1
|
Myszczyszyn A, Muench A, Lehmann V, Sinnige T, van Steenbeek FG, Bouwmeester M, Samsom RA, Keuper-Navis M, van der Made TK, Kogan D, Braem S, van der Laan LJW, Eslami Amirabadi H, van de Steeg E, Masereeuw R, Spee B. A hollow fiber membrane-based liver organoid-on-a-chip model for examining drug metabolism and transport. Biofabrication 2025; 17:025035. [PMID: 40117762 DOI: 10.1088/1758-5090/adc3ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/21/2025] [Indexed: 03/23/2025]
Abstract
Liver-on-a-chip models predictive for both metabolism, and blood and canalicular transport of drug candidates in humans are lacking. Here, we established a bioengineered and 3Rs-complied (animal component-free) hepatocyte-like millifluidic system based on 3D hollow fiber membranes (HFMs), recombinant human laminin 332 coating and adult human stem cell-derived organoids. Organoid fragments formed polarized and tight monolayers on HFMs with improved hepatocyte-like maturation, as compared to standard 3D organoid cultures in Matrigel from matched donors. Gene expression profiling and immunofluorescence revealed that hepatocyte-like monolayers expressed a broad panel of phase I (e.g. CYP3A4, CYP2D6, CYP2C9) and II (e.g. UGTs, SULTs) drug-metabolizing enzymes and drug transporters (e.g. MDR1, MRP3, OATP1B3). Moreover, statically cultured monolayers displayed phase I and II metabolism of a cocktail of six relevant compounds, including midazolam and 7-hydroxycoumarin. We also demonstrated the disposition of midazolam in the basal/blood-like circulation and apical/canalicular-like compartment of the millifluidic chip. Finally, we studied the bioavailability of midazolam and coumarin on-a-chip in combination with a small intestine-like system. In conclusion, we generated a proof-of-concept liver organoid-on-a-chip model for examining metabolism and transport of drugs, which can be further developed to predict pharmacokinetics' (PK)/absorption, distribution, metabolism and excretion (ADME) profiles in humans.
Collapse
Affiliation(s)
- Adam Myszczyszyn
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anna Muench
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vivian Lehmann
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Theo Sinnige
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Frank G van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Manon Bouwmeester
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Roos-Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marit Keuper-Navis
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Thomas K van der Made
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Daniel Kogan
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Sarah Braem
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Sularea VM, Sharma R, Hay DC, O’Farrelly C. Early interferon lambda production is induced by double-stranded RNA in iPS-derived hepatocyte-like cells. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae004. [PMID: 39193476 PMCID: PMC11219478 DOI: 10.1093/oxfimm/iqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 08/29/2024] Open
Abstract
Hepatotropic viruses are amongst the most ubiquitous pathogens worldwide, causing significant morbidity and mortality. As hepatocytes are among the primary targets of these viruses, their ability to mount early effective innate defence responses is of major research interest. Interferon lambda (IFNL) is produced early in response to viral stimulation in other cell types, but hepatocyte production of this interferon is little investigated. Due to the difficulty and significant costs in obtaining and culturing human primary hepatocytes, surrogate systems are widely sought. Here we used induced pluripotent stem (iPS)-derived hepatocyte-like cells (HLCs) to investigate hepatic IFNL expression in response to viral-like ligands. We demonstrate that hepatocytes rely on cytoplasmic pattern recognition receptors (PRRs) such as Protein Kinase RNA-dependent (PKR) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLR) for the detection of double stranded RNA. Stimulation of HLCs by viral-like RNA ligands activating cytosolic RNA sensors resulted in thousand fold increase of type III interferon gene expression. These results are in contrast with type I IFN expression, which was induced to a lower extent. Concomitant induction of interferon stimulated genes, such as interferon-stimulated gene 15 (ISG15) and CXCL10, indicated the ability of HLCs to activate interferon-dependent activity. These results demonstrate that HLCs mount an innate antiviral response upon stimulation with viral-like RNA characterized by the induction of type III IFN.
Collapse
Affiliation(s)
- Vasile Mihai Sularea
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin, D02R590, Ireland
| | - Ruchi Sharma
- Stemnovate LTD, Cambridge, Maia Building 270, Babraham Research Campus, Cambridge, CB223AT, United Kingdom
| | - David C Hay
- Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, United Kingdom
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin, D02R590, Ireland
- School of Medicine, Trinity College Dublin, 152 - 160 Pearse St, Dublin, D02R590, Ireland
| |
Collapse
|
3
|
Loerch C, Szepanowski LP, Reiss J, Adjaye J, Graffmann N. Forskolin induces FXR expression and enhances maturation of iPSC-derived hepatocyte-like cells. Front Cell Dev Biol 2024; 12:1383928. [PMID: 38694820 PMCID: PMC11061433 DOI: 10.3389/fcell.2024.1383928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
The generation of iPSC-derived hepatocyte-like cells (HLCs) is a powerful tool for studying liver diseases, their therapy as well as drug development. iPSC-derived disease models benefit from their diverse origin of patients, enabling the study of disease-associated mutations and, when considering more than one iPSC line to reflect a more diverse genetic background compared to immortalized cell lines. Unfortunately, the use of iPSC-derived HLCs is limited due to their lack of maturity and a rather fetal phenotype. Commercial kits and complicated 3D-protocols are cost- and time-intensive and hardly useable for smaller working groups. In this study, we optimized our previously published protocol by fine-tuning the initial cell number, exchanging antibiotics and basal medium composition and introducing the small molecule forskolin during the HLC maturation step. We thereby contribute to the liver research field by providing a simple, cost- and time-effective 2D differentiation protocol. We generate functional HLCs with significantly increased HLC hallmark gene (ALB, HNF4α, and CYP3A4) and protein (ALB) expression, as well as significantly elevated inducible CYP3A4 activity.
Collapse
Affiliation(s)
- Christiane Loerch
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Leon-Phillip Szepanowski
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Julian Reiss
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- University College London, EGA Institute for Women`s Health- Zayed Center for Research Into Rare Diseases in Children (ZGR), London, United Kingdom
| | - Nina Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
4
|
Kim MK, Jeong W, Jeon S, Kang HW. 3D bioprinting of dECM-incorporated hepatocyte spheroid for simultaneous promotion of cell-cell and -ECM interactions. Front Bioeng Biotechnol 2023; 11:1305023. [PMID: 38026892 PMCID: PMC10679743 DOI: 10.3389/fbioe.2023.1305023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
The cell spheroid technology, which greatly enhances cell-cell interactions, has gained significant attention in the development of in vitro liver models. However, existing cell spheroid technologies still have limitations in improving hepatocyte-extracellular matrix (ECM) interaction, which have a significant impact on hepatic function. In this study, we have developed a novel bioprinting technology for decellularized ECM (dECM)-incorporated hepatocyte spheroids that could enhance both cell-cell and -ECM interactions simultaneously. To provide a biomimetic environment, a porcine liver dECM-based cell bio-ink was developed, and a spheroid printing process using this bio-ink was established. As a result, we precisely printed the dECM-incorporated hepatocyte spheroids with a diameter of approximately 160-220 μm using primary mouse hepatocyte (PMHs). The dECM materials were uniformly distributed within the bio-printed spheroids, and even after more than 2 weeks of culture, the spheroids maintained their spherical shape and high viability. The incorporation of dECM also significantly improved the hepatic function of hepatocyte spheroids. Compared to hepatocyte-only spheroids, dECM-incorporated hepatocyte spheroids showed approximately 4.3- and 2.5-fold increased levels of albumin and urea secretion, respectively, and a 2.0-fold increase in CYP enzyme activity. These characteristics were also reflected in the hepatic gene expression levels of ALB, HNF4A, CPS1, and others. Furthermore, the dECM-incorporated hepatocyte spheroids exhibited up to a 1.8-fold enhanced drug responsiveness to representative hepatotoxic drugs such as acetaminophen, celecoxib, and amiodarone. Based on these results, it can be concluded that the dECM-incorporated spheroid printing technology has great potential for the development of highly functional in vitro liver tissue models for drug toxicity assessment.
Collapse
Affiliation(s)
- Min Kyeong Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Center for Scientific Instrumentation, Korea Basic Science Institute, Chungbuk, Republic of Korea
| | - Wonwoo Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Seunggyu Jeon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
5
|
Farhan F, Trivedi M, Di Wu P, Cui W. Extracellular matrix modulates the spatial hepatic features in hepatocyte-like cells derived from human embryonic stem cells. Stem Cell Res Ther 2023; 14:314. [PMID: 37907977 PMCID: PMC10619266 DOI: 10.1186/s13287-023-03542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) can provide a valuable in vitro model for disease modelling and drug development. However, generating HLCs with characteristics comparable to hepatocytes in vivo is challenging. Extracellular matrix (ECM) plays an important role in supporting liver development and hepatocyte functions, but their impact on hepatocyte differentiation and maturation during hPSC differentiation remains unclear. Here, we investigate the effects of two ECM components-Matrigel and type I collagen on hepatic differentiation of human embryonic stem cells (hESCs). METHODS hESC-derived HLCs were generated through multistage differentiation in two-dimensional (2D) and three-dimensional (3D) cultures, incorporating either type I collagen or Matrigel during hepatic specification and maturation. The resulting HLCs was characterized for their gene expression and functionality using various molecular and cellular techniques. RESULTS Our results showed that HLCs cultured with collagen exhibited a significant increase in albumin and alpha-1 anti-trypsin expression with reduced AFP compared to HLCs cultured with Matrigel. They also secreted more urea than Matrigel cultures. However, these HLCs exhibited lower CYP3A4 activity and glycogen storage than those cultured with Matrigel. These functional differences in HLCs between collagen and Matrigel cultures closely resembled the hepatocytes of periportal and pericentral zones, respectively. CONCLUSION Our study demonstrates that Matrigel and collagen have differential effects on the differentiation and functionality of HLCs, which resemble, to an extent, hepatic zonation in the liver lobules. Our finding has an important impact on the generation of hPSC-HLCs for biomedical and medical applications.
Collapse
Affiliation(s)
- Faiza Farhan
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Manjari Trivedi
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Priscilla Di Wu
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
6
|
Mansouri M, Imes WD, Roberts OS, Leipzig ND. Fabrication of oxygen-carrying microparticles functionalized with liver ECM-proteins to improve phenotypic three-dimensional in vitro liver assembly, function, and responses. Biotechnol Bioeng 2023; 120:3025-3038. [PMID: 37269469 DOI: 10.1002/bit.28456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 06/05/2023]
Abstract
Oxygen and extracellular matrix (ECM)-derived biopolymers play vital roles in regulating many cellular functions in both the healthy and diseased liver. This study highlights the significance of synergistically tuning the internal microenvironment of three-dimensional (3D) cell aggregates composed of hepatocyte-like cells from the HepG2 human hepatocellular carcinoma cell line and hepatic stellate cells (HSCs) from the LX-2 cell line to enhance oxygen availability and phenotypic ECM ligand presentation for promoting the native metabolic functions of the human liver. First, fluorinated (PFC) chitosan microparticles (MPs) were generated with a microfluidic chip, then their oxygen transport properties were studied using a custom ruthenium-based oxygen sensing approach. Next, to allow for integrin engagements the surfaces of these MPs were functionalized using liver ECM proteins including fibronectin, laminin-111, laminin-511, and laminin-521, then they were used to assemble composite spheriods along with HepG2 cells and HSCs. After in vitro culture, liver-specific functions and cell adhesion patterns were compared between groups and cells showed enhanced liver phenotypic responses to laminin-511 and 521 as evidenced via enhanced E-cadherin and vinculin expression, as well as albumin and urea secretion. Furthermore, hepatocytes and HSCs exhibited more pronounced phenotypic arrangements when cocultured with laminin-511 and 521 modified MPs providing clear evidence that specific ECM proteins have distinctive roles in the phenotypic regulation of liver cells in engineering 3D spheroids. This study advances efforts to create more physiologically relevant organ models allowing for well-defined conditions and phenotypic cell signaling which together improve the relevance of 3D spheroid and organoid models.
