1
|
Hoffmann S, Seeger T. Advances in human induced pluripotent stem cell (hiPSC)-based disease modelling in cardiogenetics. MED GENET-BERLIN 2025; 37:137-146. [PMID: 40207041 PMCID: PMC11976404 DOI: 10.1515/medgen-2025-2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Human induced pluripotent stem cell (hiPSC)-based disease modelling has significantly advanced the field of cardiogenetics, providing a precise, patient-specific platform for studying genetic causes of heart diseases. Coupled with genome editing technologies such as CRISPR/Cas, hiPSC-based models not only allow the creation of isogenic lines to study mutation-specific cardiac phenotypes, but also enable the targeted modulation of gene expression to explore the effects of genetic and epigenetic deficits at the cellular and molecular level. hiPSC-based models of heart disease range from two-dimensional cultures of hiPSC-derived cardiovascular cell types, such as various cardiomyocyte subtypes, endothelial cells, pericytes, vascular smooth muscle cells, cardiac fibroblasts, immune cells, etc., to cardiac tissue cultures including organoids, microtissues, engineered heart tissues, and microphysiological systems. These models are further enhanced by multi-omics approaches, integrating genomic, transcriptomic, epigenomic, proteomic, and metabolomic data to provide a comprehensive view of disease mechanisms. In particular, advances in cardiovascular tissue engineering enable the development of more physiologically relevant systems that recapitulate native heart architecture and function, allowing for more accurate modelling of cardiac disease, drug screening, and toxicity testing, with the overall goal of personalised medical approaches, where therapies can be tailored to individual genetic profiles. Despite significant progress, challenges remain in the maturation of hiPSC-derived cardiomyocytes and the complexity of reproducing adult heart conditions. Here, we provide a concise update on the most advanced methods of hiPSC-based disease modelling in cardiogenetics, with a focus on genome editing and cardiac tissue engineering.
Collapse
Affiliation(s)
- Sandra Hoffmann
- University Hospital HeidelbergInstitute of Human GeneticsHeidelbergGermany
| | | |
Collapse
|
2
|
Botti S, Krause R, Pavarino LF. In silico modelling of multi-electrode arrays for enhancing cardiac drug testing on hiPSC-CM heterogeneous tissues. J Physiol 2025. [PMID: 40349301 DOI: 10.1113/jp287276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/25/2025] [Indexed: 05/14/2025] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer a transformative platform for in vitro and in silico testing of patient-specific drugs, enabling detailed study of cardiac electrophysiology. By integrating standard experimental techniques with extracellular potential measurements from multi-electrode arrays (MEAs), researchers can capture key tissue-level electrophysiological properties, such as action potential dynamics and conduction characteristics. This study presents an innovative computational framework that combines an MEA-based electrophysiological model with phenotype-specific hiPSC-CM ionic models, enabling accurate in silico predictions of drug responses. We tested four drug compounds and ion channel blockers using this model and compared these predictions against experimental MEA data, establishing the model's robustness and reliability. Additionally, we examined how tissue heterogeneity in hiPSC-CMs affects conduction velocity, providing insights into how cellular variations can influence drug efficacy and tissue-level electrical behaviour. Our model was further tested through simulations of Brugada syndrome, successfully replicating pathological electrophysiological patterns observed in adult cardiac tissues. These findings highlight the potential of hiPSC-CM MEA-based in silico modelling for advancing drug screening processes, which have the potential to refine disease-specific therapy development, and improve patient outcomes in complex cardiac conditions. KEY POINTS: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer a transformative platform for in vitro and in silico testing of patient-specific drugs, enabling detailed study of cardiac electrophysiology. Development of an innovative computational framework that combines a multi-electrode array (MEA)-based electrophysiological model with phenotype-specific hiPSC-CM ionic models. Drug testing of four compounds and ion channel blockers using this hiPSC-CM MEA model and comparison against experimental MEA data, establishing the model's robustness and reliability. Study of the effect of tissue heterogeneity in hiPSC-CMs on conduction velocity, providing insights into how cellular variations can influence drug efficacy and tissue-level electrical behaviour. Brugada syndrome simulation through the hiPSC-CM MEA model, successfully replicating pathological electrophysiological patterns observed in adult cardiac tissues.
