1
|
Van Nerum K, Wenzel A, Argemi-Muntadas L, Kafkia E, Drews A, Brun IS, Lavro V, Roelofsen A, Stamidis N, Arnal SB, Zhao C, di Sanzo S, Völker-Albert M, Petropoulos S, Moritz T, Żylicz JJ. α-Ketoglutarate promotes trophectoderm induction and maturation from naive human embryonic stem cells. Nat Cell Biol 2025; 27:749-761. [PMID: 40269259 DOI: 10.1038/s41556-025-01658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/21/2025] [Indexed: 04/25/2025]
Abstract
Development and lineage choice are driven by interconnected transcriptional, epigenetic and metabolic changes. Specific metabolites, such as α-ketoglutarate (αKG), function as signalling molecules affecting the activity of chromatin-modifying enzymes. However, how metabolism coordinates cell-state changes, especially in human pre-implantation development, remains unclear. Here we uncover that inducing naive human embryonic stem cells towards the trophectoderm lineage results in considerable metabolic rewiring, characterized by αKG accumulation. Elevated αKG levels potentiate the capacity of naive embryonic stem cells to specify towards the trophectoderm lineage. Moreover, increased αKG levels promote blastoid polarization and trophectoderm maturation. αKG supplementation does not affect global histone methylation levels; rather, it decreases acetyl-CoA availability, reduces histone acetyltransferase activity and weakens the pluripotency network. We propose that metabolism functions as a positive feedback loop aiding in trophectoderm fate induction and maturation, highlighting that global metabolic rewiring can promote specificity in cell fate decisions through intricate regulation of signalling and chromatin.
Collapse
Affiliation(s)
- Karlien Van Nerum
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Anne Wenzel
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Lidia Argemi-Muntadas
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Eleni Kafkia
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Antar Drews
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Ida Sophie Brun
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Viktoria Lavro
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Annina Roelofsen
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaos Stamidis
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Sandra Bages Arnal
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Cheng Zhao
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Sophie Petropoulos
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jan Jakub Żylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Hua L, Peng Y, Yan L, Yuan P, Qiao J. Moving toward totipotency: the molecular and cellular features of totipotent and naive pluripotent stem cells. Hum Reprod Update 2025:dmaf006. [PMID: 40299455 DOI: 10.1093/humupd/dmaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/06/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Dissecting the key molecular mechanism of embryonic development provides novel insights into embryogenesis and potential intervention strategies for clinical practices. However, the ability to study the molecular mechanisms of early embryo development in humans, such as zygotic genome activation and lineage segregation, is meaningfully constrained by methodological limitations and ethical concerns. Totipotent stem cells have an extended developmental potential to differentiate into embryonic and extraembryonic tissues, providing a suitable model for studying early embryo development. Recently, a series of ground-breaking results on stem cells have identified totipotent-like cells or induced pluripotent stem cells into totipotent-like cells. OBJECTIVE AND RATIONALE This review followed the PRISMA guidelines, surveys the current works of literature on totipotent, naive, and formative pluripotent stem cells, introduces the molecular and biological characteristics of those stem cells, and gives advice for future research. SEARCH METHODS The search method employed the terms 'totipotent' OR 'naive pluripotent stem cell' OR 'formative pluripotent stem cell' for unfiltered search on PubMed, Web of Science, and Cochrane Library. Papers included were those with information on totipotent stem cells, naive pluripotent stem cells, or formative pluripotent stem cells until June 2024 and were published in the English language. Articles that have no relevance to stem cells, or totipotent, naive pluripotent, or formative pluripotent cells were excluded. OUTCOMES There were 152 records included in this review. These publications were divided into four groups according to the species of the cells included in the studies: 67 human stem cell studies, 70 mouse stem cell studies, 9 porcine stem cell studies, and 6 cynomolgus stem cell studies. Naive pluripotent stem cell models have been established in other species such as porcine and cynomolgus. Human and mouse totipotent stem cells, e.g. human 8-cell-like cells, human totipotent blastomere-like cells, and mouse 2-cell-like cells, have been successfully established and exhibit high developmental potency for both embryonic and extraembryonic contributions. However, the observed discrepancies between these cells and real embryos in terms of epigenetics and transcription suggest that further research is warranted. Our results systematically reviewed the established methods, molecular characteristics, and developmental potency of different naive, formative pluripotent, and totipotent stem cells. Furthermore, we provide a parallel comparison between animal and human models, and offer recommendations for future applications to advance early embryo research and assisted reproduction technologies. WIDER IMPLICATIONS Totipotent cell models provide a valuable resource to understand the underlying mechanisms of embryo development and forge new paths toward future treatment of infertility and regenerative medicine. However, current in vitro cell models exhibit epigenetic and transcriptional differences from in vivo embryos, and many cell models are unstable across passages, thus imperfectly recapitulating embryonic development. In this regard, standardizing and expanding current research on totipotent stem cell models are essential to enhance our capability to resemble and decipher embryogenesis.
Collapse
Affiliation(s)
- Lingyue Hua
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yuyang Peng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Liying Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Peng Yuan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Beijing, China
| |
Collapse
|
3
|
Wu Y, Zhong A, Evangelisti A, Sidharta M, Danwei H, Studer L, Zhou T. Leveraging CRISPR activation for rapid assessment of gene editing products in human pluripotent stem cells. Stem Cell Reports 2025:102499. [PMID: 40345204 DOI: 10.1016/j.stemcr.2025.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
Verification of genome editing in human pluripotent stem cells (hPSCs), particularly at silent loci, is desirable but challenging, as it often requires complex and time-intensive differentiation to induce their expression. Here, we establish a rapid and effective workflow for verifying genome-edited hPSC lines targeting unexpressed genes using CRISPR-mediated transcriptional activation (CRISPRa). We systematically compared the efficiency of various CRISPRa systems and identified the synergistic activation mediator (SAM) system as the most potent for activating silent genes in hPSCs. Furthermore, combining SAM with TET1, a demethylation module, enhanced the activation of methylated genes. By inducing targeted gene activation in undifferentiated hPSCs using CRISPRa, we successfully verified single- and dual-reporter lines, functionally tested degradation tag (dTAG) knockins, and validated silent gene knockouts within 48 h. This approach bypasses the need to induce target gene expression through differentiation, providing a rapid and effective assay for verifying silent gene editing at the hPSC stage.
Collapse
Affiliation(s)
- Youjun Wu
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Aaron Zhong
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Alessandro Evangelisti
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Mega Sidharta
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Huangfu Danwei
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA.
| | - Ting Zhou
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
4
|
Ren H, Jia X, Yu L. The building blocks of embryo models: embryonic and extraembryonic stem cells. Cell Discov 2025; 11:40. [PMID: 40258839 PMCID: PMC12012135 DOI: 10.1038/s41421-025-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/10/2025] [Indexed: 04/23/2025] Open
Abstract
The process of a single-celled zygote developing into a complex multicellular organism is precisely regulated at spatial and temporal levels in vivo. However, understanding the mechanisms underlying development, particularly in humans, has been constrained by technical and ethical limitations associated with studying natural embryos. Harnessing the intrinsic ability of embryonic stem cells (ESCs) to self-organize when induced and assembled, researchers have established several embryo models as alternative approaches to studying early development in vitro. Recent studies have revealed the critical role of extraembryonic cells in early development; and many groups have created more sophisticated and precise ESC-derived embryo models by incorporating extraembryonic stem cell lines, such as trophoblast stem cells (TSCs), extraembryonic mesoderm cells (EXMCs), extraembryonic endoderm cells (XENs, in rodents), and hypoblast stem cells (in primates). Here, we summarize the characteristics of existing mouse and human embryonic and extraembryonic stem cells and review recent advancements in developing mouse and human embryo models.
Collapse
Affiliation(s)
- Hongan Ren
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojie Jia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Leqian Yu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Huang T, Radley A, Yanagida A, Ren Z, Carlisle F, Tahajjodi S, Kim D, O'Neill P, Clarke J, Lancaster MA, Heckhausen Z, Zhuo J, de Sousa JPA, Hajkova P, von Meyenn F, Imai H, Nakauchi H, Guo G, Smith A, Masaki H. Inhibition of PRC2 enables self-renewal of blastoid-competent naive pluripotent stem cells from chimpanzee. Cell Stem Cell 2025; 32:627-639.e8. [PMID: 40015279 DOI: 10.1016/j.stem.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/11/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Naive pluripotent stem cells (PSCs) are counterparts of early epiblast in the mammalian embryo. Mouse and human naive PSCs differ in self-renewal requirements and extraembryonic lineage potency. Here, we investigated the generation of chimpanzee naive PSCs. Colonies generated by resetting or reprogramming failed to propagate. We discovered that self-renewal is enabled by inhibition of Polycomb repressive complex 2 (PRC2). Expanded cells show global transcriptome proximity to human naive PSCs and embryo pre-implantation epiblast, with shared expression of a subset of pluripotency transcription factors. Chimpanzee naive PSCs can transition to multilineage competence or can differentiate into trophectoderm and hypoblast, forming tri-lineage blastoids. They thus provide a higher primate comparative model for studying pluripotency and early embryogenesis. Genetic deletions confirm that PRC2 mediates growth arrest. Further, inhibition of PRC2 overcomes a roadblock to feeder-free propagation of human naive PSCs. Therefore, excess deposition of chromatin modification H3K27me3 is an unexpected barrier to naive PSC self-renewal.
Collapse
Affiliation(s)
- Tao Huang
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Arthur Radley
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Ayaka Yanagida
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan; Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Zhili Ren
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | | | | | - Dongwan Kim
- Stem Cell Therapy Division, Institute of Integrated Research, Institute of Science, Tokyo 113-8510, Japan
| | - Paul O'Neill
- University of Exeter Sequencing Facility, University of Exeter, Exeter EX4 4QD, UK
| | - James Clarke
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Zoe Heckhausen
- MRC Laboratory of Medical Sciences (LMS), Du Cane Rd, London W12 0HS, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, W12 0NN, UK
| | - Jingran Zhuo
- Department of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | | | - Petra Hajkova
- MRC Laboratory of Medical Sciences (LMS), Du Cane Rd, London W12 0HS, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, W12 0NN, UK
| | - Ferdinand von Meyenn
- Department of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Stem Cell Therapy Division, Institute of Integrated Research, Institute of Science, Tokyo 113-8510, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ge Guo
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
| | - Hideki Masaki
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Stem Cell Therapy Division, Institute of Integrated Research, Institute of Science, Tokyo 113-8510, Japan.
| |
Collapse
|
6
|
Park S, Park MJ, Kwon EJ, Oh JY, Chu YJ, Kim HS, Park S, Kim TH, Kwon SW, Kim YS, Cha HJ. The protective role of GPX4 in naïve ESCs is highlighted by induced ferroptosis resistance through GPX4 expression. Redox Biol 2025; 81:103539. [PMID: 40010136 PMCID: PMC11908625 DOI: 10.1016/j.redox.2025.103539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Ferroptosis, a form of oxidative cell death mediated by lipid peroxidation, is strictly regulated by glutathione peroxidase 4 (GPX4). Knockout of Gpx4 results in embryonic lethality, highlighting its essential role in development. In vitro, mouse embryonic stem cells (mESCs), which represent the naïve pluripotent state, require β-mercaptoethanol (bME) to prevent cell death, unlike human embryonic stem cells, which represent the primed state. We hypothesized that naïve pluripotency is linked to a heightened susceptibility to ferroptosis due to unique metabolic demands and redox imbalances. In this study, we found that bME deprivation induces ferroptosis in naïve ESCs, as evidenced by lipid peroxidation; ferroptosis, however, is less evident in primed ESCs. Mechanistic analyses revealed that active oxidative phosphorylation (OXPHOS) in naïve ESCs increased mitochondrial reactive oxygen species. Consistent with the upregulation of Gpx4 transcripts and OXPHOS-associated gene sets seen in the inner cell mass of blastocysts, stable GPX4 expression conferred resistance to ferroptosis induced by bME withdrawal. These results suggest that the unique redox and metabolic landscape of naïve ESCs highlits a potential requirement for GPX4 in maintaining naïve pluripotency, providing insights into early developmental processes and vulnerabilities.