Collapse
Affiliation(s)
- Mona Mansouri
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio, USA
| | - William D Imes
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| | - Owen S Roberts
- College of Engineering and Polymer Science, The University of Akron, Akron, Ohio, USA
| | - Nic D Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
7
|
Luo Q, Wang N, Que H, Mai E, Hu Y, Tan R, Gu J, Gong P. Pluripotent Stem Cell-Derived Hepatocyte-like Cells: Induction Methods and Applications. Int J Mol Sci 2023; 24:11592. [PMID: 37511351 PMCID: PMC10380504 DOI: 10.3390/ijms241411592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The development of regenerative medicine provides new options for the treatment of end-stage liver diseases. Stem cells, such as bone marrow mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells (iPSCs), are effective tools for tissue repair in regenerative medicine. iPSCs are an appropriate source of hepatocytes for the treatment of liver disease due to their unlimited multiplication capacity, their coverage of the entire range of genetics required to simulate human disease, and their evasion of ethical implications. iPSCs have the ability to gradually produce hepatocyte-like cells (HLCs) with homologous phenotypes and physiological functions. However, how to induce iPSCs to differentiate into HLCs efficiently and accurately is still a hot topic. This review describes the existing approaches for inducing the differentiation of iPSCs into HLCs, as well as some challenges faced, and summarizes various parameters for determining the quality and functionality of HLCs. Furthermore, the application of iPSCs for in vitro hepatoprotective drug screening and modeling of liver disease is discussed. In conclusion, iPSCs will be a dependable source of cells for stem-cell therapy to treat end-stage liver disease and are anticipated to facilitate individualized treatment for liver disease in the future.
Collapse
Affiliation(s)
- Qiulin Luo
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Nan Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Hanyun Que
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Erziya Mai
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Yanting Hu
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610032, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
8
|
Suleman S, Payne A, Bowden J, Haque SA, Zahn M, Fawaz S, Khalifa MS, Jobling S, Hay D, Franco M, Fronza R, Wang W, Strobel-Freidekind O, Deichmann A, Takeuchi Y, Waddington SN, Gil-Farina I, Schmidt M, Themis M. HIV- 1 lentivirus tethering to the genome is associated with transcription factor binding sites found in genes that favour virus survival. Gene Ther 2022; 29:720-729. [PMID: 35513551 PMCID: PMC9750860 DOI: 10.1038/s41434-022-00335-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 01/09/2023]
Abstract
Lentiviral vectors (LV) are attractive for permanent and effective gene therapy. However, integration into the host genome can cause insertional mutagenesis highlighting the importance of understanding of LV integration. Insertion site (IS) tethering is believed to involve cellular proteins such as PSIP1/LEDGF/p75, which binds to the virus pre-integration complexes (PICs) helping to target the virus genome. Transcription factors (TF) that bind both the vector LTR and host genome are also suspected influential to this. To determine the role of TF in the tethering process, we mapped predicted transcription factor binding sites (pTFBS) near to IS chosen by HIV-1 LV using a narrow 20 bp window in infected human induced pluripotent stem cells (iPSCs) and their hepatocyte-like cell (HLC) derivatives. We then aligned the pTFBS with these sequences found in the LTRs of native and self-inactivated LTRs. We found significant enrichment of these sequences for pTFBS essential to HIV-1 life cycle and virus survival. These same sites also appear in HIV-1 patient IS and in mice infected with HIV-1 based LV. This in silco data analysis suggests pTFBS present in the virus LTR and IS sites selected by HIV-1 LV are important to virus survival and propagation.
Collapse
Affiliation(s)
- Saqlain Suleman
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
- Testavec Ltd, Queensgate House, Maidenhead, UK
| | - Annette Payne
- Testavec Ltd, Queensgate House, Maidenhead, UK
- Department of Computer Science, College of Engineering Design and Physical Sciences, Brunel University London, Uxbridge, UK
| | - Johnathan Bowden
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Sharmin Al Haque
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Marco Zahn
- Genewerk GmbH, Heidelberg, Germany
- University Heidelberg, Medical Faculty, Heidelberg, Germany
| | - Serena Fawaz
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Mohammad S Khalifa
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Susan Jobling
- Testavec Ltd, Queensgate House, Maidenhead, UK
- Institute of Environment, Health and Societies, College of Business, Arts and Social Sciences, Brunel University London, Uxbridge, UK
| | - David Hay
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | | | | | - Wei Wang
- Genewerk GmbH, Heidelberg, Germany
| | | | | | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, London, UK
- Division of Advanced Therapies, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Simon N Waddington
- Gene Transfer Technology, EGA Institute for Women's Health, University College London, London, UK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | | | - Manfred Schmidt
- Genewerk GmbH, Heidelberg, Germany
- Department of Translational Oncology, NCT and DKFZ, Heidelberg, Germany
| | - Michael Themis
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK.
- Division of Ecology and Evolution, Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
9
|
Modulation of human iPSC-derived hepatocyte phenotype via extracellular matrix microarrays. Acta Biomater 2022; 153:216-230. [PMID: 36115650 PMCID: PMC9869484 DOI: 10.1016/j.actbio.2022.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023]
Abstract
In vitro human liver models are essential for drug screening, disease modeling, and cell-based therapies. Induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iHeps) mitigate sourcing limitations of primary human hepatocytes (PHHs) and enable precision medicine; however, current protocols yield iHeps with very low differentiated functions. The composition and stiffness of liver's extracellular matrix (ECM) cooperatively regulate hepatic phenotype in vivo, but such effects on iHeps remain unelucidated. Here, we utilized ECM microarrays and high content imaging to assess human iHep attachment and functions on ten major liver ECM proteins in single and two-way combinations robotically spotted onto polyacrylamide gels of liver-like stiffnesses; microarray findings were validated using hydrogel-conjugated multiwell plates. Collagen-IV supported higher iHep attachment than collagen-I over 2 weeks on 1 kPa, while laminin and its combinations with collagen-III, fibronectin, tenascin C, or hyaluronic acid led to both high iHep attachment and differentiated functions; laminin and its combination with tenascin or fibronectin led to similar albumin expression in iHeps and PHHs. Additionally, several collagen-IV-, laminin-, fibronectin-, and collagen-V-containing combinations on 1 kPa led to similar or higher CYP3A4 staining in iHeps than PHHs. Lastly, collagen-I or -III mixed with laminin, collagen-IV mixed with lumican, and collagen-V mixed with fibronectin led to high and stable functional output (albumin/urea secretions; CYP1A2/2C9/3A4 activities) in iHep cultures versus declining PHH numbers/functions for 3 weeks within multiwell plates containing 1 kPa hydrogels. Ultimately, these platforms can help elucidate ECM's role in liver diseases and serve as building blocks of engineered tissues for applications. STATEMENT OF SIGNIFICANCE: We utilized high-throughput extracellular matrix (ECM) microarrays and high content imaging to assess the attachment and differentiated functions of iPSC-derived human hepatocyte-like cells (iHep) on major liver ECM protein combinations spotted onto polyacrylamide gels of liver-like stiffnesses. We observed that iHep responses are regulated in unexpected ways via the cooperation between ECM stiffness and protein composition. Using this approach, we induced mature functions in iHeps on substrates of physiological stiffness and select ECM coatings at higher levels over 3+ weeks than analogous primary human hepatocyte cultures, which is useful for building platforms for drug screening, disease modeling, and regenerative medicine.
Collapse
|
10
|
Human iPSC-derived hepatocytes in 2D and 3D suspension culture for cryopreservation and in vitro toxicity studies. Reprod Toxicol 2022; 111:68-80. [DOI: 10.1016/j.reprotox.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 12/19/2022]
|
11
|
Graffmann N, Scherer B, Adjaye J. In vitro differentiation of pluripotent stem cells into hepatocyte like cells - basic principles and current progress. Stem Cell Res 2022; 61:102763. [DOI: 10.1016/j.scr.2022.102763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
|
12
|
Rashidi H, Hay DC. Serum-Free Production of Three-Dimensional Hepatospheres from Pluripotent Stem Cells. Methods Mol Biol 2022; 2454:305-316. [PMID: 34611817 DOI: 10.1007/7651_2021_430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing renewable human liver tissue from stem cells has been pursued as a potential source of biological material for pharmaceutical and clinical endeavors. At present, two-dimensional differentiation procedures deliver tissue lacking long-term phenotypic and functional stability. Efforts to overcome these limiting factors have led to the development of protocols to generate three-dimensional cellular aggregates. Here we describe a methodology to generate 3D hepatospheres from human pluripotent stem cells using defined and commercially available reagents.
Collapse
Affiliation(s)
- Hassan Rashidi
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
- Institute for Liver and Digestive Health, University College London, London, UK.
| | - David C Hay
- Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv Biol (Weinh) 2021; 6:e2101139. [PMID: 34962104 DOI: 10.1002/adbi.202101139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Indexed: 12/24/2022]
Abstract
The substantial socioeconomic burden of lung diseases, recently highlighted by the disastrous impact of the coronavirus disease 2019 (COVID-19) pandemic, accentuates the need for interventive treatments capable of decelerating disease progression, limiting organ damage, and contributing to a functional tissue recovery. However, this is hampered by the lack of accurate human lung research models, which currently fail to reproduce the human pulmonary architecture and biochemical environment. Induced pluripotent stem cells (iPSCs) and organ-on-chip (OOC) technologies possess suitable characteristics for the generation of physiologically relevant in vitro lung models, allowing for developmental studies, disease modeling, and toxicological screening. Importantly, these platforms represent potential alternatives for animal testing, according to the 3Rs (replace, reduce, refine) principle, and hold promise for the identification and approval of new chemicals under the European REACH (registration, evaluation, authorization and restriction of chemicals) framework. As such, this review aims to summarize recent progress made in human iPSC- and OOC-based in vitro lung models. A general overview of the present applications of in vitro lung models is presented, followed by a summary of currently used protocols to generate different lung cell types from iPSCs. Lastly, recently developed iPSC-based lung models are discussed.
Collapse
Affiliation(s)
| | - Michelle Müller
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, Porto, 4200-135, Portugal
| | - Yvonne Kohl
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Postgraduate Course for Toxicology and Environmental Toxicology, Medical Faculty, University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| |
Collapse
|
14
|
Yao T, Zhang Y, Lv M, Zang G, Ng SS, Chen X. Advances in 3D cell culture for liver preclinical studies. Acta Biochim Biophys Sin (Shanghai) 2021; 53:643-651. [PMID: 33973620 DOI: 10.1093/abbs/gmab046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Indexed: 11/13/2022] Open
Abstract
The 3D cell culture model is an indispensable tool in the study of liver biology in the field of health and disease and the development of clinically relevant products for liver therapies. The 3D culture model captures critical factors of the microenvironmental niche required by hepatocytes for exhibiting optimal phenotypes, thus enabling the pursuit of a range of preclinical studies that are not entirely feasible in conventional 2D cell models. In this review, we highlight the major attributes associated with and the components needed for the development of a functional 3D liver culture model for a range of applications.