Collapse
Affiliation(s)
- Sofia Botti
- Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Mathematics "Felice Casorati", University of Pavia, Pavia, Italy
| | - Rolf Krause
- Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
- Faculty of Mathematics and Informatics, UniDistance, Brig, Switzerland
- AMCS, CEMSE, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Luca F Pavarino
- Department of Mathematics "Felice Casorati", University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Sileo A, Montrone F, Rouchon A, Trueb D, Selvi J, Schmid M, Graef J, Züger F, Serino G, Massai D, Di Maggio N, Melo Rodriguez G, Köser J, Schoelkopf J, Banfi A, Marsano A, Gullo M. Toward Origami-Inspired In Vitro Cardiac Tissue Models. ACS Biomater Sci Eng 2025; 11:1583-1597. [PMID: 39978771 PMCID: PMC11897953 DOI: 10.1021/acsbiomaterials.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/22/2025]
Abstract
The advancement of in vitro engineered cardiac tissue-based patches is paramount for providing viable solutions for restoring cardiac function through in vivo implantation. Numerous techniques described in the literature aim to provide diverse mechanical and topographical cues simultaneously, fostering enhanced in vitro cardiac maturation and functionality. Among these, cellulose paper-based scaffolds have gained attention owing to their inherent benefits, such as biocompatibility and ease of chemical and physical modification. This study introduces a novel approach of utilizing customized paper-based scaffolds as cell culture substrates, facilitating both the formation and manipulation of cell constructs while promoting mechanical contraction. Here, we investigated two methodologies to foster mechanical contractions of paper-based constructs: the incorporation of micropatterns on paper to dictate cell orientation and macropattern created by the origami-folded paper. Both approaches provide mechanical support and foster cardiac functionality. However, while micropatterning does not significantly improve the functional parameters, a macropattern created by origami folding proves to be essential in facilitating contraction of the paper-based cardiac constructs. Furthermore, we provide proof of principle for the combination with a layer of physiologically differentiated microvascular networks. This approach holds great promise for the development of structurally organized contractile cardiac tissues with the possibility of creating multistrata of cardiac and vascular layers to promote in vivo cell survival and function beyond what is typically achieved in conventional cell culture.
Collapse
Affiliation(s)
- Antonio Sileo
- Department
of Surgery, University Hospital Basel, Basel 4031, Switzerland
- Department
of Biomedicine, University Hospital Basel
and University of Basel, Basel 4031, Switzerland
| | - Federica Montrone
- Department
of Surgery, University Hospital Basel, Basel 4031, Switzerland
- Department
of Biomedicine, University Hospital Basel
and University of Basel, Basel 4031, Switzerland
| | - Adelin Rouchon
- Department
of Surgery, University Hospital Basel, Basel 4031, Switzerland
- Department
of Biomedicine, University Hospital Basel
and University of Basel, Basel 4031, Switzerland
| | - Donata Trueb
- Institute
for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz 4132, Switzerland
| | - Jasmin Selvi
- Institute
for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz 4132, Switzerland
| | - Moritz Schmid
- Institute
for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz 4132, Switzerland
| | - Julian Graef
- Institute
for Chemistry and Bioanalytics, University
of Applied Sciences and Arts Northwestern Switzerland, Muttenz 4132, Switzerland