Collapse
Affiliation(s)
- Seokwoo Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Mihn Jeong Park
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun-Ji Kwon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Oh
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yeon-Joon Chu
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Han Sun Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Tae Ha Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Fischer LA, Meyer B, Reyes M, Zemke JE, Harrison JK, Park KM, Wang T, Jüppner H, Dietmann S, Theunissen TW. Tracking and mitigating imprint erasure during induction of naive human pluripotency at single-cell resolution. Stem Cell Reports 2025; 20:102419. [PMID: 39952244 PMCID: PMC11960550 DOI: 10.1016/j.stemcr.2025.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/17/2025] Open
Abstract
Naive human pluripotent stem cells (hPSCs) model the pre-implantation epiblast. However, parent-specific epigenetic marks (imprints) are eroded in naive hPSCs, which represents an important deviation from the epiblast in vivo. To track the dynamics of imprint erasure during naive resetting in real time, we established a dual-colored fluorescent reporter at both alleles of the imprinted SNRPN locus. During primed-to-naive resetting, SNRPN expression becomes biallelic in most naive cells, and biallelic SNRPN expression is irreversible upon re-priming. We utilized this live-cell reporter to evaluate chemical and genetic strategies to minimize imprint erasure. Decreasing the level of MEK/ERK inhibition or overexpressing the KRAB zinc-finger protein ZFP57 protected a subset of imprints during naive resetting. Combining these two strategies protected imprint levels to a further extent than either strategy alone. This study offers an experimental tool to track and enhance imprint stability during transitions between human pluripotent states in vitro.
Collapse
Affiliation(s)
- Laura A Fischer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brittany Meyer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Monica Reyes
- Endocrine Unit, Department of Medicine and Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph E Zemke
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessica K Harrison
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyoung-Mi Park
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine and Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sabine Dietmann
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA; Institute for Informatics (I(2)), Washington University School of Medicine, St. Louis, MO, USA
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Xie H, An C, Bai B, Luo J, Sun N, Ci B, Jin L, Mo P, Lu Y, Zhong K, Yu Y, Tan T, Li R, Fan Y. Modeling early gastrulation in human blastoids with DNA methylation patterns of natural blastocysts. Cell Stem Cell 2025; 32:409-425.e8. [PMID: 39814012 DOI: 10.1016/j.stem.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/27/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
Blastoids are a promising model for studying early human embryogenesis, but current models have limitations in post-implantation development and lack comprehensive epigenetic assessments, especially regarding genomic imprinting. These issues can lead to failures in accurately modeling early embryonic development. In this study, we developed a high-fidelity blastoid model using 4 chemicals + leukemia inhibitory factor (LIF) (4CL) naive human pluripotent stem cells (hPSCs) (4CL blastoids). 4CL blastoids closely resemble human blastocysts in morphology and transcriptional profiles, exhibiting similar DNA methylation and gene imprinting patterns. By extending the 3D culture to 14 days, these blastoids mimic early gastrulation, demonstrating the specification and migration of cells. They also show the transcriptional signature of hemogenic angioblast (HAB) cells at Carnegie stage 6 (CS6). This model bridges pre- and post-implantation stages, offering valuable insights into early tissue formation and human development.
Collapse
Affiliation(s)
- Han Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Chenrui An
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Bing Bai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Jiajia Luo
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Nianqin Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Baiquan Ci
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Long Jin
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Peiting Mo
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Yawen Lu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Ke Zhong
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Yong Fan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.
| |
Collapse
|
9
|
Guo J, Lin R, Liu J, Liu R, Chen S, Zhang Z, Yang Y, Wang H, Wang L, Yu S, Zhou C, Xiao L, Luo R, Yu J, Zeng L, Zhang X, Li Y, Wu H, Wang T, Li Y, Kumar M, Zhu P, Liu J. Capture primed pluripotency in guinea pig. Stem Cell Reports 2025; 20:102388. [PMID: 39793577 PMCID: PMC11864139 DOI: 10.1016/j.stemcr.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/13/2025] Open
Abstract
Guinea pigs are valuable models for human disease research, yet the lack of established pluripotent stem cell lines has limited their utility. In this study, we isolate and characterize guinea pig epiblast stem cells (gpEpiSCs) from post-implantation embryos. These cells differentiate into the three germ layers, maintain normal karyotypes, and rely on FGF2 and ACTIVIN A signaling for self-renewal and pluripotency. Wingless/Integrated (WNT) signaling inhibition is also essential for their maintenance. GpEpiSCs express key pluripotency markers (OCT4, SOX2, NANOG) and share transcriptional similarities with human and mouse primed stem cells. While many genes are conserved between guinea pig and human primed stem cells, transcriptional analysis also reveals species-specific differences in pluripotency-related pathways. Epigenetic analysis highlights bivalent gene regulation, underscoring their developmental potential. This work demonstrates both the evolutionary conservation and divergence of primed pluripotent stem cells, providing a new tool for biomedical research and enhancing guinea pigs' utility in studying human diseases.
Collapse
Affiliation(s)
- Jing Guo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Runxia Lin
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jinpeng Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongrong Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuyan Chen
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhen Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yongzheng Yang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haiyun Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Luqin Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shengyong Yu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Chunhua Zhou
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Lizhan Xiao
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongping Luo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinjin Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Pediatric Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lihua Zeng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoli Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yusha Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haokaifeng Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Tao Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yi Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Manish Kumar
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China.
| | - Ping Zhu
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China.
| | - Jing Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China.
| |
Collapse
|
10
|
Ma G, Fu X, Zhou L, Babarinde IA, Shi L, Yang W, Chen J, Xiao Z, Qiao Y, Ma L, Ou Y, Li Y, Chang C, Deng B, Zhang R, Sun L, Tong G, Li D, Li Y, Hutchins AP. The nuclear matrix stabilizes primed-specific genes in human pluripotent stem cells. Nat Cell Biol 2025; 27:232-245. [PMID: 39789220 DOI: 10.1038/s41556-024-01595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The nuclear matrix, a proteinaceous gel composed of proteins and RNA, is an important nuclear structure that supports chromatin architecture, but its role in human pluripotent stem cells (hPSCs) has not been described. Here we show that by disrupting heterogeneous nuclear ribonucleoprotein U (HNRNPU) or the nuclear matrix protein, Matrin-3, primed hPSCs adopted features of the naive pluripotent state, including morphology and upregulation of naive-specific marker genes. We demonstrate that HNRNPU depletion leads to increased chromatin accessibility, reduced DNA contacts and increased nuclear size. Mechanistically, HNRNPU acts as a transcriptional co-factor that anchors promoters of primed-specific genes to the nuclear matrix with POLII to promote their expression and their RNA stability. Overall, HNRNPU promotes cell-type stability and when reduced promotes conversion to earlier embryonic states.
Collapse
Affiliation(s)
- Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiuling Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lulu Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liyang Shi
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhen Xiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yu Qiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lisha Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Ou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Chen Chang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Boping Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ran Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Guoqing Tong
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
11
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
12
|
Ying Q, Nichols J. Relationship of PSC to embryos: Extending and refining capture of PSC lines from mammalian embryos. Bioessays 2024; 46:e2400077. [PMID: 39400400 PMCID: PMC11589693 DOI: 10.1002/bies.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/07/2024] [Indexed: 10/15/2024]
Abstract
Pluripotent stem cell lines derived from preimplantation mouse embryos have opened opportunities for the study of early mammalian development and generation of genetically uncompromised material for differentiation into specific cell types. Murine embryonic stem cells are highly versatile and can be engineered and introduced into host embryos, transferred to recipient females, and gestated to investigate gene function at multiple levels as well as developmental mechanisms, including lineage segregation and cell competition. In this review, we summarize the biomedical motivation driving the incremental modification to culture regimes and analyses that have advanced stem cell research to its current state. Ongoing investigation into divergent mechanisms of early developmental processes adopted by other species, such as agriculturally beneficial mammals and birds, will continue to enrich knowledge and inform strategies for future in vitro models.
Collapse
Affiliation(s)
- Qi‐Long Ying
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute for Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
13
|
Smith A. Propagating pluripotency - The conundrum of self-renewal. Bioessays 2024; 46:e2400108. [PMID: 39180242 PMCID: PMC11589686 DOI: 10.1002/bies.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
The discovery of mouse embryonic stem cells in 1981 transformed research in mammalian developmental biology and functional genomics. The subsequent generation of human pluripotent stem cells (PSCs) and the development of molecular reprogramming have opened unheralded avenues for drug discovery and cell replacement therapy. Here, I review the history of PSCs from the perspective that long-term self-renewal is a product of the in vitro signaling environment, rather than an intrinsic feature of embryos. I discuss the relationship between pluripotent states captured in vitro to stages of epiblast in the embryo and suggest key considerations for evaluation of PSCs. A remaining fundamental challenge is to determine whether naïve pluripotency can be propagated from the broad range of mammals by exploiting common principles in gene regulatory architecture.
Collapse
Affiliation(s)
- Austin Smith
- Living Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
14
|
Iyer DP, Khoei HH, van der Weijden VA, Kagawa H, Pradhan SJ, Novatchkova M, McCarthy A, Rayon T, Simon CS, Dunkel I, Wamaitha SE, Elder K, Snell P, Christie L, Schulz EG, Niakan KK, Rivron N, Bulut-Karslioğlu A. mTOR activity paces human blastocyst stage developmental progression. Cell 2024; 187:6566-6583.e22. [PMID: 39332412 PMCID: PMC7617234 DOI: 10.1016/j.cell.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Many mammals can temporally uncouple conception from parturition by pacing down their development around the blastocyst stage. In mice, this dormant state is achieved by decreasing the activity of the growth-regulating mTOR signaling pathway. It is unknown whether this ability is conserved in mammals in general and in humans in particular. Here, we show that decreasing the activity of the mTOR signaling pathway induces human pluripotent stem cells (hPSCs) and blastoids to enter a dormant state with limited proliferation, developmental progression, and capacity to attach to endometrial cells. These in vitro assays show that, similar to other species, the ability to enter dormancy is active in human cells around the blastocyst stage and is reversible at both functional and molecular levels. The pacing of human blastocyst development has potential implications for reproductive therapies.
