1
|
Ozaki A, Sakai D, Mandai M. hPSC-based treatment of retinal diseases - Current progress and challenges. Adv Drug Deliv Rev 2025; 221:115587. [PMID: 40228605 DOI: 10.1016/j.addr.2025.115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Degenerative retinal diseases, such as age-related macular degeneration (AMD) and inherited retinal diseases (IRDs), cause visual impairment due to irreversible damage to the retinal pigment epithelium (RPE) and photoreceptor cells (PRCs). Currently, no definitive treatment exists. However, cell-based therapies using induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs) offer potential solutions for restoring damaged retinal cells. This review summarizes recent advances in RPE and PRC transplantation, highlighting the benefits of each approach. For RPE transplantation, we focus on the outcomes of clinical studies involving three formulations: RPE sheets, RPE suspensions, and RPE strips. In the context of PRC transplantation, we trace the progress from fetal retinal transplantation to the latest studies. Additionally, we discuss our recent clinical work with retinal sheet transplantation and genome-edited retinal organoid sheets, which aim to improve functional integration by reducing bipolar cells in grafts. Finally, with the overall safety of the regenerative cell-based therapies demonstrated in past clinical applications, we explore future prospects for these therapies.
Collapse
Affiliation(s)
- Atsuta Ozaki
- Research Center, Kobe City Eye Hospital, 2-1-8 Minatojima Minaminachi, Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan; Department of Ophthalmology, Mie University Graduate school of Medicine, 2-174 Edobashi, Tsu-shi, Mie 514-8507, Japan
| | - Daiki Sakai
- Research Center, Kobe City Eye Hospital, 2-1-8 Minatojima Minaminachi, Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan, 2-1-1 Minatojima Minaminachi, Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan; Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki, Chuo-ku, Kobe-shi, Hyogo 650-0017 Japan
| | - Michiko Mandai
- Research Center, Kobe City Eye Hospital, 2-1-8 Minatojima Minaminachi, Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan, 2-1-1 Minatojima Minaminachi, Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan.
| |
Collapse
|
2
|
Ibeas Moreno E, Alonso MJ, Abbadessa A. Intraocular injectable hydrogels for the delivery of cells and nanoparticles. Mater Today Bio 2025; 32:101767. [PMID: 40290894 PMCID: PMC12033996 DOI: 10.1016/j.mtbio.2025.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
The rising global life expectancy has led to a growing prevalence of ophthalmic diseases, while current treatments face important limitations in terms of efficacy, costs, and patient compliance. The use of injectable hydrogels as drug and cell carriers is a promising approach, compared to the injection of drug solutions or cell suspensions. This is because the hydrogel matrix may offer protection against clearance or degradation, may modulate drug/cell release, and provide a biomimetic substrate for differentiating cells while being minimally invasive. On one hand, injectable hydrogels for ocular drug delivery have been traditionally designed to host and release small drugs or proteins. However, limitations such as high burst release and difficulty of entrapping hydrophobic molecules led to the emergence of nanocomposite hydrogels, where the drug is entrapped in nanoparticles prior hydrogel incorporation. Composite systems offer great advantages over the injection of particle suspensions, improving particle fate and drug release kinetics. On the other hand, injectable hydrogels offer a cell-friendly environment to seek tissue regeneration, providing biomechanical and biochemical cues for cellular cross-talk, differentiation, and formation of new extracellular matrix. This review critically discusses recent advancements in the development of novel injectable hydrogels as delivery vehicles for drug-loaded nanoparticles and cells, with a major focus on the formulation components, administration routes, and other factors affecting performance, highlighting promising aspects and challenges to address in the future.
Collapse
Affiliation(s)
- Elena Ibeas Moreno
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA), 28049, Madrid, Spain
| | - Anna Abbadessa
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Zerti D, Dorgau B, Sernagor E, Armstrong L, Lako M, Hilgen G. Evaluating the outcomes of pluripotent stem-cell-derived photoreceptor transplantation in retinal repair. FEBS J 2025. [PMID: 40347492 DOI: 10.1111/febs.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/25/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
In recent decades, numerous research groups have focused on restoring visual function through the transplantation of stem cells into animal models of retinal neurodegeneration. Significant advancements in surgical techniques, the maturation of donor cells, and the production of cell suspensions, along with ensuring proper synaptic connectivity with the host environment, are key considerations for the potential implementation of this strategy in clinical practice. In this review, we summarize the latest progress in the transplantation of stem cell-derived photoreceptors, emphasizing the outcomes related to visual function observed in the used animal models. Additionally, we analyze the various methods of stem cell differentiation and the surgical techniques selected for transplanting these photoreceptor precursors. Finally, we report on functional assessments from recent studies to highlight the considerable potential of stem cell-derived photoreceptor transplants as a therapeutic approach for retinal degenerative diseases.
Collapse
Affiliation(s)
- Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Evelyne Sernagor
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gerrit Hilgen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Bhattacharya S, Deka J, Avallone T, Todd L. The neuroimmune interface in retinal regeneration. Prog Retin Eye Res 2025; 106:101361. [PMID: 40287050 DOI: 10.1016/j.preteyeres.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Retinal neurodegeneration leads to irreversible blindness due to the mammalian nervous system's inability to regenerate lost neurons. Efforts to regenerate retina involve two main strategies: stimulating endogenous cells to reprogram into neurons or transplanting stem-cell derived neurons into the degenerated retina. However, both approaches must overcome a major barrier in getting new neurons to grow back down the optic nerve and connect to appropriate visual targets in environments that differ significantly from developmental conditions. While immune privilege has historically been associated with the central nervous system, an emerging literature highlights the active role of immune cells in shaping neurodegeneration and regeneration. This review explores the neuroimmune interface in retinal repair, dissecting how immune interactions influence glial reprogramming, transplantation outcomes, and axonal regeneration. By integrating insights from regenerative species with mammalian models, we highlight novel immunomodulatory strategies to optimize retinal regeneration.
Collapse
Affiliation(s)
- Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jugasmita Deka
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thomas Avallone
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Levi Todd
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
5
|
Thomas BB, Rajendran Nair DS, Rahimian M, Hassan AK, Tran TL, Seiler MJ. Animal models for the evaluation of retinal stem cell therapies. Prog Retin Eye Res 2025; 106:101356. [PMID: 40239758 DOI: 10.1016/j.preteyeres.2025.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
Retinal degeneration (RD) diseases leading to severe vision loss can affect photoreceptors (PRs) that are responsible for phototransduction, or retinal pigmented epithelium (RPE) providing support for PRs. Human pluripotent stem cell (hPSC)-based therapies are a potential approach for restoration of retinal structure in patients with currently incurable RD diseases. Currently, there are two targeted hPSC therapeutics: PR rescue and PR replacement. PR rescue involves the transplantation of RPE or other neural progenitors into the subretinal space to slow down or prevent further RD. RPE transplantation plays a critical role in preserving photoreceptors by providing trophic support and maintaining retinal integrity, particularly in diseases like age-related macular degeneration (AMD). Advances in RPE transplantation methods, such as polarized monolayer cultures and scaffold-based approaches, have shown promise in enhancing graft survival and integration. However, limitations include inconsistent integration, variable neurotrophic factor secretion, and immune rejection risks in non-autologous transplants. In PR replacement, stem cell-derived photoreceptor-like cells or photoreceptor progenitors (PRP) obtained are transplanted into the eye. While PRPs are commonly obtained from retinal organoids (ROs), alternative sources, such as early differentiation stages or direct differentiation protocols, are also utilized to enhance the efficiency and scalability of PRP generation. Challenges include achieving proper integration, forming outer segments, rosette formation, and avoiding immune rejection or tumorigenicity. Various animal models that simulate human RD diseases are being used for establishing surgical feasibility, graft survival and visual functional recovery but fail to replicate clinical immune challenges. Rodent models lack macula-like structures and have limited reliability in detecting subtle functional changes, while larger animal models pose ethical, logistical, and financial challenges. Immunocompromised models have been developed for minimizing xenograft issues. Visual functional testing for efficacy includes optokinetic testing (OKN), electroretinography (ERG), and electrophysiological recordings from the retina and brain. These tests often fail to capture the complexity of human visual recovery, highlighting the need for advanced models and improved functional testing techniques. This review aims to aggregate current knowledge about approaches to stem cell transplantation, requirements of animal models chosen for validating vision benefits of transplantation studies, advantages of using specific disease models and their limitations. While promising strides have been made, addressing these limitations remains essential for translating stem cell-based therapies into clinical success.
Collapse
Affiliation(s)
- Biju B Thomas
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Deepthi S Rajendran Nair
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Mana Rahimian
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Amr K Hassan
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine CA, United States
| | - Thuy-Linh Tran
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | - Magdalene J Seiler
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine CA, United States; Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States; Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA, United States; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States; Center for Translational Vision Research, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
6
|
Rowe AA, Velasquez MJ, Aumeier JW, Reyes S, Yee T, Nettesheim ER, McDonald JG, Wert KJ. Female sex hormones exacerbate retinal neurodegeneration. SCIENCE ADVANCES 2025; 11:eadr6211. [PMID: 40215317 PMCID: PMC11988432 DOI: 10.1126/sciadv.adr6211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
Neurodegenerative disorders such as Alzheimer's disease and macular degeneration represent major sources of human suffering, yet factors influencing disease severity remain poorly understood. Sex has been implicated as one modifying factor. Here, we show that female sex is a risk factor for worsened outcomes in a model of retinal degeneration and that this susceptibility is caused by the presence of female-specific sex hormones. The adverse effect of female sex hormones was specific to diseased retinal neurons, and depletion of these hormones ameliorated this phenotypic effect, while reintroduction worsened rates of disease in females. Transcriptional analysis of retinas showed significant differences between genes involved in pyroptosis, inflammatory responses, and endoplasmic reticulum stress-induced apoptosis between males and females with retinal degeneration. These findings provide crucial insights into the pathogenesis of neurodegenerative diseases and how sex hormones can affect disease severity. These findings have far-reaching implications for clinical trial design and the use of hormonal therapy in females with certain neurodegenerative disorders.