| | - Fabian Züger
- Institute
for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz 4132, Switzerland
| | - Gianpaolo Serino
- Department
of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin 10129, Italy
| | - Diana Massai
- Department
of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin 10129, Italy
| | - Nunzia Di Maggio
- Department
of Surgery, University Hospital Basel, Basel 4031, Switzerland
- Department
of Biomedicine, University Hospital Basel
and University of Basel, Basel 4031, Switzerland
| | | | - Joachim Köser
- Institute
for Chemistry and Bioanalytics, University
of Applied Sciences and Arts Northwestern Switzerland, Muttenz 4132, Switzerland
| | | | - Andrea Banfi
- Department
of Surgery, University Hospital Basel, Basel 4031, Switzerland
- Department
of Biomedicine, University Hospital Basel
and University of Basel, Basel 4031, Switzerland
| | - Anna Marsano
- Department
of Surgery, University Hospital Basel, Basel 4031, Switzerland
- Department
of Biomedicine, University Hospital Basel
and University of Basel, Basel 4031, Switzerland
| | - Maurizio Gullo
- Institute
for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz 4132, Switzerland
| |
Collapse
|
4
|
Yamazaki D. [Current status of MPS studies in domestic and overseas-introduction of cardiac MPS]. Nihon Yakurigaku Zasshi 2025; 160:87-91. [PMID: 40024711 DOI: 10.1254/fpj.24070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
MPS is already being utilized in various aspects of drug development. This paper introduces MPS from a different viewpoint in previous reviews. First, I will introduce how the term "microphysiological systems" came to be used based on the results of the PubMed search, and show the results of an abstract analysis at the MPS World Summit 2023 held in Berlin, which quantified the organs of interest in MPS and the needs of pharmaceutical companies. Next, the author's activities in the AMED-MPS2 (the identification and experimental validation of device or cell considerations as MPS evaluation systems) and MPS-RS (the development of CoUs suitable for guidelines) projects as MPS projects in Japan will be introduced. I am also engaged in the construction of an evaluation system using cardiac MPS. The features and results of several cardiac MPS devices that have been developed for the contraction evaluation will be introduced, including the author's own efforts. Evaluation systems using MPS are attracting attention not only in drug discovery but also in the food and chemical industries, and while social implementation is gradually advancing, discussion groups are being created around the world to discuss how MPS should truly be utilized in society and in regulations. Countries seem to be focusing on acquiring data using useful devices that have survived the race for survival. For Japan to lead the world, it will be necessary to quickly identify useful devices and acquire enough data to discuss them.
Collapse
|
5
|
Sweat ME, Pu WIT. Genetic and Molecular Underpinnings of Atrial Fibrillation. NPJ CARDIOVASCULAR HEALTH 2024; 1:35. [PMID: 39867228 PMCID: PMC11759492 DOI: 10.1038/s44325-024-00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/02/2024] [Indexed: 01/28/2025]
Abstract
Atrial fibrillation (AF), the most common sustained arrhythmia, increases stroke and heart failure risks. Here we review genes linked to AF and mechanisms by which they alter AF risk. We highlight gene expression differences between atrial and ventricular cardiomyocytes, regulatory mechanisms responsible for these differences, and their potential contribution to AF. Understanding AF mechanisms through the lens of atrial gene regulation is crucial to improving AF treatment.
