1
|
Li Z, Duan J, Cao A, Gong Z, Liu H, Shen D, Ye T, Zhu S, Cen Q, He S, He Y, Zheng C, Lin X. Activating Wnt1/β-Catenin signaling pathway to restore Otx2 expression in the dopaminergic neurons of ventral midbrain. Exp Neurol 2025; 388:115216. [PMID: 40089003 DOI: 10.1016/j.expneurol.2025.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Parkinson's disease (PD) is the world's second most prevalent neurodegenerative disease. Currently, aside from levodopa, there are no other effective drugs clinically available to slow its progression. Otx2 plays a critical role in the differentiation of midbrain dopaminergic neurons (mDANs) during midbrain development. However, in adulthood, Otx2 is primarily expressed in the ventral tegmental area (VTA)-ventral part, and mDANs in the dorsal part of the VTA and the substantia nigra pars compacta (SNc) show no Otx2 expression. Research indicates that Otx2 is essential not only for the development of mDANs but also for their protection against the toxicity of MPTP and rotenone. Consequently, Otx2 is a potential clinical target for mDANs protection. Identifying the upstream mechanism that regulates Otx2 expression is crucial to restoring its expression in the SNc and enhancing its levels in the entire ventral midbrain mDANs. In this study, we have demonstrated the safety of Otx2 overexpression in vitro by using adeno-associate virus (AAV) and explored the feasibility of promoting Otx2 expression through the Wnt/β-Catenin signaling pathway using various drugs, a miR-34 mimic, and an inhibitor. Our results showed that Otx2 overexpression via AAV in the SNc is relatively safe, and CHIR99021 can induce Otx2 expression in mouse mDANs, thereby, alleviating PD-liked motor symptoms induced by MPTP. These findings suggest that modulating Otx2 expression through the Wnt/β-Catenin signaling pathway holds a therapeutic approach for Parkinson's disease.
Collapse
Affiliation(s)
- Zhao Li
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Jinhai Duan
- Department of Geriatric Neurology, Guangdong Institute of Geriatrics, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, #106, Zhongshan, 2nd Road, Guanzhou, Guangdong, China
| | - AnQi Cao
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Zhuo Gong
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Hao Liu
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Danyang Shen
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Tonglin Ye
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Shunyan Zhu
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Qikai Cen
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Shuaiying He
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Yongqian He
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Canbing Zheng
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China.
| | - Xian Lin
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Räsänen N, Tiihonen J, Koskuvi M, Trontti K, Cheng L, Hill AF, Lehtonen Š, Vaurio O, Ojansuu I, Lähteenvuo M, Pietiläinen O, Koistinaho J. miRNA profiling of hiPSC-derived neurons from monozygotic twins discordant for schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:21. [PMID: 39966401 PMCID: PMC11836399 DOI: 10.1038/s41537-025-00573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025]
Abstract
Schizophrenia is a complex developmental disorder whose molecular mechanisms are not fully understood. The developmental course of schizophrenia can be modeled with human induced pluripotent stem cell (hiPSC) -derived brain cells that carry patient-specific genetic risk factors for the disorder. Although transcriptomic characterization of the patient-derived cells is a standard procedure, microRNA (miRNA) profiling is less frequently performed. To investigate the role of miRNAs in transcriptomic regulation in schizophrenia, we performed miRNA sequencing for hiPSC-derived neurons from five monozygotic twin pairs discordant for schizophrenia and six controls (CTR). We compared the miRNA expression to differentially expressed genes (DEGs) reported for the same cells in our earlier work. We found 21 DEmiRNAs between the affected twins (AT) and CTR with implications for the regulation of neuronal function. In addition, a separate analysis of three AT with treatment-resistant schizophrenia (TRS), their unaffected twins (UT), and CTR revealed an upregulation of four miRNAs in the UT compared to both AT and CTR. The DEmiRNAs found between the UT and CTR were associated with increased cAMP/PKA signaling and synaptogenesis signaling in the UT. We hypothesize that the upregulation of these processes in the UT could be linked to compensatory features against schizophrenia.
Collapse
Affiliation(s)
- Noora Räsänen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jari Tiihonen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatric Research, Stockholm City Council, Stockholm, Sweden
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Marja Koskuvi
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kalevi Trontti
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Lesley Cheng
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Andrew F Hill
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli Vaurio
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Ilkka Ojansuu
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | | | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, FI, Helsinki, Finland.
| |
Collapse
|
3
|
Li X, Fang K, Wang F. Somatic cell reprogramming for Parkinson's disease treatment. IBRAIN 2025; 11:59-73. [PMID: 40103698 PMCID: PMC11911114 DOI: 10.1002/ibra.12189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 03/20/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by degeneration of dopamine neurons in the substantia nigra pars compacta. The patient exhibits a series of motor symptoms, such as static tremors, which impair their capacity to take care for themselves in daily life. In the late stage, the patient is unable to walk independently and is bedridden for an extended period of time, reducing their quality of life significantly. So far, treatment methods for PD mainly include drug therapy and deep brain stimulation. Pharmacotherapy is aimed at increasing dopamine (DA) levels; however, the treatment effect is more pronounced in the short term, and there is no benefit in improvement in the overall progression of the disease. In recent years, novel therapeutic strategies have been developed, such as cell reprogramming, trying to generate more DA in PD treatment. This review mainly discusses the advantages, methodology, cell origin, transformation efficiency, and practical application shortcomings of cell reprogramming therapy in PD strategy.
Collapse
Affiliation(s)
- Xiaozhuo Li
- School of Institute of Primate Translational Medicine Kunming University of Science and Technology Kunming China
| | - Kevin Fang
- Living Systems Institute University of Exeter Exeter UK
| | - Fengping Wang
- College of Traditional Chinese Medicine Shandong Second Medical University Weifang Shandong China
| |
Collapse
|
4
|
Papadimitriou E, Thomaidou D. Post-transcriptional mechanisms controlling neurogenesis and direct neuronal reprogramming. Neural Regen Res 2024; 19:1929-1939. [PMID: 38227517 DOI: 10.4103/1673-5374.390976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/08/2023] [Indexed: 01/17/2024] Open
Abstract
Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches. A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic, transcriptional, and post-transcriptional regulation. Understanding these neurogenic mechanisms is of major importance, not only for shedding light on very complex and crucial developmental processes, but also for the identification of putative reprogramming factors, that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate. The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors, as well as repressor complexes, have been identified and employed in direct reprogramming protocols to convert non-neuronal cells, into functional neurons. The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer, strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function. In particular, recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis, such as alternative splicing, polyadenylation, stability, and translation. Apart from the RNA binding proteins, microRNAs, a class of small non-coding RNAs that block the translation of their target mRNAs, have also been shown to play crucial roles in all the stages of the neurogenic process, from neural stem/progenitor cell proliferation, neuronal differentiation and migration, to functional maturation. Here, we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process, giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs. Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming, we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors, highlighting the so far known mechanisms of their reprogramming action.
Collapse
|
5
|
刘 娜, 张 俊, 张 樊, 吴 聪, 姜 玉. [Different concentrations of adapalene induce differentiation and apoptosis of SH-SY5Y cells]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:282-288. [PMID: 38557381 PMCID: PMC10986378 DOI: 10.7499/j.issn.1008-8830.2310100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/02/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES To investigate the effects of different concentrations of adapalene on the morphology and functions of neuroblastoma cell line SH-SY5Y, as well as its role in inducing cell differentiation and apoptosis. METHODS SH-SY5Y cells were divided into control group, low concentration (0.1 μM and 1 μM) adapalene groups, and high concentration (10 μM) adapalene group. Time-lapse microscopy was used to observe the morphological changes of SH-SY5Y cells. Immunofluorescence staining was performed to detect the expression of neuronal specific marker βIII-tubulin and mature neuronal marker neurofilament heavy polypeptide (NFH). Multi-electrode array was used to record the electrophysiological features of SH-SY5Y cells. Cell apoptosis was evaluated using a cell apoptosis detection kit. RESULTS Low concentrations of adapalene promoted the formation of neurite outgrowth in SH-SY5Y cells, with the neurites interconnected to form a network. Spontaneous discharge activity was observed in SH-SY5Y cells treated with low concentrations of adapalene. Compared to the control group, the expression of βIII-tubulin and NFH increased in the 1 μM adapalene group, while the level of cell apoptosis increased in the high concentration adapalene group (P<0.05). CONCLUSIONS Low concentrations of adapalene can induce differentiation of SH-SY5Y cells into mature functional neurons, while high concentrations of adapalene can induce apoptosis in SH-SY5Y cells.
Collapse
Affiliation(s)
- 娜娜 刘
- 儿科遗传性疾病分子诊断与研究北京市重点实验室北京100009
| | - 俊娇 张
- 儿科遗传性疾病分子诊断与研究北京市重点实验室北京100009
| | - 樊 张
- 儿科遗传性疾病分子诊断与研究北京市重点实验室北京100009
| | | | - 玉武 姜
- 儿科遗传性疾病分子诊断与研究北京市重点实验室北京100009
| |
Collapse
|
6
|
Zheng YY, Xu H, Wang YS. Progress in direct reprogramming of dopaminergic cell replacement therapy. Neurol Sci 2024; 45:873-881. [PMID: 37945931 DOI: 10.1007/s10072-023-07175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Parkinson's disease (PD) is a gradual neurodegenerative disease. While drug therapy and surgical treatments have been the primary means of addressing PD, they do not offer a cure, and the risks associated with surgical treatment are high. Recent advances in cell reprogramming have given rise to new prospects for the treatment of Parkinson's disease (PD), with induced pluripotent stem cells (iPSCs), induced dopamine neurons (iDNs), and induced neural stem cells (iNSCs) being created. These cells can potentially be used in the treatment of Parkinson's disease. On the other hand, this article emphasizes the limits of iPSCs and iNSCs in the context of Parkinson's disease treatment, as well as approaches for direct reprogramming of somatic cells into iDNs. The paper will examine the benefits and drawbacks of directly converting somatic cells into iDNs.
Collapse
Affiliation(s)
- Yuan Yuan Zheng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hui Xu
- Human Resources Department, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yue Si Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China.
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, 264003, Shandong, China.