Collapse
Affiliation(s)
- Ashley A. Rowe
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Jacob W. Aumeier
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sofia Reyes
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tiffany Yee
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Emily R. Nettesheim
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Katherine J. Wert
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O’Donnell, Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
7
|
Nakano K, Goto M, Fukuda S, Yanobu-Takanashi R, Yabe SG, Shimizu Y, Sakuma T, Yamamoto T, Shimoda M, Okochi H, Takahashi R, Okamura T. A Novel Immunodeficient Hyperglycemic Mouse Carrying the Ins1 Akita Mutation for Xenogeneic Islet Cell Transplantation. Transplantation 2025; 109:e81-e91. [PMID: 39104009 PMCID: PMC11745600 DOI: 10.1097/tp.0000000000005152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND For patients who have difficulty controlling blood glucose even with insulin administration, xenogeneic islet cells, including human stem cell-derived pancreatic islets (hSC-islet) and porcine islets, have garnered attention as potential solutions to challenges associated with donor shortages. For the development of diabetes treatment modalities that use cell transplantation therapy, it is essential to evaluate the efficacy and safety of transplanted cells using experimental animals over the long term. METHODS We developed permanent diabetic immune-deficient mice by introducing the Akita (C96Y) mutation into the rodent-specific Insulin1 gene of NOD/Shi-scid IL2rγc null (NOG) mice ( Ins1 C96Y/C96Y NOG). Their body weight, nonfasting blood glucose, and survival were measured from 4 wk of age. Insulin sensitivity was assessed via tolerance tests. To elucidate the utility of these mice in xenotransplantation experiments, we transplanted hSC-islet cells or porcine islets under the kidney capsules of these mice. RESULTS All male and female homozygous mice exhibited persistent severe hyperglycemia associated with β-cell depletion as early as 4 wk of age and exhibited normal insulin sensitivity. These mice could be stably engrafted with hSC-islets, and the mice that received porcine islet grafts promptly exhibited lowered blood glucose levels, maintaining blood glucose levels below the normal glucose range for at least 52 wk posttransplantation. CONCLUSIONS The Ins1C96Y/C96Y NOG mouse model provides an effective platform to assess both the efficacy and safety of long-term xenograft engraftment without the interference of their immune responses. This study is expected to contribute essential basic information for the clinical application of islet cell transplantation.
Collapse
Affiliation(s)
- Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Motohito Goto
- Animal Resource Technical Research Center, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Satsuki Fukuda
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Rieko Yanobu-Takanashi
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shigeharu G. Yabe
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Masayuki Shimoda
- Department of Pancreatic Islet Cell Transplantation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Riichi Takahashi
- Animal Resource Technical Research Center, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Tokyo, Japan
| |
Collapse
|
8
|
Babighian S, Zanella MS, Gattazzo I, Galan A, Gagliano C, D'Esposito F, Zeppieri M. Atrophic Macular Degeneration and Stem Cell Therapy: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:105-118. [PMID: 39259423 DOI: 10.1007/5584_2024_819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of visual loss in older patients. No effective drug is available for this pathology, but studies about therapy with stem cells replacing the damaged retinal cells with retinal pigment epithelium (RPE) were described. The documentation of AMD progression and the response to stem cell therapy have been performed by optical coherence tomography, microperimetry, and other diagnostic technologies.This chapter reports a clinical review of the most important clinical trials and protocols regarding the use of stem cells in AMD.
Collapse
Affiliation(s)
- Silvia Babighian
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Maria Sole Zanella
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Irene Gattazzo
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Alessandro Galan
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Caterina Gagliano
- Eye Clinic Catania University San Marco Hospital, Catania, Italy
- Department of Medicine and Surgery, University of Enna "Kore", Piazza dell'Università, Enna, EN, Italy
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London, UK
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine, Italy.
| |
Collapse
|
9
|
Wang J, Nnoromele PO, Liu YV, Johnston RJ, Singh MS. Cellular component transfer between photoreceptor cells of the retina. Prog Retin Eye Res 2025; 104:101317. [PMID: 39551387 DOI: 10.1016/j.preteyeres.2024.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Photoreceptor transplantation is a potential therapeutic strategy for degenerative retinal diseases. Studies on mechanisms contributing to retinal regeneration and vision repair identified cellular components transfer (CCT) as playing a role, in addition to somatic augmentation (referred to as "cell replacement" in this paper). In CCT, donor photoreceptors shuttle proteins, RNA, and mitochondria to host photoreceptors through intercellular connections. The discovery of CCT in the transplantation context triggered a re-interpretation of prior transplantation studies that generally did not include specific CCT assays and thereby broadly emphasized the cell replacement model, reflecting the prevailing understanding of retinal transplantation biology at that time. In addition to clarifying our understanding of photoreceptor biology, CCT has raised the possibility of developing treatments to replenish molecular deficiencies in diseased photoreceptor cells. As the CCT field evolves, investigators have used diverse terminology, and implemented different CCT assays following transplantation in animal models. The non-standardized terminology of CCT and absent minimal assay standards for detection can hinder communication between investigators and comparison between studies. In this review, we discuss the current understanding of CCT, provide an overview of transplantation and regeneration studies in small and large animals, and propose terminology and a minimal assay standard for CCT. Further research on CCT may eventually provide new avenues to treat a range of hereditary and acquired retinopathies while illuminating mechanisms of cell-cell interaction in the retina.
Collapse
Affiliation(s)
- Joyce Wang
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick O Nnoromele
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ying V Liu
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Robert J Johnston
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Sorrentino FS, Di Terlizzi P, De Rosa F, Salati C, Spadea L, Gagliano C, Musa M, Zeppieri M. New frontiers in retinal transplantation. World J Transplant 2024; 14:97690. [PMID: 39697450 PMCID: PMC11438945 DOI: 10.5500/wjt.v14.i4.97690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/20/2024] Open
Abstract
New frontiers about retinal cell transplantation for retinal degenerative diseases start from the idea that acting on stem cells can help regenerate retinal layers and establish new synapses among retinal cells. Deficiency or alterations of synaptic input and neurotrophic factors result in trans-neuronal degeneration of the inner retinal cells. Thus, the disruption of photoreceptors takes place. However, even in advanced forms of retinal degeneration, a good percentage of the ganglion cells and the inner nuclear layer neurons remain intact. This phenomenon provides evidence for obtaining retinal circuitry through the transplantation of photoreceptors into the subretinal region. The eye is regarded as an optimal organ for cell transplantation because of its immunological privilege and the relatively small number of cells collaborating to carry out visual activities. The eyeball's immunological privilege, characterized by the suppression of delayed-type hypersensitivity responses in ocular tissues, is responsible for the low rate of graft rejection in transplant patients. The main discoveries highlight the capacity of embryonic stem cells (ESCs) and induced pluripotent stem cells to regenerate damaged retinal regions. Recent progress has shown significant enhancements in transplant procedures and results. The research also explores the ethical ramifications linked to the utilization of stem cells, emphasizing the ongoing issue surrounding ESCs. The analysis centers on recent breakthroughs, including the fabrication of three-dimensional retinal organoids and the innovation of scaffolding for cell transportation. Moreover, researchers are currently assessing the possibility of CRISPR and other advanced gene editing technologies to enhance the outcomes of retinal transplantation. The widespread use of universally recognized safe surgical and imaging methods enables retinal transplantation and monitoring of transplanted cell growth toward the correct location. Currently, most therapy approaches are in the first phases of development and necessitate further research, including both pre-clinical and clinical trials, to attain favorable visual results for individuals suffering from retinal degenerative illnesses.
Collapse
Affiliation(s)
| | - Patrick Di Terlizzi
- Department of Surgical Sciences, Unit of Ophthalmology, Ospedale Maggiore, Bologna 40100, Italy
| | - Francesco De Rosa
- Department of Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”, Meldola 47014, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Enna 94100, Italy
- Eye Clinic, Catania University San Marco Hospital, Catania 95121, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Onitsha 434112, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
11
|
Ren Q, Lu F, Hao R, Chen Y, Liang C. Subretinal microglia support donor photoreceptor survival in rd1 mice. Stem Cell Res Ther 2024; 15:436. [PMID: 39563450 PMCID: PMC11575076 DOI: 10.1186/s13287-024-04052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
PURPOSE To investigate the potential relationship between subretinal microglia and transplanted donor photoreceptors. METHODS Photoreceptor precursors were transplanted into wild-type mice and rd1 mice by trans-scleral injection. Immunohistochemistry was employed to detect microglia and macrophages. PlX5622 feed was used to achieve microglia depletion and microglia repopulation. RNA-seq and qPCR were utilized to evaluate gene expression. Confocal microscopy was used to observe the interaction between microglia and donor photoreceptors. RESULTS Donor photoreceptors survived in rd1 mice but not in wild-type mice after trans-scleral injection. The microglial cells closely interacted with donor cells. While donor cells failed to survive in rd1 mice after microglia depletion, they could survive following microglia repopulation. The RNA-seq analysis showed a pro-neurodevelopmental effect of sub-retinal microglia/RPE tissue in rd1 mice. CONCLUSIONS Subretinal microglia supported donor photoreceptor survival in rd1 mice.
Collapse
Affiliation(s)
- Qinjia Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Cheng Du, Sichuan, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Cheng Du, Sichuan, China
| | - Ruwa Hao
- Department of Ophthalmology, West China Hospital, Sichuan University, Cheng Du, Sichuan, China
| | - Yingying Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Cheng Du, Sichuan, China
| | - Chen Liang
- Department of Ophthalmology, West China Hospital, Sichuan University, Cheng Du, Sichuan, China.
| |
Collapse
|
12
|
Sen S, de Guimaraes TAC, Filho AG, Fabozzi L, Pearson RA, Michaelides M. Stem cell-based therapies for retinal diseases: focus on clinical trials and future prospects. Ophthalmic Genet 2024:1-14. [PMID: 39544140 DOI: 10.1080/13816810.2024.2423784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/09/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
Stem cell-based therapy has gained importance over the past decades due to huge advances in science and technology behind the generation and directed differentiation of pluripotent cells from embryos and adult cells. Preclinical proof-of-concept studies have been followed by clinical trials showing efficacy and safety of transplantation of stem cell-based therapy, which are beginning to establish this as a modality of treatment. Disease candidates of interest are primarily conditions that may benefit from replacing dead or dying cells, including advanced inherited retinal dystrophies and age-related macular degeneration, and predominantly seek to transplant either RPE or photoreceptors, although neurotrophic approaches have also been trialed. Whilst a consensus has yet to be reached about the best stage/type of cells for transplantation (stem cells, progenitor cells, differentiated RPE and photoreceptors) and the methods of implantation (sheet, suspension), several CTs have shown safety. There remain potential concerns regarding tumorigenicity and immune rejection; however, with ongoing improvements in cell generation, selection, and delivery, these can be minimized. Earlier studies showed efficacy with immunosuppressive drugs to prevent rejection, and recent donor-matched transplants have avoided the need for immunosuppression. Retinal regenerative medicine is a challenging field and is in a nascent stage but holds tremendous promise. This narrative review delves into the current understanding of stem cells and the latest clinical trials of retinal cell transplantation.