Collapse
Affiliation(s)
- Ting Yao
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yi Zhang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Mengjiao Lv
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Guoqing Zang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Soon Seng Ng
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Xiaohua Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
15
|
Establishing a 3D In Vitro Hepatic Model Mimicking Physiologically Relevant to In Vivo State. Cells 2021; 10:cells10051268. [PMID: 34065411 PMCID: PMC8161177 DOI: 10.3390/cells10051268] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) bioprinting is a promising technology to establish a 3D in vitro hepatic model that holds great potential in toxicological evaluation. However, in current hepatic models, the central area suffers from hypoxic conditions, resulting in slow and weak metabolism of drugs and toxins. It remains challenging to predict accurate drug effects in current bioprinted hepatic models. Here, we constructed a hexagonal bioprinted hepatic construct and incorporated a spinning condition with continuous media stimuli. Under spinning conditions, HepG2 cells in the bioprinted hepatic construct exhibited enhanced proliferation capacity and functionality compared to those under static conditions. Additionally, the number of spheroids that play a role in boosting drug-induced signals and responses increased in the bioprinted hepatic constructs cultured under spinning conditions. Moreover, HepG2 cells under spinning conditions exhibited intensive TGFβ-induced epithelial-to-mesenchymal transition (EMT) and increased susceptibility to acetaminophen (APAP)-induced hepatotoxicity as well as hepatotoxicity prevention by administration of N-acetylcysteine (NAC). Taken together, the results of our study demonstrate that the spinning condition employed during the generation of bioprinted hepatic constructs enables the recapitulation of liver injury and repair phenomena in particular. This simple but effective culture strategy facilitates bioprinted hepatic constructs to improve in vitro modeling for drug effect evaluation.
Collapse
|
16
|
Dziedzicka D, Tewary M, Keller A, Tilleman L, Prochazka L, Östblom J, Couvreu De Deckersberg E, Markouli C, Franck S, Van Nieuwerburgh F, Spits C, Zandstra PW, Sermon K, Geens M. Endogenous suppression of WNT signalling in human embryonic stem cells leads to low differentiation propensity towards definitive endoderm. Sci Rep 2021; 11:6137. [PMID: 33731744 PMCID: PMC7969605 DOI: 10.1038/s41598-021-85447-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Low differentiation propensity towards a targeted lineage can significantly hamper the utility of individual human pluripotent stem cell (hPSC) lines in biomedical applications. Here, we use monolayer and micropatterned cell cultures, as well as transcriptomic profiling, to investigate how variability in signalling pathway activity between human embryonic stem cell lines affects their differentiation efficiency towards definitive endoderm (DE). We show that endogenous suppression of WNT signalling in hPSCs at the onset of differentiation prevents the switch from self-renewal to DE specification. Gene expression profiling reveals that this inefficient switch is reflected in NANOG expression dynamics. Importantly, we demonstrate that higher WNT stimulation or inhibition of the PI3K/AKT signalling can overcome the DE commitment blockage. Our findings highlight that redirection of the activity of Activin/NODAL pathway by WNT signalling towards mediating DE fate specification is a vulnerable spot, as disruption of this process can result in poor hPSC specification towards DE.
Collapse
Affiliation(s)
- Dominika Dziedzicka
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mukul Tewary
- grid.17063.330000 0001 2157 2938Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E1 Canada ,grid.13097.3c0000 0001 2322 6764Centre for Stem Cells and Regenerative Medicine, King’s College London, Guy’s Hospital, London, SE1 9RT UK
| | - Alexander Keller
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Laurentijn Tilleman
- grid.5342.00000 0001 2069 7798Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Laura Prochazka
- grid.17063.330000 0001 2157 2938Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Joel Östblom
- grid.17063.330000 0001 2157 2938Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Edouard Couvreu De Deckersberg
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christina Markouli
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Silvie Franck
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Filip Van Nieuwerburgh
- grid.5342.00000 0001 2069 7798Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Claudia Spits
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Peter W. Zandstra
- grid.17063.330000 0001 2157 2938Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E1 Canada ,grid.17091.3e0000 0001 2288 9830Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada ,grid.17091.3e0000 0001 2288 9830School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Karen Sermon
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mieke Geens
- grid.8767.e0000 0001 2290 8069Research Group Reproduction and Genetics, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| |
Collapse
|
17
|
Leedale JA, Lucendo-Villarin B, Meseguer-Ripolles J, Kasarinaite A, Webb SD, Hay DC. Mathematical modelling of oxygen gradients in stem cell-derived liver tissue. PLoS One 2021; 16:e0244070. [PMID: 33556073 PMCID: PMC7870006 DOI: 10.1371/journal.pone.0244070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/03/2020] [Indexed: 01/08/2023] Open
Abstract
A major bottleneck in the study of human liver physiology is the provision of stable liver tissue in sufficient quantity. As a result, current approaches to modelling human drug efficacy and toxicity rely heavily on immortalized human and animal cell lines. These models are informative but do possess significant drawbacks. To address the issues presented by those models, researchers have turned to pluripotent stem cells (PSCs). PSCs can be generated from defined genetic backgrounds, are scalable, and capable of differentiation to all the cell types found in the human body, representing an attractive source of somatic cells for in vitro and in vivo endeavours. Although unlimited numbers of somatic cell types can be generated in vitro, their maturation still remains problematic. In order to develop high fidelity PSC-derived liver tissue, it is necessary to better understand the cell microenvironment in vitro including key elements of liver physiology. In vivo a major driver of zonated liver function is the oxygen gradient that exists from periportal to pericentral regions. In this paper, we demonstrate how cell culture conditions for PSC-derived liver sphere systems can be optimised to recapitulate physiologically relevant oxygen gradients by using mathematical modelling. The mathematical model incorporates some often-understated features and mechanisms of traditional spheroid systems such as cell-specific oxygen uptake, media volume, spheroid size, and well dimensions that can lead to a spatially heterogeneous distribution of oxygen. This mathematical modelling approach allows for the calibration and identification of culture conditions required to generate physiologically realistic function within the microtissue through recapitulation of the in vivo microenvironment.
Collapse
Affiliation(s)
- Joseph A. Leedale
- Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
- * E-mail: (JAL); (DCH)
| | | | - Jose Meseguer-Ripolles
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alvile Kasarinaite
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Steven D. Webb
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
| | - David C. Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (JAL); (DCH)
| |
Collapse
|
18
|
Caires-Júnior LC, Goulart E, Telles-Silva KA, Araujo BHS, Musso CM, Kobayashi G, Oliveira D, Assoni A, Carvalho VM, Ribeiro-Jr AF, Ishiba R, Braga KAO, Nepomuceno N, Caldini E, Rangel T, Raia S, Lelkes PI, Zatz M. Pre-coating decellularized liver with HepG2-conditioned medium improves hepatic recellularization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111862. [PMID: 33579511 DOI: 10.1016/j.msec.2020.111862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023]
Abstract
Liver transplantation from compatible donors has been the main therapy available for patients with irreversible hepatic injuries. Due to the increasing shortage of organs suitable for transplantation, tissue engineering technologies are important alternatives or surrogate approaches for the future of human organ transplantations. New bioengineering tools have been designed to produce decellularized organs (i.e. scaffolds) which could be recellularized with human cells. Specifically, there is an unmet need for developing reproducible protocols for inducing better cellular spreading in decellularized liver scaffolds. The aim of the present work was to investigate the possibility to improve liver scaffold recellularization by pre-coating decellularized tissue scaffolds with HepG2-conditioned medium (CM). Furthermore, we evaluated the capability of commercial human liver cells (HepG2) to adhere to several types of extracellular matrices (ECM) as well as CM components. Wistar rat livers were decellularized and analyzed by histology, scanning electron microscopy (SEM), immunohistochemistry and residual DNA-content analysis. Human induced pluripotent stem cells (hiPSCs)-derived mesenchymal cells (hiMSCs), and human commercial hepatic (HepG2) and endothelial (HAEC) cells were used for liver scaffold recellularization with or without CM pre-coating. Recellularization occurred for up to 5 weeks. Hepatic tissues and CM were analyzed by proteomic assays. We show that integrity and anatomical organization of the hepatic ECM were maintained after decellularization, and proteomic analysis suggested that pre-coating with CM enriched the decellularized liver ECM. Pre-coating with HepG2-CM highly improved liver recellularization and revealed the positive effects of liver ECM and CM components association.
Collapse
Affiliation(s)
- Luiz Carlos Caires-Júnior
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Ernesto Goulart
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Kayque Alves Telles-Silva
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Bruno Henrique Silva Araujo
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), 13083-100 Campinas, Brazil
| | | | - Gerson Kobayashi
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Danyllo Oliveira
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Amanda Assoni
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | | | - Antônio Fernando Ribeiro-Jr
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Renata Ishiba
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Karina Andrighetti Oliveira Braga
- Laboratorio de Pesquisa em Cirurgia Toracica, Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Natalia Nepomuceno
- Laboratorio de Pesquisa em Cirurgia Toracica, Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Elia Caldini
- Cellular Biology Laboratory, Pathology Department, Faculty of Medicine, University of São Paulo (USP), 01246903 São Paulo, Brazil
| | - Thadeu Rangel
- Liver Unit, Surgery Department, Faculty of Medicine, University of São Paulo (USP), 01246903 São Paulo, Brazil
| | - Silvano Raia
- Liver Unit, Surgery Department, Faculty of Medicine, University of São Paulo (USP), 01246903 São Paulo, Brazil
| | - Peter I Lelkes
- Department of Bioengineering, Temple University, 19122 Philadelphia, United States
| | - Mayana Zatz
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil.
| |
Collapse
|
19
|
Cell therapy for advanced liver diseases: Repair or rebuild. J Hepatol 2021; 74:185-199. [PMID: 32976865 DOI: 10.1016/j.jhep.2020.09.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/18/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Advanced liver disease presents a significant worldwide health and economic burden and accounts for 3.5% of global mortality. When liver disease progresses to organ failure the only effective treatment is liver transplantation, which necessitates lifelong immunosuppression and carries associated risks. Furthermore, the shortage of suitable donor organs means patients may die waiting for a suitable transplant organ. Cell therapies have made their way from animal studies to a small number of early clinical trials. Herein, we review the current state of cell therapies for liver disease and the mechanisms underpinning their actions (to repair liver tissue or rebuild functional parenchyma). We also discuss cellular therapies that are on the clinical horizon and challenges that must be overcome before routine clinical use is a possibility.