- Yantai Key Laboratory of Stem Cell and Regenerative Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
7
|
Meccariello R, Bellenchi GC, Pulcrano S, D’Addario SL, Tafuri D, Mercuri NB, Guatteo E. Neuronal dysfunction and gene modulation by non-coding RNA in Parkinson's disease and synucleinopathies. Front Cell Neurosci 2024; 17:1328269. [PMID: 38249528 PMCID: PMC10796818 DOI: 10.3389/fncel.2023.1328269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Over the last few decades, emerging evidence suggests that non-coding RNAs (ncRNAs) including long-non-coding RNA (lncRNA), microRNA (miRNA) and circular-RNA (circRNA) contribute to the molecular events underlying progressive neuronal degeneration, and a plethora of ncRNAs have been identified significantly misregulated in many neurodegenerative diseases, including Parkinson's disease and synucleinopathy. Although a direct link between neuropathology and causative candidates has not been clearly established in many cases, the contribution of ncRNAs to the molecular processes leading to cellular dysfunction observed in neurodegenerative diseases has been addressed, suggesting that they may play a role in the pathophysiology of these diseases. Aim of the present Review is to overview and discuss recent literature focused on the role of RNA-based mechanisms involved in different aspects of neuronal pathology in Parkinson's disease and synucleinopathy models.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics, CNR, Naples, Italy
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Sebastian Luca D’Addario
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Domenico Tafuri
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
| | - Nicola B. Mercuri
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ezia Guatteo
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
8
|
Pulcrano S, De Gregorio R, De Sanctis C, Volpicelli F, Piscitelli RM, Speranza L, Perrone-Capano C, di Porzio U, Caiazzo M, Martini A, Giacomet C, Medina D, Awatramani R, Viggiano D, Federici M, Mercuri NB, Guatteo E, Bellenchi GC. miR-218 Promotes Dopaminergic Differentiation and Controls Neuron Excitability and Neurotransmitter Release through the Regulation of a Synaptic-Related Genes Network. J Neurosci 2023; 43:8104-8125. [PMID: 37816598 PMCID: PMC10697421 DOI: 10.1523/jneurosci.0431-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 10/12/2023] Open
Abstract
In the brain, microRNAs (miRNAs) are believed to play a role in orchestrating synaptic plasticity at a higher level by acting as an additional mechanism of translational regulation, alongside the mRNA/polysome system. Despite extensive research, our understanding of the specific contribution of individual miRNA to the function of dopaminergic neurons (DAn) remains limited. By performing a dopaminergic-specific miRNA screening, we have identified miR-218 as a critical regulator of DAn activity in male and female mice. We have found that miR-218 is specifically expressed in mesencephalic DAn and is able to promote dopaminergic differentiation of embryonic stem cells and functional maturation of transdifferentiated induced DA neurons. Midbrain-specific deletion of both genes encoding for miR-218 (referred to as miR-218-1 and mir218-2) affects the expression of a cluster of synaptic-related mRNAs and alters the intrinsic excitability of DAn, as it increases instantaneous frequencies of evoked action potentials, reduces rheobase current, affects the ionic current underlying the action potential after hyperpolarization phase, and reduces dopamine efflux in response to a single electrical stimulus. Our findings provide a comprehensive understanding of the involvement of miR-218 in the dopaminergic system and highlight its role as a modulator of dopaminergic transmission.SIGNIFICANCE STATEMENT In the past decade, several miRNAs have emerged as potential regulators of synapse activity through the modulation of specific gene expression. Among these, we have identified a dopaminergic-specific miRNA, miR-218, which is able to promote dopaminergic differentiation and regulates the translation of an entire cluster of synapse related mRNAs. Deletion of miR-218 has notable effects on dopamine release and alters the intrinsic excitability of dopaminergic neurons, indicating a direct control of dopaminergic activity by miR-218.
Collapse
Affiliation(s)
- Salvatore Pulcrano
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
| | - Roberto De Gregorio
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021
| | - Claudia De Sanctis
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Neuropathology Brain Bank at Mount Sinai, New York, New York 10029
| | - Floriana Volpicelli
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, 80131, Italy
| | - Rosa Maria Piscitelli
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Carla Perrone-Capano
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, 80131, Italy
| | - Umberto di Porzio
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Alessandro Martini
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Cecilia Giacomet
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Diego Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078, Italy
- Department of Medical and Translational Science, Federico II University, Naples, 80131, Italy
| | | | - Davide Viggiano
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli," Naples, 80131, Italy
| | - Mauro Federici
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Nicola B Mercuri
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
- University of Tor Vergata, Department of Systems Medicine, Rome, 00133, Italy
| | - Ezia Guatteo
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
- Department of Motor Science and Wellness, Parthenope University, Naples, 80133, Italy
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| |
Collapse
|
9
|
Cabana-Domínguez J, Llonga N, Arribas L, Alemany S, Vilar-Ribó L, Demontis D, Fadeuilhe C, Corrales M, Richarte V, Børglum AD, Ramos-Quiroga JA, Soler Artigas M, Ribasés M. Transcriptomic risk scores for attention deficit/hyperactivity disorder. Mol Psychiatry 2023; 28:3493-3502. [PMID: 37537283 PMCID: PMC10618083 DOI: 10.1038/s41380-023-02200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder. We performed a transcriptome-wide association study (TWAS) using the latest genome-wide association study (GWAS) meta-analysis, in 38,691 individuals with ADHD and 186,843 controls, and 14 gene-expression reference panels across multiple brain tissues and whole blood. Based on TWAS results, we selected subsets of genes and constructed transcriptomic risk scores (TRSs) for the disorder in peripheral blood mononuclear cells of individuals with ADHD and controls. We found evidence of association between ADHD and TRSs constructed using expression profiles from multiple brain areas, with individuals with ADHD carrying a higher burden of TRSs than controls. TRSs were uncorrelated with the polygenic risk score (PRS) for ADHD and, in combination with PRS, improved significantly the proportion of variance explained over the PRS-only model. These results support the complementary predictive potential of genetic and transcriptomic profiles in blood and underscore the potential utility of gene expression for risk prediction and deeper insight in molecular mechanisms underlying ADHD.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| | - Natalia Llonga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Lorena Arribas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Ditte Demontis
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christian Fadeuilhe
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montse Corrales
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vanesa Richarte
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anders D Børglum
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Chang Y, Lee S, Kim J, Kim C, Shim HS, Lee SE, Park HJ, Kim J, Lee S, Lee YK, Park S, Yoo J. Gene Therapy Using Efficient Direct Lineage Reprogramming Technology for Neurological Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101680. [PMID: 37242096 DOI: 10.3390/nano13101680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Gene therapy is an innovative approach in the field of regenerative medicine. This therapy entails the transfer of genetic material into a patient's cells to treat diseases. In particular, gene therapy for neurological diseases has recently achieved significant progress, with numerous studies investigating the use of adeno-associated viruses for the targeted delivery of therapeutic genetic fragments. This approach has potential applications for treating incurable diseases, including paralysis and motor impairment caused by spinal cord injury and Parkinson's disease, and it is characterized by dopaminergic neuron degeneration. Recently, several studies have explored the potential of direct lineage reprogramming (DLR) for treating incurable diseases, and highlighted the advantages of DLR over conventional stem cell therapy. However, application of DLR technology in clinical practice is hindered by its low efficiency compared with cell therapy using stem cell differentiation. To overcome this limitation, researchers have explored various strategies such as the efficiency of DLR. In this study, we focused on innovative strategies, including the use of a nanoporous particle-based gene delivery system to improve the reprogramming efficiency of DLR-induced neurons. We believe that discussing these approaches can facilitate the development of more effective gene therapies for neurological disorders.
Collapse
Affiliation(s)
- Yujung Chang
- Laboratory of Regenerative Medicine for Neurodegenerative Disease, Stand Up Therapeutics, Hannamdaero 98, Seoul 04418, Republic of Korea
- Department of Molecular Biology, Nuturn Science, Sinsadong 559-8, Seoul 06037, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Jieun Kim
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon 24341, Republic of Korea
| | - Chunggoo Kim
- Laboratory of Regenerative Medicine for Neurodegenerative Disease, Stand Up Therapeutics, Hannamdaero 98, Seoul 04418, Republic of Korea
| | - Hyun Soo Shim
- Laboratory of Regenerative Medicine for Neurodegenerative Disease, Stand Up Therapeutics, Hannamdaero 98, Seoul 04418, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyeok Ju Park
- Database Laboratory, Department of Computer Science and Engineering, Dongguk University-Seoul, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Yong Kyu Lee
- Database Laboratory, Department of Computer Science and Engineering, Dongguk University-Seoul, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Junsang Yoo
- Laboratory of Regenerative Medicine for Neurodegenerative Disease, Stand Up Therapeutics, Hannamdaero 98, Seoul 04418, Republic of Korea
| |
Collapse
|
11
|
Aversano S, Palladino R, Caiazzo M. Direct Cell Conversion of Somatic Cells into Dopamine Neurons: Achievements and Perspectives. Cell Reprogram 2022; 24:259-270. [PMID: 36137065 DOI: 10.1089/cell.2022.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the last decade, direct reprogramming has emerged as a novel strategy to obtain mature and functional dopamine neurons from somatic cells. This approach could overcome issues linked to the use of human pluripotent stem cells such as ethical concerns and safety problems that can arise from the overgrowth of undifferentiated cells after transplantation. Several conversion methodologies have been developed to obtain induced DA neurons (iDANs) or induced DA neuron progenitors (iDPs). iDANs have also proved to successfully integrate in mice striatum, alleviating Parkinson's disease (PD) motor symptoms. In the next decade, human iDANs and/or iDPs could be translated to clinic to achieve a patient-tailored therapy, but current critical issues hinder this goal, such as the low conversion rate of adult human fibroblasts and the risks associated with lentiviral delivery of conversion factors. In this study, we summarize the strategies and recent improvements developed for the generation of mouse and human iDANs/iDPs. Furthermore, we discuss the more recent application of in vivo direct conversion, which may enable clinical therapies for PD by means of brain in situ delivery of dopaminergic reprogramming transcription factors.