Collapse
Affiliation(s)
- Mason E. Sweat
- Department of Cardiology, Boston Children’s
Hospital, Boston, MA 02115, USA
| | - WIlliam T. Pu
- Department of Cardiology, Boston Children’s
Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge,
MA 02138, USA
| |
Collapse
|
6
|
Yang Y, Dashi A, Soong PL, Lin KH, Tan WLW, Pan B, Autio MI, Tiang Z, Hartman RJG, Wei H, Ackers-Johnson MA, Lim B, Walentinsson A, Iyer VV, Jonsson MKB, Foo RS. Long noncoding RNA VENTHEART is required for ventricular cardiomyocyte specification and function. J Mol Cell Cardiol 2024; 197:90-102. [PMID: 39490643 DOI: 10.1016/j.yjmcc.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
RATIONALE Cardiac-expressed long noncoding RNAs (lncRNAs) are important for cardiomyocyte (CM) differentiation and function. Several lncRNAs have been identified and characterized for early CM lineage commitment, however those in later CM lineage specification and maturation remain less well studied. Moreover, unique atrial / ventricular lncRNA expression has never been studied in detail. OBJECTIVES Here, we characterized a novel ventricular myocyte-restricted lncRNA, not expressed in atrial myocytes, and conserved only in primates. METHODS AND RESULTS First, we performed single cell RNA-seq on human pluripotent stem cell derived cardiomyocytes (hPSC-CM) at the late stages of 2, 6 and 12 weeks of differentiation. Weighted correlation network analysis identified core gene modules, including a set of lncRNAs highly abundant and predominantly expressed in the human heart. A lncRNA (we call VENTHEART, VHRT) co-expressed with cardiac maturation and ventricular-specific genes MYL2 and MYH7, and was expressed in fetal and adult human ventricles, but not atria. CRISPR-mediated deletion of the VHRT gene led to impaired CM sarcomere formation and significant disruption of the ventricular CM gene program. Indeed, a similar disruption was not observed in VHRT KO hPSC-derived atrial CM, suggesting that VHRT exhibits only ventricular myocyte subtype-specific effects. Optical recordings validated that loss of VHRT significantly prolonged action potential duration at 90 % repolarization (APD90) for ventricular-like, but not atrial-like, CMs. CONCLUSION This reports the first lncRNA that is exclusively required for proper ventricular, and not atrial, CM specification and function.
Collapse
Affiliation(s)
- Yiqing Yang
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore; NUS Graduate School, National University of Singapore, Singapore
| | - Albert Dashi
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore
| | - Poh Loong Soong
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore; Ternion Biosciences, Singapore
| | | | - Wilson L W Tan
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore
| | - Bangfen Pan
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore
| | - Matias I Autio
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Zenia Tiang
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore
| | - Robin J G Hartman
- University of Utrecht, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands; Translational Science & Experimental Medicine, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Heming Wei
- National Heart Research Institute Singapore (NHRIS), National Heart Centre, Singapore
| | - Matthew Andrew Ackers-Johnson
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore
| | - Bing Lim
- Sana Biotechnology, 300 Technology Square, Cambridge, MA 02139, United States of America
| | - Anna Walentinsson
- Translational Science & Experimental Medicine, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Vidhya Vardharajan Iyer
- Bioscience Cardiovascular, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Uppsala University, Uppsala, Sweden
| | - Malin K B Jonsson
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Bioscience Cardiovascular, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Roger S Foo
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Healthcare Systems, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
7
|
Schulz C, Eschenhagen T, Christ T. Atrial hiPSC-CM as a Pharmacologic Model to Evaluate Anti-AF Drugs: Some Lessons From I Kur. J Cardiovasc Pharmacol 2024; 84:479-485. [PMID: 39270001 DOI: 10.1097/fjc.0000000000001631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024]
Abstract
ABSTRACT Human induced pluripotent stem cells (hiPSC) and atrial hiPSC-derived cardiomyocytes (hiPSC-CM) have entered the arena of preclinical atrial fibrillation research. A central question is whether they reproduce the physiologic contribution of atrial selective potassium currents (such as the ultrarapid potassium current, I Kur ) to repolarization. Of note, 2 studies in single atrial hiPSC-CM reported prolongation of action potential duration by I Kur block indicating that I Kur might in fact represent a valuable target for the treatment of human atrial fibrillation. However, the results and interpretation are at odds with the literature on I Kur block in human atria and the results of clinical studies. We believe that the discrepancies indicate that experiments in single atrial CM (both adult atrial CM and atrial hiPSC-CM) might be misleading. Under particular experimental conditions, atrial hiPSC-CMs may not closely resemble the electrophysiology of the human atrium. Therefore, we recapitulate here methodological issues evaluating potential value of the I Kur as an antiarrhythmic target when investigated in animal models, in human atrial tissues, and finally in atrial hiPSC-CM.