Collapse
|
20
|
Abstract
Over the last decade, there has been a considerable progress in the development of cell therapy products for the treatment of liver diseases. The quest to generate well-defined homogenous cell populations with defined mechanism(s) of action has enabled the progression from use of autologous bone marrow stem cells comprising of heterogeneous cell populations to allogeneic cell types such as monocyte-derived macrophages, regulatory T cells, mesenchymal stromal cells, macrophages, etc. There is growing evidence regarding the multiple molecular mechanisms pivotal to various therapeutic effects and hence, careful selection of cell therapy product for the desired putative effects is crucial. In this review, we have presented an overview of the cell therapies that have been developed thus far, with preclinical and clinical evidence for their use in liver disease. Limitations associated with these therapies have also been discussed. Despite the advances made, there remain multiple challenges to overcome before cell therapies can be considered as viable treatment options, and these include larger scale clinical trials, scalable production of cells according to good manufacturing practice standards, pathways for delivery of cell therapy within hospital environments, and costs associated with the production.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Reenam S Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
21
|
Nell P. Highlight Report: Hepatobiliary differentiation from human induced pluripotent stem cells. EXCLI JOURNAL 2020; 19:167-169. [PMID: 33013259 PMCID: PMC7527483 DOI: 10.17179/excli2020-1068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick Nell
- Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany
| |
Collapse
|
22
|
Oleaga C, Bridges LR, Persaud K, McAleer CW, Long CJ, Hickman JJ. A functional long-term 2D serum-free human hepatic in vitro system for drug evaluation. Biotechnol Prog 2020; 37:e3069. [PMID: 32829524 DOI: 10.1002/btpr.3069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 01/05/2023]
Abstract
Human in vitro hepatic models generate faster drug toxicity data with higher human predictability compared to animal models. However, for long-term studies, current models require the use of serum and 3D architecture, limiting their utility. Maintaining a functional long-term human in vitro hepatic culture that avoids complex structures and serum would improve the value of such systems for preclinical studies. This would also enable a more straightforward integration with current multi-organ devices to study human systemic toxicity to generate an alternative model to chronic animal evaluations. A human primary hepatocyte culture system was characterized for 28 days in 2D and serum-free defined conditions. Under the studied conditions, human primary hepatocytes maintained their characteristic morphology, hepatic markers and functions for 28 days. The acute and chronic administration of known drugs validated the sensitivity of the system for drug testing. This human 2D model represents a realistic system to evaluate hepatic function for long-term drug studies, without the need of animal serum, confounding variable in most models, and with less complexity and resultant cost compared to most 3D models. The defined culture conditions can easily be integrated into complex multi-organ in vitro models for studying systemic effects driven by the liver function for long-term evaluations.
Collapse
Affiliation(s)
- Carlota Oleaga
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - L Richard Bridges
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Keisha Persaud
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | | | - Christopher J Long
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
23
|
Zhou C, Zhou L, Liu J, Xu L, Xu Z, Chen Z, Ge Y, Zhao F, Wu R, Wang X, Jiang N, Mao L, Jia R. Kidney extracellular matrix hydrogel enhances therapeutic potential of adipose-derived mesenchymal stem cells for renal ischemia reperfusion injury. Acta Biomater 2020; 115:250-263. [PMID: 32771597 DOI: 10.1016/j.actbio.2020.07.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Stem cell-based therapy has been suggested as a promising option for the treatment of renal ischemia-reperfusion injury (IRI). However, how to efficiently deliver stem cells remains a challenge. In the present study, we firstly proposed the utilization of kidney extracellular matrix hydrogel (ECMH) as an injectable scaffold for delivering adipose-derived mesenchymal stem cells (ad-MSCs) into ischemic kidneys. A modified strategy of decellularization and gelation was introduced to prepare the ECMH, by which the bioactive ingredients were retained as much as possible. Bioluminescence living imaging and immunofluorescence revealed that ECMH could significantly elevate the retention and survival rate of transplanted ad-MSCs in damaged kidneys and reduce their escape rate to other organs, which consequently resulted to the enhanced therapeutic effect of ad-MSCs on renal IRI. Further, in vitro evidence demonstrated that ECMH could remarkably reduce the oxidative stress and apoptosis, promote the proliferation, secretion, and epithelial differentiation of ad-MSCs, as well as facilitate cell migration while acting as a sustained-release scaffold. This study establishes an effective approach to enhance the therapeutic potential of ad-MSCs for renal IRI. Our findings suggest that ECMH derived from organs or tissues would be a promising injectable scaffold for stem cell-based therapy. STATEMENT OF SIGNIFICANCE: It remains a challenge to efficiently deliver stem cells to target tissues, which may limit the clinical application of stem cell-based therapy. In this study, we developed a modified strategy of decellularization and gelation to prepare the kidney extracellular matrix hydrogel (ECMH). In vivo and in vitro evidence indicated that the kidney ECMH could improve the retention and survival rate, as well as multiple biological functions of adipose-derived mesenchymal stem cells, thereby contributing to the histological and functional recovery of injured kidneys induced by ischemia-reperfusion. Our findings highlight the use of organs or tissues derived ECMH as a promising stem cell delivery scaffold for tissue repair.
Collapse
Affiliation(s)
- Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China; Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China; Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China; Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China; Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Zaozao Chen
- Institute of Biomaterials and Medical Devices, School of Biological Science and Medical Engineering, Southeast University, Dingjiaqiao 87, Nanjing 210009, China
| | - Yuzheng Ge
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China; Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Ran Wu
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Xinning Wang
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Nan Jiang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Liang Mao
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China; Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| |
Collapse
|
24
|
Ehrlich A, Duche D, Ouedraogo G, Nahmias Y. Challenges and Opportunities in the Design of Liver-on-Chip Microdevices. Annu Rev Biomed Eng 2020; 21:219-239. [PMID: 31167098 DOI: 10.1146/annurev-bioeng-060418-052305] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is the central hub of xenobiotic metabolism and consequently the organ most prone to cosmetic- and drug-induced toxicity. Failure to detect liver toxicity or to assess compound clearance during product development is a major cause of postmarketing product withdrawal, with disastrous clinical and financial consequences. While small animals are still the preferred model in drug development, the recent ban on animal use in the European Union created a pressing need to develop precise and efficient tools to detect human liver toxicity during cosmetic development. This article includes a brief review of liver development, organization, and function and focuses on the state of the art of long-term cell culture, including hepatocyte cell sources, heterotypic cell-cell interactions, oxygen demands, and culture medium formulation. Finally, the article reviews emerging liver-on-chip devices and discusses the advantages and pitfalls of individual designs. The goal of this review is to provide a framework to design liver-on-chip devices and criteria with which to evaluate this emerging technology.
Collapse
Affiliation(s)
- Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daniel Duche
- L'Oréal Research and Innovation, Aulnay-sous-Bois 93600, France
| | | | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel.,Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.,Tissue Dynamics Ltd., Jerusalem 91904, Israel
| |
Collapse
|
25
|
Hyung S, Jeong J, Shin K, Kim JY, Yim JH, Yu CJ, Jung HS, Hwang KG, Choi D, Hong JW. Exosomes derived from chemically induced human hepatic progenitors inhibit oxidative stress induced cell death. Biotechnol Bioeng 2020; 117:2658-2667. [PMID: 32484909 PMCID: PMC7496643 DOI: 10.1002/bit.27447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
Abstract
The emerging field of regenerative medicine has revealed that the exosome contributes to many aspects of development and disease through intercellular communication between donor and recipient cells. However, the biological functions of exosomes secreted from cells have remained largely unexplored. Here, we report that the human hepatic progenitor cells (CdHs)‐derived exosome (EXOhCdHs) plays a crucial role in maintaining cell viability. The inhibition of exosome secretion treatment with GW4869 results in the acceleration of reactive oxygen species (ROS) production, thereby causing a decrease of cell viability. This event provokes inhibition of caspase dependent cell death signaling, leading to a ROS‐dependent cell damage response and thus induces promotion of antioxidant gene expression or repair of cell death of hypoxia‐exposed cells. Together, these findings show the effect of exosomes in regeneration of liver cells, and offer valuable new insights into liver regeneration.
Collapse
Affiliation(s)
- Sujin Hyung
- Center for Exosome & Bioparticulate Research, Hanyang University, Gyeonggi-do, Korea
| | - Jaemin Jeong
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, Korea.,Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Kyusoon Shin
- Center for Exosome & Bioparticulate Research, Hanyang University, Gyeonggi-do, Korea.,Department of Bionanotechnology, Graduate School, Hanyang University, Seoul, Korea
| | - Ju Young Kim
- Center for Exosome & Bioparticulate Research, Hanyang University, Gyeonggi-do, Korea.,Department of Bionanotechnology, Graduate School, Hanyang University, Seoul, Korea
| | - Ji-Hye Yim
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, Korea.,Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Chan Jong Yu
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Hyun Suk Jung
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Kyung-Gyun Hwang
- Department of Dentistry/Oral & Maxillofacial Surgery, Collage of Medicine, Hanyang University, Seoul, Korea
| | - Dongho Choi
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, Korea.,Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Jong Wook Hong
- Center for Exosome & Bioparticulate Research, Hanyang University, Gyeonggi-do, Korea.,Department of Bionanotechnology, Graduate School, Hanyang University, Seoul, Korea.,Department of Bionanoengineering, Hanyang University, Gyeonggi-do, Korea.,Department of Medical & Digital Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
26
|
Serna-Márquez N, Rodríguez-Hernández A, Ayala-Reyes M, Martínez-Hernández LO, Peña-Rico MÁ, Carretero-Ortega J, Hautefeuille M, Vázquez-Victorio G. Fibrillar Collagen Type I Participates in the Survival and Aggregation of Primary Hepatocytes Cultured on Soft Hydrogels. Biomimetics (Basel) 2020; 5:E30. [PMID: 32630500 PMCID: PMC7345357 DOI: 10.3390/biomimetics5020030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Liver is an essential organ that carries out multiple functions such as glycogen storage, the synthesis of plasma proteins, and the detoxification of xenobiotics. Hepatocytes are the parenchyma that sustain almost all the functions supported by this organ. Hepatocytes and non-parenchymal cells respond to the mechanical alterations that occur in the extracellular matrix (ECM) caused by organogenesis and regenerating processes. Rearrangements of the ECM modify the composition and mechanical properties that result in specific dedifferentiation programs inside the hepatic cells. Quiescent hepatocytes are embedded in the soft ECM, which contains an important concentration of fibrillar collagens in combination with a basement membrane-associated matrix (BM). This work aims to evaluate the role of fibrillar collagens and BM on actin cytoskeleton organization and the function of rat primary hepatocytes cultured on soft elastic polyacrylamide hydrogels (PAA HGs). We used rat tail collagen type I and Matrigel® as references of fibrillar collagens and BM respectively and mixed different percentages of collagen type I in combination with BM. We also used peptides obtained from decellularized liver matrices (dECM). Remarkably, hepatocytes showed a poor adhesion in the absence of collagen on soft PAA HGs. We demonstrated that collagen type I inhibited apoptosis and activated extracellular signal-regulated kinases 1/2 (ERK1/2) in primary hepatocytes cultured on soft hydrogels. Epidermal growth factor (EGF) was not able to rescue cell viability in conjugated BM but affected cell aggregation in soft PAA HGs conjugated with combinations of different proportions of collagen and BM. Interestingly, actin cytoskeleton was localized and preserved close to plasma membrane (cortical actin) and proximal to intercellular ducts (canaliculi-like structures) in soft conditions; however, albumin protein expression was not preserved, even though primary hepatocytes did not remodel their actin cytoskeleton significantly in soft conditions. This investigation highlights the important role of fibrillar collagens on soft hydrogels for the maintenance of survival and aggregation of the hepatocytes. Data suggest evaluating the conditions that allow the establishment of optimal biomimetic environments for physiology and cell biology studies, where the phenotype of primary cells may be preserved for longer periods of time.