Collapse
Affiliation(s)
- Simona Aversano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II," Naples, Italy
| | - Renata Palladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II," Naples, Italy
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II," Naples, Italy.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Li S, Lei Z, Sun T. The role of microRNAs in neurodegenerative diseases: a review. Cell Biol Toxicol 2022; 39:53-83. [PMID: 36125599 PMCID: PMC9486770 DOI: 10.1007/s10565-022-09761-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs which are essential post-transcriptional gene regulators in various neuronal degenerative diseases and playact a key role in these physiological progresses. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, multiple sclerosis, and, stroke, are seriously threats to the life and health of all human health and life kind. Recently, various studies have reported that some various miRNAs can regulate the development of neurodegenerative diseases as well as act as biomarkers to predict these neuronal diseases conditions. Endogenic miRNAs such as miR-9, the miR-29 family, miR-15, and the miR-34 family are generally dysregulated in animal and cell models. They are involved in regulating the physiological and biochemical processes in the nervous system by targeting regulating different molecular targets and influencing a variety of pathways. Additionally, exogenous miRNAs derived from homologous plants and defined as botanmin, such as miR2911 and miR168, can be taken up and transferred by other species to be and then act analogously to endogenic miRNAs to regulate the physiological and biochemical processes. This review summarizes the mechanism and principle of miRNAs in the treatment of some neurodegenerative diseases, as well as discusses several types of miRNAs which were the most commonly reported in diseases. These miRNAs could serve as a study provided some potential biomarkers in neurodegenerative diseases might be an ideal and/or therapeutic targets for neurodegenerative diseases. Finally, the role accounted of the prospective exogenous miRNAs involved in mammalian diseases is described.
Collapse
Affiliation(s)
- Shijie Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China. .,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| |
Collapse
|
13
|
Neuroblastoma SH-SY5Y Cell Differentiation to Mature Neuron by AM580 Treatment. Neurochem Res 2022; 47:3723-3732. [PMID: 36066699 DOI: 10.1007/s11064-022-03730-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
Neuroblastoma is a type of developmental childhood cancer that arises from the neural crest. It is the most common pediatric solid tumor in the world. AM580 is a powerful cyto-differentiating molecule on acute promyelocytic leukemia cells and induced pluripotent stem cells, but its effect on neuroblastoma is still unknown. In this study, the neuronal differentiation impact of AM580 was investigated using the human neuroblastoma cell line SH-SY5Y as a model. AM580 successfully stimulated the SH-SY5Y cells to develop into neuron-like cells. Functional enrichment analysis of RNAseq data revealed that differentially expressed genes (DEGs) were substantially enriched for GO keywords and KEGG pathways linked to neuron development. Some potassium ion channel genes associated with neuronal excitation, such as KCNT1, were shown to be upregulated. Through the MEA tests, we found the AM580-induced neurons possessed electrical spikes as mature neurons. AM580 also induced the neuronal marker β-tubulin III and mature neurons marker Neurofilament H. Our study proved that AM580 can promote the differentiation of neurons and has the potential to treat neuroblastoma, neurodevelopmental and neurodegenerative diseases.
Collapse
|
14
|
Domingo‐Rodriguez L, Cabana‐Domínguez J, Fernàndez‐Castillo N, Cormand B, Martín‐García E, Maldonado R. Differential expression of miR-1249-3p and miR-34b-5p between vulnerable and resilient phenotypes of cocaine addiction. Addict Biol 2022; 27:e13201. [PMID: 36001423 PMCID: PMC9286869 DOI: 10.1111/adb.13201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 05/13/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Cocaine addiction is a complex brain disorder involving long-term alterations that lead to loss of control over drug seeking. The transition from recreational use to pathological consumption is different in each individual, depending on the interaction between environmental and genetic factors. Epigenetic mechanisms are ideal candidates to study psychiatric disorders triggered by these interactions, maintaining persistent malfunctions in specific brain regions. Here we aim to study brain-region-specific epigenetic signatures following exposure to cocaine in a mouse model of addiction to this drug. Extreme subpopulations of vulnerable and resilient phenotypes were selected to identify miRNA signatures for differential vulnerability to cocaine addiction. We used an operant model of intravenous cocaine self-administration to evaluate addictive-like behaviour in rodents based on the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition criteria to diagnose substance use disorders. After cocaine self-administration, we performed miRNA profiling to compare two extreme subpopulations of mice classified as resilient and vulnerable to cocaine addiction. We found that mmu-miR-34b-5p was downregulated in the nucleus accumbens of vulnerable mice with high motivation for cocaine. On the other hand, mmu-miR-1249-3p was downregulated on vulnerable mice with high levels of motor disinhibition. The elucidation of the epigenetic profile related to vulnerability to cocaine addiction is expected to help find novel biomarkers that could facilitate the interventions to battle this devastating disorder.
Collapse
Affiliation(s)
- Laura Domingo‐Rodriguez
- Laboratory of Neuropharmacology‐Neurophar, Department of Medicine and Life SciencesUniversitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Judit Cabana‐Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)BarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de Déu (IR‐SJD)BarcelonaSpain
| | - Noèlia Fernàndez‐Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)BarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de Déu (IR‐SJD)BarcelonaSpain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)BarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de Déu (IR‐SJD)BarcelonaSpain
| | - Elena Martín‐García
- Laboratory of Neuropharmacology‐Neurophar, Department of Medicine and Life SciencesUniversitat Pompeu Fabra (UPF)BarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology‐Neurophar, Department of Medicine and Life SciencesUniversitat Pompeu Fabra (UPF)BarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| |
Collapse
|
15
|
The Role of Non-Coding RNAs in the Pathogenesis of Parkinson’s Disease: Recent Advancement. Pharmaceuticals (Basel) 2022; 15:ph15070811. [PMID: 35890110 PMCID: PMC9315906 DOI: 10.3390/ph15070811] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson’s disease (PD) is a prevalent neurodegenerative aging disorder that manifests as motor and non-motor symptoms, and its etiopathogenesis is influenced by non-coding RNAs (ncRNAs). Signal pathway and gene sequence studies have proposed that alteration of ncRNAs is relevant to the occurrence and development of PD. Furthermore, many studies on brain tissues and body fluids from patients with PD indicate that variations in ncRNAs and their target genes could trigger or exacerbate neurodegenerative pathogenesis and serve as potential non-invasive biomarkers of PD. Numerous ncRNAs have been considered regulators of apoptosis, α-syn misfolding and aggregation, mitochondrial dysfunction, autophagy, and neuroinflammation in PD etiology, and evidence is mounting for the determination of the role of competing endogenous RNA (ceRNA) mechanisms in disease development. In this review, we discuss the current knowledge regarding the regulation and function of ncRNAs as well as ceRNA networks in PD pathogenesis, focusing on microRNAs, long ncRNAs, and circular RNAs to increase the understanding of the disease and propose potential target identification and treatment in the early stages of PD.
Collapse
|
16
|
Pulcrano S, De Gregorio R, De Sanctis C, Lahti L, Perrone-Capano C, Ponti D, di Porzio U, Perlmann T, Caiazzo M, Volpicelli F, Bellenchi GC. Lmx1a-Dependent Activation of miR-204/211 Controls the Timing of Nurr1-Mediated Dopaminergic Differentiation. Int J Mol Sci 2022; 23:6961. [PMID: 35805964 PMCID: PMC9266978 DOI: 10.3390/ijms23136961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
The development of midbrain dopaminergic (DA) neurons requires a fine temporal and spatial regulation of a very specific gene expression program. Here, we report that during mouse brain development, the microRNA (miR-) 204/211 is present at a high level in a subset of DA precursors expressing the transcription factor Lmx1a, an early determinant for DA-commitment, but not in more mature neurons expressing Th or Pitx3. By combining different in vitro model systems of DA differentiation, we show that the levels of Lmx1a influence the expression of miR-204/211. Using published transcriptomic data, we found a significant enrichment of miR-204/211 target genes in midbrain dopaminergic neurons where Lmx1a was selectively deleted at embryonic stages. We further demonstrated that miR-204/211 controls the timing of the DA differentiation by directly downregulating the expression of Nurr1, a late DA differentiation master gene. Thus, our data indicate the Lmx1a-miR-204/211-Nurr1 axis as a key component in the cascade of events that ultimately lead to mature midbrain dopaminergic neurons differentiation and point to miR-204/211 as the molecular switch regulating the timing of Nurr1 expression.
Collapse
Affiliation(s)
- Salvatore Pulcrano
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Roberto De Gregorio
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
| | - Claudia De Sanctis
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
| | - Laura Lahti
- The Ludwig Institute, Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden; (L.L.); (T.P.)
| | - Carla Perrone-Capano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Donatella Ponti
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, 040100 Latina, Italy;
| | - Umberto di Porzio
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
| | - Thomas Perlmann
- The Ludwig Institute, Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden; (L.L.); (T.P.)
| | - Massimiliano Caiazzo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Floriana Volpicelli
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
17
|
Pascale E, Caiazza C, Paladino M, Parisi S, Passaro F, Caiazzo M. MicroRNA Roles in Cell Reprogramming Mechanisms. Cells 2022; 11:940. [PMID: 35326391 PMCID: PMC8946776 DOI: 10.3390/cells11060940] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cell reprogramming is a groundbreaking technology that, in few decades, generated a new paradigm in biomedical science. To date we can use cell reprogramming to potentially generate every cell type by converting somatic cells and suitably modulating the expression of key transcription factors. This approach can be used to convert skin fibroblasts into pluripotent stem cells as well as into a variety of differentiated and medically relevant cell types, including cardiomyocytes and neural cells. The molecular mechanisms underlying such striking cell phenotypes are still largely unknown, but in the last decade it has been proven that cell reprogramming approaches are significantly influenced by non-coding RNAs. Specifically, this review will focus on the role of microRNAs in the reprogramming processes that lead to the generation of pluripotent stem cells, neurons, and cardiomyocytes. As highlighted here, non-coding RNA-forced expression can be sufficient to support some cell reprogramming processes, and, therefore, we will also discuss how these molecular determinants could be used in the future for biomedical purposes.
Collapse
Affiliation(s)
- Emilia Pascale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Martina Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Fabiana Passaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
18
|
Roles of Transcription Factors in the Development and Reprogramming of the Dopaminergic Neurons. Int J Mol Sci 2022; 23:ijms23020845. [PMID: 35055043 PMCID: PMC8775916 DOI: 10.3390/ijms23020845] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
The meso-diencephalic dopaminergic (mdDA) neurons regulate various critical processes in the mammalian nervous system, including voluntary movement and a wide range of behaviors such as mood, reward, addiction, and stress. mdDA neuronal loss is linked with one of the most prominent human movement neurological disorders, Parkinson’s disease (PD). How these cells die and regenerate are two of the most hotly debated PD research topics. As for the latter, it has been long known that a series of transcription factors (TFs) involves the development of mdDA neurons, specifying cell types and controlling developmental patterns. In vitro and in vivo, TFs regulate the expression of tyrosine hydroxylase, a dopamine transporter, vesicular monoamine transporter 2, and L-aromatic amino acid decarboxylase, all of which are critical for dopamine synthesis and transport in dopaminergic neurons (DA neurons). In this review, we encapsulate the molecular mechanism of TFs underlying embryonic growth and maturation of mdDA neurons and update achievements on dopaminergic cell therapy dependent on knowledge of TFs in mdDA neuronal development. We believe that a deeper understanding of the extrinsic and intrinsic factors that influence DA neurons’ fate and development in the midbrain could lead to a better strategy for PD cell therapy.
