recapitulated in vitro resulting in kidney cells or organoids that show striking similarities to mammalian embryonic nephrons. In addition, culture conditions are also defined that allow the expansion of renal progenitor cells in vitro. Another route towards the generation of kidney cells is direct reprogramming. Key transcription factors are used to directly impose renal cell identity on somatic cells, thus circumventing the pluripotent stage. This complementary approach to stem-cell-based differentiation has been demonstrated to generate renal tubule cells and nephron progenitors. In-vitro-generated renal cells offer new opportunities for modelling inherited and acquired renal diseases on a patient-specific genetic background. These cells represent a potential source for developing novel models for kidney diseases, drug screening and nephrotoxicity testing and might represent the first steps towards kidney cell replacement therapies. In this review, we summarize current approaches for the generation of renal cells in vitro and discuss the advantages of each approach and their potential applications.
Collapse
Affiliation(s)
- Michael M Kaminski
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Jelena Tosic
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Roman Pichler
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Soeren S Lienkamp
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany. .,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany.
| |
Collapse
|
16
|
In vitro generation of renal tubular epithelial cells from fibroblasts: implications for precision and regenerative medicine in nephrology. Kidney Int 2017; 91:265-267. [DOI: 10.1016/j.kint.2016.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 11/21/2022]
|
17
|
Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Müller AL, Pichler R, Grahammer F, Kretz O, Huber TB, Walz G, Arnold SJ, Lienkamp SS. Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat Cell Biol 2016; 18:1269-1280. [PMID: 27820600 DOI: 10.1038/ncb3437] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022]
Abstract
Direct reprogramming by forced expression of transcription factors can convert one cell type into another. Thus, desired cell types can be generated bypassing pluripotency. However, direct reprogramming towards renal cells remains an unmet challenge. Here, we identify renal cell fate-inducing factors on the basis of their tissue specificity and evolutionarily conserved expression, and demonstrate that combined expression of Emx2, Hnf1b, Hnf4a and Pax8 converts mouse and human fibroblasts into induced renal tubular epithelial cells (iRECs). iRECs exhibit epithelial features, a global gene expression profile resembling their native counterparts, functional properties of differentiated renal tubule cells and sensitivity to nephrotoxic substances. Furthermore, iRECs integrate into kidney organoids and form tubules in decellularized kidneys. Our approach demonstrates that reprogramming factors can be identified by targeted in silico analysis. Renal tubular epithelial cells generated ex vivo by forced expression of transcription factors may facilitate disease modelling, drug and nephrotoxicity testing, and regenerative approaches.
Collapse
Affiliation(s)
- Michael M Kaminski
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Jelena Tosic
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Faculty of Medicine, Albertstraße 25, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Catena Kresbach
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Hannes Engel
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Jonas Klockenbusch
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Anna-Lena Müller
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Roman Pichler
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Florian Grahammer
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Oliver Kretz
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,Department of Neuroanatomy, University of Freiburg, Albertstraße 17, 79104 Freiburg, Germany
| | - Tobias B Huber
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Gerd Walz
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Sebastian J Arnold
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Faculty of Medicine, Albertstraße 25, 79104 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Soeren S Lienkamp
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| |
Collapse
|
18
|
Matsumoto K, Xavier S, Chen J, Kida Y, Lipphardt M, Ikeda R, Gevertz A, Caviris M, Hatzopoulos AK, Kalajzic I, Dutton J, Ratliff BB, Zhao H, Darzynkiewicz Z, Rose‐John S, Goligorsky MS. Instructive Role of the Microenvironment in Preventing Renal Fibrosis. Stem Cells Transl Med 2016; 6:992-1005. [PMID: 28297566 PMCID: PMC5442777 DOI: 10.5966/sctm.2016-0095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022] Open
Abstract