Collapse
Affiliation(s)
- Nathalia Serna-Márquez
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
| | - Adriana Rodríguez-Hernández
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
| | - Marisol Ayala-Reyes
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
| | - Lorena Omega Martínez-Hernández
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
- Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec CP 68301, Oaxaca, Mexico;
| | - Miguel Ángel Peña-Rico
- Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec CP 68301, Oaxaca, Mexico;
| | - Jorge Carretero-Ortega
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
| | - Mathieu Hautefeuille
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico
| | - Genaro Vázquez-Victorio
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico
| |
Collapse
|
27
|
Fischer L, Lucendo-Villarin B, Hay DC, O’Farrelly C. Human PSC-Derived Hepatocytes Express Low Levels of Viral Pathogen Recognition Receptors, but Are Capable of Mounting an Effective Innate Immune Response. Int J Mol Sci 2020; 21:ijms21113831. [PMID: 32481600 PMCID: PMC7312201 DOI: 10.3390/ijms21113831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/30/2020] [Accepted: 05/24/2020] [Indexed: 01/19/2023] Open
Abstract
Hepatocytes are key players in the innate immune response to liver pathogens but are challenging to study because of inaccessibility and a short half-life. Recent advances in in vitro differentiation of hepatocyte-like cells (HLCs) facilitated studies of hepatocyte-pathogen interactions. Here, we aimed to define the anti-viral innate immune potential of human HLCs with a focus on toll-like receptor (TLR)-expression and the presence of a metabolic switch. We analysed cytoplasmic pattern recognition receptor (PRR)- and endosomal TLR-expression and activity and adaptation of HLCs to an inflammatory environment. We found that transcript levels of retinoic acid inducible gene I (RIG-I), melanoma differentiation antigen 5 (MDA5), and TLR3 became downregulated during differentiation, indicating the acquisition of a more tolerogenic phenotype, as expected in healthy hepatocytes. HLCs responded to activation of RIG-I by producing interferons (IFNs) and IFN-stimulated genes. Despite low-level expression of TLR3, receptor expression was upregulated in an inflammatory environment. TLR3 signalling induced expression of proinflammatory cytokines at the gene level, indicating that several PRRs need to interact for successful innate immune activation. The inflammatory responsiveness of HLCs was accompanied by the downregulation of cytochrome P450 3A and 1A2 activity and decreased serum protein production, showing that the metabolic switch seen in primary hepatocytes during anti-viral responses is also present in HLCs.
Collapse
Affiliation(s)
- Lena Fischer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland;
| | | | - David C. Hay
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK;
- Correspondence: (D.C.H.); (C.O.)
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland;
- School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
- Correspondence: (D.C.H.); (C.O.)
| |
Collapse
|
28
|
Zhao X, Zhu Y, Laslett AL, Chan HF. Hepatic Differentiation of Stem Cells in 2D and 3D Biomaterial Systems. Bioengineering (Basel) 2020; 7:E47. [PMID: 32466173 PMCID: PMC7356247 DOI: 10.3390/bioengineering7020047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
A critical shortage of donor livers for treating end-stage liver failure signifies the urgent need for alternative treatment options. Hepatocyte-like cells (HLC) derived from various stem cells represent a promising cell source for hepatocyte transplantation, liver tissue engineering, and development of a bioartificial liver assist device. At present, the protocols of hepatic differentiation of stem cells are optimized based on soluble chemical signals introduced in the culture medium and the HLC produced typically retain an immature phenotype. To promote further hepatic differentiation and maturation, biomaterials can be designed to recapitulate cell-extracellular matrix (ECM) interactions in both 2D and 3D configurations. In this review, we will summarize and compare various 2D and 3D biomaterial systems that have been applied to hepatic differentiation, and highlight their roles in presenting biochemical and physical cues to different stem cell sources.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; (X.Z.); (Y.Z.)
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; (X.Z.); (Y.Z.)
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Andrew L. Laslett
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia;
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; (X.Z.); (Y.Z.)
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
29
|
Ghosheh N, Küppers-Munther B, Asplund A, Andersson CX, Björquist P, Andersson TB, Carén H, Simonsson S, Sartipy P, Synnergren J. Human Pluripotent Stem Cell-Derived Hepatocytes Show Higher Transcriptional Correlation with Adult Liver Tissue than with Fetal Liver Tissue. ACS OMEGA 2020; 5:4816-4827. [PMID: 32201767 PMCID: PMC7081255 DOI: 10.1021/acsomega.9b03514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Human pluripotent stem cell-derived hepatocytes (hPSC-HEP) display many properties of mature hepatocytes, including expression of important genes of the drug metabolizing machinery, glycogen storage, and production of multiple serum proteins. To this date, hPSC-HEP do not, however, fully recapitulate the complete functionality of in vivo mature hepatocytes. In this study, we applied versatile bioinformatic algorithms, including functional annotation and pathway enrichment analyses, transcription factor binding-site enrichment, and similarity and correlation analyses, to datasets collected from different stages during hPSC-HEP differentiation and compared these to developmental stages and tissues from fetal and adult human liver. Our results demonstrate a high level of similarity between the in vitro differentiation of hPSC-HEP and in vivo hepatogenesis. Importantly, the transcriptional correlation of hPSC-HEP with adult liver (AL) tissues was higher than with fetal liver (FL) tissues (0.83 and 0.70, respectively). Functional data revealed mature features of hPSC-HEP including cytochrome P450 enzymes activities and albumin secretion. Moreover, hPSC-HEP showed expression of many genes involved in drug absorption, distribution, metabolism, and excretion. Despite the high similarities observed, we identified differences of specific pathways and regulatory players by analyzing the gene expression between hPSC-HEP and AL. These findings will aid future intervention and improvement of in vitro hepatocyte differentiation protocol in order to generate hepatocytes displaying the complete functionality of mature hepatocytes. Finally, on the transcriptional level, our results show stronger correlation and higher similarity of hPSC-HEP to AL than to FL. In addition, potential targets for further functional improvement of hPSC-HEP were also identified.
Collapse
Affiliation(s)
- Nidal Ghosheh
- School
of Bioscience, Systems Biology Research Center, University of Skövde, 541 28 Skövde, Sweden
| | | | - Annika Asplund
- Takara
Bio Europe AB, Arvid Wallgrens Backe 20, 413 46 Gothenburg, Sweden
| | | | - Petter Björquist
- VeriGraft
AB, Arvid Wallgrens Backe
20, 413 46 Gothenburg, Sweden
| | - Tommy B. Andersson
- Cardiovascular
Renal and Metabolism, Innovative Medicines and Early Development Biotech
Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
- Department
of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Helena Carén
- Sahlgrenska
Cancer Center, Department of Pathology, Institute of Biomedicine,
Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Stina Simonsson
- Institute
of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine,
Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Peter Sartipy
- School
of Bioscience, Systems Biology Research Center, University of Skövde, 541 28 Skövde, Sweden
- Late
Stage Cardiovascular, Renal, and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Jane Synnergren
- School
of Bioscience, Systems Biology Research Center, University of Skövde, 541 28 Skövde, Sweden
| |
Collapse
|
30
|
Toba Y, Deguchi S, Mimura N, Sakamoto A, Harada K, Hirata K, Takayama K, Mizuguchi H. Comparison of commercially available media for hepatic differentiation and hepatocyte maintenance. PLoS One 2020; 15:e0229654. [PMID: 32106262 PMCID: PMC7046223 DOI: 10.1371/journal.pone.0229654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/12/2020] [Indexed: 11/19/2022] Open
Abstract
Human hepatocytes are essential materials in pharmaceutical researches. Not only primary human hepatocytes (PHH) but also human iPS cell-derived hepatocyte-like cells (human iPS-HLCs) are expected to be applied as materials for pharmaceutical researches. To date, several culture media have been developed for culturing human hepatocytes. However, there have been no reports comparing these media to determine which is most suitable for culturing human hepatocytes. In this study, we compared five commercial media (Hepatocyte Culture Medium (HCM), HepatoZYME-SFM, Cellartis Power Primary HEP Medium, DMEM/F12, and William’s E Medium (WEM)) to determine which is most suitable for culturing PHH and human iPS-HLCs. In hepatic differentiation of human iPS cells (day 14–25 of differentiation), albumin (ALB) and urea secretion abilities and CYP2C9, CYP2C19, and CYP3A4 activities were the highest when using HCM or WEM. During maintenance of human iPS-HLCs, ALB and urea producing abilities and CYP2C9, CYP2C19, and CYP3A4 activities were the highest when using HCM. Importantly, we found that human iPS-HLCs cultured in HCM were maintained for 3 weeks or more without impairment of their hepatic functions. These results suggest that it is necessary to select an optimal medium for hepatic differentiation and maintenance of human iPS-HLCs. In the case of PHH culture, there was little difference in hepatic functions among the five media. However, the CYP2C9, CYP2C19, and CYP3A4 activities were the highest when using HCM and WEM. In conclusion, it is important to select the optimal medium for specific application when carrying out pharmaceutical researches using human hepatocytes.
Collapse
Affiliation(s)
- Yukiko Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Sayaka Deguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Natsumi Mimura
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ayaka Sakamoto
- Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kazuo Harada
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazumasa Hirata
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
- * E-mail: (KT); (HM)
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- * E-mail: (KT); (HM)
| |
Collapse
|
31
|
Besser RR, Bowles AC, Alassaf A, Carbonero D, Claure I, Jones E, Reda J, Wubker L, Batchelor W, Ziebarth N, Silvera R, Khan A, Maciel R, Saporta M, Agarwal A. Enzymatically crosslinked gelatin-laminin hydrogels for applications in neuromuscular tissue engineering. Biomater Sci 2020; 8:591-606. [PMID: 31859298 PMCID: PMC7141910 DOI: 10.1039/c9bm01430f] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report a water-soluble and non-toxic method to incorporate additional extracellular matrix proteins into gelatin hydrogels, while obviating the use of chemical crosslinkers such as glutaraldehyde. Gelatin hydrogels were fabricated using a range of gelatin concentrations (4%-10%) that corresponded to elastic moduli of approximately 1 kPa-25 kPa, respectively, a substrate stiffness relevant for multiple cell types. Microbial transglutaminase was then used to enzymatically crosslink a layer of laminin on top of gelatin hydrogels, resulting in 2-component gelatin-laminin hydrogels. Human induced pluripotent stem cell derived spinal spheroids readily adhered and rapidly extended axons on GEL-LN hydrogels. Axons displayed a more mature morphology and superior electrophysiological properties on GEL-LN hydrogels compared to the controls. Schwann cells on GEL-LN hydrogels adhered and proliferated normally, displayed a healthy morphology, and maintained the expression of Schwann cell specific markers. Lastly, skeletal muscle cells on GEL-LN hydrogels achieved long-term culture for up to 28 days without delamination, while expressing higher levels of terminal genes including myosin heavy chain, MyoD, MuSK, and M-cadherin suggesting enhanced maturation potential and myotube formation compared to the controls. Future studies will employ the superior culture outcomes of this hybrid substrate for engineering functional neuromuscular junctions and related organ on a chip applications.