Collapse
Affiliation(s)
- Carl Schulz
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; and
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck/Greifswald, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; and
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck/Greifswald, Hamburg, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; and
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck/Greifswald, Hamburg, Germany
| |
Collapse
|
8
|
Coppola U, Saha B, Kenney J, Waxman JS. A Foxf1-Wnt-Nr2f1 cascade promotes atrial cardiomyocyte differentiation in zebrafish. PLoS Genet 2024; 20:e1011222. [PMID: 39495809 PMCID: PMC11563408 DOI: 10.1371/journal.pgen.1011222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/14/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Nr2f transcription factors (TFs) are conserved regulators of vertebrate atrial cardiomyocyte (AC) differentiation. However, little is known about the mechanisms directing Nr2f expression in ACs. Here, we identified a conserved enhancer 3' to the nr2f1a locus, which we call 3'reg1-nr2f1a (3'reg1), that can promote Nr2f1a expression in ACs. Sequence analysis of the enhancer identified putative Lef/Tcf and Foxf TF binding sites. Mutation of the Lef/Tcf sites within the 3'reg1 reporter, knockdown of Tcf7l1a, and manipulation of canonical Wnt signaling support that Tcf7l1a is derepressed via Wnt signaling to activate the transgenic enhancer and promote AC differentiation. Similarly, mutation of the Foxf binding sites in the 3'reg1 reporter, coupled with gain- and loss-of-function analysis supported that Foxf1 promotes expression of the enhancer and AC differentiation. Functionally, we find that Wnt signaling acts downstream of Foxf1 to promote expression of the 3'reg1 reporter within ACs and, importantly, both Foxf1 and Wnt signaling require Nr2f1a to promote a surplus of differentiated ACs. CRISPR-mediated deletion of the endogenous 3'reg1 abrogates the ability of Foxf1 and Wnt signaling to produce surplus ACs in zebrafish embryos. Together, our data support that downstream members of a conserved regulatory network involving Wnt signaling and Foxf1 function on a nr2f1a enhancer to promote AC differentiation in the zebrafish heart.
Collapse
Affiliation(s)
- Ugo Coppola
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Bitan Saha
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jennifer Kenney
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Developmental Biology Division, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
9
|
Du X, Jia H, Chang Y, Zhao Y, Song J. Progress of organoid platform in cardiovascular research. Bioact Mater 2024; 40:88-103. [PMID: 38962658 PMCID: PMC11220467 DOI: 10.1016/j.bioactmat.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Cardiovascular disease is a significant cause of death in humans. Various models are necessary for the study of cardiovascular diseases, but once cellular and animal models have some defects, such as insufficient fidelity. As a new technology, organoid has certain advantages and has been used in many applications in the study of cardiovascular diseases. This article aims to summarize the application of organoid platforms in cardiovascular diseases, including organoid construction schemes, modeling, and application of cardiovascular organoids. Advances in cardiovascular organoid research have provided many models for different cardiovascular diseases in a variety of areas, including myocardium, blood vessels, and valves. Physiological and pathological models of different diseases, drug research models, and methods for evaluating and promoting the maturation of different kinds of organ tissues are provided for various cardiovascular diseases, including cardiomyopathy, myocardial infarction, and atherosclerosis. This article provides a comprehensive overview of the latest research progress in cardiovascular organ tissues, including construction protocols for cardiovascular organoid tissues and their evaluation system, different types of disease models, and applications of cardiovascular organoid models in various studies. The problems and possible solutions in organoid development are summarized.