Accumulation of myofibroblasts is a hallmark of renal fibrosis. A significant proportion of myofibroblasts has been reported to originate via endothelial‐mesenchymal transition. We initially hypothesized that exposing myofibroblasts to the extract of endothelial progenitor cells (EPCs) could reverse this transition. Indeed, in vitro treatment of transforming growth factor‐β1 (TGF‐β1)‐activated fibroblasts with EPC extract prevented expression of α‐smooth muscle actin (α‐SMA); however, it did not enhance expression of endothelial markers. In two distinct models of renal fibrosis—unilateral ureteral obstruction and chronic phase of folic acid‐induced nephropathy—subcapsular injection of EPC extract to the kidney prevented and reversed accumulation of α‐SMA‐positive myofibroblasts and reduced fibrosis. Screening the composition of EPC extract for cytokines revealed that it is enriched in leukemia inhibitory factor (LIF) and vascular endothelial growth factor. Only LIF was capable of reducing fibroblast‐to‐myofibroblast transition of TGF‐β1‐activated fibroblasts. In vivo subcapsular administration of LIF reduced the number of myofibroblasts and improved the density of peritubular capillaries; however, it did not reduce the degree of fibrosis. A receptor‐independent ligand for the gp130/STAT3 pathway, hyper‐interleukin‐6 (hyper‐IL‐6), not only induced a robust downstream increase in pluripotency factors Nanog and c‐Myc but also exhibited a powerful antifibrotic effect. In conclusion, EPC extract prevented and reversed fibroblast‐to‐myofibroblast transition and renal fibrosis. The component of EPC extract, LIF, was capable of preventing development of the contractile phenotype of activated fibroblasts but did not eliminate TGF‐β1‐induced collagen synthesis in cultured fibroblasts and models of renal fibrosis, whereas a receptor‐independent gp130/STAT3 agonist, hyper‐IL‐6, prevented fibrosis. In summary, these studies, through the evolution from EPC extract to LIF and then to hyper‐IL‐6, demonstrate the instructive role of microenvironmental cues and may provide in the future a facile strategy to prevent and reverse renal fibrosis. Stem Cells Translational Medicine2017;6:992–1005
Collapse
Affiliation(s)
- Kei Matsumoto
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
- Showa University, Tokyo, Japan
| | - Sandhya Xavier
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Jun Chen
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Yujiro Kida
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Mark Lipphardt
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Reina Ikeda
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
- Okayama University, Okayama, Japan
| | - Annie Gevertz
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Mario Caviris
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | | | - Ivo Kalajzic
- University of Connecticut Health Center, Farmington, Connecticut, USA
| | - James Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian B. Ratliff
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Hong Zhao
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Zbygniew Darzynkiewicz
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Stefan Rose‐John
- Institute of Biochemistry, Christian‐Albrechts University, Kiel, Germany
| | - Michael S. Goligorsky
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
19
|
Abstract
The ultimate treatment for end-stage renal disease (ESRD) is orthotopic transplantation. However, the demand for kidney transplantation far exceeds the number of available donor organs. While more than 100,000 Americans need a kidney, only 17,000 people receive a kidney transplant each year (National Kidney Foundation's estimations). In recent years, several regenerative medicine/tissue engineering approaches have been exploited to alleviate the kidney shortage crisis. Although these approaches have yielded promising results in experimental animal models, the kidney is a complex organ and translation into the clinical realm has been challenging to date. In this review, we will discuss cell therapy-based approaches for kidney regeneration and whole-kidney tissue engineering strategies, including our innovative approach to regenerate a functional kidney using the lymph node as an in vivo bioreactor.
Collapse
|
20
|
Chiabotto G, Bruno S, Collino F, Camussi G. Mesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles. PLoS One 2016; 11:e0159163. [PMID: 27409796 PMCID: PMC4943710 DOI: 10.1371/journal.pone.0159163] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal-epithelial interactions play an important role in renal tubular morphogenesis and in maintaining the structure of the kidney. The aim of this study was to investigate whether extracellular vesicles (EVs) produced by human renal proximal tubular epithelial cells (RPTECs) may induce mesenchymal-epithelial transition of bone marrow-derived mesenchymal stromal cells (MSCs). To test this hypothesis, we characterized the phenotype and the RNA content of EVs and we evaluated the in vitro uptake and activity of EVs on MSCs. MicroRNA (miRNA) analysis suggested the possible implication of the miR-200 family carried by EVs in the epithelial commitment of MSCs. Bone marrow-derived MSCs were incubated with EVs, or RPTEC-derived total conditioned medium, or conditioned medium depleted of EVs. As a positive control, MSCs were co-cultured in a transwell system with RPTECs. Epithelial commitment of MSCs was assessed by real time PCR and by immunofluorescence analysis of cellular expression of specific mesenchymal and epithelial markers. After one week of incubation with EVs and total conditioned medium, we observed mesenchymal-epithelial transition in MSCs. Stimulation with conditioned medium depleted of EVs did not induce any change in mesenchymal and epithelial gene expression. Since EVs were found to contain the miR-200 family, we transfected MSCs using synthetic miR-200 mimics. After one week of transfection, mesenchymal-epithelial transition was induced in MSCs. In conclusion, miR-200 carrying EVs released from RPTECs induce the epithelial commitment of MSCs that may contribute to their regenerative potential. Based on experiments of MSC transfection with miR-200 mimics, we suggested that the miR-200 family may be involved in mesenchymal-epithelial transition of MSCs.