Collapse
Affiliation(s)
- Rachel R Besser
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Dr, MEA 203, Coral Gables, FL 33146, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Exploring the Most Promising Stem Cell Therapy in Liver Failure: A Systematic Review. Stem Cells Int 2019; 2019:2782548. [PMID: 31871465 PMCID: PMC6913162 DOI: 10.1155/2019/2782548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022] Open
Abstract
Background Alternative approaches to transplantation for liver failure are needed. One of the alternative approaches is stem cell therapy. However, stem cell therapy in liver failure is not standardized yet, as every centre have their own methods. This systematic review is aimed at compiling and analyzing the various studies that use stem cells to treat liver failure, to get an insight into potential protocols in terms of safety and efficacy by comparing them to controls. Methods This systematic review was done according to PRISMA guidelines and submitted for registration in PROSPERO (registration number CRD42018106119). All published studies in PubMed/MEDLINE and Cochrane Library, using key words: “human” and “stem cell” AND “liver failure” on 16th June 2018, without time restriction. In addition, relevant articles that are found during full-text search were added. Inclusion criteria included all original articles on stem cell use in humans with liver failure. Data collected included study type, treatment and control number, severity of disease, concomitant therapy, type and source of cells, passage of cells, dose, administration route, repeats, and interval between repeats, outcomes, and adverse events compared to controls. Data were analyzed descriptively to determine the possible causes of adverse reactions, and which protocols gave a satisfactory outcome, in terms of safety and efficacy. Results There were 25 original articles, i.e., eight case studies and 17 studies with controls. Conclusion Among the various adult stem cells that were used in human studies, MSCs from the bone marrow or umbilical cord performed better compared to other types of adult stem cells, though no study showed a complete and sustainable performance in the outcome measures. Intravenous (IV) route was equal to invasive route. Fresh or cryopreserved, and autologous or allogeneic MSCs were equally beneficial; and giving too many cells via intraportal or the hepatic artery might be counterproductive.
Collapse
|
33
|
Yap L, Tay HG, Nguyen MT, Tjin MS, Tryggvason K. Laminins in Cellular Differentiation. Trends Cell Biol 2019; 29:987-1000. [DOI: 10.1016/j.tcb.2019.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022]
|
34
|
Goulart E, de Caires-Junior LC, Telles-Silva KA, Araujo BHS, Rocco SA, Sforca M, de Sousa IL, Kobayashi GS, Musso CM, Assoni AF, Oliveira D, Caldini E, Raia S, Lelkes PI, Zatz M. 3D bioprinting of liver spheroids derived from human induced pluripotent stem cells sustain liver function and viability
in vitro. Biofabrication 2019; 12:015010. [DOI: 10.1088/1758-5090/ab4a30] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Klotz BJ, Oosterhoff LA, Utomo L, Lim KS, Vallmajo-Martin Q, Clevers H, Woodfield TBF, Rosenberg AJWP, Malda J, Ehrbar M, Spee B, Gawlitta D. A Versatile Biosynthetic Hydrogel Platform for Engineering of Tissue Analogues. Adv Healthc Mater 2019; 8:e1900979. [PMID: 31402634 PMCID: PMC7116179 DOI: 10.1002/adhm.201900979] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 01/14/2023]
Abstract
For creating functional tissue analogues in tissue engineering, stem cells require very specific 3D microenvironments to thrive and mature. Demanding (stem) cell types that are used nowadays can find such an environment in a heterogeneous protein mixture with the trade name Matrigel. Several variations of synthetic hydrogel platforms composed of poly(ethylene glycol) (PEG), which are spiked with peptides, have been recently developed and shown equivalence to Matrigel for stem cell differentiation. Here a clinically relevant hydrogel platform, based on PEG and gelatin, which even outperforms Matrigel when targeting 3D prevascularized bone and liver organoid tissue engineering models is presented. The hybrid hydrogel with natural and synthetic components stimulates efficient cell differentiation, superior to Matrigel models. Furthermore, the strength of this hydrogel lies in the option to covalently incorporate unmodified proteins. These results demonstrate how a hybrid hydrogel platform with intermediate biological complexity, when compared to existing biological materials and synthetic PEG-peptide approaches, can efficiently support tissue development from human primary cells.
Collapse
Affiliation(s)
- Barbara J. Klotz
- Department of Oral and Maxillofacial Surgery and Special Dental
Care, University Medical Center Utrecht, Utrecht University, 3508 GA
Utrecht, the Netherlands; Regenerative Medicine Utrecht, 3584 CT Utrecht,
the Netherlands
| | - Loes A. Oosterhoff
- Department of Clinical Sciences of Companion Animals, Faculty of
Veterinary Medicine, Utrecht University, 3508 TC Utrecht, the
Netherlands
| | - Lizette Utomo
- Department of Oral and Maxillofacial Surgery and Special Dental
Care, University Medical Center Utrecht, Utrecht University 3508 GA Utrecht,
the Netherlands; Regenerative Medicine Utrecht, 3584 CT Utrecht, the
Netherlands
| | - Khoon S. Lim
- Department of Orthopaedic Surgery and Musculoskeletal Medicine,
Centre for Bioengineering and Nanomedicine, University of Otago,
Christchurch 8011, New Zealand
| | - Queralt Vallmajo-Martin
- Department of Obstetrics, University Hospital Zurich, University of
Zurich, 8091 Zurich, Switzerland
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences,
University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Tim B. F. Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal Medicine,
Centre for Bioengineering and Nanomedicine, University of Otago,
Christchurch 8011, New Zealand
| | - Antoine J. W. P. Rosenberg
- Department of Oral and Maxillofacial Surgery and Special Dental
Care, University Medical Center Utrecht, Utrecht University, 3508 GA
Utrecht, the Netherlands
| | - Jos Malda
- Regenerative Medicine Utrecht, 3584 CT Utrecht, the Netherlands;
Department of Orthopaedics, University Medical Center Utrecht, Utrecht
University, 3508 TC Utrecht, the Netherlands; Department of Equine Sciences,
Faculty of Veterinary Medicine, Utrecht University, 3508 TC Utrecht, the
Netherlands
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zurich, University
of Zurich, 8091 Zurich, Switzerland
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of
Veterinary Medicine, Utrecht University, 3508 TC Utrecht, the
Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery and Special Dental
Care, University Medical Center Utrecht, Utrecht University, 3508 GA
Utrecht, the Netherlands; Regenerative Medicine Utrecht, 3584 CT Utrecht,
the Netherlands
| |
Collapse
|
36
|
Delsing L, Kallur T, Zetterberg H, Hicks R, Synnergren J. Enhanced xeno-free differentiation of hiPSC-derived astroglia applied in a blood-brain barrier model. Fluids Barriers CNS 2019; 16:27. [PMID: 31462266 PMCID: PMC6714544 DOI: 10.1186/s12987-019-0147-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Background Human induced pluripotent stem cells (hiPSC) hold great promise for use in cell therapy applications and for improved in vitro models of human disease. So far, most hiPSC differentiation protocols to astroglia use undefined, animal-containing culture matrices. Laminins, which play an essential role in the regulation of cell behavior, offer a source of defined, animal-free culture matrix. Methods In order to understand how laminins affect astroglia differentiation, recombinant human laminin-521 (LN521), was compared to a murine Engelbreth-Holm-Swarm sarcoma derived laminin (L2020). Astroglia expression of protein and mRNA together with glutamate uptake and protein secretion function, were evaluated. Finally, these astroglia were evaluated in a coculture model of the blood–brain barrier (BBB). Results Astroglia of good quality were generated from hiPSC on both LN521 and L2020. However, astroglia differentiated on human LN521 showed higher expression of several astroglia specific mRNAs and proteins such as GFAP, S100B, Angiopoietin-1, and EAAT1, compared to astroglia differentiated on murine L2020. In addition, glutamate uptake and ability to induce expression of junction proteins in endothelial cells were affected by the culture matrix for differentiation. Conclusion Our results suggest that astroglia differentiated on LN521 display an improved phenotype and are suitable for coculture in a hiPSC-derived BBB model. This provides a starting point for a more defined and robust derivation of astroglia for use in BBB coculture models. Electronic supplementary material The online version of this article (10.1186/s12987-019-0147-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louise Delsing
- Department of Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden. .,Systems Biology Research Center, School of Bioscience, University of Skövde, Högskolevägen, Box 408, 541 28, Skövde, Sweden. .,Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Mölndal, Sweden.
| | | | - Henrik Zetterberg
- Department of Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Ryan Hicks
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, Högskolevägen, Box 408, 541 28, Skövde, Sweden
| |
Collapse
|
37
|
Seidel F. Stem cell-based test methods. EXCLI JOURNAL 2019; 18:442-444. [PMID: 31423122 PMCID: PMC6694699 DOI: 10.17179/excli2019-1550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Florian Seidel
- Leibniz Research Centre for Working Environment and Human Factors
| |
Collapse
|
38
|
Highlight report: role of HNF4α in stem-cell differentiation to hepatocytes. Arch Toxicol 2019; 93:2427-2428. [PMID: 31401663 DOI: 10.1007/s00204-019-02517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
|
39
|
Caron J, Pène V, Tolosa L, Villaret M, Luce E, Fourrier A, Heslan JM, Saheb S, Bruckert E, Gómez-Lechón MJ, Nguyen TH, Rosenberg AR, Weber A, Dubart-Kupperschmitt A. Low-density lipoprotein receptor-deficient hepatocytes differentiated from induced pluripotent stem cells allow familial hypercholesterolemia modeling, CRISPR/Cas-mediated genetic correction, and productive hepatitis C virus infection. Stem Cell Res Ther 2019; 10:221. [PMID: 31358055 PMCID: PMC6664765 DOI: 10.1186/s13287-019-1342-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/03/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Familial hypercholesterolemia type IIA (FH) is due to mutations in the low-density lipoprotein receptor (LDLR) resulting in elevated levels of low-density lipoprotein cholesterol (LDL-c) in plasma and in premature cardiovascular diseases. As hepatocytes are the only cells capable of metabolizing cholesterol, they are therefore the target cells for cell/gene therapy approaches in the treatment of lipid metabolism disorders. Furthermore, the LDLR has been reported to be involved in hepatitis C virus (HCV) entry into hepatocytes; however, its role in the virus infection cycle is still disputed. METHODS We generated induced pluripotent stem cells (iPSCs) from a homozygous LDLR-null FH-patient (FH-iPSCs). We constructed a correction cassette bearing LDLR cDNA under the control of human hepatic apolipoprotein A2 promoter that targets the adeno-associated virus integration site AAVS1. We differentiated both FH-iPSCs and corrected FH-iPSCs (corr-FH-iPSCs) into hepatocytes to study statin-mediated regulation of genes involved in cholesterol metabolism. Upon HCV particle inoculation, viral replication and production were quantified in these cells. RESULTS We showed that FH-iPSCs displayed the disease phenotype. Using homologous recombination mediated by the CRISPR/Cas9 system, FH-iPSCs were genetically corrected by the targeted integration of a correction cassette at the AAVS1 locus. Both FH-iPSCs and corr-FH-iPSCs were then differentiated into functional polarized hepatocytes using a stepwise differentiation approach (FH-iHeps and corr-FH-iHeps). The correct insertion and expression of the correction cassette resulted in restoration of LDLR expression and function (LDL-c uptake) in corr-FH-iHeps. We next demonstrated that pravastatin treatment increased the expression of genes involved in cholesterol metabolism in both cell models. Moreover, LDLR expression and function were also enhanced in corr-FH-iHeps after pravastatin treatment. Finally, we demonstrated that both FH-iHeps and corr-FH-iHeps were as permissive to viral infection as primary human hepatocytes but that virus production in FH-iHeps was significantly decreased compared to corr-FH-iHeps, suggesting a role of the LDLR in HCV morphogenesis. CONCLUSIONS Our work provides the first LDLR-null FH cell model and its corrected counterpart to study the regulation of cholesterol metabolism and host determinants of HCV life cycle, and a platform to screen drugs for treating dyslipidemia and HCV infection.