Collapse
Affiliation(s)
- Sagnik Sen
- Deaprtment of Genetics, Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | | | | | - Rachael A Pearson
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Michel Michaelides
- Deaprtment of Genetics, Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
13
|
Liu H, Lu S, Chen M, Gao N, Yang Y, Hu H, Ren Q, Liu X, Chen H, Zhu Q, Li S, Su J. Towards Stem/Progenitor Cell-Based Therapies for Retinal Degeneration. Stem Cell Rev Rep 2024; 20:1459-1479. [PMID: 38809490 DOI: 10.1007/s12015-024-10740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Retinal degeneration (RD) is a leading cause of blindness worldwide and includes conditions such as retinitis pigmentosa (RP), age-related macular degeneration (AMD), and Stargardt's disease (STGD). These diseases result in the permanent loss of vision due to the progressive and irreversible degeneration of retinal cells, including photoreceptors (PR) and the retinal pigment epithelium (RPE). The adult human retina has limited abilities to regenerate and repair itself, making it challenging to achieve complete self-replenishment and functional repair of retinal cells. Currently, there is no effective clinical treatment for RD. Stem cell therapy, which involves transplanting exogenous stem cells such as retinal progenitor cells (RPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs), or activating endogenous stem cells like Müller Glia (MG) cells, holds great promise for regenerating and repairing retinal cells in the treatment of RD. Several preclinical and clinical studies have shown the potential of stem cell-based therapies for RD. However, the clinical translation of these therapies for the reconstruction of substantial vision still faces significant challenges. This review provides a comprehensive overview of stem/progenitor cell-based therapy strategies for RD, summarizes recent advances in preclinical studies and clinical trials, and highlights the major challenges in using stem/progenitor cell-based therapies for RD.
Collapse
Affiliation(s)
- Hui Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuaiyan Lu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ming Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Na Gao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuhe Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huijuan Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qing Ren
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyu Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hongxu Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qunyan Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China
| | - Shasha Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, China.
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, China.
| |
Collapse
|
14
|
Hirami Y, Mandai M. The potential of induced pluripotent stem cell-derived retinal organoids in regenerative medicine. Regen Med 2024; 19:221-224. [PMID: 39118531 PMCID: PMC11321265 DOI: 10.1080/17460751.2024.2352257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
- Yasuhiko Hirami
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Research Center, Kobe City Eye Hospital, 2-1-8, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Michiko Mandai
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Research Center, Kobe City Eye Hospital, 2-1-8, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
15
|
Zhang CJ, Jin ZB. Turning point of organoid transplantation: first-in-human trial of iPSC-derived retinal organoid grafting in patients with retinitis pigmentosa. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1082-1084. [PMID: 38332215 DOI: 10.1007/s11427-023-2531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Affiliation(s)
- Chang-Jun Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
16
|
Lin B, Singh RK, Seiler MJ, Nasonkin IO. Survival and Functional Integration of Human Embryonic Stem Cell-Derived Retinal Organoids After Shipping and Transplantation into Retinal Degeneration Rats. Stem Cells Dev 2024; 33:201-213. [PMID: 38390839 PMCID: PMC11250834 DOI: 10.1089/scd.2023.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
Because derivation of retinal organoids (ROs) and transplantation are frequently split between geographically distant locations, we developed a special shipping device and protocol capable of the organoids' delivery to any location. Human embryonic stem cell (hESC)-derived ROs were differentiated from the hESC line H1 (WA01), shipped overnight to another location, and then transplanted into the subretinal space of blind immunodeficient retinal degeneration (RD) rats. Development of transplants was monitored by spectral-domain optical coherence tomography. Visual function was accessed by optokinetic tests and superior colliculus (SC) electrophysiology. Cryostat sections through transplants were stained with hematoxylin and eosin; or processed for immunohistochemistry to label human donor cells, retinal cell types, and synaptic markers. After transplantation, ROs integrated into the host RD retina, formed functional photoreceptors, and improved vision in rats with advanced RD. The survival and vision improvement are comparable with our previous results of hESC-ROs without a long-distance delivery. Furthermore, for the first time in the stem cell transplantation field, we demonstrated that the response heatmap on the SC showed a similar shape to the location of the transplant in the host retina, which suggested the point-to-point projection of the transplant from the retina to SC. In conclusion, our results showed that using our special device and protocol, the hESC-derived ROs can be shipped over long distance and are capable of survival and visual improvement after transplantation into the RD rats. Our data provide a proof-of-concept for stem cell replacement as a therapy for RD patients.
Collapse
Affiliation(s)
- Bin Lin
- Department of Anatomy and Neurobiology, Physical Medicine and Rehabilitation, Ophthalmology, Sue and Bill Stem Cell Research Center, University of California, Irvine School of Medicine, Irvine, California, USA
| | | | - Magdalene J. Seiler
- Department of Anatomy and Neurobiology, Physical Medicine and Rehabilitation, Ophthalmology, Sue and Bill Stem Cell Research Center, University of California, Irvine School of Medicine, Irvine, California, USA
| | | |
Collapse
|
17
|
Bovi Dos Santos G, de Lima-Vasconcellos TH, Móvio MI, Birbrair A, Del Debbio CB, Kihara AH. New Perspectives in Stem Cell Transplantation and Associated Therapies to Treat Retinal Diseases: From Gene Editing to 3D Bioprinting. Stem Cell Rev Rep 2024; 20:722-737. [PMID: 38319527 DOI: 10.1007/s12015-024-10689-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Inherited and non-inherited retinopathies can affect distinct cell types, leading to progressive cell death and visual loss. In the last years, new approaches have indicated exciting opportunities to treat retinopathies. Cell therapy in retinitis pigmentosa, age-related macular disease, and glaucoma have yielded encouraging results in rodents and humans. The first two diseases mainly impact the photoreceptors and the retinal pigmented epithelium, while glaucoma primarily affects the ganglion cell layer. Induced pluripotent stem cells and multipotent stem cells can be differentiated in vitro to obtain specific cell types for use in transplant as well as to assess the impact of candidate molecules aimed at treating retinal degeneration. Moreover, stem cell therapy is presented in combination with newly developed methods, such as gene editing, Müller cells dedifferentiation, sheet & drug delivery, virus-like particles, optogenetics, and 3D bioprinting. This review describes the recent advances in this field, by presenting an updated panel based on cell transplants and related therapies to treat retinopathies.
Collapse
Affiliation(s)
- Gabrieli Bovi Dos Santos
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Santo André, SP, Brazil
| | | | - Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Santo André, SP, Brazil
| | - Alexander Birbrair
- Department of Dermatology, Medical Sciences Center, University of Wisconsin-Madison, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA
| | - Carolina Beltrame Del Debbio
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo USP, São Paulo, SP, Brazil
| | - Alexandre Hiroaki Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Santo André, SP, Brazil.
| |
Collapse
|
18
|
Yang H, Zhang H, Li X. Navigating the future of retinitis pigmentosa treatments: A comprehensive analysis of therapeutic approaches in rd10 mice. Neurobiol Dis 2024; 193:106436. [PMID: 38341159 DOI: 10.1016/j.nbd.2024.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Retinitis pigmentosa (RP) is a degenerative disease, caused by genetic mutations that lead to a loss in photoreceptors. For research on RP, rd10 mice, which carry mutations in the phosphodiesterase (PDE) gene, exhibit degenerative patterns comparable to those of patients with RP, making them an ideal model for investigating potential treatments. Although numerous studies have reported the potential of biochemical drugs, gene correction, and stem cell transplantation in decelerating rd10 retinal degeneration, a comprehensive review of these studies has yet to be conducted. Therefore, here, a comparative analysis of rd10 mouse treatment research over the past decade was performed. Our findings suggest that biochemical drugs capable of inhibiting the inflammatory response may be promising therapeutics. Additionally, significant progress has been made in the field of gene therapy; nevertheless, challenges such as strict delivery requirements, bystander editing, and off-target effects still need to be resolved. Nevertheless, secretory function is the only unequivocal protective effect of stem cell transplantation. In summary, this review presents a comprehensive analysis and synthesis of the treatment approaches employing rd10 mice as experimental subjects, describing a clear pathway for future RP treatment research and identifies potential clinical interventions.
Collapse
Affiliation(s)
- Hongli Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Tianjin 300384, China.
| | - Hui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Tianjin 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Tianjin 300384, China.
| |
Collapse
|
19
|
Iwama Y, Nomaru H, Masuda T, Kawamura Y, Matsumura M, Murata Y, Teranishi K, Nishida K, Ota S, Mandai M, Takahashi M. Label-free enrichment of human pluripotent stem cell-derived early retinal progenitor cells for cell-based regenerative therapies. Stem Cell Reports 2024; 19:254-269. [PMID: 38181785 PMCID: PMC10874851 DOI: 10.1016/j.stemcr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Pluripotent stem cell-based therapy for retinal degenerative diseases is a promising approach to restoring visual function. A clinical study using retinal organoid (RO) sheets was recently conducted in patients with retinitis pigmentosa. However, the graft preparation currently requires advanced skills to identify and excise suitable segments from the transplantable area of the limited number of suitable ROs. This remains a challenge for consistent clinical implementations. Herein, we enabled the enrichment of wild-type (non-reporter) retinal progenitor cells (RPCs) from dissociated ROs using a label-free ghost cytometry (LF-GC)-based sorting system, where a machine-based classifier was trained in advance with another RPC reporter line. The sorted cells reproducibly formed retinal spheroids large enough for transplantation and developed mature photoreceptors in the retinal degeneration rats. This method of enriching early RPCs with no specific surface antigens and without any reporters or chemical labeling is promising for robust preparation of graft tissues during cell-based therapy.
Collapse
Affiliation(s)
- Yasuaki Iwama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Cell and Gene Therapy in Ophthalmology Laboratory, BZP, RIKEN, Wako, Saitama 351-0198, Japan; Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | - Tomohiro Masuda
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Cell and Gene Therapy in Ophthalmology Laboratory, BZP, RIKEN, Wako, Saitama 351-0198, Japan.
| | | | - Michiru Matsumura
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| | | | | | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Sadao Ota
- ThinkCyte K.K., Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan.
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
20
|
Hirami Y, Mandai M, Sugita S, Maeda A, Maeda T, Yamamoto M, Uyama H, Yokota S, Fujihara M, Igeta M, Daimon T, Fujita K, Ito T, Shibatani N, Morinaga C, Hayama T, Nakamura A, Ueyama K, Ono K, Ohara H, Fujiwara M, Yamasaki S, Watari K, Bando K, Kawabe K, Ikeda A, Kimura T, Kuwahara A, Takahashi M, Kurimoto Y. Safety and stable survival of stem-cell-derived retinal organoid for 2 years in patients with retinitis pigmentosa. Cell Stem Cell 2023; 30:1585-1596.e6. [PMID: 38065067 DOI: 10.1016/j.stem.2023.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/03/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Transplantation of induced pluripotent stem cell (iPSC)-derived retinal organoids into retinal disease animal models has yielded promising results, and several clinical trials on iPSC-derived retinal pigment epithelial cell transplantation have confirmed its safety. In this study, we performed allogeneic iPSC-derived retinal organoid sheet transplantation in two subjects with advanced retinitis pigmentosa (jRCTa050200027). The primary endpoint was the survival and safety of the transplanted retinal organoid sheets in the first year post-transplantation. The secondary endpoints were the safety of the transplantation procedure and visual function evaluation. The grafts survived in a stable condition for 2 years, and the retinal thickness increased at the transplant site without serious adverse events in both subjects. Changes in visual function were less progressive than those of the untreated eye during the follow-up. Allogeneic iPSC-derived retinal organoid sheet transplantation is a potential therapeutic approach, and the treatment's safety and efficacy for visual function should be investigated further.