Collapse
Affiliation(s)
- Dhanur P Iyer
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heidar Heidari Khoei
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vera A van der Weijden
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Harunobu Kagawa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Saurabh J Pradhan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Afshan McCarthy
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Teresa Rayon
- Epigenetics & Signalling Programmes, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Claire S Simon
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Ilona Dunkel
- Systems Epigenetics, Otto-Warburg-Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sissy E Wamaitha
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Edda G Schulz
- Systems Epigenetics, Otto-Warburg-Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Kathy K Niakan
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Aydan Bulut-Karslioğlu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
15
|
Shahbazi MN, Pasque V. Early human development and stem cell-based human embryo models. Cell Stem Cell 2024; 31:1398-1418. [PMID: 39366361 PMCID: PMC7617107 DOI: 10.1016/j.stem.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
The use of stem cells to model the early human embryo promises to transform our understanding of developmental biology and human reproduction. In this review, we present our current knowledge of the first 2 weeks of human embryo development. We first focus on the distinct cell lineages of the embryo and the derivation of stem cell lines. We then discuss the intercellular crosstalk that guides early embryo development and how this crosstalk is recapitulated in vitro to generate stem cell-based embryo models. We highlight advances in this fast-developing field, discuss current limitations, and provide a vision for the future.
Collapse
Affiliation(s)
| | - Vincent Pasque
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Leuven Stem Cell Institute & Leuven Institute for Single-Cell Omics (LISCO), Leuven, Belgium.
| |
Collapse
|
16
|
Siriwardena D, Munger C, Penfold C, Kohler TN, Weberling A, Linneberg-Agerholm M, Slatery E, Ellermann AL, Bergmann S, Clark SJ, Rawlings TM, Brickman JM, Reik W, Brosens JJ, Zernicka-Goetz M, Sasaki E, Behr R, Hollfelder F, Boroviak TE. Marmoset and human trophoblast stem cells differ in signaling requirements and recapitulate divergent modes of trophoblast invasion. Cell Stem Cell 2024; 31:1427-1446.e8. [PMID: 39321797 PMCID: PMC7616712 DOI: 10.1016/j.stem.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
Early human trophoblast development has remained elusive due to the inaccessibility of the early conceptus. Non-human primate models recapitulate many features of human development and allow access to early postimplantation stages. Here, we tracked the pre- to postimplantation transition of the trophoblast lineage in superficially implanting marmoset embryos in vivo. We differentiated marmoset naive pluripotent stem cells into trophoblast stem cells (TSCs), which exhibited trophoblast-specific transcriptome, methylome, differentiation potential, and long-term self-renewal. Notably, human TSC culture conditions failed to support marmoset TSC derivation, instead inducing an extraembryonic mesoderm-like fate in marmoset cells. We show that combined MEK, TGF-β/NODAL, and histone deacetylase inhibition stabilizes a periimplantation trophoblast-like identity in marmoset TSCs. By contrast, these conditions differentiated human TSCs toward extravillous trophoblasts. Our work presents a paradigm to harness the evolutionary divergence in implantation strategies to elucidate human trophoblast development and invasion.
Collapse
Affiliation(s)
- Dylan Siriwardena
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Clara Munger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Timo N Kohler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Erin Slatery
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Anna L Ellermann
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Stephen J Clark
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Altos Labs Cambridge Institute, Cambridge, UK; Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Thomas M Rawlings
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine (renew), University of Copenhagen, Copenhagen, Denmark
| | - Wolf Reik
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Altos Labs Cambridge Institute, Cambridge, UK; Epigenetics Programme, Babraham Institute, Cambridge, UK; Wellcome Trust Sanger Institute, Cambridge, UK
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Rüdiger Behr
- German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany
| | | | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Shang Y, Wang N, Wang H, An C, Sun W. Modeling X chromosome inactivation using t5iLA naive human pluripotent stem cells. BMC Biol 2024; 22:210. [PMID: 39294757 PMCID: PMC11411763 DOI: 10.1186/s12915-024-01994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND X chromosome inactivation (XCI) is a critical epigenetic event for dosage compensation of X-linked genes in female mammals, ensuring developmental stability. A robust in vitro model is required for mimicking XCI during the early stages of embryonic development. This methodology article introduces an advanced framework for the in-depth study of XCI using human pluripotent stem cells (hPSCs). By focusing on the transition between naive and primed pluripotent states, we highlight the role of long non-coding RNA X-inactive specific transcript (XIST) and epigenetic alterations in mediating XCI. RESULTS Our methodology enables the distinction between naive and primed hESCs based on XIST expression and the activity of X-linked reporters, facilitating the investigation of XCI initiation and maintenance. Through detailed experimental procedures, we demonstrate the utility of our hESC lines in modeling the process of human XCI, including the establishment of conditions for random XCI induction and the analysis of X chromosome reactivation. METHODS The study outlines a comprehensive approach for characterizing the X chromosome status in hPSCs, employing dual fluorescent reporter hESC lines. These reporter lines enable real-time tracking of XCI dynamics through differentiation processes. We detailed protocols for the induction of X chromosome reactivation and inactivation, as well as the X status characterization methods including cultivation of hESCs, flow cytometric analysis, RNA fluorescence in situ hybridization (FISH), and transcriptome sequencing, providing a step-by-step guide for researchers to investigate XCI mechanisms in vitro. CONCLUSIONS This article provides a detailed, reproducible methodology for studying XCI mechanisms in vitro, employing hPSCs as a model system. It presents a significant advance in our ability to investigate XCI, offering potential applications in developmental biology, disease modeling, and regenerative medicine. By facilitating the study of XCI dynamics, this methodological framework paves the way for deeper understanding and manipulation of this fundamental biological process.
Collapse
Affiliation(s)
- Yudan Shang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory for Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Nannan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chenrui An
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory for Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
18
|
Na Q, Zhang S, Shao P, Jia Y, Wang Y, Wei M, Chen Y, Chen C, Zhao L, Wang Z, Song Y, Wu B, Bao S, Li X. In vitro generation of trophoblast like stem cells from goat pluripotent stem cells. Theriogenology 2024; 226:120-129. [PMID: 38878464 DOI: 10.1016/j.theriogenology.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/24/2024]
Abstract
Since the first mouse induced pluripotent stem cells (iPSCs) was derived, the in vitro culture of domestic iPSCs functionally and molecularly comparable with mouse iPSCs has been a challenge. Here, we established dairy goat iPSCs (giPSCs) from goat ear fibroblast cells with mouse iPSCs morphology, the expression of pluripotent markers and differentiation ability in vitro delivered by piggyBac transposon with nine Dox-inducible exogenous reprogramming factors. These reprogramming factors were bOMSK (bovine OCT4, CMYC, SOX2, and KLF4), pNhL (porcine NANOG and human LIN28), hRL (human RARG and LRH1), and SV40 Large T. Notably, AF-giPSCs (induced in activin A and bFGF condition) were capable of differentiation in embryoid bodies in vitro and could contribute to interspecies chimerism in mouse E6.5 embryos in vitro, demonstrating that AF-giPSCs have the developmental capability to generate some embryonic cell lineages. Moreover, Wnt/β-catenin signaling has an important role in driving goat induced trophoblast-like stem cells (giTLSCs) from Dox-independent giPSCs. This study will support further establishment of the stable giPSC lines without any integration of exogenous genes.
Collapse
Affiliation(s)
- Qin Na
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Siyu Zhang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Peng Shao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Yu Jia
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Yanqiu Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Mengyi Wei
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Yanglin Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Chen Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Lixia Zhao
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Zixin Wang
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, 011517, Hohhot, China
| | - Yongli Song
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China.
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, 011517, Hohhot, China.
| |
Collapse
|
19
|
Massafret O, Barragán M, Álvarez-González L, Aran B, Martín-Mur B, Esteve-Codina A, Ruiz-Herrera A, Ibáñez E, Santaló J. The pluripotency state of human embryonic stem cells derived from single blastomeres of eight-cell embryos. Cells Dev 2024; 179:203935. [PMID: 38914137 DOI: 10.1016/j.cdev.2024.203935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Human embryonic stem cells (hESCs) derived from blastocyst stage embryos present a primed state of pluripotency, whereas mouse ESCs (mESCs) display naïve pluripotency. Their unique characteristics make naïve hESCs more suitable for particular applications in biomedical research. This work aimed to derive hESCs from single blastomeres and determine their pluripotency state, which is currently unclear. We derived hESC lines from single blastomeres of 8-cell embryos and from whole blastocysts, and analysed several naïve pluripotency indicators, their transcriptomic profile and their trilineage differentiation potential. No significant differences were observed between blastomere-derived hESCs (bm-hESCs) and blastocyst-derived hESCs (bc-hESCs) for most naïve pluripotency indicators, including TFE3 localization, mitochondrial activity, and global DNA methylation and hydroxymethylation, nor for their trilineage differentiation potential. Nevertheless, bm-hESCs showed an increased single-cell clonogenicity and a higher expression of naïve pluripotency markers at early passages than bc-hESCs. Furthermore, RNA-seq revealed that bc-hESCs overexpressed a set of genes related to the post-implantational epiblast. Altogether, these results suggest that bm-hESCs, although displaying primed pluripotency, would be slightly closer to the naïve end of the pluripotency continuum than bc-hESCs.
Collapse
Affiliation(s)
- Ot Massafret
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Montserrat Barragán
- Basic Research Laboratory, Eugin Group, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Lucía Álvarez-González
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Begoña Aran
- Stem Cell Bank, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Beatriz Martín-Mur
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Ibáñez
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Josep Santaló
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
20
|
Liu Q, Chen C, Fan Z, Song H, Sha Y, Yu L, Wang Y, Qin W, Yi W. O-GlcNAcase regulates pluripotency states of human embryonic stem cells. Stem Cell Reports 2024; 19:993-1009. [PMID: 38942028 PMCID: PMC11252487 DOI: 10.1016/j.stemcr.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/30/2024] Open
Abstract
Understanding the regulation of human embryonic stem cells (hESCs) pluripotency is critical to advance the field of developmental biology and regenerative medicine. Despite the recent progress, molecular events regulating hESC pluripotency, especially the transition between naive and primed states, still remain unclear. Here we show that naive hESCs display lower levels of O-linked N-acetylglucosamine (O-GlcNAcylation) than primed hESCs. O-GlcNAcase (OGA), the key enzyme catalyzing the removal of O-GlcNAc from proteins, is highly expressed in naive hESCs and is important for naive pluripotency. Depletion of OGA accelerates naive-to-primed pluripotency transition. OGA is transcriptionally regulated by EP300 and acts as a transcription regulator of genes important for maintaining naive pluripotency. Moreover, we profile protein O-GlcNAcylation of the two pluripotency states by quantitative proteomics. Together, this study identifies OGA as an important factor of naive pluripotency in hESCs and suggests that O-GlcNAcylation has a broad effect on hESCs homeostasis.
Collapse
Affiliation(s)
- Qianyu Liu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cheng Chen
- Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhiya Fan
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 100026, China
| | - Honghai Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yutong Sha
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liyang Yu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingjie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 100026, China.
| | - Wen Yi
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Dattani A, Corujo-Simon E, Radley A, Heydari T, Taheriabkenar Y, Carlisle F, Lin S, Liddle C, Mill J, Zandstra PW, Nichols J, Guo G. Naive pluripotent stem cell-based models capture FGF-dependent human hypoblast lineage specification. Cell Stem Cell 2024; 31:1058-1071.e5. [PMID: 38823388 DOI: 10.1016/j.stem.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/13/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The hypoblast is an essential extraembryonic tissue set aside within the inner cell mass in the blastocyst. Research with human embryos is challenging. Thus, stem cell models that reproduce hypoblast differentiation provide valuable alternatives. We show here that human naive pluripotent stem cell (PSC) to hypoblast differentiation proceeds via reversion to a transitional ICM-like state from which the hypoblast emerges in concordance with the trajectory in human blastocysts. We identified a window when fibroblast growth factor (FGF) signaling is critical for hypoblast specification. Revisiting FGF signaling in human embryos revealed that inhibition in the early blastocyst suppresses hypoblast formation. In vitro, the induction of hypoblast is synergistically enhanced by limiting trophectoderm and epiblast fates. This finding revises previous reports and establishes a conservation in lineage specification between mice and humans. Overall, this study demonstrates the utility of human naive PSC-based models in elucidating the mechanistic features of early human embryogenesis.