Collapse
Affiliation(s)
- Jérôme Caron
- INSERM UMR_S1193, Hôpital Paul Brousse, Villejuif, France; UMR-S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France; DHU Hepatinov, Hôpital Paul Brousse, Villejuif, France
| | | | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | - Eléanor Luce
- INSERM UMR_S1193, Hôpital Paul Brousse, Villejuif, France; UMR-S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France; DHU Hepatinov, Hôpital Paul Brousse, Villejuif, France
| | - Angélique Fourrier
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
| | - Jean-Marie Heslan
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
| | - Samir Saheb
- Service d'Endocrinologie Métabolisme, Hôpital Pitié-Salpêtrière, Paris, France
| | - Eric Bruckert
- Service d'Endocrinologie Métabolisme, Hôpital Pitié-Salpêtrière, Paris, France
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,CIBERehd, FIS, Barcelona, Spain
| | - Tuan Huy Nguyen
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
| | - Arielle R Rosenberg
- Université Paris Descartes, EA4474, Paris, France.,AP-HP, Hôpital Cochin, Service de Virologie, Paris, France
| | - Anne Weber
- INSERM UMR_S1193, Hôpital Paul Brousse, Villejuif, France; UMR-S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France; DHU Hepatinov, Hôpital Paul Brousse, Villejuif, France
| | - Anne Dubart-Kupperschmitt
- INSERM UMR_S1193, Hôpital Paul Brousse, Villejuif, France; UMR-S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France; DHU Hepatinov, Hôpital Paul Brousse, Villejuif, France.
| |
Collapse
|
40
|
Fourrier A, Delbos F, Menoret S, Collet C, Thi Thuy LT, Myara A, Petit F, Tolosa L, Laplanche S, Gómez‐Lechón MJ, Labrune P, Anegon I, Vallier L, Garnier D, Nguyen TH. Regenerative cell therapy for the treatment of hyperbilirubinemic Gunn rats with fresh and frozen human induced pluripotent stem cells‐derived hepatic stem cells. Xenotransplantation 2019; 27:e12544. [DOI: 10.1111/xen.12544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Angélique Fourrier
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- GoLiver Therapeutics Institut de Recherche en Santé de l'Université de Nantes Nantes France
| | - Frédéric Delbos
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - Séverine Menoret
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- Transgenesis Rat ImmunoPhenomic platform, INSERM 1064, SFR Francois Bonamy CNRS UMS3556 Nantes France
| | - Camille Collet
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - Linh Trinh Thi Thuy
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - Anne Myara
- Service de Biologie Groupe Hospitalier Saint Joseph Paris France
| | - François Petit
- Laboratoire de génétique moléculaire Hôpital Antoine Béclère Clamart France
| | - Laia Tolosa
- Unidad de Hepatología Experimental Instituto de Investigación Sanitaria La Fe Valencia Spain
| | - Sophie Laplanche
- Service de Biologie Groupe Hospitalier Saint Joseph Paris France
| | - María José Gómez‐Lechón
- Unidad de Hepatología Experimental Instituto de Investigación Sanitaria La Fe Valencia Spain
| | - Philippe Labrune
- APHP, CRMR Maladies Héréditaires du Métabolisme Hépatique Hôpital Antoine Béclère Clamart France
- UFR Kremlin Bicêtre Université paris Sud Paris Saclay Le Kremlin‐Bicêtre France
- INSERM U1169 Le Kremlin‐Bicêtre France
| | - Ignacio Anegon
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- Transgenesis Rat ImmunoPhenomic platform, INSERM 1064, SFR Francois Bonamy CNRS UMS3556 Nantes France
| | - Ludovic Vallier
- Department of Surgery, Anne McLaren Laboratory for Regenerative Medicine, Wellcome–Medical Research Council Cambridge Stem Cell Institute University of Cambridge Cambridge UK
| | - Delphine Garnier
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- CRCINA INSERM U1232 Institut de Recherche en Santé de l'Université de Nantes Nantes France
| | - Tuan Huy Nguyen
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- GoLiver Therapeutics Institut de Recherche en Santé de l'Université de Nantes Nantes France
| |
Collapse
|
41
|
Yamashita T, Takayama K, Hori M, Harada-Shiba M, Mizuguchi H. Pharmaceutical Research for Inherited Metabolic Disorders of the Liver Using Human Induced Pluripotent Stem Cell and Genome Editing Technologies. Biol Pharm Bull 2019; 42:312-318. [PMID: 30828061 DOI: 10.1248/bpb.b18-00544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orthotopic liver transplantation, rather than drug therapy, is the major curative approach for various inherited metabolic disorders of the liver. However, the scarcity of donated livers is a serious problem. To resolve this, there is an urgent need for novel drugs to treat inherited metabolic disorders of the liver. This requirement, in turn, necessitates the establishment of suitable disease models for many inherited metabolic disorders of the liver that currently lack such models for drug development. Recent studies have shown that human induced pluripotent stem (iPS) cells generated from patients with inherited metabolic disorders of the liver are an ideal cell source for models that faithfully recapitulate the pathophysiology of inherited metabolic disorders of the liver. By using patient iPS cell-derived hepatocyte-like cells, drug efficacy evaluation and drug screening can be performed. In addition, genome editing technology has enabled us to generate functionally recovered patient iPS cell-derived hepatocyte-like cells in vitro. It is also possible to identify the genetic mutations responsible for undiagnosed liver diseases using iPS cell and genome editing technologies. Finally, a combination of exhaustive analysis, iPS cells, and genome editing technologies would be a powerful approach to accelerate the identification of novel genetic mutations responsible for undiagnosed liver diseases. In this review, we will discuss the usefulness of iPS cell and genome editing technologies in the field of inherited metabolic disorders of the liver, such as alpha-1 antitrypsin deficiency and familial hypercholesterolemia.
Collapse
Affiliation(s)
- Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University.,PRESTO, Japan Science and Technology Agency.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition
| | - Mika Hori
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition.,Global Center for Medical Engineering and Informatics, Osaka University
| |
Collapse
|
42
|
Heslop JA, Kia R, Pridgeon CS, Sison-Young RL, Liloglou T, Elmasry M, Fenwick SW, Mills JS, Kitteringham NR, Goldring CE, Park BK. Donor-Dependent and Other Nondefined Factors Have Greater Influence on the Hepatic Phenotype Than the Starting Cell Type in Induced Pluripotent Stem Cell Derived Hepatocyte-Like Cells. Stem Cells Transl Med 2019; 6:1321-1331. [PMID: 28456008 PMCID: PMC5442714 DOI: 10.1002/sctm.16-0029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022] Open
Abstract
Drug‐induced liver injury is the greatest cause of post‐marketing drug withdrawal; therefore, substantial resources are directed toward triaging potentially dangerous new compounds at all stages of drug development. One of the major factors preventing effective screening of new compounds is the lack of a predictive in vitro model of hepatotoxicity. Primary human hepatocytes offer a metabolically relevant model for which the molecular initiating events of hepatotoxicity can be examined; however, these cells vary greatly between donors and dedifferentiate rapidly in culture. Induced pluripotent stem cell (iPSC)‐derived hepatocyte‐like cells (HLCs) offer a reproducible, physiologically relevant and genotypically normal model cell; however, current differentiation protocols produce HLCs with a relatively immature phenotype. During the reprogramming of somatic cells, the epigenome undergoes dramatic changes; however, this “resetting” is a gradual process, resulting in an altered differentiation propensity, skewed toward the lineage of origin, particularly in early passage cultures. We, therefore, performed a comparison of human hepatocyte‐ and dermal fibroblast‐derived iPSCs, assessing the impact of epigenetic memory at all stages of HLC differentiation. These results provide the first isogenic assessment of the starting cell type in human iPSC‐derived HLCs. Despite a trend toward improvement in hepatic phenotype in albumin secretion and gene expression, few significant differences in hepatic differentiation capacity were found between hepatocyte and fibroblast‐derived iPSCs. We conclude that the donor and inter‐clonal differences have a greater influence on the hepatocyte phenotypic maturity than the starting cell type. Therefore, it is not necessary to use human hepatocytes for generating iPSC‐derived HLCs. Stem Cells Translational Medicine2017;6:1321–1331
Collapse
Affiliation(s)
- James A Heslop
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Richard Kia
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Christopher S Pridgeon
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Rowena L Sison-Young
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Mohamed Elmasry
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom.,University Hospital Aintree, Longmoor Lane, Liverpool, L9 7AL, United Kingdom
| | - Stephen W Fenwick
- University Hospital Aintree, Longmoor Lane, Liverpool, L9 7AL, United Kingdom
| | - John S Mills
- AstraZeneca, Personalised Healthcare and Biomarkers, Alderley Park, Cheshire, SK10 4TG, United Kingdom
| | - Neil R Kitteringham
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Chris E Goldring
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Bong K Park
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| |
Collapse
|
43
|
Wu F, Wu D, Ren Y, Huang Y, Feng B, Zhao N, Zhang T, Chen X, Chen S, Xu A. Generation of hepatobiliary organoids from human induced pluripotent stem cells. J Hepatol 2019; 70:1145-1158. [PMID: 30630011 DOI: 10.1016/j.jhep.2018.12.028] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 11/28/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Human induced pluripotent stem cell (hiPSC)-derived liver modeling systems have the potential to overcome the shortage of donors for clinical application and become a model for drug development. Although several strategies are available to generate hepatic micro-tissues, few have succeeded in generating a liver organoid with hepatobiliary structure from hiPSCs. METHODS At differentiation stages I and II (day 1-15), 25% of mTeSR™ culture medium was added to hepatic differentiation medium to induce endodermal and mesodermal commitment and thereafter hepatic and biliary co-differentiation. At stage III (day 15-45), 10% cholesterol+ MIX was added to the maturation medium to promote the formation and maturation of the hepatobiliary organoids. Phenotypes and functions of organoids were determined by specific markers and multiple functional assays both in vitro and in vivo. RESULTS In this system, hiPSCs were induced to form 3D hepatobiliary organoids and to some extent recapitulated key aspects of early hepatogenesis in a parallel fashion. The organoids displayed a series of functional attributes. Specifically, the induced hepatocyte-like cells could take up indocyanine green, accumulate lipid and glycogen, and displayed appropriate secretion ability (albumin and urea) and drug metabolic ability (CYP3A4 activity and inducibility); the biliary structures in the system showed gamma glutamyltransferase activity and the ability to efflux rhodamine and store bile acids. Furthermore, after transplantation into the immune-deficient mice, the organoids survived for more than 8 weeks. CONCLUSION This is the first time that functional hepatobiliary organoids have been generated from hiPSCs. The organoid model will be useful for in vitro studies of the molecular mechanisms of liver development and has important potential in the therapy of liver diseases. LAY SUMMARY Herein, we established a system to generate human induced pluripotent stem cell-derived functional hepatobiliary organoids in vitro, without any exogenous cells or genetic manipulation. To some extent this model was able to recapitulate several key aspects of hepatobiliary organogenesis in a parallel fashion, holding great promise for drug development and liver transplantation.