Collapse
Affiliation(s)
- Yasuhiko Hirami
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe 650-0047, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| | - Michiko Mandai
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Research Center, Kobe City Eye Hospital, Kobe 650-0047, Japan; RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama 230-0045, Japan
| | - Sunao Sugita
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Research Center, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Tadao Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Research Center, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Midori Yamamoto
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Research Center, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Hirofumi Uyama
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe 650-0047, Japan
| | - Satoshi Yokota
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe 650-0047, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Masashi Fujihara
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe 650-0047, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Masataka Igeta
- Department of Biostatistics, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Takashi Daimon
- Department of Biostatistics, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Kanako Fujita
- Research Center, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Tomoko Ito
- Research Center, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Naoki Shibatani
- Research Center, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Chikako Morinaga
- RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama 230-0045, Japan
| | - Tetsuya Hayama
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Aya Nakamura
- Technology Research & Development Division, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Kazuki Ueyama
- Technology Research & Development Division, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Keiichi Ono
- Technology Research & Development Division, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Hidetaka Ohara
- Regenerative & Cellular Medicine Office, Sumitomo Pharma Co. Ltd., Tokyo 103-6012, Japan
| | - Masayo Fujiwara
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Suguru Yamasaki
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Kenji Watari
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Kiyoko Bando
- Regenerative & Cellular Medicine Office, Sumitomo Pharma Co. Ltd., Tokyo 103-6012, Japan
| | - Keigo Kawabe
- Regenerative & Cellular Medicine Office, Sumitomo Pharma Co. Ltd., Tokyo 103-6012, Japan
| | - Atsushi Ikeda
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Toru Kimura
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan; Regenerative & Cellular Medicine Office, Sumitomo Pharma Co. Ltd., Tokyo 103-6012, Japan
| | - Atsushi Kuwahara
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co. Ltd., Kobe 650-0047, Japan
| | - Masayo Takahashi
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Yasuo Kurimoto
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan; Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe 650-0047, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| |
Collapse
|
21
|
Liang Y, Sun X, Duan C, Tang S, Chen J. Application of patient-derived induced pluripotent stem cells and organoids in inherited retinal diseases. Stem Cell Res Ther 2023; 14:340. [PMID: 38012786 PMCID: PMC10683306 DOI: 10.1186/s13287-023-03564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Inherited retinal diseases (IRDs) can induce severe sight-threatening retinal degeneration and impose a considerable economic burden on patients and society, making efforts to cure blindness imperative. Transgenic animals mimicking human genetic diseases have long been used as a primary research tool to decipher the underlying pathogenesis, but there are still some obvious limitations. As an alternative strategy, patient-derived induced pluripotent stem cells (iPSCs), particularly three-dimensional (3D) organoid technology, are considered a promising platform for modeling different forms of IRDs, including retinitis pigmentosa, Leber congenital amaurosis, X-linked recessive retinoschisis, Batten disease, achromatopsia, and best vitelliform macular dystrophy. Here, this paper focuses on the status of patient-derived iPSCs and organoids in IRDs in recent years concerning disease modeling and therapeutic exploration, along with potential challenges for translating laboratory research to clinical application. Finally, the importance of human iPSCs and organoids in combination with emerging technologies such as multi-omics integration analysis, 3D bioprinting, or microfluidic chip platform are highlighted. Patient-derived retinal organoids may be a preferred choice for more accurately uncovering the mechanisms of human retinal diseases and will contribute to clinical practice.
Collapse
Affiliation(s)
- Yuqin Liang
- Aier Eye Institute, Changsha, 410015, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xihao Sun
- Aier Eye Institute, Changsha, 410015, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chunwen Duan
- Aier Eye Institute, Changsha, 410015, China
- Changsha Aier Eye Hospital, Changsha, 410015, China
| | - Shibo Tang
- Aier Eye Institute, Changsha, 410015, China.
- Changsha Aier Eye Hospital, Changsha, 410015, China.
| | - Jiansu Chen
- Aier Eye Institute, Changsha, 410015, China.
- Changsha Aier Eye Hospital, Changsha, 410015, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
22
|
Tang Z, Liu Y, Xiang H, Dai X, Huang X, Ju Y, Ni N, Huang R, Gao H, Zhang J, Fan X, Su Y, Chen Y, Gu P. Bifunctional MXene-Augmented Retinal Progenitor Cell Transplantation for Retinal Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302747. [PMID: 37379237 PMCID: PMC10477897 DOI: 10.1002/advs.202302747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/07/2023] [Indexed: 06/30/2023]
Abstract
Retinal degeneration, characterized by the progressive loss of retinal neurons, is the leading cause of incurable visual impairment. Retinal progenitor cells (RPCs)-based transplantation can facilitate sight restoration, but the clinical efficacy of this process is compromised by the imprecise neurogenic differentiation of RPCs and undermining function of transplanted cells surrounded by severely oxidative retinal lesions. Here, it is shown that ultrathin niobium carbide (Nb2 C) MXene enables performance enhancement of RPCs for retinal regeneration. Nb2 C MXene with moderate photothermal effect markedly improves retinal neuronal differentiation of RPCs by activating intracellular signaling, in addition to the highly effective RPC protection by scavenging free radicals concurrently, which has been solidly evidenced by the comprehensive biomedical assessments and theoretical calculations. A dramatically increased neuronal differentiation is observed upon subretinal transplantation of MXene-assisted RPCs into the typical retinal degeneration 10 (rd10) mice, thereby contributing to the efficient restoration of retinal architecture and visual function. The dual-intrinsic function of MXene synergistically aids RPC transplantation, which represents an intriguing paradigm in vision-restoration research filed, and will broaden the multifunctionality horizon of nanomedicine.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yan Liu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xinyue Dai
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xiaolin Huang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yahan Ju
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Ni Ni
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Rui Huang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Huiqin Gao
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Jing Zhang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Xianqun Fan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yun Su
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Ping Gu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| |
Collapse
|
23
|
Voisin A, Pénaguin A, Gaillard A, Leveziel N. Stem cell therapy in retinal diseases. Neural Regen Res 2023; 18:1478-1485. [PMID: 36571345 PMCID: PMC10075102 DOI: 10.4103/1673-5374.361537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alteration of the outer retina leads to various diseases such as age-related macular degeneration or retinitis pigmentosa characterized by decreased visual acuity and ultimately blindness. Despite intensive research in the field of retinal disorders, there is currently no curative treatment. Several therapeutic approaches such as cell-based replacement and gene therapies are currently in development. In the context of cell-based therapies, different cell sources such as embryonic stem cells, induced pluripotent stem cells, or multipotent stem cells can be used for transplantation. In the vast majority of human clinical trials, retinal pigment epithelial cells and photoreceptors are the cell types considered for replacement cell therapies. In this review, we summarize the progress made in stem cell therapies ranging from the pre-clinical studies to clinical trials for retinal disease.
Collapse
Affiliation(s)
- Audrey Voisin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084; Department of Ophthalmology, CHU Poitiers, Poitiers, France
| | - Amaury Pénaguin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, Poitiers; Laboratoires Thea, Clermont-Ferrand, France
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, Poitiers, France
| | - Nicolas Leveziel
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084; Department of Ophthalmology, CHU Poitiers, Poitiers, France
| |
Collapse
|
24
|
Hu D, Li X, Li J, Tong P, Li Z, Lin G, Sun Y, Wang J. The preclinical and clinical progress of cell sheet engineering in regenerative medicine. Stem Cell Res Ther 2023; 14:112. [PMID: 37106373 PMCID: PMC10136407 DOI: 10.1186/s13287-023-03340-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- HANGZHOU CHEXMED TECHNOLOGY CO., LTD, Hangzhou, 310000, China
| | - Xinyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Pei Tong
- Hospital of Hunan Guangxiu, Medical College of Hunan Normal University, Hunan Normal University, Changsha, 410008, China
| | - Zhe Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China.
| | - Juan Wang
- Shanghai Biomass Pharmaceutical Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China.
| |
Collapse
|
25
|
Mandai M. Pluripotent stem cell-derived retinal organoid/cells for retinal regeneration therapies: A review. Regen Ther 2023; 22:59-67. [PMID: 36712956 PMCID: PMC9841126 DOI: 10.1016/j.reth.2022.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
In recent decades, many researchers have attempted to restore vision via transplantation of retina/retinal cells in eyes with retinal degeneration. The advent of induced pluripotent stem cells (iPSC) and retinal organoid induction technologies has boosted research on retinal regeneration therapy. Although the recognition of functional integration of graft photoreceptor cells in the host retina from 2006 has been disputed a decade later by the newly evidenced phenomenon denoted as "material transfer," several reports support possible reconstruction of the host-graft network in the retinas of both end-stage degeneration and in progressing degeneration cases. Based on proof of concept (POC) studies in animal models, a clinical study was conducted in Kobe, Japan in 2020 and showed the feasibility of cell-based therapy using iPSC retinal organoid technology. Although the graft potency of human embryonic stem (ES)/iPS cell-derived retinal organoid/retinal cells has been suggested by previous studies, much is still unknown regarding host capability, that is, how long-standing human degenerating retinas are capable of rewiring with transplanted cells. This review summarizes past POC studies on photoreceptor replacement therapy and introduces some new challenges to maximize the possible efficacy in future human clinical studies of regenerative therapy.
Collapse
Affiliation(s)
- Michiko Mandai
- Research Center, Kobe City Eye Hospital, Minatojima Minamimachi 2-1-8, Chuo-ku, Kobe Hyogo, 650-0047, Japan
| |
Collapse
|
26
|
Tay HG, Andre H, Chrysostomou V, Adusumalli S, Guo J, Ren X, Tan WS, Tor JE, Moreno-Moral A, Plastino F, Bartuma H, Cai Z, Tun SBB, Barathi VA, Siew Wei GT, Grenci G, Chong LY, Holmgren A, Kvanta A, Crowston JG, Petretto E, Tryggvason K. Photoreceptor laminin drives differentiation of human pluripotent stem cells to photoreceptor progenitors that partially restore retina function. Mol Ther 2023; 31:825-846. [PMID: 36638800 PMCID: PMC10014235 DOI: 10.1016/j.ymthe.2022.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/12/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Blindness caused by advanced stages of inherited retinal diseases and age-related macular degeneration are characterized by photoreceptor loss. Cell therapy involving replacement with functional photoreceptor-like cells generated from human pluripotent stem cells holds great promise. Here, we generated a human recombinant retina-specific laminin isoform, LN523, and demonstrated the role in promoting the differentiation of human embryonic stem cells into photoreceptor progenitors. This chemically defined and xenogen-free method enables reproducible production of photoreceptor progenitors within 32 days. We observed that the transplantation into rd10 mice were able to protect the host photoreceptor outer nuclear layer (ONL) up to 2 weeks post transplantation as measured by full-field electroretinogram. At 4 weeks post transplantation, the engrafted cells were found to survive, mature, and associate with the host's rod bipolar cells. Visual behavioral assessment using the water maze swimming test demonstrated visual improvement in the cell-transplanted rodents. At 20 weeks post transplantation, the maturing engrafted cells were able to replace the loss of host ONL by extensive association with host bipolar cells and synapses. Post-transplanted rabbit model also provided congruent evidence for synaptic connectivity with the degenerated host retina. The results may pave the way for the development of stem cell-based therapeutics for retina degeneration.