Collapse
|
19
|
Grad M, Nir A, Levy G, Trangle SS, Shapira G, Shomron N, Assaf Y, Barak B. Altered White Matter and microRNA Expression in a Murine Model Related to Williams Syndrome Suggests That miR-34b/c Affects Brain Development via Ptpru and Dcx Modulation. Cells 2022; 11:cells11010158. [PMID: 35011720 PMCID: PMC8750756 DOI: 10.3390/cells11010158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Williams syndrome (WS) is a multisystem neurodevelopmental disorder caused by a de novo hemizygous deletion of ~26 genes from chromosome 7q11.23, among them the general transcription factor II-I (GTF2I). By studying a novel murine model for the hypersociability phenotype associated with WS, we previously revealed surprising aberrations in myelination and cell differentiation properties in the cortices of mutant mice compared to controls. These mutant mice had selective deletion of Gtf2i in the excitatory neurons of the forebrain. Here, we applied diffusion magnetic resonance imaging and fiber tracking, which showed a reduction in the number of streamlines in limbic outputs such as the fimbria/fornix fibers and the stria terminalis, as well as the corpus callosum of these mutant mice compared to controls. Furthermore, we utilized next-generation sequencing (NGS) analysis of cortical small RNAs' expression (RNA-Seq) levels to identify altered expression of microRNAs (miRNAs), including two from the miR-34 cluster, known to be involved in prominent processes in the developing nervous system. Luciferase reporter assay confirmed the direct binding of miR-34c-5p to the 3'UTR of PTPRU-a gene involved in neural development that was elevated in the cortices of mutant mice relative to controls. Moreover, we found an age-dependent variation in the expression levels of doublecortin (Dcx)-a verified miR-34 target. Thus, we demonstrate the substantial effect a single gene deletion can exert on miRNA regulation and brain structure, and advance our understanding and, hopefully, treatment of WS.
Collapse
Affiliation(s)
- Meitar Grad
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
| | - Ariel Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
| | - Gilad Levy
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
| | - Sari Schokoroy Trangle
- Faculty of Social Sciences, School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Guy Shapira
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noam Shomron
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
- Faculty of Life Sciences, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Boaz Barak
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
- Faculty of Social Sciences, School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
- Correspondence:
| |
Collapse
|
20
|
Karabicici M, Azbazdar Y, Iscan E, Ozhan G. Misregulation of Wnt Signaling Pathways at the Plasma Membrane in Brain and Metabolic Diseases. MEMBRANES 2021; 11:844. [PMID: 34832073 PMCID: PMC8621778 DOI: 10.3390/membranes11110844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
Wnt signaling pathways constitute a group of signal transduction pathways that direct many physiological processes, such as development, growth, and differentiation. Dysregulation of these pathways is thus associated with many pathological processes, including neurodegenerative diseases, metabolic disorders, and cancer. At the same time, alterations are observed in plasma membrane compositions, lipid organizations, and ordered membrane domains in brain and metabolic diseases that are associated with Wnt signaling pathway activation. Here, we discuss the relationships between plasma membrane components-specifically ligands, (co) receptors, and extracellular or membrane-associated modulators-to activate Wnt pathways in several brain and metabolic diseases. Thus, the Wnt-receptor complex can be targeted based on the composition and organization of the plasma membrane, in order to develop effective targeted therapy drugs.
Collapse
Affiliation(s)
- Mustafa Karabicici
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Evin Iscan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| |
Collapse
|
21
|
Han F, Liu Y, Huang J, Zhang X, Wei C. Current Approaches and Molecular Mechanisms for Directly Reprogramming Fibroblasts Into Neurons and Dopamine Neurons. Front Aging Neurosci 2021; 13:738529. [PMID: 34658841 PMCID: PMC8515543 DOI: 10.3389/fnagi.2021.738529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease is mainly caused by specific degeneration of dopaminergic neurons (DA neurons) in the substantia nigra of the middle brain. Over the past two decades, transplantation of neural stem cells (NSCs) from fetal brain-derived neural stem cells (fNSCs), human embryonic stem cells (hESCs), and induced pluripotent stem cells (iPSCs) has been shown to improve the symptoms of motor dysfunction in Parkinson's disease (PD) animal models and PD patients significantly. However, there are ethical concerns with fNSCs and hESCs and there is an issue of rejection by the immune system, and the iPSCs may involve tumorigenicity caused by the integration of the transgenes. Recent studies have shown that somatic fibroblasts can be directly reprogrammed to NSCs, neurons, and specific dopamine neurons. Directly induced neurons (iN) or induced DA neurons (iDANs) from somatic fibroblasts have several advantages over iPSC cells. The neurons produced by direct transdifferentiation do not pass through a pluripotent state. Therefore, direct reprogramming can generate patient-specific cells, and it can overcome the safety problems of rejection by the immune system and teratoma formation related to hESCs and iPSCs. However, there are some critical issues such as the low efficiency of direct reprogramming, biological functions, and risks from the directly converted neurons, which hinder their clinical applications. Here, the recent progress in methods, mechanisms, and future challenges of directly reprogramming somatic fibroblasts into neurons or dopamine neurons were summarized to speed up the clinical translation of these directly converted neural cells to treat PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabin Han
- Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shenzhen Research Institute of Shandong University, Jinan, China.,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Yanming Liu
- Shenzhen Research Institute of Shandong University, Jinan, China.,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Jin Huang
- Laboratory of Basic Medical Research, Medical Centre of PLA Strategic Support Force, Beijing, China
| | - Xiaoping Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanfei Wei
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
22
|
Nuriya M, Ashikari Y, Iino T, Asai T, Shou J, Karasawa K, Nakamura K, Ozeki Y, Fujimoto Y, Yasui M. Alkyne-Tagged Dopamines as Versatile Analogue Probes for Dopaminergic System Analysis. Anal Chem 2021; 93:9345-9355. [PMID: 34210142 DOI: 10.1021/acs.analchem.0c05403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dopaminergic system is essential for the function of the brain in health and disease. Therefore, detailed studies focused on unraveling the mechanisms involved in dopaminergic signaling are required. However, the lack of probes that mimic dopamine in living tissues, owing to the neurotransmitter's small size, has hampered analysis of the dopaminergic system. The current study aimed to overcome this limitation by developing alkyne-tagged dopamine compounds (ATDAs) that have a minimally invasive and uniquely identifiable alkyne group as a tag. ATDAs were established as chemically and functionally similar to dopamine and readily detectable by methods such as specific click chemistry and Raman scattering. The ATDAs developed here were verified as analogue probes that mimic dopamine in neurons and brain tissues, allowing the detailed characterization of dopamine dynamics. Therefore, ATDAs can act as safe and versatile tools with wide applicability in detailed studies of the dopaminergic system. Furthermore, our results suggest that the alkyne-tagging approach can also be applied to other small-sized neurotransmitters to facilitate characterization of their dynamics in the brain.
Collapse
Affiliation(s)
- Mutsuo Nuriya
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.,Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Kanagawa 240-8501, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45 Mita, Minato, Tokyo 108-8345, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.,Core Research for Evolution and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yosuke Ashikari
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Takanori Iino
- Core Research for Evolution and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012, Japan.,Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Takuya Asai
- Core Research for Evolution and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012, Japan.,Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Jingwen Shou
- Core Research for Evolution and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012, Japan.,Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Keiko Karasawa
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kaho Nakamura
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.,Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Kanagawa 240-8501, Japan
| | - Yasuyuki Ozeki
- Core Research for Evolution and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012, Japan.,Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Yukari Fujimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45 Mita, Minato, Tokyo 108-8345, Japan.,Core Research for Evolution and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
23
|
Gaggi G, Di Credico A, Izzicupo P, Iannetti G, Di Baldassarre A, Ghinassi B. Chemical and Biological Molecules Involved in Differentiation, Maturation, and Survival of Dopaminergic Neurons in Health and Parkinson's Disease: Physiological Aspects and Clinical Implications. Biomedicines 2021; 9:biomedicines9070754. [PMID: 34209807 PMCID: PMC8301385 DOI: 10.3390/biomedicines9070754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disease characterized by a specific and progressive loss of dopaminergic (DA) neurons and dopamine, causing motor dysfunctions and impaired movements. Unfortunately, available therapies can partially treat the motor symptoms, but they have no effect on non-motor features. In addition, the therapeutic effect reduces gradually, and the prolonged use of drugs leads to a significative increase in the number of adverse events. For these reasons, an alternative approach that allows the replacement or the improved survival of DA neurons is very appealing for the treatment of PD patients and recently the first human clinical trials for DA neurons replacement have been set up. Here, we review the role of chemical and biological molecules that are involved in the development, survival and differentiation of DA neurons. In particular, we review the chemical small molecules used to differentiate different type of stem cells into DA neurons with high efficiency; the role of microRNAs and long non-coding RNAs both in DA neurons development/survival as far as in the pathogenesis of PD; and, finally, we dissect the potential role of exosomes carrying biological molecules as treatment of PD.
Collapse
Affiliation(s)
- Giulia Gaggi
- Beth Israel Deaconess Medical Center, Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Andrea Di Credico
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.C.); (P.I.); (B.G.)
| | - Pascal Izzicupo
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.C.); (P.I.); (B.G.)
| | | | - Angela Di Baldassarre
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.C.); (P.I.); (B.G.)