Collapse
Affiliation(s)
- Anish Dattani
- Living Systems Institute, University of Exeter, Exeter, UK; Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Elena Corujo-Simon
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Arthur Radley
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Tiam Heydari
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Simeng Lin
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Corin Liddle
- Bioimaging Centre, University of Exeter, Exeter, UK
| | - Jonathan Mill
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Peter W Zandstra
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Ge Guo
- Living Systems Institute, University of Exeter, Exeter, UK; Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
22
|
Wu J, Fu J. Toward developing human organs via embryo models and chimeras. Cell 2024; 187:3194-3219. [PMID: 38906095 PMCID: PMC11239105 DOI: 10.1016/j.cell.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.
Collapse
Affiliation(s)
- Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Simpson L, Strange A, Klisch D, Kraunsoe S, Azami T, Goszczynski D, Le Minh T, Planells B, Holmes N, Sang F, Henson S, Loose M, Nichols J, Alberio R. A single-cell atlas of pig gastrulation as a resource for comparative embryology. Nat Commun 2024; 15:5210. [PMID: 38890321 PMCID: PMC11189408 DOI: 10.1038/s41467-024-49407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Cell-fate decisions during mammalian gastrulation are poorly understood outside of rodent embryos. The embryonic disc of pig embryos mirrors humans, making them a useful proxy for studying gastrulation. Here we present a single-cell transcriptomic atlas of pig gastrulation, revealing cell-fate emergence dynamics, as well as conserved and divergent gene programs governing early porcine, primate, and murine development. We highlight heterochronicity in extraembryonic cell-types, despite the broad conservation of cell-type-specific transcriptional programs. We apply these findings in combination with functional investigations, to outline conserved spatial, molecular, and temporal events during definitive endoderm specification. We find early FOXA2 + /TBXT- embryonic disc cells directly form definitive endoderm, contrasting later-emerging FOXA2/TBXT+ node/notochord progenitors. Unlike mesoderm, none of these progenitors undergo epithelial-to-mesenchymal transition. Endoderm/Node fate hinges on balanced WNT and hypoblast-derived NODAL, which is extinguished upon endodermal differentiation. These findings emphasise the interplay between temporal and topological signalling in fate determination during gastrulation.
Collapse
Affiliation(s)
- Luke Simpson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Andrew Strange
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Doris Klisch
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Sophie Kraunsoe
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Takuya Azami
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Daniel Goszczynski
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Triet Le Minh
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Benjamin Planells
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Nadine Holmes
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Sonal Henson
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Matthew Loose
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.
| |
Collapse
|
24
|
Ruan D, Xuan Y, Tam TTKK, Li Z, Wang X, Xu S, Herrmann D, Niemann H, Lai L, Gao X, Nowak-Imialek M, Liu P. An optimized culture system for efficient derivation of porcine expanded potential stem cells from preimplantation embryos and by reprogramming somatic cells. Nat Protoc 2024; 19:1710-1749. [PMID: 38509352 DOI: 10.1038/s41596-024-00958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/08/2023] [Indexed: 03/22/2024]
Abstract
Pigs share anatomical and physiological traits with humans and can serve as a large-animal model for translational medicine. Bona fide porcine pluripotent stem cells (PSCs) could facilitate testing cell and drug therapies. Agriculture and biotechnology may benefit from the ability to produce immune cells for studying animal infectious diseases and to readily edit the porcine genome in stem cells. Isolating porcine PSCs from preimplantation embryos has been intensively attempted over the past decades. We previously reported the derivation of expanded potential stem cells (EPSCs) from preimplantation embryos and by reprogramming somatic cells of multiple mammalian species, including pigs. Porcine EPSCs (pEPSCs) self-renew indefinitely, differentiate into embryonic and extra-embryonic lineages, and permit precision genome editing. Here we present a highly reproducible experimental procedure and data of an optimized and robust porcine EPSC culture system and its use in deriving new pEPSC lines from preimplantation embryos and reprogrammed somatic cells. No particular expertise is required for the protocols, which take ~4-6 weeks to complete. Importantly, we successfully established pEPSC lines from both in vitro fertilized and somatic cell nuclear transfer-derived embryos. These new pEPSC lines proliferated robustly over long-term passaging and were amenable to both simple indels and precision genome editing, with up to 100% targeting efficiency. The pEPSCs differentiated into embryonic cell lineages in vitro and teratomas in vivo, and into porcine trophoblast stem cells in human trophoblast stem cell medium. We show here that pEPSCs have unique epigenetic features, particularly H3K27me3 levels substantially lower than fibroblasts.
Collapse
Affiliation(s)
- Degong Ruan
- Center for Translational Stem Cell Biology, Science Park, Sha Tin, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yiyi Xuan
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Timothy Theodore Ka Ki Tam
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - ZhuoXuan Li
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Xiao Wang
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Shao Xu
- Center for Translational Stem Cell Biology, Science Park, Sha Tin, Hong Kong, China
| | - Doris Herrmann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), Mariensee, Neustadt, Germany
| | - Heiner Niemann
- Hannover Medical School (MHH), Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover, Germany
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xuefei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Monika Nowak-Imialek
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
- First Department of Medicine, Cardiology, Klinikum rechts der Isar-Technical University of Munich, Munich, Germany.
| | - Pentao Liu
- Center for Translational Stem Cell Biology, Science Park, Sha Tin, Hong Kong, China.
- Shenzhen Key Laboratory of Fertility Regulation, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| |
Collapse
|
25
|
Luijkx DG, Ak A, Guo G, van Blitterswijk CA, Giselbrecht S, Vrij EJ. Monochorionic Twinning in Bioengineered Human Embryo Models. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313306. [PMID: 38593372 DOI: 10.1002/adma.202313306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Monochorionic twinning of human embryos increases the risk of complications during pregnancy. The rarity of such twinning events, combined with ethical constraints in human embryo research, makes investigating the mechanisms behind twinning practically infeasible. As a result, there is a significant knowledge gap regarding the origins and early phenotypic presentation of monochorionic twin embryos. In this study, a microthermoformed-based microwell screening platform is used to identify conditions that efficiently induce monochorionic twins in human stem cell-based blastocyst models, termed "twin blastoids". These twin blastoids contain a cystic GATA3+ trophectoderm-like epithelium encasing two distinct inner cell masses (ICMs). Morphological and morphokinetic analyses reveal that twinning occurs during the cavitation phase via splitting of the OCT4+ pluripotent core. Notably, each ICM in twin blastoids contains its own NR2F2+ polar trophectoderm-like region, ready for implantation. This is functionally tested in a microfluidic chip-based implantation assay with epithelial endometrium cells. Under defined flow regimes, twin blastoids show increased adhesion capacity compared to singleton blastoids, suggestive of increased implantation potential. In conclusion, the development of technology enabling large-scale formation of twin blastoids, coupled with high-sensitivity readout capabilities, presents an unprecedented opportunity for systematically exploring monochorionic twin formation and its impact on embryonic development.
Collapse
Affiliation(s)
- Dorian G Luijkx
- MERLN Institute of Technology-Inspired Regenerative Medicine, Department for Instructive Biomaterials Engineering (IBE), Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
| | - Asli Ak
- MERLN Institute of Technology-Inspired Regenerative Medicine, Department for Instructive Biomaterials Engineering (IBE), Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
| | - Ge Guo
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Clemens A van Blitterswijk
- MERLN Institute of Technology-Inspired Regenerative Medicine, Department for Instructive Biomaterials Engineering (IBE), Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
| | - Stefan Giselbrecht
- MERLN Institute of Technology-Inspired Regenerative Medicine, Department for Instructive Biomaterials Engineering (IBE), Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
| | - Erik J Vrij
- MERLN Institute of Technology-Inspired Regenerative Medicine, Department for Instructive Biomaterials Engineering (IBE), Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
- Gynaecology, Women Mother Child Centre, Maastricht University Medical Centre+ (MUMC+), P. Debyelaan 25, Maastricht, 6202AZ, The Netherlands
- GROW - Research Institute for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
| |
Collapse
|
26
|
Onfray C, Chevolleau S, Moinard E, Girard O, Mahadik K, Allsop R, Georgolopoulos G, Lavigne R, Renoult O, Aksoy I, Lemaitre E, Hulin P, Ouimette JF, Fréour T, Pecqueur C, Pineau C, Pasque V, Rougeulle C, David L. Unraveling hallmark suitability for staging pre- and post-implantation stem cell models. Cell Rep 2024; 43:114232. [PMID: 38761378 DOI: 10.1016/j.celrep.2024.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
The advent of novel 2D and 3D models for human development, including trophoblast stem cells and blastoids, has expanded opportunities for investigating early developmental events, gradually illuminating the enigmatic realm of human development. While these innovations have ushered in new prospects, it has become essential to establish well-defined benchmarks for the cell sources of these models. We aimed to propose a comprehensive characterization of pluripotent and trophoblastic stem cell models by employing a combination of transcriptomic, proteomic, epigenetic, and metabolic approaches. Our findings reveal that extended pluripotent stem cells share many characteristics with primed pluripotent stem cells, with the exception of metabolic activity. Furthermore, our research demonstrates that DNA hypomethylation and high metabolic activity define trophoblast stem cells. These results underscore the necessity of considering multiple hallmarks of pluripotency rather than relying on a single criterion. Multiplying hallmarks alleviate stage-matching bias.