Collapse
Affiliation(s)
- Hwee Goon Tay
- Centre for Vision Research, Duke-NUS Medical School, Singapore; Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore.
| | - Helder Andre
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Vicki Chrysostomou
- Centre for Vision Research, Duke-NUS Medical School, Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore
| | | | - Jing Guo
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Xiaoyuan Ren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wei Sheng Tan
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Jia En Tor
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Aida Moreno-Moral
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Flavia Plastino
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Hammurabi Bartuma
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Zuhua Cai
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Sai Bo Bo Tun
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin Tan Siew Wei
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Gianluca Grenci
- Mechanobiology Institute (MBI) and Department of Biomedical Engineering, NUS, Singapore
| | - Li Yen Chong
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anders Kvanta
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Guy Crowston
- Centre for Vision Research, Duke-NUS Medical School, Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Enrico Petretto
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Karl Tryggvason
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Division of Nephrology, Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
27
|
Watari K, Yamasaki S, Tu HY, Shikamura M, Kamei T, Adachi H, Tochitani T, Kita Y, Nakamura A, Ueyama K, Ono K, Morinaga C, Matsuyama T, Sho J, Nakamura M, Fujiwara M, Hori Y, Tanabe A, Hirai R, Terai O, Ohno O, Ohara H, Hayama T, Ikeda A, Nukaya D, Matsushita K, Takahashi M, Kishino A, Kimura T, Kawamata S, Mandai M, Kuwahara A. Self-organization, quality control, and preclinical studies of human iPSC-derived retinal sheets for tissue-transplantation therapy. Commun Biol 2023; 6:164. [PMID: 36765170 PMCID: PMC9918541 DOI: 10.1038/s42003-023-04543-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Three-dimensional retinal organoids (3D-retinas) are a promising graft source for transplantation therapy. We previously developed self-organizing culture for 3D-retina generation from human pluripotent stem cells (hPSCs). Here we present a quality control method and preclinical studies for tissue-sheet transplantation. Self-organizing hPSCs differentiated into both retinal and off-target tissues. Gene expression analyses identified the major off-target tissues as eye-related, cortex-like, and spinal cord-like tissues. For quality control, we developed a qPCR-based test in which each hPSC-derived neuroepithelium was dissected into two tissue-sheets: inner-central sheet for transplantation and outer-peripheral sheet for qPCR to ensure retinal tissue selection. During qPCR, tissue-sheets were stored for 3-4 days using a newly developed preservation method. In a rat tumorigenicity study, no transplant-related adverse events were observed. In retinal degeneration model rats, retinal transplants differentiated into mature photoreceptors and exhibited light responses in electrophysiology assays. These results demonstrate our rationale toward self-organizing retinal sheet transplantation therapy.
Collapse
Affiliation(s)
- Kenji Watari
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Suguru Yamasaki
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan ,grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Hung-Ya Tu
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Masayuki Shikamura
- grid.417982.10000 0004 0623 246XResearch & Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe 650-0047 Japan
| | - Tatsuya Kamei
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Hideki Adachi
- grid.417741.00000 0004 1797 168XPreclinical Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Konohana-ku, Osaka 554-0022 Japan
| | - Tomoaki Tochitani
- grid.417741.00000 0004 1797 168XPreclinical Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Konohana-ku, Osaka 554-0022 Japan
| | - Yasuyuki Kita
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Aya Nakamura
- grid.417741.00000 0004 1797 168XTechnology Research & Development Division, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Kazuki Ueyama
- grid.417741.00000 0004 1797 168XTechnology Research & Development Division, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Keiichi Ono
- grid.417741.00000 0004 1797 168XTechnology Research & Development Division, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Chikako Morinaga
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan ,grid.7597.c0000000094465255RIKEN Program for Drug Discovery and Medical Technology Platforms, RIKEN Cluster for Science, Technology and Innovation Hub., Saitama, 351-0198 Japan
| | - Take Matsuyama
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Junki Sho
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Miyuki Nakamura
- grid.417982.10000 0004 0623 246XResearch & Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe 650-0047 Japan
| | - Masayo Fujiwara
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Yoriko Hori
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Anna Tanabe
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Rina Hirai
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Orie Terai
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Osamu Ohno
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Hidetaka Ohara
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Tetsuya Hayama
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Atsushi Ikeda
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Daiki Nukaya
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Keizo Matsushita
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan ,grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Masayo Takahashi
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Akiyoshi Kishino
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Toru Kimura
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Shin Kawamata
- grid.417982.10000 0004 0623 246XResearch & Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe 650-0047 Japan
| | - Michiko Mandai
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan ,grid.7597.c0000000094465255RIKEN Program for Drug Discovery and Medical Technology Platforms, RIKEN Cluster for Science, Technology and Innovation Hub., Saitama, 351-0198 Japan
| | - Atsushi Kuwahara
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
28
|
Monville C, Goureau O, Ben M'Barek K. Photoreceptor Cell Replacement Using Pluripotent Stem Cells: Current Knowledge and Remaining Questions. Cold Spring Harb Perspect Med 2023; 13:a041309. [PMID: 36617642 PMCID: PMC9899646 DOI: 10.1101/cshperspect.a041309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Retinal degeneration is an increasing global burden without cure for the majority of patients. Once retinal cells have degenerated, vision is permanently lost. Different strategies have been developed in recent years to prevent retinal degeneration or to restore sight (e.g., gene therapy, cell therapy, and electronic implants). Herein, we present current treatment strategies with a focus on cell therapy for photoreceptor replacement using human pluripotent stem cells. We will describe the state of the art and discuss obstacles and limitations observed in preclinical animal models as well as future directions to improve graft integration and functionality.
Collapse
Affiliation(s)
- Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
- Université Paris-Saclay, Université d'Evry, U861, 91100 Corbeil-Essonnes, France
| | - Olivier Goureau
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, 75012 Paris, France
| | - Karim Ben M'Barek
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
- Université Paris-Saclay, Université d'Evry, U861, 91100 Corbeil-Essonnes, France
- Centre d'Etude des Cellules Souches, 91100 Corbeil-Essonnes, France
| |
Collapse
|
29
|
Abstract
Inherited ocular diseases comprise a heterogeneous group of rare and complex diseases, including inherited retinal diseases (IRDs) and inherited optic neuropathies. Recent success in adeno-associated virus-based gene therapy, voretigene neparvovec (Luxturna®) for RPE65-related IRDs, has heralded rapid evolution in gene therapy platform technologies and strategies, from gene augmentation to RNA editing, as well as gene agnostic approaches such as optogenetics. This review discusses the fundamentals underlying the mode of inheritance, natural history studies and clinical trial outcomes, as well as current and emerging therapies covering gene therapy strategies, cell-based therapies and bionic vision.
Collapse
Affiliation(s)
- Hwei Wuen Chan
- Department of Ophthalmology, National University Hospital, Singapore,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Correspondence: Dr Hwei Wuen Chan, Assistant Professor, Department of Ophthalmology (Eye), Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 7, 119228, Singapore. E-mail:
| | - Jaslyn Oh
- Department of Ophthalmology, National University Hospital, Singapore
| | - Bart Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium,Department of Head and Skin, Ghent University, Ghent, Belgium,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium,Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
30
|
Re-formation of synaptic connectivity in dissociated human stem cell-derived retinal organoid cultures. Proc Natl Acad Sci U S A 2023; 120:e2213418120. [PMID: 36598946 PMCID: PMC9926218 DOI: 10.1073/pnas.2213418120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human pluripotent stem cell (hPSC)-derived retinal organoids (ROs) can efficiently and reproducibly generate retinal neurons that have potential for use in cell replacement strategies [Capowski et al., Development 146, dev171686 (2019)]. The ability of these lab-grown retinal neurons to form new synaptic connections after dissociation from ROs is key to building confidence in their capacity to restore visual function. However, direct evidence of reestablishment of retinal neuron connectivity via synaptic tracing has not been reported to date. The present study employs an in vitro, rabies virus-based, monosynaptic retrograde tracing assay [Wickersham et al., Neuron 53, 639-647 (2007); Sun et al., Mol. Neurodegener. 14, 8 (2019)] to identify de novo synaptic connections among early retinal cell types following RO dissociation. A reproducible, high-throughput approach for labeling and quantifying traced retinal cell types was developed. Photoreceptors and retinal ganglion cells-the primary neurons of interest for retinal cell replacement-were the two major contributing populations among the traced presynaptic cells. This system provides a platform for assessing synaptic connections in cultured retinal neurons and sets the stage for future cell replacement studies aimed at characterizing or enhancing synaptogenesis. Used in this manner, in vitro synaptic tracing is envisioned to complement traditional preclinical animal model testing, which is limited by evolutionary incompatibilities in synaptic machinery inherent to human xenografts.
Collapse
|
31
|
Tsujimoto H, Osafune K. Current status and future directions of clinical applications using iPS cells-focus on Japan. FEBS J 2022; 289:7274-7291. [PMID: 34407307 DOI: 10.1111/febs.16162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/04/2021] [Accepted: 08/17/2021] [Indexed: 01/13/2023]
Abstract
Regenerative medicine using iPS cell technologies has progressed remarkably in recent years. In this review, we summarize these technologies and their clinical application. First, we discuss progress in the establishment of iPS cells, including the HLA-homo iPS cell stock project in Japan and the advancement of low antigenic iPS cells using genome-editing technology. Then, we describe iPS cell-based therapies in or approaching clinical application, including those for ophthalmological, neurological, cardiac, hematological, cartilage, and metabolic diseases. Next, we introduce disease models generated from patient iPS cells and successfully used to identify therapeutic agents for intractable diseases. Clinical medicine using iPS cells has advanced safely and effectively by making full use of current scientific standards, but tests on cell safety need to be further developed and validated. The next decades will see the further spread of iPS cell technology-based regenerative medicine.
Collapse
Affiliation(s)
- Hiraku Tsujimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Japan.,RegeNephro Co., Ltd., MIC bldg. Graduate School of Medicine, Kyoto University, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Japan.,Meiji University International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| |
Collapse
|
32
|
Mayerl SJ, Bajgai S, Ludwig AL, Jager LD, Williams BN, Bacig C, Stoddard C, Sinha D, Philpot BD, Gamm DM. Human retinal organoids harboring IMPG2 mutations exhibit a photoreceptor outer segment phenotype that models advanced retinitis pigmentosa. Stem Cell Reports 2022; 17:2409-2420. [PMID: 36206764 PMCID: PMC9669399 DOI: 10.1016/j.stemcr.2022.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022] Open
Abstract
Interphotoreceptor matrix proteoglycan 2 (IMPG2) mutations cause a severe form of early-onset retinitis pigmentosa (RP) with macular involvement. IMPG2 is expressed by photoreceptors and incorporated into the matrix that surrounds the inner and outer segments (OS) of rods and cones, but the mechanism of IMPG2-RP remains unclear. Loss of Impg2 function in mice produces a mild, late-onset photoreceptor phenotype without the characteristic OS loss that occurs in human patients. We generated retinal organoids (ROs) from patient-derived induced pluripotent stem (iPS) cells and gene-edited embryonic stem cells to model human IMPG2-RP in vitro. All ROs harboring IMPG2 mutations lacked an OS layer, in contrast to isogenic controls. Subsequent protein analyses revealed that this phenotype arises due to a loss of IMPG2 expression or its inability to undergo normal post-translational modifications. We hypothesized that loss of IMPG2 function destabilizes the interphotoreceptor matrix and renders the OS vulnerable to physical stressors, which is accentuated in the tissue culture environment. In support of this mechanism, transplantation of IMPG2 mutant ROs into the protected subretinal space of immunocompromised rodents restored OS production. Beyond providing a robust platform to study IMPG2-RP, this human RO model system may serve a broader role in honing strategies to treat advanced photoreceptor-based diseases.