Collapse
Affiliation(s)
- Fenfang Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Di Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yong Ren
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yuhua Huang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Bo Feng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Nan Zhao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Taotao Zhang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xiaoni Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China; School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
44
|
Sachinidis A, Albrecht W, Nell P, Cherianidou A, Hewitt NJ, Edlund K, Hengstler JG. Road Map for Development of Stem Cell-Based Alternative Test Methods. Trends Mol Med 2019; 25:470-481. [PMID: 31130451 DOI: 10.1016/j.molmed.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Much progress has been made in establishing strategies for differentiation of induced human pluripotent stem cells (hiPSCs). However, differentiated hiPSCs are not yet routinely used for prediction of toxicity. Here, limiting factors are summarised and possibilities for improvement are discussed, with a focus on hepatocytes, cardiomyocytes, tubular epithelial cells, and developmental toxicity. Moreover, we make recommendations for further fine-tuning of differentiation protocols for hiPSCs to hepatocyte-like cells by comparing individual steps of currently available protocols to the mechanisms occurring during embryonic development. A road map is proposed to facilitate test system development, including a description of the most useful performance metrics.
Collapse
Affiliation(s)
- Agapios Sachinidis
- Institute of Neurophysiology and Centre for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Cologne, Germany.
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
| | - Patrick Nell
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
| | - Anna Cherianidou
- Institute of Neurophysiology and Centre for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Cologne, Germany
| | | | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany.
| |
Collapse
|
45
|
Harjumäki R, Nugroho RWN, Zhang X, Lou YR, Yliperttula M, Valle-Delgado JJ, Österberg M. Quantified forces between HepG2 hepatocarcinoma and WA07 pluripotent stem cells with natural biomaterials correlate with in vitro cell behavior. Sci Rep 2019; 9:7354. [PMID: 31089156 PMCID: PMC6517585 DOI: 10.1038/s41598-019-43669-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
In vitro cell culture or tissue models that mimic in vivo cellular response have potential in tissue engineering and regenerative medicine, and are a more economical and accurate option for drug toxicity tests than animal experimentation. The design of in vivo-like cell culture models should take into account how the cells interact with the surrounding materials and how these interactions affect the cell behavior. Cell-material interactions are furthermore important in cancer metastasis and tumor progression, so deeper understanding of them can support the development of new cancer treatments. Herein, the colloidal probe microscopy technique was used to quantify the interactions of two cell lines (human pluripotent stem cell line WA07 and human hepatocellular carcinoma cell line HepG2) with natural, xeno-free biomaterials of different chemistry, morphology, and origin. Key components of extracellular matrices -human collagens I and IV, and human recombinant laminin-521-, as well as wood-derived, cellulose nanofibrils -with evidenced potential for 3D cell culture and tissue engineering- were analysed. Both strength of adhesion and force curve profiles depended on biomaterial nature and cell characteristics. The successful growth of the cells on a particular biomaterial required cell-biomaterial adhesion energies above 0.23 nJ/m. The information obtained in this work supports the development of new materials or hybrid scaffolds with tuned cell adhesion properties for tissue engineering, and provides a better understanding of the interactions of normal and cancerous cells with biomaterials in the human body.
Collapse
Affiliation(s)
- Riina Harjumäki
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Robertus Wahyu N Nugroho
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Xue Zhang
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Yan-Ru Lou
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, I-35131, Padova, Italy
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland.
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland.
| |
Collapse
|
46
|
Hay DC, O'Farrelly C. Designer human tissue: coming to a lab near you. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0212. [PMID: 29786548 PMCID: PMC5974436 DOI: 10.1098/rstb.2017.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 11/12/2022] Open
Abstract
Human pluripotent stem cells (PSCs) offer a scalable alternative to primary and transformed human tissue. PSCs include human embryonic stem cells, derived from the inner cell mass of blastocysts unsuitable for human implantation; and induced PSCs, generated by the reprogramming of somatic cells. Both cell types display the ability to self-renew and retain pluripotency, promising an unlimited supply of human somatic cells for biomedical application. A distinct advantage of using PSCs is the ability to select for genetic background, promising personalized modelling of human biology ‘in a dish’ or immune-matched cell-based therapies for the clinic. This special issue will guide the reader through stem cell self-renewal, pluripotency and differentiation. The first articles focus on improving cell fidelity, understanding the innate immune system and the importance of materials chemistry, biofabrication and bioengineering. These are followed by articles that focus on industrial application, commercialization and label-free assessment of tissue formation. The special issue concludes with an article discussing human liver cell-based therapies past, present and future. This article is part of the theme issue ‘Designer human tissue: coming to a lab near you’.
Collapse
Affiliation(s)
- David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Cliona O'Farrelly
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Dublin, Republic of Ireland
| |
Collapse
|
47
|
Hagbard L, Cameron K, August P, Penton C, Parmar M, Hay DC, Kallur T. Developing defined substrates for stem cell culture and differentiation. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0230. [PMID: 29786564 PMCID: PMC5974452 DOI: 10.1098/rstb.2017.0230] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2018] [Indexed: 02/07/2023] Open
Abstract
Over the past few decades, a variety of different reagents for stem cell maintenance and differentiation have been commercialized. These reagents share a common goal in facilitating the manufacture of products suitable for cell therapy while reducing the amount of non-defined components. Lessons from developmental biology have identified signalling molecules that can guide the differentiation process in vitro, but less attention has been paid to the extracellular matrix used. With the introduction of more biologically relevant and defined matrices, that better mimic specific cell niches, researchers now have powerful resources to fine-tune their in vitro differentiation systems, which may allow the manufacture of therapeutically relevant cell types. In this review article, we revisit the basics of the extracellular matrix, and explore the important role of the cell-matrix interaction. We focus on laminin proteins because they help to maintain pluripotency and drive cell fate specification.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
| | - Katherine Cameron
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Paul August
- Icagen, Discovery Biology, Tucson Innovation Center, Oro Valley, AZ 85755, USA
| | - Christopher Penton
- Icagen, Discovery Biology, Tucson Innovation Center, Oro Valley, AZ 85755, USA
| | - Malin Parmar
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - David C Hay
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | | |
Collapse
|
48
|
Fischer L, Hay DC, O'Farrelly C. Innate immunity in stem cell-derived hepatocytes. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0220. [PMID: 29786555 DOI: 10.1098/rstb.2017.0220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/24/2022] Open
Abstract
Stem cell-derived hepatocyte-like cells (HLCs) offer great opportunities for studies of host-pathogen interactions and tissue regeneration, as well as hepatotoxicity. To reliably predict the outcome of infection or to enhance graft survival, a finely tuned innate immune system is essential. Hepatocytes have long been considered solely metabolic and their critical innate immune potential is only recently gaining attention. Viral infection studies show that pathogen detection by cytosolic receptors leads to interferon (IFN) induction in primary hepatocytes and HLCs. IFN expression in HLCs is characterized by strong expression of type III IFN and low expression of type I IFN which is also a characteristic of primary hepatocytes. The response to IFN differs in HLCs with lower interferon-stimulated gene (ISG)-expression levels than in primary hepatocytes. Tumour necrosis factor-alpha (TNF-α) signalling is less studied in HLCs, but appears to be functional. Expression of toll-like receptors (TLR) 2-5, 7 and 9 has been reported in primary hepatocytes but has been poorly studied in HLCs. In summary, although they retain some immature features, HLCs are in many ways superior to hepatoma cell lines for cell-based modelling. In this review, we will provide an overview of innate immune signalling in HLCs and how this compares with primary hepatocytes.This article is part of the themed issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Lena Fischer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Republic of Ireland
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
49
|
Grant R, Hallett J, Forbes S, Hay D, Callanan A. Blended electrospinning with human liver extracellular matrix for engineering new hepatic microenvironments. Sci Rep 2019; 9:6293. [PMID: 31000735 PMCID: PMC6472345 DOI: 10.1038/s41598-019-42627-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 04/03/2019] [Indexed: 12/21/2022] Open
Abstract
Tissue engineering of a transplantable liver could provide an alternative to donor livers for transplant, solving the problem of escalating donor shortages. One of the challenges for tissue engineers is the extracellular matrix (ECM); a finely controlled in vivo niche which supports hepatocytes. Polymers and decellularized tissue scaffolds each provide some of the necessary biological cues for hepatocytes, however, neither alone has proved sufficient. Enhancing microenvironments using bioactive molecules allows researchers to create more appropriate niches for hepatocytes. We combined decellularized human liver tissue with electrospun polymers to produce a niche for hepatocytes and compared the human liver ECM to its individual components; Collagen I, Laminin-521 and Fibronectin. The resulting scaffolds were validated using THLE-3 hepatocytes. Immunohistochemistry confirmed retention of proteins in the scaffolds. Mechanical testing demonstrated significant increases in the Young's Modulus of the decellularized ECM scaffold; providing significantly stiffer environments for hepatocytes. Each scaffold maintained hepatocyte growth, albumin production and influenced expression of key hepatic genes, with the decellularized ECM scaffolds exerting an influence which is not recapitulated by individual ECM components. Blended protein:polymer scaffolds provide a viable, translatable niche for hepatocytes and offers a solution to current obstacles in disease modelling and liver tissue engineering.
Collapse
Affiliation(s)
- Rhiannon Grant
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Scotland, UK
| | - John Hallett
- Scottish Centre for Regenerative Medicine, University of Edinburgh, Scotland, UK
| | - Stuart Forbes
- Scottish Centre for Regenerative Medicine, University of Edinburgh, Scotland, UK
| | - David Hay
- Scottish Centre for Regenerative Medicine, University of Edinburgh, Scotland, UK
| | - Anthony Callanan
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Scotland, UK.
| |
Collapse
|
50
|
Nie Y, Wang W, Xu X, Zou J, Bhuvanesh T, Schulz B, Ma N, Lendlein A. Enhancement of human induced pluripotent stem cells adhesion through multilayer laminin coating. Clin Hemorheol Microcirc 2019; 70:531-542. [PMID: 30347612 DOI: 10.3233/ch-189318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioengineered cell substrates are a highly promising tool to govern the differentiation of stem cells in vitro and to modulate the cellular behavior in vivo. While this technology works fine for adult stem cells, the cultivation of human induced pluripotent stem cells (hiPSCs) is challenging as these cells typically show poor attachment on the bioengineered substrates, which among other effects causes substantial cell death. Thus, very limited types of surfaces have been demonstrated suitable for hiPSC cultures. The multilayer coating approach that renders the surface with diverse chemical compositions, architectures, and functions can be used to improve the adhesion of hiPSCs on the bioengineered substrates. We hypothesized that a multilayer formation based on the attraction of molecules with opposite charges could functionalize the polystyrene (PS) substrates to improve the adhesion of hiPSCs. Polymeric substrates were stepwise coated, first with dopamine to form a polydopamine (PDA) layer, second with polylysine and last with Laminin-521. The multilayer formation resulted in the variation of hydrophilicity and chemical functionality of the surfaces. Hydrophilicity was detected using captive bubble method and the amount of primary and secondary amines on the surface was quantified by fluorescent staining. The PDA layer effectively immobilized the upper layers and thereby improved the attachment of hiPSCs. Cell adhesion was enhanced on the surfaces coated with multilayers, as compared to those without PDA and/or polylysine. Moreover, hiPSCs spread well over this multilayer laminin substrate. These cells maintained their proliferation capacity and differentiation potential. The multilayer coating strategy is a promising attempt for engineering polymer-based substrates for the cultivation of hiPSCs and of interest for expanding the application scope of hiPSCs.
Collapse
Affiliation(s)
- Yan Nie
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jie Zou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Thanga Bhuvanesh
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Burkhard Schulz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Teltow, Germany
| |
Collapse
|