Collapse
Affiliation(s)
- Constance Onfray
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Simon Chevolleau
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Eva Moinard
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Océane Girard
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Kasturi Mahadik
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, 75013 Paris, France
| | - Ryan Allsop
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Grigorios Georgolopoulos
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Régis Lavigne
- University Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000 Rennes, France; University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Ophélie Renoult
- Nantes Université, CNRS, Inserm, CRCI2NA, 44000 Nantes, France
| | - Irene Aksoy
- University Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Elsa Lemaitre
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France
| | - Philippe Hulin
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France
| | | | - Thomas Fréour
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France; Department of Obstetrics, Gynecology and Reproductive Medicine, Dexeus University Hospital, 08028 Barcelona, Spain; CHU Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Claire Pecqueur
- Nantes Université, CNRS, Inserm, CRCI2NA, 44000 Nantes, France
| | - Charles Pineau
- University Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000 Rennes, France; University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Vincent Pasque
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Claire Rougeulle
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, 75013 Paris, France
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France; Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France.
| |
Collapse
|
27
|
Saha D, Animireddy S, Bartholomew B. The SWI/SNF ATP-dependent chromatin remodeling complex in cell lineage priming and early development. Biochem Soc Trans 2024; 52:603-616. [PMID: 38572912 PMCID: PMC11088921 DOI: 10.1042/bst20230416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
ATP dependent chromatin remodelers have pivotal roles in transcription, DNA replication and repair, and maintaining genome integrity. SWI/SNF remodelers were first discovered in yeast genetic screens for factors involved in mating type switching or for using alternative energy sources therefore termed SWI/SNF complex (short for SWItch/Sucrose NonFermentable). The SWI/SNF complexes utilize energy from ATP hydrolysis to disrupt histone-DNA interactions and shift, eject, or reposition nucleosomes making the underlying DNA more accessible to specific transcription factors and other regulatory proteins. In development, SWI/SNF orchestrates the precise activation and repression of genes at different stages, safe guards the formation of specific cell lineages and tissues. Dysregulation of SWI/SNF have been implicated in diseases such as cancer, where they can drive uncontrolled cell proliferation and tumor metastasis. Additionally, SWI/SNF defects are associated with neurodevelopmental disorders, leading to disruption of neural development and function. This review offers insights into recent developments regarding the roles of the SWI/SNF complex in pluripotency and cell lineage primining and the approaches that have helped delineate its importance. Understanding these molecular mechanisms is crucial for unraveling the intricate processes governing embryonic stem cell biology and developmental transitions and may potentially apply to human diseases linked to mutations in the SWI/SNF complex.
Collapse
Affiliation(s)
- Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| | - Srinivas Animireddy
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| |
Collapse
|
28
|
Chen KG, Johnson KR, Park K, Maric D, Yang F, Liu WF, Fann YC, Mallon BS, Robey PG. Resistance to Naïve and Formative Pluripotency Conversion in RSeT Human Embryonic Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580778. [PMID: 38410444 PMCID: PMC10896352 DOI: 10.1101/2024.02.16.580778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
One of the most important properties of human embryonic stem cells (hESCs) is related to their primed and naïve pluripotent states. Our previous meta-analysis indicates the existence of heterogeneous pluripotent states derived from diverse naïve protocols. In this study, we have characterized a commercial medium (RSeT)-based pluripotent state under various growth conditions. Notably, RSeT hESCs can circumvent hypoxic growth conditions as required by naïve hESCs, in which some RSeT cells (e.g., H1 cells) exhibit much lower single cell plating efficiency, having altered or much retarded cell growth under both normoxia and hypoxia. Evidently, hPSCs lack many transcriptomic hallmarks of naïve and formative pluripotency (a phase between naive and primed states). Integrative transcriptome analysis suggests our primed and RSeT hESCs are close to the early stage of post-implantation embryos, similar to the previously reported primary hESCs and early hESC cultures. Moreover, RSeT hESCs did not express naïve surface markers such as CD75, SUSD2, and CD130 at a significant level. Biochemically, RSeT hESCs exhibit a differential dependency of FGF2 and co-independency of both Janus kinase (JAK) and TGFβ signaling in a cell-line-specific manner. Thus, RSeT hESCs represent a previously unrecognized pluripotent state downstream of formative pluripotency. Our data suggest that human naïve pluripotent potentials may be restricted in RSeT medium. Hence, this study provides new insights into pluripotent state transitions in vitro.
Collapse
Affiliation(s)
| | - Kory R. Johnson
- Intramural IT and Bioinformatics Program, Bethesda, Maryland 20892, USA
| | - Kyeyoon Park
- NIH Stem Cell Unit, Bethesda, Maryland 20892, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Forest Yang
- NIH Stem Cell Unit, Bethesda, Maryland 20892, USA
| | - Wen Fang Liu
- NIH Stem Cell Unit, Bethesda, Maryland 20892, USA
| | - Yang C. Fann
- Intramural IT and Bioinformatics Program, Bethesda, Maryland 20892, USA
| | | | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
29
|
De Los Angeles A, Hug CB, Gladyshev VN, Church GM, Velychko S. Sendai virus persistence questions the transient naive reprogramming method for iPSC generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583804. [PMID: 38559172 PMCID: PMC10979911 DOI: 10.1101/2024.03.07.583804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Since the revolutionary discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka, the comparison between iPSCs and embryonic stem cells (ESCs) has revealed significant differences in their epigenetic states and developmental potential. A recent compelling study published in Nature by Buckberry et al.1 demonstrated that a transient-naive-treatment (TNT) could facilitate epigenetic reprogramming and improve the developmental potential of human iPSCs (hiPSCs). However, the study characterized bulk hiPSCs instead of isolating clonal lines and overlooked the persistent expression of Sendai virus carrying exogenous Yamanaka factors. Our analyses revealed that Sendai genes were expressed in most control PSC samples, including hESCs, which were not intentionally infected. The highest levels of Sendai expression were detected in samples continuously treated with naive media, where it led to overexpression of exogenous MYC, SOX2, and KLF4, altering both the expression levels and ratios of reprogramming factors. Our findings call for further research to verify the effectiveness of the TNT method in the context of delivery methods that ensure prompt elimination of exogenous factors, leading to the generation of bona fide transgene-independent iPSCs.
Collapse
Affiliation(s)
| | - Clemens B. Hug
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute, Harvard University, Boston, MA, USA
| | - Sergiy Velychko
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute, Harvard University, Boston, MA, USA
| |
Collapse
|
30
|
Wu J, Kang Y, Luo X, Dai S, Shi Y, Li Z, Tang Z, Chen Z, Zhu R, Yang P, Li Z, Wang H, Chen X, Zhao Z, Ji W, Niu Y. Long-term in vivo chimeric cells tracking in non-human primate. Protein Cell 2024; 15:207-222. [PMID: 37758041 PMCID: PMC10903985 DOI: 10.1093/procel/pwad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Non-human primates (NHPs) are increasingly used in preclinical trials to test the safety and efficacy of biotechnology therapies. Nonetheless, given the ethical issues and costs associated with this model, it would be highly advantageous to use NHP cellular models in clinical studies. However, developing and maintaining the naïve state of primate pluripotent stem cells (PSCs) remains difficult as does in vivo detection of PSCs, thus limiting biotechnology application in the cynomolgus monkey. Here, we report a chemically defined, xeno-free culture system for culturing and deriving monkey PSCs in vitro. The cells display global gene expression and genome-wide hypomethylation patterns distinct from monkey-primed cells. We also found expression of signaling pathways components that may increase the potential for chimera formation. Crucially for biomedical applications, we were also able to integrate bioluminescent reporter genes into monkey PSCs and track them in chimeric embryos in vivo and in vitro. The engineered cells retained embryonic and extra-embryonic developmental potential. Meanwhile, we generated a chimeric monkey carrying bioluminescent cells, which were able to track chimeric cells for more than 2 years in living animals. Our study could have broad utility in primate stem cell engineering and in utilizing chimeric monkey models for clinical studies.
Collapse
Affiliation(s)
- Junmo Wu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Xiang Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Shaoxing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yuxi Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhuoyao Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zengli Tang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhenzhen Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Ran Zhu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Pengpeng Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zifan Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Xinglong Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Ziyi Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
31
|
Blake MJ, Steer CJ. Chimeric Livers: Interspecies Blastocyst Complementation and Xenotransplantation for End-Stage Liver Disease. Hepat Med 2024; 16:11-29. [PMID: 38379783 PMCID: PMC10878318 DOI: 10.2147/hmer.s440697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024] Open
Abstract
Orthotopic liver transplantation (OLT) currently serves as the sole definitive treatment for thousands of patients suffering from end-stage liver disease; and the existing supply of donor livers for OLT is drastically outpaced by the increasing demand. To alleviate this significant gap in treatment, several experimental approaches have been devised with the aim of either offering interim support to patients waiting on the transplant list or bioengineering complete livers for OLT by infusing them with fresh hepatic cells. Recently, interspecies blastocyst complementation has emerged as a promising method for generating complete organs in utero over a short timeframe. When coupled with gene editing technology, it has brought about a potentially revolutionary transformation in regenerative medicine. Blastocyst complementation harbors notable potential for generating complete human livers in large animals, which could be used for xenotransplantation in humans, addressing the scarcity of livers for OLT. Nevertheless, substantial experimental and ethical challenges still need to be overcome to produce human livers in larger domestic animals like pigs. This review compiles the current understanding of interspecies blastocyst complementation and outlines future possibilities for liver xenotransplantation in humans.
Collapse
Affiliation(s)
- Madelyn J Blake
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Clifford J Steer
- Departments of Medicine, and Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
32
|
Liu X, Polo JM. Human blastoid as an in vitro model of human blastocysts. Curr Opin Genet Dev 2024; 84:102135. [PMID: 38052115 DOI: 10.1016/j.gde.2023.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Human development is a highly coordinated process, with any abnormalities during the early embryonic stages that can often have detrimental consequences. The complexity and nuances of human development underpin its significance in embryo research. However, this research is often hindered by limited availability and ethical considerations associated with the use of donated blastocysts from in vitro fertilization (IVF) surplus. Human blastoids offer promising alternatives as they can be easily generated and manipulated in the laboratory while preserving key characteristics of human blastocysts. In this way, they hold the potential to serve as a scalable and ethically permissible resource in embryology research. By utilizing such human embryo models, we can establish a transformative platform that complements the study with IVF embryos, ultimately enhancing our understanding of human embryogenesis.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Jose M Polo
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia; The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Victoria, Australia.
| |
Collapse
|
33
|
Khandani B, Movahedin M. Learning Towards Maturation of Defined Feeder-free Pluripotency Culture Systems: Lessons from Conventional Feeder-based Systems. Stem Cell Rev Rep 2024; 20:484-494. [PMID: 38079087 DOI: 10.1007/s12015-023-10662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Pluripotent stem cells (PSCs) are widely recognized as one of the most promising types of stem cells for applications in regenerative medicine, tissue engineering, disease modeling, and drug screening. This is due to their unique ability to differentiate into cells from all three germ layers and their capacity for indefinite self-renewal. Initially, PSCs were cultured using animal feeder cells, but these systems presented several limitations, particularly in terms of Good Manufacturing Practices (GMP) regulations. As a result, feeder-free systems were introduced as a safer alternative. However, the precise mechanisms by which feeder cells support pluripotency are not fully understood. More importantly, it has been observed that some aspects of the need for feeder cells like the optimal density and cell type can vary depending on conditions such as the developmental stage of the PSCs, phases of the culture protocol, the method used in culture for induction of pluripotency, and intrinsic variability of PSCs. Thus, gaining a better understanding of the divergent roles and necessity of feeder cells in various conditions would lead to the development of condition-specific defined feeder-free systems that resolve the failure of current feeder-free systems in some conditions. Therefore, this review aims to explore considerable feeder-related issues that can lead to the development of condition-specific feeder-free systems.