Collapse
Affiliation(s)
- Steven J Mayerl
- Cellular and Molecular Pathology University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Simona Bajgai
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Allison L Ludwig
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Lindsey D Jager
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany N Williams
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Cole Bacig
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Divya Sinha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Benjamin D Philpot
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - David M Gamm
- Cellular and Molecular Pathology University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
33
|
Uyama H, Tu HY, Sugita S, Yamasaki S, Kurimoto Y, Matsuyama T, Shiina T, Watanabe T, Takahashi M, Mandai M. Competency of iPSC-derived retinas in MHC-mismatched transplantation in non-human primates. Stem Cell Reports 2022; 17:2392-2408. [PMID: 36306783 PMCID: PMC9669501 DOI: 10.1016/j.stemcr.2022.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Transplantation of embryonic/induced pluripotent stem cell-derived retina (ESC/iPSC-retina) restores host retinal ganglion cell light responses in end-stage retinal degeneration models with host-graft synapse formation. We studied the immunological features of iPSC-retina transplantation using major histocompatibility complex (MHC)-homozygote monkey iPSC-retinas in monkeys with laser-induced retinal degeneration in MHC-matched and -mismatched transplantation. MHC-mismatched transplantation without immune suppression showed no evident clinical signs of rejection and histologically showed graft maturation without lymphocytic infiltration, although immunological tests using peripheral blood monocytes suggested subclinical rejection in three of four MHC-mismatched monkeys. Although extensive photoreceptor rosette formation was observed on histology, evaluation of functional integration using mouse models such as mouse ESC-retina (C57BL/6) transplanted into rd1(C3H/HeJ, MHC-mismatched model) elicited light responses in the host retinal ganglion cells after transplantation but with less responsiveness than that in rd1-2J mice (C57BL/6, MHC-matched model). These results suggest the reasonable use of ESC/iPSC-retina in MHC-mismatched transplantation, albeit with caution.
Collapse
Affiliation(s)
- Hirofumi Uyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Vision Care, Inc., Kobe Eye Center 5F, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Suguru Yamasaki
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Yasuo Kurimoto
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Take Matsuyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Takehito Watanabe
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Vision Care, Inc., Kobe Eye Center 5F, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Corresponding author
| |
Collapse
|
34
|
Xue Y, Lin B, Chen JT, Tang WC, Browne AW, Seiler MJ. The Prospects for Retinal Organoids in Treatment of Retinal Diseases. Asia Pac J Ophthalmol (Phila) 2022; 11:314-327. [PMID: 36041146 PMCID: PMC9966053 DOI: 10.1097/apo.0000000000000538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 12/28/2022] Open
Abstract
Retinal degeneration (RD) is a significant cause of incurable blindness worldwide. Photoreceptors and retinal pigmented epithelium are irreversibly damaged in advanced RD. Functional replacement of photoreceptors and/or retinal pigmented epithelium cells is a promising approach to restoring vision. This paper reviews the current status and explores future prospects of the transplantation therapy provided by pluripotent stem cell-derived retinal organoids (ROs). This review summarizes the status of rodent RD disease models and discusses RO culture and analytical tools to evaluate RO quality and function. Finally, we review and discuss the studies in which RO-derived cells or sheets were transplanted. In conclusion, methods to derive ROs from pluripotent stem cells have significantly improved and become more efficient in recent years. Meanwhile, more novel technologies are applied to characterize and validate RO quality. However, opportunity remains to optimize tissue differentiation protocols and achieve better RO reproducibility. In order to screen high-quality ROs for downstream applications, approaches such as noninvasive and label-free imaging and electrophysiological functional testing are promising and worth further investigation. Lastly, transplanted RO-derived tissues have allowed improvements in visual function in several RD models, showing promises for clinical applications in the future.
Collapse
Affiliation(s)
- Yuntian Xue
- Biomedical Engineering, University of California, Irvine, CA
- Stem Cell Research Center, University of California, Irvine, CA
| | - Bin Lin
- Stem Cell Research Center, University of California, Irvine, CA
| | - Jacqueline T. Chen
- Stem Cell Research Center, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
| | - William C. Tang
- Biomedical Engineering, University of California, Irvine, CA
| | - Andrew W. Browne
- Biomedical Engineering, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
- Institute for Clinical and Translational Science, University of California, Irvine, CA
| | - Magdalene J. Seiler
- Stem Cell Research Center, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA
| |
Collapse
|
35
|
Gasparini SJ, Tessmer K, Reh M, Wieneke S, Carido M, Völkner M, Borsch O, Swiersy A, Zuzic M, Goureau O, Kurth T, Busskamp V, Zeck G, Karl MO, Ader M. Transplanted human cones incorporate and function in a murine cone degeneration model. J Clin Invest 2022; 132:154619. [PMID: 35482419 PMCID: PMC9197520 DOI: 10.1172/jci154619] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Once human photoreceptors die, they do not regenerate, thus, photoreceptor transplantation has emerged as a potential treatment approach for blinding diseases. Improvements in transplant organization, donor cell maturation, and synaptic connectivity to the host will be critical in advancing this technology for use in clinical practice. Unlike the unstructured grafts of prior cell-suspension transplantations into end-stage degeneration models, we describe the extensive incorporation of induced pluripotent stem cell (iPSC) retinal organoid–derived human photoreceptors into mice with cone dysfunction. This incorporative phenotype was validated in both cone-only as well as pan-photoreceptor transplantations. Rather than forming a glial barrier, Müller cells extended throughout the graft, even forming a series of adherens junctions between mouse and human cells, reminiscent of an outer limiting membrane. Donor-host interaction appeared to promote polarization as well as the development of morphological features critical for light detection, namely the formation of inner and well-stacked outer segments oriented toward the retinal pigment epithelium. Putative synapse formation and graft function were evident at both structural and electrophysiological levels. Overall, these results show that human photoreceptors interacted readily with a partially degenerated retina. Moreover, incorporation into the host retina appeared to be beneficial to graft maturation, polarization, and function.
Collapse
Affiliation(s)
| | - Karen Tessmer
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Miriam Reh
- Department of Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Stephanie Wieneke
- Karl Lab, Center for Regenerative Therapies TU Dresden and German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Madalena Carido
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Manuela Völkner
- Karl Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Oliver Borsch
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Anka Swiersy
- Busskamp Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Marta Zuzic
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Olivier Goureau
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Thomas Kurth
- Center for Molecular and Cellular Biology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Volker Busskamp
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Günther Zeck
- Department of Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Mike O Karl
- Karl Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Marius Ader
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| |
Collapse
|
36
|
Maeda T, Mandai M, Sugita S, Kime C, Takahashi M. Strategies of pluripotent stem cell-based therapy for retinal degeneration: update and challenges. Trends Mol Med 2022; 28:388-404. [DOI: 10.1016/j.molmed.2022.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
|
37
|
Yamasaki S, Kuwahara A, Kishino A, Kimura T, Takahashi M, Mandai M. Addition of Chk1 inhibitor and BMP4 cooperatively promotes retinal tissue formation in self-organizing human pluripotent stem cell differentiation culture. Regen Ther 2022; 19:24-34. [PMID: 35059477 PMCID: PMC8733178 DOI: 10.1016/j.reth.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background The BMP signaling pathway plays a key role in growth, differentiation and patterning during neural development. Recent work on the generation of a self-organization of three-dimensional retinal organoid (3D-retina) from human pluripotent stem cells (hPSCs) revealed that addition of recombinant human BMP4 (rhBMP4) promotes retinal differentiation in the early neural differentiation stage. For clinical application, efficient differentiation from hPSCs to retinal cells with minimal numbers of off-target non-retinal cells is desirable. We therefore aimed to further improve an efficient retinal differentiation method for future up-scaling of cell production. Methods hPSCs were differentiated into 3D-retina using a modified SFEBq method. The effect of rhBMP4 with or without Checkpoint kinase 1 (Chk1) inhibitor (PD407824), a modulator of BMP signaling pathway, at day 3 was compared by characterizing the differentiating 3D-retina by the use of the hPSCs and immunohistochemical analysis. Results The Chk1 inhibitor treatment promoted retinal differentiation from hPSCs, in combination with low-concentration rhBMP4. Addition of a Chk1 inhibitor generated a unique type of organoid with neural retina (NR) encapsulated in retinal pigment epithelium (RPE), possibly by promoting phosphorylation of SMAD1/5/9 in the cells inside the early aggregates. We confirmed that the Chk1-inhibitor-treated hPSC-3D-retina differentiated into rod and cone photoreceptor precursors and other types of retinal neurons, in long-term culture. Conclusions In this study, we found that combined use of rhBMP4 and a Chk1 inhibitor cooperatively promoted retinal differentiation from hPSCs. Our new retinal differentiation method is a promising option for the stable supply and up-scaling of production of 3D-retina for future cell therapy. Chk1 inhibitor cooperates with low-concentration rhBMP4 to promote hPSC-retinal differentiation. Combined rhBMP4 and Chk1 inhibitor treatment generated NR-RPE organoids with NR tissue encapsulated in RPE. In long-term culture, the Chk1 inhibitor-treated 3D-retina produces rod and cone photoreceptor precursors and other types of retinal neurons.
Collapse
|
38
|
Weh E, Scott K, Wubben TJ, Besirli CG. Dark-reared rd10 mice experience rapid photoreceptor degeneration with short exposure to room-light during in vivo retinal imaging. Exp Eye Res 2022; 215:108913. [PMID: 34965404 PMCID: PMC8923962 DOI: 10.1016/j.exer.2021.108913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023]
Abstract
Inherited retinal diseases (IRDs) are a collection of rare genetic conditions, which can lead to complete blindness. A large number of causative genes have been identified for IRDs and while some success has been achieved with gene therapies, they are limited in scope to each individual gene and/or the specific mutation harbored by each patient with an IRD. Multiple studies are underway to elucidate common underlying mechanisms contributing to photoreceptor (PR) loss and to design gene-agnostic, pan-disease therapeutics. The rd10 mouse, which recapitulates slow degeneration of PRs, is an in vivo IRD model used commonly by vision researchers. Light deprivation by rearing animals in complete darkness significantly delays PR death in rd10 mice, subsequently increasing the time window for in vivo studies investigating neuroprotective strategies. Longitudinal in vivo retinal imaging following the same rd10 mice over time is a potential solution for reducing the number of animals required to complete a study. We describe a previously unreported phenotype in the dark-reared rd10 model that is characterized by dramatic PR degeneration following brief exposure to low-intensity light. This exquisite light sensitivity precludes the use of longitudinal studies employing in vivo imaging or other functional assessment requiring room light in rd10 mice and highlights the importance of closely following animal models of IRD to determine any deviations from the expected degeneration curve during routine experimentation.