Collapse
Affiliation(s)
- Xingchao Du
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| |
Collapse
|
10
|
Botti S, Bartolucci C, Altomare C, Paci M, Barile L, Krause R, Pavarino LF, Severi S. A novel ionic model for matured and paced atrial-like human iPSC-CMs integrating I Kur and I KCa currents. Comput Biol Med 2024; 180:108899. [PMID: 39106668 DOI: 10.1016/j.compbiomed.2024.108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/25/2024] [Accepted: 07/14/2024] [Indexed: 08/09/2024]
Abstract
This work introduces the first atrial-specific in-silico human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) model, based on a set of phenotype-specific IKur,IKCa and IK1 membrane currents. This model is built on novel in-vitro experimental data recently published by some of the co-authors to simulate the paced action potential of matured atrial-like hiPSC-CMs. The model consists of a system of stiff ordinary differential equations depending on several parameters, which have been tuned by automatic optimization techniques to closely match selected experimental biomarkers. The new model effectively simulates the electronic in-vitro hiPSC-CMs maturation process, transitioning from an unstable depolarized membrane diastolic potential to a stable hyperpolarized resting potential, and exhibits spontaneous firing activity in unpaced conditions. Moreover, our model accurately reflects the experimental rate dependence data at different cycle length and demonstrates the expected response to a specific current blocker. This atrial-specific in-silico model provides a novel computational tool for electrophysiological studies of cardiac stem cells and their applications to drug evaluation and atrial fibrillation treatment.
Collapse
Affiliation(s)
- Sofia Botti
- Euler Institute, Faculty of Informatics, Università della Svizzera Italiana, Lugano, 6900, Switzerland; Department of Mathematics "Felice Casorati", University of Pavia, Pavia, 27100, Italy.
| | - Chiara Bartolucci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, 47521, Italy
| | - Claudia Altomare
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, 6900, Switzerland; Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, 6500, Switzerland; Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, 6900, Switzerland
| | - Michelangelo Paci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, 47521, Italy
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, 6900, Switzerland; Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, 6500, Switzerland; Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, 6900, Switzerland
| | - Rolf Krause
- Euler Institute, Faculty of Informatics, Università della Svizzera Italiana, Lugano, 6900, Switzerland; Faculty of Mathematics and Informatics, UniDistance, Brig, 3900, Switzerland
| | - Luca Franco Pavarino
- Department of Mathematics "Felice Casorati", University of Pavia, Pavia, 27100, Italy
| | - Stefano Severi
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, 47521, Italy
| |
Collapse
|
11
|
Kistamás K, Lamberto F, Vaiciuleviciute R, Leal F, Muenthaisong S, Marte L, Subías-Beltrán P, Alaburda A, Arvanitis DN, Zana M, Costa PF, Bernotiene E, Bergaud C, Dinnyés A. The Current State of Realistic Heart Models for Disease Modelling and Cardiotoxicity. Int J Mol Sci 2024; 25:9186. [PMID: 39273136 PMCID: PMC11394806 DOI: 10.3390/ijms25179186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
One of the many unresolved obstacles in the field of cardiovascular research is an uncompromising in vitro cardiac model. While primary cell sources from animal models offer both advantages and disadvantages, efforts over the past half-century have aimed to reduce their use. Additionally, obtaining a sufficient quantity of human primary cardiomyocytes faces ethical and legal challenges. As the practically unlimited source of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CM) is now mostly resolved, there are great efforts to improve their quality and applicability by overcoming their intrinsic limitations. The greatest bottleneck in the field is the in vitro ageing of hiPSC-CMs to reach a maturity status that closely resembles that of the adult heart, thereby allowing for more appropriate drug developmental procedures as there is a clear correlation between ageing and developing cardiovascular diseases. Here, we review the current state-of-the-art techniques in the most realistic heart models used in disease modelling and toxicity evaluations from hiPSC-CM maturation through heart-on-a-chip platforms and in silico models to the in vitro models of certain cardiovascular diseases.