Collapse
Affiliation(s)
- Bardia Khandani
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115111, Iran.
| |
Collapse
|
34
|
Sinenko SA, Tomilin AN. Metabolic control of induced pluripotency. Front Cell Dev Biol 2024; 11:1328522. [PMID: 38274274 PMCID: PMC10808704 DOI: 10.3389/fcell.2023.1328522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Pluripotent stem cells of the mammalian epiblast and their cultured counterparts-embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs)-have the capacity to differentiate in all cell types of adult organisms. An artificial process of reactivation of the pluripotency program in terminally differentiated cells was established in 2006, which allowed for the generation of induced pluripotent stem cells (iPSCs). This iPSC technology has become an invaluable tool in investigating the molecular mechanisms of human diseases and therapeutic drug development, and it also holds tremendous promise for iPSC applications in regenerative medicine. Since the process of induced reprogramming of differentiated cells to a pluripotent state was discovered, many questions about the molecular mechanisms involved in this process have been clarified. Studies conducted over the past 2 decades have established that metabolic pathways and retrograde mitochondrial signals are involved in the regulation of various aspects of stem cell biology, including differentiation, pluripotency acquisition, and maintenance. During the reprogramming process, cells undergo major transformations, progressing through three distinct stages that are regulated by different signaling pathways, transcription factor networks, and inputs from metabolic pathways. Among the main metabolic features of this process, representing a switch from the dominance of oxidative phosphorylation to aerobic glycolysis and anabolic processes, are many critical stage-specific metabolic signals that control the path of differentiated cells toward a pluripotent state. In this review, we discuss the achievements in the current understanding of the molecular mechanisms of processes controlled by metabolic pathways, and vice versa, during the reprogramming process.
Collapse
Affiliation(s)
- Sergey A. Sinenko
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | | |
Collapse
|
35
|
Li CJ, Chang CC, Tsai LK, Peng M, Lyu WN, Yu JF, Tsai MH, Sung LY. Generation of induced pluripotent stem cells from Bornean orangutans. Front Cell Dev Biol 2024; 11:1331584. [PMID: 38250322 PMCID: PMC10797036 DOI: 10.3389/fcell.2023.1331584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction: Orangutans, classified under the Pongo genus, are an endangered non-human primate (NHP) species. Derivation of induced pluripotent stem cells (iPSCs) represents a promising avenue for conserving the genetic resources of these animals. Earlier studies focused on deriving orangutan iPSCs (o-iPSCs) from Sumatran orangutans (Pongo abelii). To date, no reports specifically target the other Critically Endangered species in the Pongo genus, the Bornean orangutans (Pongo pygmaeus). Methods: Using Sendai virus-mediated Yamanaka factor-based reprogramming of peripheral blood mononuclear cells to generate iPSCs (bo-iPSCs) from a female captive Bornean orangutan. In this study, we evaluate the colony morphology, pluripotent markers, X chromosome activation status, and transcriptomic profile of the bo-iPSCs to demonstrate the pluripotency of iPSCs from Bornean orangutans. Results: The bo-iPSCs were successfully derived from Bornean orangutans, using Sendai virus-mediated Yamanaka factor-based reprogramming of peripheral blood mononuclear cells. When a modified 4i/L/A (m4i/L/A) culture system was applied to activate the WNT signaling pathway in these bo-iPSCs, the derived cells (m-bo-iPSCs) manifested characteristics akin to human naive pluripotent stem cells, including high expression levels of KLF17, DNMT3L, and DPPA3/5, as well as the X chromosome reactivation. Comparative RNA-seq analysis positioned the m-bo-iPSCs between human naive and formative pluripotent states. Furthermore, the m-bo-iPSCs express differentiation capacity into all three germlines, evidenced by controlled in vitro embryoid body formation assay. Discussion: Our work establishes a novel approach to preserve the genetic diversity of endangered Bornean orangutans while offering insights into primate stem cell pluripotency. In the future, derivation of the primordial germ cell-like cells (PGCLCs) from m-bo-iPSCs is needed to demonstrate the further specific application in species preservation and broaden the knowledge of primordial germ cell specification across species.
Collapse
Affiliation(s)
- Chia-Jung Li
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wei-Ni Lyu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Jane-Fang Yu
- Conservation and Research Center, Taipei Zoo, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Center for Developmental Biology and Regenerative Medicine, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
36
|
MacCarthy CM, Wu G, Malik V, Menuchin-Lasowski Y, Velychko T, Keshet G, Fan R, Bedzhov I, Church GM, Jauch R, Cojocaru V, Schöler HR, Velychko S. Highly cooperative chimeric super-SOX induces naive pluripotency across species. Cell Stem Cell 2024; 31:127-147.e9. [PMID: 38141611 DOI: 10.1016/j.stem.2023.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/02/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023]
Abstract
Our understanding of pluripotency remains limited: iPSC generation has only been established for a few model species, pluripotent stem cell lines exhibit inconsistent developmental potential, and germline transmission has only been demonstrated for mice and rats. By swapping structural elements between Sox2 and Sox17, we built a chimeric super-SOX factor, Sox2-17, that enhanced iPSC generation in five tested species: mouse, human, cynomolgus monkey, cow, and pig. A swap of alanine to valine at the interface between Sox2 and Oct4 delivered a gain of function by stabilizing Sox2/Oct4 dimerization on DNA, enabling generation of high-quality OSKM iPSCs capable of supporting the development of healthy all-iPSC mice. Sox2/Oct4 dimerization emerged as the core driver of naive pluripotency with its levels diminished upon priming. Transient overexpression of the SK cocktail (Sox+Klf4) restored the dimerization and boosted the developmental potential of pluripotent stem cells across species, providing a universal method for naive reset in mammals.
Collapse
Affiliation(s)
| | - Guangming Wu
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; International Bio Island, Guangzhou, China; MingCeler Biotech, Guangzhou, China
| | - Vikas Malik
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Taras Velychko
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gal Keshet
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rui Fan
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ivan Bedzhov
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard University, Boston, MA, USA
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Vlad Cojocaru
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; University of Utrecht, Utrecht, the Netherlands; STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
37
|
Dror I, Chitiashvili T, Tan SYX, Cano CT, Sahakyan A, Markaki Y, Chronis C, Collier AJ, Deng W, Liang G, Sun Y, Afasizheva A, Miller J, Xiao W, Black DL, Ding F, Plath K. XIST directly regulates X-linked and autosomal genes in naive human pluripotent cells. Cell 2024; 187:110-129.e31. [PMID: 38181737 PMCID: PMC10783549 DOI: 10.1016/j.cell.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/01/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
X chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X chromosome in cis to mediate gene silencing chromosome-wide. In female naive human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration, and XCI does not occur, raising questions about XIST's function. We found that XIST spreads across the X chromosome and induces dampening of X-linked gene expression in naive hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences in autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting.
Collapse
Affiliation(s)
- Iris Dror
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tsotne Chitiashvili
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shawn Y X Tan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Clara T Cano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anna Sahakyan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yolanda Markaki
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Constantinos Chronis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Amanda J Collier
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Weixian Deng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Guohao Liang
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Yu Sun
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anna Afasizheva
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jarrett Miller
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wen Xiao
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fangyuan Ding
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
38
|
Stringa B, Solnica-Krezel L. Signaling mechanisms that direct cell fate specification and morphogenesis in human embryonic stem cells-based models of human gastrulation. Emerg Top Life Sci 2023; 7:383-396. [PMID: 38087898 DOI: 10.1042/etls20230084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
During mammalian gastrulation, a mass of pluripotent cells surrounded by extraembryonic tissues differentiates into germ layers, mesoderm, endoderm, and ectoderm. The three germ layers are then organized into a body plan with organ rudiments via morphogenetic gastrulation movements of emboly, epiboly, convergence, and extension. Emboly is the most conserved gastrulation movement, whereby mesodermal and endodermal progenitors undergo epithelial-to-mesenchymal transition (EMT) and move via a blastopore/primitive streak beneath the ectoderm. Decades of embryologic, genetic, and molecular studies in invertebrates and vertebrates, delineated a BMP > WNT > NODAL signaling cascade underlying mesoderm and endoderm specification. Advances have been made in the research animals in understanding the cellular and molecular mechanisms underlying gastrulation morphogenesis. In contrast, little is known about human gastrulation, which occurs in utero during the third week of gestation and its investigations face ethical and methodological limitations. This is changing with the unprecedented progress in modeling aspects of human development, using human pluripotent stem cells (hPSCs), including embryonic stem cells (hESC)-based embryo-like models (SCEMs). In one approach, hESCs of various pluripotency are aggregated to self-assemble into structures that resemble pre-implantation or post-implantation embryo-like structures that progress to early gastrulation, and some even reach segmentation and neurulation stages. Another approach entails coaxing hESCs with biochemical signals to generate germ layers and model aspects of gastrulation morphogenesis, such as EMT. Here, we review the recent advances in understanding signaling cascades that direct germ layers specification and the early stages of gastrulation morphogenesis in these models. We discuss outstanding questions, challenges, and opportunities for this promising area of developmental biology.
Collapse
Affiliation(s)
- Blerta Stringa
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, U.S.A
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, U.S.A
| |
Collapse
|
39
|
Anwised P, Moorawong R, Samruan W, Somredngan S, Srisutush J, Laowtammathron C, Aksoy I, Parnpai R, Savatier P. An expedition in the jungle of pluripotent stem cells of non-human primates. Stem Cell Reports 2023; 18:2016-2037. [PMID: 37863046 PMCID: PMC10679654 DOI: 10.1016/j.stemcr.2023.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023] Open
Abstract
For nearly three decades, more than 80 embryonic stem cell lines and more than 100 induced pluripotent stem cell lines have been derived from New World monkeys, Old World monkeys, and great apes. In this comprehensive review, we examine these cell lines originating from marmoset, cynomolgus macaque, rhesus macaque, pig-tailed macaque, Japanese macaque, African green monkey, baboon, chimpanzee, bonobo, gorilla, and orangutan. We outline the methodologies implemented for their establishment, the culture protocols for their long-term maintenance, and their basic molecular characterization. Further, we spotlight any cell lines that express fluorescent reporters. Additionally, we compare these cell lines with human pluripotent stem cell lines, and we discuss cell lines reprogrammed into a pluripotent naive state, detailing the processes used to attain this. Last, we present the findings from the application of these cell lines in two emerging fields: intra- and interspecies embryonic chimeras and blastoids.
Collapse
Affiliation(s)
- Preeyanan Anwised
- University Lyon, University Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ratree Moorawong
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Worawalan Samruan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirilak Somredngan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jittanun Srisutush
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Irene Aksoy
- University Lyon, University Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Pierre Savatier
- University Lyon, University Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
40
|
Ware CB, Jonlin EC, Anderson DJ, Cavanaugh C, Hesson J, Sidhu S, Cook S, Villagomez-Olea G, Horwitz MS, Wang Y, Mathieu J. Derivation of Naïve Human Embryonic Stem Cells Using a CHK1 Inhibitor. Stem Cell Rev Rep 2023; 19:2980-2990. [PMID: 37702917 PMCID: PMC10662141 DOI: 10.1007/s12015-023-10613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
Embryonic development is a continuum in vivo. Transcriptional analysis can separate established human embryonic stem cells (hESC) into at least four distinct developmental pluripotent stages, two naïve and two primed, early and late relative to the intact epiblast. In this study we primarily show that exposure of frozen human blastocysts to an inhibitor of checkpoint kinase 1 (CHK1) upon thaw greatly enhances establishment of karyotypically normal late naïve hESC cultures. These late naïve cells are plastic and can be toggled back to early naïve and forward to early primed pluripotent stages. The early primed cells are transcriptionally equivalent to the post inner cell mass intermediate (PICMI) stage seen one day following transfer of human blastocysts into in vitro culture and are stable at an earlier stage than conventional primed hESC.