Collapse
Affiliation(s)
| | | | | | - Cagri G. Besirli
- Corresponding Author, please direct all correspondence to: Cagri Besirli, 1000 Wall St., Ann Arbor, MI 48105, 734-232-8404,
| |
Collapse
|
39
|
Yamasaki S, Tu HY, Matsuyama T, Horiuchi M, Hashiguchi T, Sho J, Kuwahara A, Kishino A, Kimura T, Takahashi M, Mandai M. A Genetic modification that reduces ON-bipolar cells in hESC-derived retinas enhances functional integration after transplantation. iScience 2022; 25:103657. [PMID: 35024589 PMCID: PMC8733179 DOI: 10.1016/j.isci.2021.103657] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023] Open
Abstract
Pluripotent stem cell (PSC)-derived retinal sheet transplanted in vivo can form structured photoreceptor layers, contact with host bipolar cells, and transmit light signals to host retinas. However, a major concern is the presence of graft bipolar cells that may impede host-graft interaction. In this study, we used human ESC-retinas with the deletion of Islet-1 (ISL1) gene to achieve the reduced graft ON-bipolar cells after xenotransplantation into end-stage retinal degeneration model rats. Compared with wild-type graft, ISL1−/− hESC-retinas showed better host-graft contact, with indication of host-graft synapse formation and significant restoration of light responsiveness in host ganglion cells. We further analyzed to find out that improved functional integration of ISL1−/− hESC-retinas seemed attributed by a better host-graft contact and a better preservation of host inner retina. ISL1−/− hESC-retinas are promising for the efficient reconstruction of a degenerated retinal network in future clinical application. Deletion of ISL1 in hESC-retinas resulted in a reduced number of ON-bipolar cells Photoreceptors in ISL1−/− hESC-retinas achieved functional maturation in vivo ISL1−/− hESC-retinas showed better host-graft contact with putative synapses ISL1−/− hESC-retinas better restored RGC light responsiveness in degenerated retina
Collapse
Affiliation(s)
- Suguru Yamasaki
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Take Matsuyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan
| | - Matsuri Horiuchi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Tomoyo Hashiguchi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Junki Sho
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Atsushi Kuwahara
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Akiyoshi Kishino
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Toru Kimura
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan.,RIKEN Program for Drug Discovery and Medical Technology Platforms (DMP), RIKEN Cluster for Science, Technology and Innovation Hub., Saitama, 351-0198, Japan
| |
Collapse
|
40
|
Christelle M, Lise M, Ben M'Barek K. Challenges of cell therapies for retinal diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:49-77. [DOI: 10.1016/bs.irn.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Nair DSR, Thomas BB. Stem Cell-based Treatment Strategies for Degenerative Diseases of the Retina. Curr Stem Cell Res Ther 2022; 17:214-225. [PMID: 34348629 PMCID: PMC9129886 DOI: 10.2174/1574888x16666210804112104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The main cause of progressive vision impairment in retinal degenerative diseases is the dysfunction of photoreceptors and the underlying retinal pigment epithelial cells. The inadequate regenerative capacity of the neural retina and lack of established therapeutic options demand the development of clinical-grade protocols to halt the degenerative process in the eye or replace the damaged cells by using stem cell-derived products. Recently, stem cell-based regenerative therapies have been at the forefront of clinical investigations for retinal dystrophies. OBJECTIVE This article will review different stem cell-based therapies currently employed for retinal degenerative diseases, recent clinical trials, and major challenges in the translation of these therapies from bench to bedside. METHODOLOGY A systematic literature review was conducted to identify potentially relevant articles published in MEDLINE/PubMed, Embase, ClinicalTrials.gov, Drugs@FDA, European Medicines Agency, and World Health Organization International Clinical Trials Registry Platform. RESULTS Transplantation of healthy cells to replace damaged cells in the outer retina is a clinically relevant concept because the inner retina that communicates with the visual areas of the brain remains functional even after the photoreceptors are completely lost. Various methods have been established for the differentiation of pluripotent stem cells into different retinal cell types that can be used for therapies. Factors released from transplanted somatic stem cells showed trophic support and photoreceptor rescue during the early stages of the disease. Several preclinical and phase I/II clinical studies using terminally differentiated photoreceptor/retinal pigment epithelial cells derived from pluripotent stem cells have shown proof of concept for visual restoration in Age-related Macular Degeneration (AMD), Stargardt disease, and Retinitis Pigmentosa (RP). CONCLUSION Cell replacement therapy has great potential for vision restoration. The results obtained from the initial clinical trials are encouraging and indicate its therapeutic benefits. The current status of the therapies suggests that there is a long way to go before these results can be applied to routine clinical practice. Input from the ongoing multicentre clinical trials will give a more refined idea for the future design of clinical-grade protocols to transplant GMP level HLA matched cells.
Collapse
Affiliation(s)
- Deepthi S. Rajendran Nair
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Biju B. Thomas
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California, USA,Correspondence: , Tel: 323-442-5593
| |
Collapse
|
42
|
Ong SS, Liu TYA, Li X, Singh MS. Choriocapillaris flow loss in center-involving retinitis pigmentosa: a quantitative optical coherence tomography angiography study using a novel classification system. Graefes Arch Clin Exp Ophthalmol 2021; 259:3235-3242. [PMID: 34057549 PMCID: PMC11234870 DOI: 10.1007/s00417-021-05223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/02/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Choriocapillaris insufficiency may play a role in centripetal retinitis pigmentosa (RP) progression involving the fovea. However, the relationship between choriocapillaris integrity and foveal damage in RP is unclear. We examined the relationship between choriocapillaris flow and the presence of foveal photoreceptor involvement in RP. METHODS We categorized the severity of central involvement in RP by the occurrence of foveal ellipsoid zone (EZ) disruption: present (severe RP) or absent (mild RP). Using optical coherence tomography angiography (OCTA, AngioVue, Optovue) in cases and unaffected age-matched controls, we compared vessel density (VD) between the groups using the generalized linear mixed model, controlling for age, gender, and scan quality. RESULTS Fifty-seven eyes (20 severe RP, 18 mild RP, and 19 controls) were included. Foveal and parafoveal mean outer retinal thickness (µm) were lower in severe RP (fovea: 101.3 ± 14.5; parafovea: 68.4 ± 11.7) than controls (fovea: 161.2 ± 8.9; parafovea: 142.1 ± 11.8; p ≤ 0.001) and mild RP (fovea: 162.0 ± 14.7; parafovea: 116.8 ± 29.4; p ≤ 0.0001). Foveal choriocapillaris VD (%) was lower in severe RP (56.7 ± 6.8) than controls (69.9 ± 4.6; p = 0.008) and mild RP (65.3 ± 5.3; p = 0.01). The parafoveal choriocapillaris VD was lower in severe RP than controls (64.4 ± 5.9 vs. 68.3 ± 4.1; p = 0.04) but no different than in mild RP (p = 0.4). CONCLUSION Choriocapillaris flow loss was associated with fovea-involving photoreceptor damage in RP. Further research is warranted to validate this putative association and clarify causation. Choriocapillaris imaging using OCTA may provide information to supplement structural OCT findings when evaluating subjects with RP in neuroprotective or regenerative clinical trials.
Collapse
Affiliation(s)
- Sally S Ong
- Wilmer Eye Institute, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
- Department of Ophthalmology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - T Y Alvin Liu
- Wilmer Eye Institute, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
| | - Ximin Li
- Department of Biostatistics, Wilmer Biostatistics Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA.
| |
Collapse
|
43
|
Zhang X, Wang W, Jin ZB. Retinal organoids as models for development and diseases. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:33. [PMID: 34719743 PMCID: PMC8557999 DOI: 10.1186/s13619-021-00097-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
The evolution of pluripotent stem cell-derived retinal organoids (ROs) has brought remarkable opportunities for developmental studies while also presenting new therapeutic avenues for retinal diseases. With a clear understanding of how well these models mimic native retinas, such preclinical models may be crucial tools that are widely used for the more efficient translation of studies into novel treatment strategies for retinal diseases. Genetic modifications or patient-derived ROs can allow these models to simulate the physical microenvironments of the actual disease process. However, we are currently at the beginning of the three-dimensional (3D) RO era, and a general quantitative technology for analyzing ROs derived from numerous differentiation protocols is still missing. Continued efforts to improve the efficiency and stability of differentiation, as well as understanding the disparity between the artificial retina and the native retina and advancing the current treatment strategies, will be essential in ensuring that these scientific advances can benefit patients with retinal disease. Herein, we briefly discuss RO differentiation protocols, the current applications of RO as a disease model and the treatments for retinal diseases by using RO modeling, to have a clear view of the role of current ROs in retinal development and diseases.
Collapse
Affiliation(s)
- Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
44
|
Matsuyama T, Tu HY, Sun J, Hashiguchi T, Akiba R, Sho J, Fujii M, Onishi A, Takahashi M, Mandai M. Genetically engineered stem cell-derived retinal grafts for improved retinal reconstruction after transplantation. iScience 2021; 24:102866. [PMID: 34409267 PMCID: PMC8361135 DOI: 10.1016/j.isci.2021.102866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/23/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
ESC/iPSC-retinal sheet transplantation, which supplies photoreceptors as well as other retinal cells, has been shown to be able to restore visual function in mice with end-stage retinal degeneration. Here, by introducing a novel type of genetically engineered mouse ESC/iPSC-retinal sheet with reduced numbers of secondary retinal neurons but intact photoreceptor cell layer structure, we reinforced the evidence that ESC/iPSC-retinal sheet transplantation can establish synaptic connections with the host, restore light responsiveness, and reduce aberrant retinal ganglion cell spiking in mice. Furthermore, we show that genetically engineered grafts can substantially improve the outcome of the treatment by improving neural integration. We speculate that this leads to reduced spontaneous activity in the host which in turn contributes to a better visual recovery.