- Correspondence:
| | - Barbara Ghinassi
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.C.); (P.I.); (B.G.)
| |
Collapse
|
24
|
De Risi M, Tufano M, Alvino FG, Ferraro MG, Torromino G, Gigante Y, Monfregola J, Marrocco E, Pulcrano S, Tunisi L, Lubrano C, Papy-Garcia D, Tuchman Y, Salleo A, Santoro F, Bellenchi GC, Cristino L, Ballabio A, Fraldi A, De Leonibus E. Altered heparan sulfate metabolism during development triggers dopamine-dependent autistic-behaviours in models of lysosomal storage disorders. Nat Commun 2021; 12:3495. [PMID: 34108486 PMCID: PMC8190083 DOI: 10.1038/s41467-021-23903-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Lysosomal storage disorders characterized by altered metabolism of heparan sulfate, including Mucopolysaccharidosis (MPS) III and MPS-II, exhibit lysosomal dysfunctions leading to neurodegeneration and dementia in children. In lysosomal storage disorders, dementia is preceded by severe and therapy-resistant autistic-like symptoms of unknown cause. Using mouse and cellular models of MPS-IIIA, we discovered that autistic-like behaviours are due to increased proliferation of mesencephalic dopamine neurons originating during embryogenesis, which is not due to lysosomal dysfunction, but to altered HS function. Hyperdopaminergia and autistic-like behaviours are corrected by the dopamine D1-like receptor antagonist SCH-23390, providing a potential alternative strategy to the D2-like antagonist haloperidol that has only minimal therapeutic effects in MPS-IIIA. These findings identify embryonic dopaminergic neurodevelopmental defects due to altered function of HS leading to autistic-like behaviours in MPS-II and MPS-IIIA and support evidence showing that altered HS-related gene function is causative of autism.
Collapse
Affiliation(s)
- Maria De Risi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo Scalo, Rome, Italy
| | - Michele Tufano
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | | | - Giulia Torromino
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo Scalo, Rome, Italy
| | - Ylenia Gigante
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Jlenia Monfregola
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | - Lea Tunisi
- Institute of Biomolecular Chemistry, CNR, Pozzuoli, Naples, Italy
| | - Claudia Lubrano
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | | | - Yaakov Tuchman
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | | | - Luigia Cristino
- Institute of Biomolecular Chemistry, CNR, Pozzuoli, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Alessandro Fraldi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
25
|
Speranza L, di Porzio U, Viggiano D, de Donato A, Volpicelli F. Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control. Cells 2021; 10:735. [PMID: 33810328 PMCID: PMC8066851 DOI: 10.3390/cells10040735] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) is a key neurotransmitter involved in multiple physiological functions including motor control, modulation of affective and emotional states, reward mechanisms, reinforcement of behavior, and selected higher cognitive functions. Dysfunction in dopaminergic transmission is recognized as a core alteration in several devastating neurological and psychiatric disorders, including Parkinson's disease (PD), schizophrenia, bipolar disorder, attention deficit hyperactivity disorder (ADHD) and addiction. Here we will discuss the current insights on the role of DA in motor control and reward learning mechanisms and its involvement in the modulation of synaptic dynamics through different pathways. In particular, we will consider the role of DA as neuromodulator of two forms of synaptic plasticity, known as long-term potentiation (LTP) and long-term depression (LTD) in several cortical and subcortical areas. Finally, we will delineate how the effect of DA on dendritic spines places this molecule at the interface between the motor and the cognitive systems. Specifically, we will be focusing on PD, vascular dementia, and schizophrenia.
Collapse
Affiliation(s)
- Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Umberto di Porzio
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80131 Naples, Italy
| | - Davide Viggiano
- Department of Translational Medical Sciences, Genetic Research Institute “Gaetano Salvatore”, University of Campania “L. Vanvitelli”, IT and Biogem S.c.a.r.l., 83031 Ariano Irpino, Italy; (D.V.); (A.d.D.)
| | - Antonio de Donato
- Department of Translational Medical Sciences, Genetic Research Institute “Gaetano Salvatore”, University of Campania “L. Vanvitelli”, IT and Biogem S.c.a.r.l., 83031 Ariano Irpino, Italy; (D.V.); (A.d.D.)
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
26
|
Li X, Si W, Li Z, Tian Y, Liu X, Ye S, Huang Z, Ji Y, Zhao C, Hao X, Chen D, Zhu M. miR‑335 promotes ferroptosis by targeting ferritin heavy chain 1 in in vivo and in vitro models of Parkinson's disease. Int J Mol Med 2021; 47:61. [PMID: 33649797 PMCID: PMC7910012 DOI: 10.3892/ijmm.2021.4894] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the selective loss of dopaminergic neurons in the substantia nigra (SN). In a previous study, the authors demonstrated that ferritin heavy chain 1 (FTH1) inhibited ferroptosis in a model of 6-hydroxydopamine (6-OHDA)-induced PD. However, whether and how microRNAs (miRNAs/miRs) modulate FTH1 in PD ferroptosis is not yet well understood. In the present study, in vivo and in vitro models of PD induced by 6-OHDA were established. The results in vivo and in vitro revealed that the levels of the ferroptosis marker protein, glutathione peroxidase 4 (GPX4), and the PD marker protein, tyrosine hydroxylase (TH), were decreased in the model group, associated with a decreased FTH1 expression and the upregulation of miR-335. In both the in vivo and in vitro models, miR-335 mimic led to a lower FTH1 expression, exacerbated ferroptosis and an enhanced PD pathology. The luciferase 3′-untranslated region reporter results identified FTH1 as the direct target of miR-335. The silencing of FTH1 in 6-OHDA-stimulated cells enhanced the effects of miR-335 on ferroptosis and promoted PD pathology. Mechanistically, miR-335 enhanced ferroptosis through the degradation of FTH1 to increase iron release, lipid peroxidation and reactive oxygen species (ROS) accumulation, and to decrease mitochondrial membrane potential (MMP). On the whole, the findings of the present study reveal that miR-335 promotes ferroptosis by targeting FTH1 in in vitro and in vivo models of PD, providing a potential therapeutic target for the treatment of PD.
Collapse
Affiliation(s)
- Xinrong Li
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Wenwen Si
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Zhan Li
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510010, P.R. China
| | - Ye Tian
- Baoan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518101, P.R. China
| | - Xuelei Liu
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Shanyu Ye
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Yichun Ji
- Baoan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518101, P.R. China
| | - Caiping Zhao
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiaoqian Hao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Meiling Zhu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| |
Collapse
|
27
|
Wen B, He C, Zhang Q, Zhang F, Li N, Pan Y, Deng M, Wang Y, Li J, Qiu J. Overexpression of microRNA-221 promotes the differentiation of stem cells from human exfoliated deciduous teeth to neurons through activation of Wnt/β-catenin pathway via inhibition of CHD8. Cell Cycle 2020; 19:3231-3248. [PMID: 33198579 PMCID: PMC7751633 DOI: 10.1080/15384101.2020.1816308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/11/2019] [Accepted: 07/23/2020] [Indexed: 10/23/2022] Open
Abstract
microRNAs have been proved to function in some processes of differentiation and the effect is favorable. At present, the differentiation of stem cells is not so ideal because of the high expenses and inaccessibility. Therefore, we explored the possibility that microRNA-221 (miR-221) affects differentiation from stem cells from human deciduous tooth (SHEDs) to neurons through Wnt/β-catenin pathway via binding to CHD8. After collection of SHEDs, differentiation from SHEDs to neurons was conducted by neurotrophic factor induction method in vitro, followed by gain- and loss-of-function experiments. Expression of neuron-related genes in SHEDs was examined by immunohistochemistry. The relationship between CHD8 and miR-221 was detected by dual luciferase reporter gene assay. RT-qPCR and Western blot analysis were used to determine miR-221 expression, and the mRNA and protein expression of CHD8, Wnt/β-catenin pathway- and neuron-related genes. Cell viability, and cell cycle and apoptosis were investigated by MTT assay and flow cytometry respectively. Dual luciferase reporter assay displayed that miR-221 targeted CHD8 and then affected the differentiation progression. Results of RT-qPCR and Western blot analysis showed that expression of Wnt/β-catenin pathway-related genes increased significantly, CHD8 expression decreased in neuron-induced SHEDs after miR-221 overexpression or CHD8 silencing. In response to miR-221 overexpression and CHD8 silencing, cell viability and cell cycle entry were increased, and apoptosis was reduced. Moreover, overexpression of miR-221 or silencing of CHD8 elevated the expression of neuron-related genes in neuron-induced SHEDs. Taken together, upregulation of miR-221 promotes differentiation from SHEDs to neuron cells through activation of Wnt/β-catenin pathway by binding to CHD8.
Collapse
Affiliation(s)
- Bing Wen
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Chenjiang He
- Undergraduate Class of Stomatology, Grade 2015, Fuzhou Medical College of Nanchang University, Fuzhou, P.R. China
| | - Qin Zhang
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Fanglin Zhang
- College of Pharmacy, Nanchang University School of Medicine, Nanchang, P.R. China
| | - Na Li
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Yan Pan
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Mengting Deng
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Yue Wang
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Jianping Li
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Jiaxuan Qiu
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
28
|
Zhang Y, Xie X, Hu J, Afreen KS, Zhang CL, Zhuge Q, Yang J. Prospects of Directly Reprogrammed Adult Human Neurons for Neurodegenerative Disease Modeling and Drug Discovery: iN vs. iPSCs Models. Front Neurosci 2020; 14:546484. [PMID: 33328842 PMCID: PMC7710799 DOI: 10.3389/fnins.2020.546484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
A reliable disease model is critical to the study of specific disease mechanisms as well as for the discovery and development of new drugs. Despite providing crucial insights into the mechanisms of neurodegenerative diseases, translation of this information to develop therapeutics in clinical trials have been unsuccessful. Reprogramming technology to convert adult somatic cells to induced Pluripotent Stem Cells (iPSCs) or directly reprogramming adult somatic cells to induced Neurons (iN), has allowed for the creation of better models to understand the molecular mechanisms and design of new drugs. In recent times, iPSC technology has been commonly used for modeling neurodegenerative diseases and drug discovery. However, several technological challenges have limited the application of iN. As evidence suggests, iN for the modeling of neurodegenerative disorders is advantageous compared to those derived from iPSCs. In this review, we will compare iPSCs and iN models for neurodegenerative diseases and their potential applications in the future.