Collapse
Affiliation(s)
- Carol B Ware
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Erica C Jonlin
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Donovan J Anderson
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Christopher Cavanaugh
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Jennifer Hesson
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Sonia Sidhu
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Savannah Cook
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Guillermo Villagomez-Olea
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Laboratory of Tissue Engineering and Regenerative Medicine, Facultad de Odontología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Marshall S Horwitz
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Julie Mathieu
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
41
|
Zhu P, Zhang B, Sun R, Wang J, Liu Z, Liu X, Yan M, Cui Y, Sha J, Yuan Y. Derivation of new pluripotent stem cells from human extended pluripotent stem cells with formative features and trophectoderm potential. Cell Prolif 2023; 56:e13480. [PMID: 37052060 PMCID: PMC10623941 DOI: 10.1111/cpr.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Previous studies have demonstrated the existence of intermediate stem cells, which have been successfully obtained from human naive pluripotent stem cells (PSCs) and peri-implantation embryos. However, it is not known whether human extended pluripotent stem cells (hEPSCs) can be directly induced into intermediate stem cells. Moreover, the ability of extra-embryonic lineage differentiation in intermediate stem cells has not been verified. In this issue, we transformed hEPSCs into a kind of novel intermediate pluripotent stem cell resembling embryonic days 8-9 (E8-E9) epiblasts and proved its feature of formative epiblasts. We engineered hEPSCs from primed hPSCs under N2B27-LCDM (N2B27 plus Lif, CHIR, DiH and MiH) conditions. Then, we added Activin A, FGF and XAV939 to modulate signalling pathways related to early humans' embryogenesis. We performed RNA-seq and CUT&Tag analysis to compare with AF9-hPSCs from different pluripotency stages of hPSCs. Trophectoderm (TE), primordial germ cells-like cells (PGCLC) and endoderm, mesoderm, and neural ectoderm induction were conducted by specific small molecules and proteins. AF9-hPSCs transcription resembled that of E8-E9 peri-implantation epiblasts. Signalling pathway responsiveness and histone methylation further revealed their formative pluripotency. Additionally, AF9-hPSCs responded directly to primordial germ cells (PGCs) specification and three germ layer differentiation signals in vitro. Moreover, AF9-hPSCs could differentiate into the TE lineage. Therefore, AF9-hPSCs represented an E8-E9 formative pluripotency state between naïve and primed pluripotency, opening new avenues for studying human pluripotency development during embryogenesis.
Collapse
Affiliation(s)
- Pinmou Zhu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Bohang Zhang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Ruiqi Sun
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Jiachen Wang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Zhaode Liu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Xiaorui Liu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Min Yan
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yiqiang Cui
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Jiahao Sha
- State Key Laboratory of Reproductive MedicineWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical UniversityNanjingChina
| | - Yan Yuan
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
42
|
Kerepesi C, Gladyshev VN. Intersection clock reveals a rejuvenation event during human embryogenesis. Aging Cell 2023; 22:e13922. [PMID: 37786333 PMCID: PMC10577537 DOI: 10.1111/acel.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 10/04/2023] Open
Abstract
Recent research revealed a rejuvenation event during early development of mice. Here, by examining epigenetic age dynamics of human embryogenesis, we tested whether a similar event exists in humans. For this purpose, we developed an epigenetic clock method, the intersection clock, that utilizes bisulfite sequencing in a way that maximizes the use of informative CpG sites with no missing clock CpG sites in test samples and applied it to human embryo development data. We observed no changes in the predicted epigenetic age between cleavage stage and blastocyst stage embryos; however, a significant decrease was observed between blastocysts and cells representing the epiblast. Additionally, by applying the intersection clock to datasets spanning pre and postimplantation, we found no significant change in the epigenetic age during preimplantation stages; however, the epigenetic age of postimplantation samples was lower compared to the preimplantation stages. We further investigated the epigenetic age of primed (representing early postimplantation) and naïve (representing preimplantation) pluripotent stem cells and observed that in all cases the epigenetic age of primed cells was significantly lower than that of naïve cells. Together, our data suggest that human embryos are rejuvenated during early embryogenesis. Hence, the rejuvenation event is conserved between the mouse and human, and it occurs around the gastrulation stage in both species. Beyond this advance, the intersection clock opens the way for other epigenetic age studies based on human bisulfite sequencing datasets as opposed to methylation arrays.
Collapse
Affiliation(s)
- Csaba Kerepesi
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Institute for Computer Science and Control (SZTAKI), Eötvös Loránd Research NetworkBudapestHungary
| | - Vadim N. Gladyshev
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
43
|
Agostinho de Sousa J, Wong CW, Dunkel I, Owens T, Voigt P, Hodgson A, Baker D, Schulz EG, Reik W, Smith A, Rostovskaya M, von Meyenn F. Epigenetic dynamics during capacitation of naïve human pluripotent stem cells. SCIENCE ADVANCES 2023; 9:eadg1936. [PMID: 37774033 PMCID: PMC10541016 DOI: 10.1126/sciadv.adg1936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
Human pluripotent stem cells (hPSCs) are of fundamental relevance in regenerative medicine. Naïve hPSCs hold promise to overcome some of the limitations of conventional (primed) hPSCs, including recurrent epigenetic anomalies. Naïve-to-primed transition (capacitation) follows transcriptional dynamics of human embryonic epiblast and is necessary for somatic differentiation from naïve hPSCs. We found that capacitated hPSCs are transcriptionally closer to postimplantation epiblast than conventional hPSCs. This prompted us to comprehensively study epigenetic and related transcriptional changes during capacitation. Our results show that CpG islands, gene regulatory elements, and retrotransposons are hotspots of epigenetic dynamics during capacitation and indicate possible distinct roles of specific epigenetic modifications in gene expression control between naïve and primed hPSCs. Unexpectedly, PRC2 activity appeared to be dispensable for the capacitation. We find that capacitated hPSCs acquire an epigenetic state similar to conventional hPSCs. Significantly, however, the X chromosome erosion frequently observed in conventional female hPSCs is reversed by resetting and subsequent capacitation.
Collapse
Affiliation(s)
- João Agostinho de Sousa
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Chee-Wai Wong
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Ilona Dunkel
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Thomas Owens
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Philipp Voigt
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Adam Hodgson
- School of Biosciences, The Julia Garnham Centre, University of Sheffield, S10 2TN Sheffield, UK
| | - Duncan Baker
- Sheffield Diagnostic Genetics Services, Sheffield Children’s NHS Foundation Trust, S5 7AU Sheffield, UK
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1QR, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Altos Labs Cambridge Institute of Science, Cambridge CB21 6GP, UK
| | - Austin Smith
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Living Systems Institute, University of Exeter, EX4 4QD Exeter, UK
| | - Maria Rostovskaya
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
- Department of Medical and Molecular Genetics, King’s College London, Guy’s Hospital, SE1 9RT London, UK
| |
Collapse
|
44
|
Oh SY, Na SB, Kang YK, Do JT. In Vitro Embryogenesis and Gastrulation Using Stem Cells in Mice and Humans. Int J Mol Sci 2023; 24:13655. [PMID: 37686459 PMCID: PMC10563085 DOI: 10.3390/ijms241713655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
During early mammalian embryonic development, fertilized one-cell embryos develop into pre-implantation blastocysts and subsequently establish three germ layers through gastrulation during post-implantation development. In recent years, stem cells have emerged as a powerful tool to study embryogenesis and gastrulation without the need for eggs, allowing for the generation of embryo-like structures known as synthetic embryos or embryoids. These in vitro models closely resemble early embryos in terms of morphology and gene expression and provide a faithful recapitulation of early pre- and post-implantation embryonic development. Synthetic embryos can be generated through a combinatorial culture of three blastocyst-derived stem cell types, such as embryonic stem cells, trophoblast stem cells, and extraembryonic endoderm cells, or totipotent-like stem cells alone. This review provides an overview of the progress and various approaches in studying in vitro embryogenesis and gastrulation in mice and humans using stem cells. Furthermore, recent findings and breakthroughs in synthetic embryos and gastruloids are outlined. Despite ethical considerations, synthetic embryo models hold promise for understanding mammalian (including humans) embryonic development and have potential implications for regenerative medicine and developmental research.
Collapse
Affiliation(s)
| | | | | | - Jeong Tae Do
- Department of Stem Cell Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (S.Y.O.); (S.B.N.); (Y.K.K.)
| |
Collapse
|
45
|
Ai Z, Niu B, Yin Y, Xiang L, Shi G, Duan K, Wang S, Hu Y, Zhang C, Zhang C, Rong L, Kong R, Chen T, Guo Y, Liu W, Li N, Zhao S, Zhu X, Mai X, Li Y, Wu Z, Zheng Y, Fu J, Ji W, Li T. Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids. Cell Res 2023; 33:661-678. [PMID: 37460804 PMCID: PMC10474050 DOI: 10.1038/s41422-023-00846-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/24/2023] [Indexed: 09/03/2023] Open
Abstract
Studies of cultured embryos have provided insights into human peri-implantation development. However, detailed knowledge of peri-implantation lineage development as well as underlying mechanisms remains obscure. Using 3D-cultured human embryos, herein we report a complete cell atlas of the early post-implantation lineages and decipher cellular composition and gene signatures of the epiblast and hypoblast derivatives. In addition, we develop an embryo-like assembloid (E-assembloid) by assembling naive hESCs and extraembryonic cells. Using human embryos and E-assembloids, we reveal that WNT, BMP and Nodal signaling pathways synergistically, but functionally differently, orchestrate human peri-implantation lineage development. Specially, we dissect mechanisms underlying extraembryonic mesoderm and extraembryonic endoderm specifications. Finally, an improved E-assembloid is developed to recapitulate the epiblast and hypoblast development and tissue architectures in the pre-gastrulation human embryo. Our findings provide insights into human peri-implantation development, and the E-assembloid offers a useful model to disentangle cellular behaviors and signaling interactions that drive human embryogenesis.
Collapse
Affiliation(s)
- Zongyong Ai
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China.
| | - Baohua Niu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yu Yin
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Lifeng Xiang
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Gaohui Shi
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Kui Duan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Sile Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Yingjie Hu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Chi Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Chengting Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Lujuan Rong
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Ruize Kong
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Tingwei Chen
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yixin Guo
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Wanlu Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Nan Li
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Shumei Zhao
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Xiaoqing Zhu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Xuancheng Mai
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yonggang Li
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ze Wu
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China.
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
46
|
Iwatsuki K, Oikawa M, Kobayashi H, Penfold CA, Sanbo M, Yamamoto T, Hochi S, Kurimoto K, Hirabayashi M, Kobayashi T. Rat post-implantation epiblast-derived pluripotent stem cells produce functional germ cells. CELL REPORTS METHODS 2023; 3:100542. [PMID: 37671016 PMCID: PMC10475792 DOI: 10.1016/j.crmeth.2023.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 09/07/2023]
Abstract
In mammals, pluripotent cells transit through a continuum of distinct molecular and functional states en route to initiating lineage specification. Capturing pluripotent stem cells (PSCs) mirroring in vivo pluripotent states provides accessible in vitro models to study the pluripotency program and mechanisms underlying lineage restriction. Here, we develop optimal culture conditions to derive and propagate post-implantation epiblast-derived PSCs (EpiSCs) in rats, a valuable model for biomedical research. We show that rat EpiSCs (rEpiSCs) can be reset toward the naive pluripotent state with exogenous Klf4, albeit not with the other five candidate genes (Nanog, Klf2, Esrrb, Tfcp2l1, and Tbx3) effective in mice. Finally, we demonstrate that rat EpiSCs retain competency to produce authentic primordial germ cell-like cells that undergo functional gametogenesis leading to the birth of viable offspring. Our findings in the rat model uncover principles underpinning pluripotency and germline competency across species.