Collapse
Affiliation(s)
- Take Matsuyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Jianan Sun
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tomoyo Hashiguchi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ryutaro Akiba
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Junki Sho
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Momo Fujii
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akishi Onishi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo, Japan
| |
Collapse
|
45
|
Lingam S, Liu Z, Yang B, Wong W, Parikh BH, Ong JY, Goh D, Wong DSL, Tan QSW, Tan GSW, Holder GE, Regha K, Barathi VA, Hunziker W, Lingam G, Zeng X, Su X. cGMP-grade human iPSC-derived retinal photoreceptor precursor cells rescue cone photoreceptor damage in non-human primates. Stem Cell Res Ther 2021; 12:464. [PMID: 34412697 PMCID: PMC8375124 DOI: 10.1186/s13287-021-02539-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/31/2021] [Indexed: 12/21/2022] Open
Abstract
Background Retinal regenerative therapies hold great promise for the treatment of inherited retinal degenerations (IRDs). Studies in preclinical lower mammal models of IRDs have suggested visual improvement following retinal photoreceptor precursors transplantation, but there is limited evidence on the ability of these transplants to rescue retinal damage in higher mammals. The purpose of this study was to evaluate the therapeutic potential of photoreceptor precursors derived from clinically compliant induced pluripotent stem cells (iPSCs). Methods Photoreceptor precursors were sub-retinally transplanted into non-human primates (Macaca fascicularis). The cells were transplanted both in naïve and cobalt chloride-induced retinal degeneration models who had been receiving systemic immunosuppression for one week prior to the procedure. Optical coherence tomography, fundus autofluorescence imaging, electroretinography, ex vivo histology and immunofluorescence staining were used to evaluate retinal structure, function and survival of transplanted cells. Results There were no adverse effects of iPSC-derived photoreceptor precursors on retinal structure or function in naïve NHP models, indicating good biocompatibility. In addition, photoreceptor precursors injected into cobalt chloride-induced retinal degeneration NHP models demonstrated an ability both to survive and to mature into cone photoreceptors at 3 months post-transplant. Optical coherence tomography showed restoration of retinal ellipsoid zone post-transplantation. Conclusions These findings demonstrate the safety and therapeutic potential of clinically compliant iPSC-derived photoreceptor precursors as a cell replacement source for future clinical trials. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02539-8.
Collapse
Affiliation(s)
- Swathi Lingam
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Zengping Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Singapore Eye Research Institute (SERI), Singapore, 169856, Singapore
| | - Binxia Yang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Wendy Wong
- Department of Ophthalmology, National University Hospital, Singapore, 119074, Singapore
| | - Bhav Harshad Parikh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jun Yi Ong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Debbie Goh
- Department of Ophthalmology, National University Hospital, Singapore, 119074, Singapore
| | - Daniel Soo Lin Wong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Queenie Shu Woon Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Gavin S W Tan
- Singapore Eye Research Institute (SERI), Singapore, 169856, Singapore.,Academic Clinical Program in Ophthalmology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Graham E Holder
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Department of Ophthalmology, National University Hospital, Singapore, 119074, Singapore.,UCL Institute of Ophthalmology, London, WC1E 6BT, UK
| | - Kakkad Regha
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Veluchamy Amutha Barathi
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Singapore Eye Research Institute (SERI), Singapore, 169856, Singapore.,Academic Clinical Program in Ophthalmology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Walter Hunziker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Gopal Lingam
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Singapore Eye Research Institute (SERI), Singapore, 169856, Singapore.,Department of Ophthalmology, National University Hospital, Singapore, 119074, Singapore
| | - Xianmin Zeng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.,RxCell Inc, Novato, CA, 94949, USA
| | - Xinyi Su
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore. .,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,Singapore Eye Research Institute (SERI), Singapore, 169856, Singapore. .,Department of Ophthalmology, National University Hospital, Singapore, 119074, Singapore.
| |
Collapse
|
46
|
Ludwig AL, Gamm DM. Outer Retinal Cell Replacement: Putting the Pieces Together. Transl Vis Sci Technol 2021; 10:15. [PMID: 34724034 PMCID: PMC8572485 DOI: 10.1167/tvst.10.10.15] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022] Open
Abstract
Retinal degenerative diseases (RDDs) affecting photoreceptors (PRs) are one of the most prevalent sources of incurable blindness worldwide. Due to a lack of endogenous repair mechanisms, functional cell replacement of PRs and/or retinal pigmented epithelium (RPE) cells are among the most anticipated approaches for restoring vision in advanced RDD. Human pluripotent stem cell (hPSC) technologies have accelerated development of outer retinal cell therapies as they provide a theoretically unlimited source of donor cells. Human PSC-RPE replacement therapies have progressed rapidly, with several completed and ongoing clinical trials. Although potentially more promising, hPSC-PR replacement therapies are still in their infancy. A first-in-human trial of hPSC-derived neuroretinal transplantation has recently begun, but a number of questions regarding survival, reproducibility, functional integration, and mechanism of action remain. The discovery of biomaterial transfer between donor and PR cells has highlighted the need for rigorous safety and efficacy studies of PR replacement. In this review, we briefly discuss the history of neuroretinal and PR cell transplantation to identify remaining challenges and outline a stepwise approach to address specific pieces of the outer retinal cell replacement puzzle.
Collapse
Affiliation(s)
- Allison L. Ludwig
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - David M. Gamm
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
47
|
Mogensen FLH, Delle C, Nedergaard M. The Glymphatic System (En)during Inflammation. Int J Mol Sci 2021; 22:7491. [PMID: 34299111 PMCID: PMC8305763 DOI: 10.3390/ijms22147491] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023] Open
Abstract
The glymphatic system is a fluid-transport system that accesses all regions of the brain. It facilitates the exchange of cerebrospinal fluid and interstitial fluid and clears waste from the metabolically active brain. Astrocytic endfeet and their dense expression of the aquaporin-4 water channels promote fluid exchange between the perivascular spaces and the neuropil. Cerebrospinal and interstitial fluids are together transported back to the vascular compartment by meningeal and cervical lymphatic vessels. Multiple lines of work show that neurological diseases in general impair glymphatic fluid transport. Insofar as the glymphatic system plays a pseudo-lymphatic role in the central nervous system, it is poised to play a role in neuroinflammation. In this review, we discuss how the association of the glymphatic system with the meningeal lymphatic vessel calls for a renewal of established concepts on the CNS as an immune-privileged site. We also discuss potential approaches to target the glymphatic system to combat neuroinflammation.
Collapse
Affiliation(s)
- Frida Lind-Holm Mogensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
| | - Christine Delle
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
48
|
Trends of Stem Cell Therapies in Age-Related Macular Degeneration. J Clin Med 2021; 10:jcm10081785. [PMID: 33923985 PMCID: PMC8074076 DOI: 10.3390/jcm10081785] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/17/2021] [Indexed: 01/12/2023] Open
Abstract
Age-related macular degeneration (AMD) is a highly prevalent irreversible impairment in the elderly population worldwide. Stem cell therapies have been considered potentially viable for treating AMD through the direct replacement of degenerated cells or secretion of trophic factors that facilitate the survival of existing cells. Among them, the safety of pluripotent stem cell-derived retinal pigment epithelial (RPE) cell transplantation against AMD, and some hereditary retinal degenerative diseases, has been discussed to a certain extent in clinical studies of RPE cell transplantation. Preparations are in progress for its clinical application. On the other hand, clinical trials using somatic stem cells are also being conducted, though these had controversial outcomes. Retinal regenerative medicine using stem cells is expected to make steady progress toward practical use while new technologies are incorporated from various fields, thereby making the role of ophthalmologists in this field increasingly important.
Collapse
|
49
|
Yamasaki S, Sugita S, Horiuchi M, Masuda T, Fujii S, Makabe K, Kawasaki A, Hayashi T, Kuwahara A, Kishino A, Kimura T, Takahashi M, Mandai M. Low Immunogenicity and Immunosuppressive Properties of Human ESC- and iPSC-Derived Retinas. Stem Cell Reports 2021; 16:851-867. [PMID: 33770500 PMCID: PMC8072071 DOI: 10.1016/j.stemcr.2021.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/18/2022] Open
Abstract
ESC- and iPSC-derived retinal transplantation is a promising therapeutic approach for disease with end-stage retinal degeneration, such as retinitis pigmentosa and age-related macular degeneration. We previously showed medium- to long-term survival, maturation, and light response of transplanted human ESC- and iPSC-retina in mouse, rat, and monkey models of end-stage retinal degeneration. Because the use of patient hiPSC-derived retina with a disease-causing gene mutation is not appropriate for therapeutic use, allogeneic transplantation using retinal tissue/cells differentiated from a stocked hESC and iPSC line would be most practical. Here, we characterize the immunological properties of hESC- and iPSC-retina and present their three major advantages: (1) hESC- and iPSC-retina expressed low levels of human leukocyte antigen (HLA) class I and little HLA class II in vitro, (2) hESC- and iPSC-retina greatly suppressed immune activation of lymphocytes in co-culture, and (3) hESC- and iPSC-retina suppressed activated immune cells partially via transforming growth factor β signaling. These results support the use of allogeneic hESC- and iPSC-retina in future clinical application.
Collapse
Affiliation(s)
- Suguru Yamasaki
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| | - Matsuri Horiuchi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Tomohiro Masuda
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shota Fujii
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kenichi Makabe
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Akihiro Kawasaki
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Atsushi Kuwahara
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Akiyoshi Kishino
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Toru Kimura
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; RIKEN Program for Drug Discovery and Medical Technology Platforms (DMP), RIKEN Cluster for Science, Technology and Innovation Hub, Saitama 351-0198, Japan.
| |
Collapse
|
50
|
Ribeiro J, Procyk CA, West EL, O'Hara-Wright M, Martins MF, Khorasani MM, Hare A, Basche M, Fernando M, Goh D, Jumbo N, Rizzi M, Powell K, Tariq M, Michaelides M, Bainbridge JWB, Smith AJ, Pearson RA, Gonzalez-Cordero A, Ali RR. Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors. Cell Rep 2021; 35:109022. [PMID: 33882303 PMCID: PMC8065177 DOI: 10.1016/j.celrep.2021.109022] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/08/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration and other macular diseases result in the loss of light-sensing cone photoreceptors, causing irreversible sight impairment. Photoreceptor replacement may restore vision by transplanting healthy cells, which must form new synaptic connections with the recipient retina. Despite recent advances, convincing evidence of functional connectivity arising from transplanted human cone photoreceptors in advanced retinal degeneration is lacking. Here, we show restoration of visual function after transplantation of purified human pluripotent stem cell-derived cones into a mouse model of advanced degeneration. Transplanted human cones elaborate nascent outer segments and make putative synapses with recipient murine bipolar cells (BCs), which themselves undergo significant remodeling. Electrophysiological and behavioral assessments demonstrate restoration of surprisingly complex light-evoked retinal ganglion cell responses and improved light-evoked behaviors in treated animals. Stringent controls exclude alternative explanations, including material transfer and neuroprotection. These data provide crucial validation for photoreceptor replacement therapy and for the potential to rescue cone-mediated vision.
Collapse
Affiliation(s)
- Joana Ribeiro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Emma L West
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Monica F Martins
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Aura Hare
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Mark Basche
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Milan Fernando
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Debbie Goh
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Neeraj Jumbo
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Matteo Rizzi
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Kate Powell
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Menahil Tariq
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | - Alexander J Smith
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Rachael A Pearson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Kellogg Eye Centre, University of Michigan, 1000 Wall St., Ann Arbor, MI 48105, USA.
| |
Collapse
|