Collapse
Affiliation(s)
- Ying Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyang Xie
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,International Department of The Affiliated High School of South China Normal University (HFI), Guangzhou, China
| | - Jiangnan Hu
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kazi Sabrina Afreen
- Department of Microbiology & Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Chun-Li Zhang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjing Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Nouri P, Götz S, Rauser B, Irmler M, Peng C, Trümbach D, Kempny C, Lechermeier CG, Bryniok A, Dlugos A, Euchner E, Beckers J, Brodski C, Klümper C, Wurst W, Prakash N. Dose-Dependent and Subset-Specific Regulation of Midbrain Dopaminergic Neuron Differentiation by LEF1-Mediated WNT1/b-Catenin Signaling. Front Cell Dev Biol 2020; 8:587778. [PMID: 33195246 PMCID: PMC7649324 DOI: 10.3389/fcell.2020.587778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/01/2020] [Indexed: 01/07/2023] Open
Abstract
The mesodiencephalic dopaminergic (mdDA) neurons, including the nigrostriatal subset that preferentially degenerates in Parkinson’s Disease (PD), strongly depend on an accurately balanced Wingless-type MMTV integration site family member 1 (WNT1)/beta-catenin signaling pathway during their development. Loss of this pathway abolishes the generation of these neurons, whereas excessive WNT1/b-catenin signaling prevents their correct differentiation. The identity of the cells responding to this pathway in the developing mammalian ventral midbrain (VM) as well as the precise progression of WNT/b-catenin action in these cells are still unknown. We show that strong WNT/b-catenin signaling inhibits the differentiation of WNT/b-catenin-responding mdDA progenitors into PITX3+ and TH+ mdDA neurons by repressing the Pitx3 gene in mice. This effect is mediated by RSPO2, a WNT/b-catenin agonist, and lymphoid enhancer binding factor 1 (LEF1), an essential nuclear effector of the WNT/b-catenin pathway, via conserved LEF1/T-cell factor binding sites in the Pitx3 promoter. LEF1 expression is restricted to a caudolateral mdDA progenitor subset that preferentially responds to WNT/b-catenin signaling and gives rise to a fraction of all mdDA neurons. Our data indicate that an attenuation of WNT/b-catenin signaling in mdDA progenitors is essential for their correct differentiation into specific mdDA neuron subsets. This is an important consideration for stem cell-based regenerative therapies and in vitro models of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Parivash Nouri
- Laboratory of Applied Genetics and Stem Cell Biology, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Sebastian Götz
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Benedict Rauser
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Changgeng Peng
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Advanced Institute of Translational Medicine, The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Kempny
- Laboratory of Applied Genetics and Stem Cell Biology, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Carina G Lechermeier
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Agnes Bryniok
- Laboratory of Applied Genetics and Stem Cell Biology, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Andrea Dlugos
- Laboratory of Applied Genetics and Stem Cell Biology, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Ellen Euchner
- Laboratory of Applied Genetics and Stem Cell Biology, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, Technical University of Munich, Munich, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Claude Brodski
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Claudia Klümper
- Laboratory of Applied Genetics and Stem Cell Biology, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Developmental Genetics, Helmholtz Zentrum München, Technical University of Munich/Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nilima Prakash
- Laboratory of Applied Genetics and Stem Cell Biology, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| |
Collapse
|
30
|
Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci 2020; 21:E7777. [PMID: 33096634 PMCID: PMC7589016 DOI: 10.3390/ijms21207777] [Citation(s) in RCA: 499] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most distributed and extensively studied neurotrophins in the mammalian brain. BDNF signals through the tropomycin receptor kinase B (TrkB) and the low affinity p75 neurotrophin receptor (p75NTR). BDNF plays an important role in proper growth, development, and plasticity of glutamatergic and GABAergic synapses and through modulation of neuronal differentiation, it influences serotonergic and dopaminergic neurotransmission. BDNF acts as paracrine and autocrine factor, on both pre-synaptic and post-synaptic target sites. It is crucial in the transformation of synaptic activity into long-term synaptic memories. BDNF is considered an instructive mediator of functional and structural plasticity in the central nervous system (CNS), influencing dendritic spines and, at least in the hippocampus, the adult neurogenesis. Changes in the rate of adult neurogenesis and in spine density can influence several forms of learning and memory and can contribute to depression-like behaviors. The possible roles of BDNF in neuronal plasticity highlighted in this review focus on the effect of antidepressant therapies on BDNF-mediated plasticity. Moreover, we will review data that illustrate the role of BDNF as a potent protective factor that is able to confer protection against neurodegeneration, in particular in Alzheimer's disease. Finally, we will give evidence of how the involvement of BDNF in the pathogenesis of brain glioblastoma has emerged, thus opening new avenues for the treatment of this deadly cancer.
Collapse
Affiliation(s)
- Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- InterUniversity Center for Research in Neurosciences (CIRN), University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Luisa Speranza
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
31
|
Jin T, Gu J, Xia H, Chen H, Xu X, Li Z, Yue Y, Gui Y. Differential Expression of microRNA Profiles and Wnt Signals in Stem Cell-Derived Exosomes During Dopaminergic Neuron Differentiation. DNA Cell Biol 2020; 39:2143-2153. [PMID: 33064572 DOI: 10.1089/dna.2020.5931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The role of secreted exosomes during dopaminergic (DA) neuron differentiation is still unknown. To investigate the roles of exosomes in DA neuron fate specification, we profiled exosomal microRNAs (miRNAs) during DA neuron differentiation of epiblast-derived stem cells (EpiSCs). There were 26 miRNAs differentially expressed (relative fold >2, p < 0.05) in EpiSC-derived exosomes at 0, 2, 4, 6, 8, 10, 12, and 14 days of DA epiblast differentiation. Among them, 23 exosomic miRNAs were significantly increased, including miR-124, miR-132, miR-133b, miR-218, miR-9, miR-34b, miR-34c, and miR-135a2, while three exosomic miRNAs (miR-214, miR-7a, and miR-302b) were decreased, when compared with control samples. Bioinformatics analysis by DIANA-mirPath demonstrated that extracellular matrix-receptor interaction, signaling pathways regulating pluripotency of stem cells, FoxO signaling pathway, DA synapse, Wnt signaling pathway, GABAergic synapse, and neurotrophin signaling pathway were significantly enriched in DA differentiation-related miRNA signature (all p-values <0.012). Furthermore, messenger RNAs for nine DA neuronal markers tyrosine hydroxylase (TH), Nr4a2, Pitx3, Drd1a, Lmx1a, Lmx1b, Foxa1, Dmrt5, and Slc18a2 were significantly increased expressed over time in exosomes derived from differentiated EpiSCs. Interestingly, adding with exosomes derived from EpiSC induction experiment resulted in a twofold increase of TH-positive neurons production (35% vs. 17%, p < 0.01) during DA neuronal differentiation from mouse embryonic stem cells (ESCs). In summary, our results suggested exosomal miRNAs are potential regulators of DA neuron differentiation. More importantly, EpiSC-derived exosomes could promote the generation of DA neuron differentiation from ESCs.
Collapse
Affiliation(s)
- Tao Jin
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiachen Gu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongbo Xia
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurology, The First People's Hospital of Fuyang, Hangzhou, China
| | - Huimin Chen
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurology, School of Medicine, Shaoxing University, Shaoxing, China
| | - Xiaomin Xu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zongshan Li
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yumei Yue
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yaxing Gui
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Pascale E, Divisato G, Palladino R, Auriemma M, Ngalya EF, Caiazzo M. Noncoding RNAs and Midbrain DA Neurons: Novel Molecular Mechanisms and Therapeutic Targets in Health and Disease. Biomolecules 2020; 10:E1269. [PMID: 32899172 PMCID: PMC7563414 DOI: 10.3390/biom10091269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Midbrain dopamine neurons have crucial functions in motor and emotional control and their degeneration leads to several neurological dysfunctions such as Parkinson's disease, addiction, depression, schizophrenia, and others. Despite advances in the understanding of specific altered proteins and coding genes, little is known about cumulative changes in the transcriptional landscape of noncoding genes in midbrain dopamine neurons. Noncoding RNAs-specifically microRNAs and long noncoding RNAs-are emerging as crucial post-transcriptional regulators of gene expression in the brain. The identification of noncoding RNA networks underlying all stages of dopamine neuron development and plasticity is an essential step to deeply understand their physiological role and also their involvement in the etiology of dopaminergic diseases. Here, we provide an update about noncoding RNAs involved in dopaminergic development and metabolism, and the related evidence of these biomolecules for applications in potential treatments for dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Emilia Pascale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Giuseppina Divisato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Renata Palladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Margherita Auriemma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Edward Faustine Ngalya
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
33
|
di Porzio U. A bigger brain for a more complex environment. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2020-0041/revneuro-2020-0041.xml. [PMID: 32924383 DOI: 10.1515/revneuro-2020-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/04/2020] [Indexed: 11/15/2022]
Abstract
The environment increased complexity required more neural functions to develop in the hominin brains, and the hominins adapted to the complexity by developing a bigger brain with a greater interconnection between its parts. Thus, complex environments drove the growth of the brain. In about two million years during hominin evolution, the brain increased three folds in size, one of the largest and most complex amongst mammals, relative to body size. The size increase has led to anatomical reorganization and complex neuronal interactions in a relatively small skull. At birth, the human brain is only about 20% of its adult size. That facilitates the passage through the birth canal. Therefore, the human brain, especially cortex, develops postnatally in a rich stimulating environment with continuous brain wiring and rewiring and insertion of billions of new neurons. One of the consequence is that in the newborn brain, neuroplasticity is always turned "on" and it remains active throughout life, which gave humans the ability to adapt to complex and often hostile environments, integrate external experiences, solve problems, elaborate abstract ideas and innovative technologies, store a lot of information. Besides, hominins acquired unique abilities as music, language, and intense social cooperation. Overwhelming ecological, social, and cultural challenges have made the human brain so unique. From these events, as well as the molecular genetic changes that took place in those million years, under the pressure of natural selection, derive the distinctive cognitive abilities that have led us to complex social organizations and made our species successful.
Collapse
Affiliation(s)
- Umberto di Porzio
- Developmental Neurobiology Laboratory, Institute of Genetics and Biophysics, CNR, Via Pietro Castellino 111, 80128 Naples, Italy
| |
Collapse
|
34
|
Mesman S, Smidt MP. Acquisition of the Midbrain Dopaminergic Neuronal Identity. Int J Mol Sci 2020; 21:ijms21134638. [PMID: 32629812 PMCID: PMC7369932 DOI: 10.3390/ijms21134638] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
The mesodiencephalic dopaminergic (mdDA) group of neurons comprises molecularly distinct subgroups, of which the substantia nigra (SN) and ventral tegmental area (VTA) are the best known, due to the selective degeneration of the SN during Parkinson’s disease. However, although significant research has been conducted on the molecular build-up of these subsets, much is still unknown about how these subsets develop and which factors are involved in this process. In this review, we aim to describe the life of an mdDA neuron, from specification in the floor plate to differentiation into the different subsets. All mdDA neurons are born in the mesodiencephalic floor plate under the influence of both SHH-signaling, important for floor plate patterning, and WNT-signaling, involved in establishing the progenitor pool and the start of the specification of mdDA neurons. Furthermore, transcription factors, like Ngn2, Ascl1, Lmx1a, and En1, and epigenetic factors, like Ezh2, are important in the correct specification of dopamine (DA) progenitors. Later during development, mdDA neurons are further subdivided into different molecular subsets by, amongst others, Otx2, involved in the specification of subsets in the VTA, and En1, Pitx3, Lmx1a, and WNT-signaling, involved in the specification of subsets in the SN. Interestingly, factors involved in early specification in the floor plate can serve a dual function and can also be involved in subset specification. Besides the mdDA group of neurons, other systems in the embryo contain different subsets, like the immune system. Interestingly, many factors involved in the development of mdDA neurons are similarly involved in immune system development and vice versa. This indicates that similar mechanisms are used in the development of these systems, and that knowledge about the development of the immune system may hold clues for the factors involved in the development of mdDA neurons, which may be used in culture protocols for cell replacement therapies.