Collapse
Affiliation(s)
- Kenyu Iwatsuki
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Laboratory of Regenerative Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Nara 634-0813, Japan
| | - Christopher A. Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
- Wellcome Trust – Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Kyoto 606-8501, Japan
| | - Shinichi Hochi
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Nara 634-0813, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
- The Graduate University of Advanced Studies, Aichi 444-8787, Japan
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| |
Collapse
|
47
|
Vasic I, Libby ARG, Maslan A, Bulger EA, Zalazar D, Krakora Compagno MZ, Streets A, Tomoda K, Yamanaka S, McDevitt TC. Loss of TJP1 disrupts gastrulation patterning and increases differentiation toward the germ cell lineage in human pluripotent stem cells. Dev Cell 2023; 58:1477-1488.e5. [PMID: 37354899 PMCID: PMC10529434 DOI: 10.1016/j.devcel.2023.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/17/2023] [Accepted: 05/26/2023] [Indexed: 06/26/2023]
Abstract
Biological patterning events that occur early in development establish proper tissue morphogenesis. Identifying the mechanisms that guide these patterning events is necessary in order to understand the molecular drivers of development and disease and to build tissues in vitro. In this study, we use an in vitro model of gastrulation to study the role of tight junctions and apical/basolateral polarity in modulating bone morphogenic protein-4 (BMP4) signaling and gastrulation-associated patterning in colonies of human pluripotent stem cells (hPSCs). Disrupting tight junctions via knockdown (KD) of the scaffolding tight junction protein-1 (TJP1, also known as ZO1) allows BMP4 to robustly and ubiquitously activate pSMAD1/5 signaling over time, resulting in loss of the patterning phenotype and marked differentiation bias of pluripotent stem cells to primordial germ cell-like cells (PGCLCs). These findings give important insights into how signaling events are regulated and lead to spatial emergence of diverse cell types in vitro.
Collapse
Affiliation(s)
- Ivana Vasic
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA 94158
| | - Ashley RG Libby
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Developmental and Stem Cell Biology Ph.D. Program, University of California, San Francisco, San Francisco, CA, USA 94158
| | - Annie Maslan
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA 94158
- Department of Bioengineering, University of California, Berkeley, CA, USA 94720
- Center for Computational Biology, University of California, Berkeley, CA, USA 94720
| | - Emily A Bulger
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Developmental and Stem Cell Biology Ph.D. Program, University of California, San Francisco, San Francisco, CA, USA 94158
| | - David Zalazar
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
| | | | - Aaron Streets
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA 94158
- Department of Bioengineering, University of California, Berkeley, CA, USA 94720
- Center for Computational Biology, University of California, Berkeley, CA, USA 94720
- Chan Zuckerberg Biohub, San Francisco, CA, USA 94158
| | - Kiichiro Tomoda
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Center for iPS Cell Research and Application, Kyoto, Japan 606-8397
| | - Shinya Yamanaka
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Center for iPS Cell Research and Application, Kyoto, Japan 606-8397
| | - Todd C McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA 94158
| |
Collapse
|
48
|
Zhong L, Gordillo M, Wang X, Qin Y, Huang Y, Soshnev A, Kumar R, Nanjangud G, James D, David Allis C, Evans T, Carey B, Wen D. Dual role of lipids for genome stability and pluripotency facilitates full potency of mouse embryonic stem cells. Protein Cell 2023; 14:591-602. [PMID: 37029701 PMCID: PMC10392030 DOI: 10.1093/procel/pwad008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023] Open
Abstract
While Mek1/2 and Gsk3β inhibition ("2i") supports the maintenance of murine embryonic stem cells (ESCs) in a homogenous naïve state, prolonged culture in 2i results in aneuploidy and DNA hypomethylation that impairs developmental potential. Additionally, 2i fails to support derivation and culture of fully potent female ESCs. Here we find that mouse ESCs cultured in 2i/LIF supplemented with lipid-rich albumin (AlbuMAX) undergo pluripotency transition yet maintain genomic stability and full potency over long-term culture. Mechanistically, lipids in AlbuMAX impact intracellular metabolism including nucleotide biosynthesis, lipid biogenesis, and TCA cycle intermediates, with enhanced expression of DNMT3s that prevent DNA hypomethylation. Lipids induce a formative-like pluripotent state through direct stimulation of Erk2 phosphorylation, which also alleviates X chromosome loss in female ESCs. Importantly, both male and female "all-ESC" mice can be generated from de novo derived ESCs using AlbuMAX-based media. Our findings underscore the importance of lipids to pluripotency and link nutrient cues to genome integrity in early development.
Collapse
Affiliation(s)
- Liangwen Zhong
- Department of Reproductive Medicine, Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Miriam Gordillo
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Xingyi Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yiren Qin
- Department of Reproductive Medicine, Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yuanyuan Huang
- Department of Reproductive Medicine, Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexey Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ritu Kumar
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
- Gladstone Institutes, 1650 Owens St, San Francisco, CA 94158, USA
| | - Gouri Nanjangud
- Molecular Cytogenetics Core. Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daylon James
- Department of Reproductive Medicine, Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Bryce Carey
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Duancheng Wen
- Department of Reproductive Medicine, Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
49
|
Buckberry S, Liu X, Poppe D, Tan JP, Sun G, Chen J, Nguyen TV, de Mendoza A, Pflueger J, Frazer T, Vargas-Landín DB, Paynter JM, Smits N, Liu N, Ouyang JF, Rossello FJ, Chy HS, Rackham OJL, Laslett AL, Breen J, Faulkner GJ, Nefzger CM, Polo JM, Lister R. Transient naive reprogramming corrects hiPS cells functionally and epigenetically. Nature 2023; 620:863-872. [PMID: 37587336 PMCID: PMC10447250 DOI: 10.1038/s41586-023-06424-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/11/2023] [Indexed: 08/18/2023]
Abstract
Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function1-8. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. We found that reprogramming-induced epigenetic aberrations emerge midway through primed reprogramming, whereas DNA demethylation begins early in naive reprogramming. Using this knowledge, we developed a transient-naive-treatment (TNT) reprogramming strategy that emulates the embryonic epigenetic reset. We show that the epigenetic memory in hiPS cells is concentrated in cell of origin-dependent repressive chromatin marked by H3K9me3, lamin-B1 and aberrant CpH methylation. TNT reprogramming reconfigures these domains to a hES cell-like state and does not disrupt genomic imprinting. Using an isogenic system, we demonstrate that TNT reprogramming can correct the transposable element overexpression and differential gene expression seen in conventional hiPS cells, and that TNT-reprogrammed hiPS and hES cells show similar differentiation efficiencies. Moreover, TNT reprogramming enhances the differentiation of hiPS cells derived from multiple cell types. Thus, TNT reprogramming corrects epigenetic memory and aberrations, producing hiPS cells that are molecularly and functionally more similar to hES cells than conventional hiPS cells. We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory.
Collapse
Affiliation(s)
- Sam Buckberry
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Telethon Kids Institute, Perth, Western Australia, Australia
- John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Xiaodong Liu
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- School of Life Sciences, Westlake University, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Westlake Institute for Advanced Study, Hangzhou, China
| | - Daniel Poppe
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jia Ping Tan
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Guizhi Sun
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Joseph Chen
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Trung Viet Nguyen
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Alex de Mendoza
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Jahnvi Pflueger
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Thomas Frazer
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Dulce B Vargas-Landín
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jacob M Paynter
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Nathan Smits
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Ning Liu
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - John F Ouyang
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Hun S Chy
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria, Australia
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Andrew L Laslett
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria, Australia
| | - James Breen
- John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
- The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
50
|
Lechner L, Opitz R, Silver MJ, Krabusch PM, Prentice AM, Field MS, Stachelscheid H, Leitão E, Schröder C, Fernandez Vallone V, Horsthemke B, Jöckel KH, Schmidt B, Nöthen MM, Hoffmann P, Herms S, Kleyn PW, Megges M, Blume-Peytavi U, Weiss K, Mai K, Blankenstein O, Obermayer B, Wiegand S, Kühnen P. Early-set POMC methylation variability is accompanied by increased risk for obesity and is addressable by MC4R agonist treatment. Sci Transl Med 2023; 15:eadg1659. [PMID: 37467315 DOI: 10.1126/scitranslmed.adg1659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/22/2023] [Indexed: 07/21/2023]
Abstract
Increasing evidence points toward epigenetic variants as a risk factor for developing obesity. We analyzed DNA methylation of the POMC (pro-opiomelanocortin) gene, which is pivotal for satiety regulation. We identified sex-specific and nongenetically determined POMC hypermethylation associated with a 1.4-fold (confidence interval, 1.03 to 2.04) increased individual risk of developing obesity. To investigate the early embryonic establishment of POMC methylation states, we established a human embryonic stem cell (hESC) model. Here, hESCs (WA01) were transferred into a naïve state, which was associated with a reduction of DNA methylation. Naïve hESCs were differentiated via a formative state into POMC-expressing hypothalamic neurons, which was accompanied by re-establishment of DNA methylation patterning. We observed that reduced POMC gene expression was associated with increased POMC methylation in POMC-expressing neurons. On the basis of these findings, we treated POMC-hypermethylated obese individuals (n = 5) with an MC4R agonist and observed a body weight reduction of 4.66 ± 2.16% (means ± SD) over a mean treatment duration of 38.4 ± 26.0 weeks. In summary, we identified an epigenetic obesity risk variant at the POMC gene fulfilling the criteria for a metastable epiallele established in early embryonic development that may be addressable by MC4R agonist treatment to reduce body weight.
Collapse
Affiliation(s)
- Lara Lechner
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Robert Opitz
- Institute for Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Matt J Silver
- Medical Research Council Unit, Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, Gambia
| | - Philipp M Krabusch
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Andrew M Prentice
- Medical Research Council Unit, Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, Gambia
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Harald Stachelscheid
- Berlin Institute of Health, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, BIH Core Unit Stem Cells and Organoids, 13353 Berlin, Germany
| | - Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, 45147 Essen, Germany
| | | | - Valeria Fernandez Vallone
- Berlin Institute of Health, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, BIH Core Unit Stem Cells and Organoids, 13353 Berlin, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, 45147 Essen, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, 45147 Essen, Germany
| | - Börge Schmidt
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, 45147 Essen, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Stefan Herms
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | | | - Matthias Megges
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Venerology and Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Katja Weiss
- Klinik für Angeborene Herzfehler - Kinderkardiologie, Deutsches Herzzentrum der Charité, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Knut Mai
- Department of Endocrinology, Diabetes, and Nutrition and Charité Center for Cardiovascular Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Center for Diabetes Research, 85764 München-Neuherberg, Germany
| | - Oliver Blankenstein
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
- Department Endocrinology and Metabolism, Labor Berlin-Charité Vivantes GmbH, 13353 Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health/Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Susanna Wiegand
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Center for Social-Pediatric Care/Pediatric Endocrinology and Diabetology, 13353 Berlin, Germany
| | - Peter Kühnen
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| |
Collapse
|