Collapse
Affiliation(s)
- Giulia Chiabotto
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
| | - Stefania Bruno
- Department of Molecular Biotechnology and Healthy Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Collino
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
| | - Giovanni Camussi
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
- * E-mail:
| |
Collapse
|
21
|
Suzuki E, Fujita D, Takahashi M, Oba S, Nishimatsu H. Adult stem cells as a tool for kidney regeneration. World J Nephrol 2016; 5:43-52. [PMID: 26788463 PMCID: PMC4707167 DOI: 10.5527/wjn.v5.i1.43] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/27/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Kidney regeneration is a challenging but promising strategy aimed at reducing the progression to end-stage renal disease (ESRD) and improving the quality of life of patients with ESRD. Adult stem cells are multipotent stem cells that reside in various tissues, such as bone marrow and adipose tissue. Although intensive studies to isolate kidney stem/progenitor cells from the adult kidney have been performed, it remains controversial whether stem/progenitor cells actually exist in the mammalian adult kidney. The efficacy of mesenchymal stem cells (MSCs) in the recovery of kidney function has been demonstrated in animal nephropathy models, such as acute tubular injury, glomerulonephritis, renal artery stenosis, and remnant kidney. However, their beneficial effects seem to be mediated largely via their paracrine effects rather than their direct differentiation into renal parenchymal cells. MSCs not only secrete bioactive molecules directly into the circulation, but they also release various molecules, such as proteins, mRNA, and microRNA, in membrane-covered vesicles. A detailed analysis of these molecules and an exploration of the optimal combination of these molecules will enable the treatment of patients with kidney disease without using stem cells. Another option for the treatment of patients with kidney disease using adult somatic cells is a direct/indirect reprogramming of adult somatic cells into kidney stem/progenitor cells. Although many hurdles still need to be overcome, this strategy will enable bona fide kidney regeneration rather than kidney repair using remnant renal parenchymal cells.
Collapse
|
22
|
Abstract
INTRODUCTION Kidney diseases are a global public health problem whose incidence is rapidly growing due to a global rise in the aged population and the increasing prevalence of cardiovascular disease, hypertension and diabetes. With the emergence of stem cells as potential therapeutic agents, attempts in using them to significantly reduce the burden of these diseases have increased. AREAS COVERED Several types of stem cells have been proven to be likely candidates for treating kidney diseases. We discuss in detail the potential use of mesenchymal stem cells in preclinical and clinical works, with additional populations that have been studied briefly described. Moreover, we discuss current knowledge on endogenous kidney regeneration ability and on the possibility to modulate it using chemical and biological agents. EXPERT OPINION Stem cell therapy is a promising new treatment for kidney disease documented in many animal studies. Mesenchymal stem cells have emerged as a promising cell type, but their efficacy in clinical trials is still controversial. Identification of progenitor cells in the adult kidney is another step forward in regenerative medicine, suggesting the repair potential of the adult kidney and the possible modulation of renal progenitors in situ using pharmacological approaches.
Collapse
Affiliation(s)
- Elena Lazzeri
- a University of Florence; Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) , Florence, Italy +390552758342 ; ;
| | - Paola Romagnani
- a University of Florence; Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) , Florence, Italy +390552758342 ; ;
| | - Laura Lasagni
- a University of Florence; Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) , Florence, Italy +390552758342 ; ;
| |
Collapse
|
23
|
Francipane MG, Lagasse E. Pluripotent Stem Cells to Rebuild a Kidney: The Lymph Node as a Possible Developmental Niche. Cell Transplant 2015; 25:1007-23. [PMID: 26160801 DOI: 10.3727/096368915x688632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Kidney disease poses a global challenge. Stem cell therapy may offer an alternative therapeutic approach to kidney transplantation, which is often hampered by the limited supply of donor organs. While specific surface antigen markers have yet to be identified for the analysis and purification of kidney stem/progenitor cells for research or clinical use, the reprogramming of somatic cells to pluripotent cells and their differentiation into the various kidney lineages might represent a valuable strategy to create a renewable cell source for regenerative purposes. In this review, we first provide an overview of kidney development and explore current knowledge about the role of extra- and intrarenal cells in kidney repair and organogenesis. We then discuss recent advances in the 1) differentiation of rodent and human embryonic stem cells (ESCs) into renal lineages; 2) generation of induced pluripotent stem cells (iPSCs) from renal or nonrenal (kidney patient-derived) adult cells; 3) differentiation of iPSCs into renal lineages; and 4) direct transcriptional reprogramming of adult renal cells into kidney progenitor cells. Finally, we describe the lymph node as a potential three-dimensional (3D) in vivo environment for kidney organogenesis from pluripotent stem cells.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|