Collapse
|
35
|
Molecular Regulation in Dopaminergic Neuron Development. Cues to Unveil Molecular Pathogenesis and Pharmacological Targets of Neurodegeneration. Int J Mol Sci 2020; 21:ijms21113995. [PMID: 32503161 PMCID: PMC7312927 DOI: 10.3390/ijms21113995] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The relatively few dopaminergic neurons in the mammalian brain are mostly located in the midbrain and regulate many important neural functions, including motor integration, cognition, emotive behaviors and reward. Therefore, alteration of their function or degeneration leads to severe neurological and neuropsychiatric diseases. Unraveling the mechanisms of midbrain dopaminergic (mDA) phenotype induction and maturation and elucidating the role of the gene network involved in the development and maintenance of these neurons is of pivotal importance to rescue or substitute these cells in order to restore dopaminergic functions. Recently, in addition to morphogens and transcription factors, microRNAs have been identified as critical players to confer mDA identity. The elucidation of the gene network involved in mDA neuron development and function will be crucial to identify early changes of mDA neurons that occur in pre-symptomatic pathological conditions, such as Parkinson’s disease. In addition, it can help to identify targets for new therapies and for cell reprogramming into mDA neurons. In this essay, we review the cascade of transcriptional and posttranscriptional regulation that confers mDA identity and regulates their functions. Additionally, we highlight certain mechanisms that offer important clues to unveil molecular pathogenesis of mDA neuron dysfunction and potential pharmacological targets for the treatment of mDA neuron dysfunction.
Collapse
|
36
|
Di Rita A, Maiorino T, Bruqi K, Volpicelli F, Bellenchi GC, Strappazzon F. miR-218 Inhibits Mitochondrial Clearance by Targeting PRKN E3 Ubiquitin Ligase. Int J Mol Sci 2020; 21:ijms21010355. [PMID: 31948106 PMCID: PMC6981953 DOI: 10.3390/ijms21010355] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 01/10/2023] Open
Abstract
The selective elimination of dysfunctional mitochondria through mitophagy is crucial for preserving mitochondrial quality and cellular homeostasis. The most described mitophagy pathway is regulated by a positive ubiquitylation feedback loop in which the PINK1 (PTEN induced kinase 1) kinase phosphorylates both ubiquitin and the E3 ubiquitin ligase PRKN (Parkin RBR E3 ubiquitin ligase), also known as PARKIN. This event recruits PRKN to the mitochondria, thus amplifying ubiquitylation signal. Here we report that miR-218 targets PRKN and negatively regulates PINK1/PRKN-mediated mitophagy. Overexpression of miR-218 reduces PRKN mRNA levels, thus also reducing protein content and deregulating the E3 ubiquitin ligase action. In fact, following miR-218 overexpression, mitochondria result less ubiquitylated and the autophagy machinery fails to proceed with correct mitochondrial clearance. Since mitophagy defects are associated with various human diseases, these results qualify miR-218 as a promising therapeutic target for human diseases.
Collapse
Affiliation(s)
- Anthea Di Rita
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (A.D.R.); (T.M.); (K.B.); (G.C.B.)
- University of Rome Tor Vergata, 00133 Rome, Italy
| | - Teresa Maiorino
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (A.D.R.); (T.M.); (K.B.); (G.C.B.)
| | - Krenare Bruqi
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (A.D.R.); (T.M.); (K.B.); (G.C.B.)
- University of Rome Tor Vergata, 00133 Rome, Italy
| | - Floriana Volpicelli
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80131 Naples, Italy;
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Gian Carlo Bellenchi
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (A.D.R.); (T.M.); (K.B.); (G.C.B.)
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80131 Naples, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Flavie Strappazzon
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (A.D.R.); (T.M.); (K.B.); (G.C.B.)
- Correspondence: ; Tel.: +39-06501703093
| |
Collapse
|
37
|
Huang C, Ma J, Li BX, Sun Y. Wnt1 silencing enhances neurotoxicity induced by paraquat and maneb in SH-SY5Y cells. Exp Ther Med 2019; 18:3643-3649. [PMID: 31602242 DOI: 10.3892/etm.2019.7963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Wingless (Wnt) signaling regulates the proliferation and differentiation of midbrain dopamine (DA) neurons. Paraquat (PQ) and maneb (MB) are environmental pollutants that can be used to model Parkinson's disease (PD) in rodents. A previous study demonstrated that developmental exposure to PQ and MB affects the expression of Wnt1, Wnt5a, nuclear receptor-related factor 1 (NURR1) and tyrosine hydroxylase (TH). However, how Wnt signaling regulates these developmental factors in vitro is yet to be determined. To explore this, SH-SY5Y cells were exposed to PQ and MB. The results of the current study indicated that exposure to PQ and MB decreased Wnt1, β-catenin, NURR1 and TH levels and increased Wnt5a levels. Furthermore, Wnt1 silencing has the same effect as exposure to PQ and MB. Additionally, the neurotoxicity induced by PQ and MB is more severe in siWnt1-SH-SY5Y cells compared with normal SH-SY5Y cells. Therefore, Wnt1 may serve an important role in regulating developmental DA factors, and may be a candidate gene for PD diagnosis or gene therapy.
Collapse
Affiliation(s)
- Cui Huang
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, P.R. China
| | - Jing Ma
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Bai-Xiang Li
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yan Sun
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
38
|
Eskandarian Boroujeni M, Aliaghaei A, Maghsoudi N, Gardaneh M. Complementation of dopaminergic signaling by Pitx3-GDNF synergy induces dopamine secretion by multipotent Ntera2 cells. J Cell Biochem 2019; 121:200-212. [PMID: 31310388 DOI: 10.1002/jcb.29109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 11/07/2022]
Abstract
Human teratocarcinoma cell line Ntera2 (NT2) expresses dopamine signals and has shown its safe profile for clinical applications. Attempts to restore complete dopaminergic (DAergic) phenotype enabling these cells to secrete dopamine have not been fully successful so far. We applied a blend of gene transfer techniques and a defined medium to convert NT2 cells to fully DAergic. The cells were primarily engineered to overexpress the Pitx3 gene product and then cultured in a growth medium supplemented with knockout serum and retinoic acid to form embroid bodies (EBs). Trypsinization of EB colonies produced single cells ready for differentiation. Neuronal/DAergic induction was promoted by applying conditioned medium taken from engineered human astrocytomas over-secreting glial cell-derived neurotrophic factor (GDNF). Immunocytochemistry, reverse-transcription and real-time polymerase chain reaction analyses confirmed significantly induced expression of molecules involved in dopamine signaling and metabolism including tyrosine hydroxylase, Nurr1, dopamine transporter, and aromatic acid decarboxylase. High-performance liquid chromatography analysis indicated release of dopamine only from a class of fully differentiated cells expressing Pitx3 and exposed to GDNF. In addition, Pitx3 and GDNF additively promoted in vitro neuroprotection against Parkinsonian toxin. One month after transplantation to the striatum of 6-OHDA-leasioned rats, differentiated NT2 cells survived and induced significant increase in striatal volume. Besides, cell implantation improved motor coordination in Parkinson's disease (PD) rat models. Our findings highlight the importance of Pitx3-GDNF interplay in dopamine signaling and indicate that our strategy might be useful for the restoration of DAergic fate of NT2 cells to make them clinically applicable toward cell replacement therapy of PD.
Collapse
Affiliation(s)
- Mahdi Eskandarian Boroujeni
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Aliaghaei
- Anatomy and Cell Biology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mossa Gardaneh
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
39
|
Kołosowska K, Gawryluk A, Wisłowska-Stanek A, Liguz-Lęcznar M, Hetmańczyk K, Ługowska A, Sobolewska A, Skórzewska A, Gryz M, Lehner M. Stress changes amphetamine response, D2 receptor expression and epigenetic regulation in low-anxiety rats. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:256-268. [PMID: 31022425 DOI: 10.1016/j.pnpbp.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/17/2022]
Abstract
The aim of this study was to assess the influence of chronic restraint stress on amphetamine (AMPH)-related appetitive 50-kHz ultrasonic vocalisations (USVs) in rats differing in freezing duration in a contextual fear test (CFT), i.e. HR (high-anxiety responsive) and LR (low-anxiety responsive) rats. The LR and the HR rats, previously exposed to an AMPH binge experience, differed in sensitivity to AMPH's rewarding effects, measured as appetitive vocalisations. Moreover, chronic restraint stress attenuated AMPH-related appetitive vocalisations in the LR rats but had no influence on the HR rats' behaviour. To specify, the restraint LR rats vocalised appetitively less in the AMPH-associated context and after an AMPH challenge than the control LR rats. This phenomenon was associated with a decrease in the mRNA level for D2 dopamine receptor in the amygdala and its protein expression in the basal amygdala (BA) and opposite changes in the nucleus accumbens (NAc) - an increase in the mRNA level for D2 dopamine receptor and its protein expression in the NAc shell, compared to control conditions. Moreover, we observed that chronic restraint stress influenced epigenetic regulation in the LR and the HR rats differently. The contrasting changes were observed in the dentate gyrus (DG) of the hippocampus - the LR rats presented a decrease, but the HR rats showed an increase in H3K9 trimethylation. The restraint LR rats also showed higher miR-494 and miR-34c levels in the NAc than the control LR group. Our study provides behavioural and biochemical data concerning the role of differences in fear-conditioned response in stress vulnerability and AMPH-associated appetitive behaviour. The LR rats were less sensitive to the rewarding effects of AMPH when previously exposed to chronic stress that was accompanied by changes in D2 dopamine receptor expression and epigenetic regulation in mesolimbic areas.
Collapse
Affiliation(s)
- Karolina Kołosowska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| | - Aleksandra Gawryluk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CePT), 1B Banacha Street, 02-097 Warsaw, Poland
| | - Monika Liguz-Lęcznar
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Katarzyna Hetmańczyk
- Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Marek Gryz
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| |
Collapse
|
40
|
The microRNA-29a Modulates Serotonin 5-HT7 Receptor Expression and Its Effects on Hippocampal Neuronal Morphology. Mol Neurobiol 2019; 56:8617-8627. [PMID: 31292861 DOI: 10.1007/s12035-019-01690-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022]
Abstract
miRNAs are master regulators of gene expression in diverse biological processes, including the modulation of neuronal cytoarchitecture. The identification of their physiological target genes remains one of the outstanding challenges. Recently, it has been demonstrated that the activation of serotonin receptor 7 (5-HT7R) plays a key role in regulating the neuronal structure, synaptogenesis, and synaptic plasticity during embryonic and early postnatal development of the central nervous system (CNS). In order to identify putative miRNAs targeting the 3'UTR of 5-HT7R mouse transcript, we used a computational prediction tool and detected the miR-29 family members as the only candidates. Thus, since miR-29a is more expressed than other members in the brain, we investigated its possible involvement in the regulation of neuronal morphology mediated by 5-HT7R. By luciferase assay, we show that miR-29a can act as a post-transcriptional regulator of 5-HT7R mRNA. Indeed, it downregulates 5-HT7R gene expression in cultured hippocampal neurons, while the expression of other serotonin receptors is not affected. From a functional point of view, miR-29a overexpression in hippocampal primary cultures impairs the 5HT7R-dependent neurite elongation and remodeling through the inhibition of the ERK intracellular signaling pathway. In vivo, the upregulation of miR-29a in the developing hippocampus parallels with the downregulation of 5-HT7R expression, supporting the hypothesis that this miRNA is a physiological modulator of 5-HT7R expression in the CNS.
Collapse
|
41
|
Cao D, Cheung HH, Chan WY. Doxycycline Masks the Genuine Effect of the Doxycycline-Inducible Transgene by Promoting Dopaminergic Neuron Differentiation from Human Pluripotent Stem Cells. Stem Cells Dev 2019; 28:833-845. [PMID: 31020917 DOI: 10.1089/scd.2018.0209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Doxycycline (DOX), an antibacterial drug, has been widely used in the inducible gene expression system. However, its effect was largely ignored when studying functions of the inducible transgene. By using a DOX-inducible Tet-ON system, we identified that DOX alone dramatically promoted dopaminergic (DA) neuron differentiation from human pluripotent stem cells (hPSCs), whereas the studied gene had no significant effects after considering the confounding factor DOX. These findings suggest that the effect of DOX should be taken into consideration when it is used in the inducible system especially during DA neuron differentiation from hPSCs. Meanwhile, it also suggests that DOX can be used as an efficient and inexpensive molecule to increase DA neuron differentiation efficacy from hPSCs for cell therapy.
Collapse
Affiliation(s)
- Dandan Cao
- 1 Ministry of Education Key Laboratory for Regenerative Medicine (CUHK-Jinan University), School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,2 CUHK-CAS Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hoi-Hung Cheung
- 1 Ministry of Education Key Laboratory for Regenerative Medicine (CUHK-Jinan University), School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,2 CUHK-CAS Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wai-Yee Chan
- 1 Ministry of Education Key Laboratory for Regenerative Medicine (CUHK-Jinan University), School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,2 CUHK-CAS Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
42
|
Pons-Espinal M, Gasperini C, Marzi MJ, Braccia C, Armirotti A, Pötzsch A, Walker TL, Fabel K, Nicassio F, Kempermann G, De Pietri Tonelli D. MiR-135a-5p Is Critical for Exercise-Induced Adult Neurogenesis. Stem Cell Reports 2019; 12:1298-1312. [PMID: 31130358 PMCID: PMC6565832 DOI: 10.1016/j.stemcr.2019.04.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Physical exercise stimulates adult hippocampal neurogenesis and is considered a relevant strategy for preventing age-related cognitive decline in humans. The underlying mechanisms remains controversial. Here, we show that exercise increases proliferation of neural precursor cells (NPCs) of the mouse dentate gyrus (DG) via downregulation of microRNA 135a-5p (miR-135a). MiR-135a inhibition stimulates NPC proliferation leading to increased neurogenesis, but not astrogliogenesis, in DG of resting mice, and intriguingly it re-activates NPC proliferation in aged mice. We identify 17 proteins (11 putative targets) modulated by miR-135 in NPCs. Of note, inositol 1,4,5-trisphosphate (IP3) receptor 1 and inositol polyphosphate-4-phosphatase type I are among the modulated proteins, suggesting that IP3 signaling may act downstream miR-135. miR-135 is the first noncoding RNA essential modulator of the brain's response to physical exercise. Prospectively, the miR-135-IP3 axis might represent a novel target of therapeutic intervention to prevent pathological brain aging.
Collapse
Affiliation(s)
| | - Caterina Gasperini
- Neurobiology of miRNA, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Matteo J Marzi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Clarissa Braccia
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Alexandra Pötzsch
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Tara L Walker
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Klaus Fabel
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
43
|
Brodski C, Blaess S, Partanen J, Prakash N. Crosstalk of Intercellular Signaling Pathways in the Generation of Midbrain Dopaminergic Neurons In Vivo and from Stem Cells. J Dev Biol 2019; 7:jdb7010003. [PMID: 30650592 PMCID: PMC6473842 DOI: 10.3390/jdb7010003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
Dopamine-synthesizing neurons located in the mammalian ventral midbrain are at the center stage of biomedical research due to their involvement in severe human neuropsychiatric and neurodegenerative disorders, most prominently Parkinson’s Disease (PD). The induction of midbrain dopaminergic (mDA) neurons depends on two important signaling centers of the mammalian embryo: the ventral midline or floor plate (FP) of the neural tube, and the isthmic organizer (IsO) at the mid-/hindbrain boundary (MHB). Cells located within and close to the FP secrete sonic hedgehog (SHH), and members of the wingless-type MMTV integration site family (WNT1/5A), as well as bone morphogenetic protein (BMP) family. The IsO cells secrete WNT1 and the fibroblast growth factor 8 (FGF8). Accordingly, the FGF8, SHH, WNT, and BMP signaling pathways play crucial roles during the development of the mDA neurons in the mammalian embryo. Moreover, these morphogens are essential for the generation of stem cell-derived mDA neurons, which are critical for the modeling, drug screening, and cell replacement therapy of PD. This review summarizes our current knowledge about the functions and crosstalk of these signaling pathways in mammalian mDA neuron development in vivo and their applications in stem cell-based paradigms for the efficient derivation of these neurons in vitro.
Collapse
Affiliation(s)
- Claude Brodski
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany.
| | - Juha Partanen
- Faculty of Biological and Environmental Sciences, FIN00014-University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014 Helsinki, Finland.
| | - Nilima Prakash
- Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, 59063 Hamm, Germany.
| |
Collapse
|
44
|
Tang CT, Liang Q, Yang L, Lin XL, Wu S, Chen Y, Zhang XT, Gao YJ, Ge ZZ. RAB31 Targeted by MiR-30c-2-3p Regulates the GLI1 Signaling Pathway, Affecting Gastric Cancer Cell Proliferation and Apoptosis. Front Oncol 2018; 8:554. [PMID: 30534536 PMCID: PMC6275292 DOI: 10.3389/fonc.2018.00554] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Gastric cancer (GC), one of the most common cancers worldwide, is highly malignant and fatal. Ras-related protein in brain 31 (RAB31), a member of the RAB family of oncogenes, participates in the process of carcinogenesis and cancer development; however, its role in GC progression is unknown. Methods: In our study, 90 pairs of tissue microarrays were used to measure the levels of RAB31 protein by immunochemistry, and 22 pairs of fresh tissue were used to measure the levels of RAB31 mRNA by quantitative PCR. We also investigated the effects of RAB31 on tumor growth both in vitro and in vivo. Results: RAB31 was overexpressed in GC tissues, and its overexpression predicted poor survival in patients. In a nude mouse model, depletion of RAB31 inhibited tumor growth. In vitro, silencing of RAB31 suppressed cell viability, promoted cell cycle arrest, enhanced apoptosis, and affected the expression of cell cycle and apoptotic proteins; these effects were mediated by glioma-associated oncogene homolog 1 (GLI1). Co-immunoprecipitation and immunofluorescence assays confirmed that RAB31 interacted with GLI1. In addition, luciferase reporter assays and Western blotting showed that microRNA-30c-2-3p modulated the RAB31/GLI1 pathway by targeting the 3′-untranslated region of RAB31. Conclusions: Collectively, these data show that RAB31 is regulated by microRNA-30c-2-3p, and functions as an oncogene in GC tumorigenesis and development by interacting with GLI1. Therefore, targeting the miR-30c-2-3p/RAB31/GLI1 axis may be a therapeutic intervention for gastric cancer.
Collapse
Affiliation(s)
- Chao-Tao Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Lu Lin
- Department of Digestive Endoscopy, Provincial Clinic Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Shan Wu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Tian Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Jie Gao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Zheng Ge
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Cell reprogramming approaches in gene- and cell-based therapies for Parkinson's disease. J Control Release 2018; 286:114-124. [PMID: 30026082 DOI: 10.1016/j.jconrel.2018.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
Degeneration of dopamine (DA) neurons in the substantia nigra pars compacta is the pathological hallmark of Parkinson's disease (PD). In PD multiple pathogenic mechanisms initiate and drive this neurodegenerative process, making the development of effective treatments challenging. To date, PD patients are primarily treated with dopaminergic drugs able to temporarily enhance DA levels, therefore relieving motor symptoms. However, the drawbacks of these therapies including the inability to alter disease progression are constantly supporting the search for alternative treatment approaches. Over the past years efforts have been put into the development of new therapeutic strategies based on the delivery of therapeutic genes using viral vectors or transplantation of DA neurons for cell-based DA replacement. Here, past achievements and recent advances in gene- and cell-based therapies for PD are outlined. We discuss how current gene and cell therapy strategies hold great promise for the treatment of PD and how the use of stem cells and recent developments in cellular reprogramming could contribute to open a new avenue in PD therapy.
Collapse
|