Collapse
Affiliation(s)
- Kornél Kistamás
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
| | - Filipa Leal
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | | | - Luis Marte
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Paula Subías-Beltrán
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Aidas Alaburda
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Dina N Arvanitis
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Pedro F Costa
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Faculty of Fundamental Sciences, Vilnius Tech, Sauletekio al. 11, LT-10223 Vilnius, Lithuania
| | - Christian Bergaud
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| |
Collapse
|
12
|
Zhang H, Sen P, Hamers J, Sittig T, Woestenburg B, Moretti A, Dendorfer A, Merkus D. Retinoic acid modulation guides human-induced pluripotent stem cell differentiation towards left or right ventricle-like cardiomyocytes. Stem Cell Res Ther 2024; 15:184. [PMID: 38902843 PMCID: PMC11191368 DOI: 10.1186/s13287-024-03741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/23/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) by traditional methods are a mix of atrial and ventricular CMs and many other non-cardiomyocyte cells. Retinoic acid (RA) plays an important role in regulation of the spatiotemporal development of the embryonic heart. METHODS CMs were derived from hiPSC (hi-PCS-CM) using different concentrations of RA (Control without RA, LRA with 0.05μM and HRA with 0.1 μM) between day 3-6 of the differentiation process. Engineered heart tissues (EHTs) were generated by assembling hiPSC-CM at high cell density in a low collagen hydrogel. RESULTS In the HRA group, hiPSC-CMs exhibited highest expression of contractile proteins MYH6, MYH7 and cTnT. The expression of TBX5, NKX2.5 and CORIN, which are marker genes for left ventricular CMs, was also the highest in the HRA group. In terms of EHT, the HRA group displayed the highest contraction force, the lowest beating frequency, and the highest sensitivity to hypoxia and isoprenaline, which means it was functionally more similar to the left ventricle. RNAsequencing revealed that the heightened contractility of EHT within the HRA group can be attributed to the promotion of augmented extracellular matrix strength by RA. CONCLUSION By interfering with the differentiation process of hiPSC with a specific concentration of RA at a specific time, we were able to successfully induce CMs and EHTs with a phenotype similar to that of the left ventricle or right ventricle.
Collapse
Affiliation(s)
- Hengliang Zhang
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
- The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, China
| | - Payel Sen
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Jules Hamers
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Theresa Sittig
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Brent Woestenburg
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
| | - Allessandra Moretti
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
- First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Cardiology, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Andreas Dendorfer
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
| | - Daphne Merkus
- Walter Brendel Center for Experimental Medicine (WBex), University Clinic Munich, LMU Munich, 81377, Munich, Germany.
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany.
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany.
- Division of Experimental Cardiology, Dept of Cardiology, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Sönmez MI, Goldack S, Nurkkala E, Schulz C, Klampe B, Schulze T, Hansen A, Eschenhagen T, Koivumäki J, Christ T. Human induced pluripotent stem cell-derived atrial cardiomyocytes recapitulate contribution of the slowly activating delayed rectifier currents IKs to repolarization in the human atrium. Europace 2024; 26:euae140. [PMID: 38788213 PMCID: PMC11167676 DOI: 10.1093/europace/euae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/23/2024] [Indexed: 05/26/2024] Open
Abstract
AIMS Human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCM) could be a helpful tool to study the physiology and diseases of the human atrium. To fulfil this expectation, the electrophysiology of hiPSC-aCM should closely resemble the situation in the human atrium. Data on the contribution of the slowly activating delayed rectifier currents (IKs) to repolarization are lacking for both human atrium and hiPSC-aCM. METHODS AND RESULTS Human atrial tissues were obtained from patients with sinus rhythm (SR) or atrial fibrillation (AF). Currents were measured in human atrial cardiomyocytes (aCM) and compared with hiPSC-aCM and used to model IKs contribution to action potential (AP) shape. Action potential was recorded by sharp microelectrodes. HMR-1556 (1 µM) was used to identify IKs and to estimate IKs contribution to repolarization. Less than 50% of hiPSC-aCM and aCM possessed IKs. Frequency of occurrence, current densities, activation/deactivation kinetics, and voltage dependency of IKs did not differ significantly between hiPSC-aCM and aCM, neither in SR nor AF. β-Adrenoceptor stimulation with isoprenaline did not increase IKs neither in aCM nor in hiPSC-aCM. In tissue from SR, block of IKs with HMR-1556 did not lengthen the action potential duration, even when repolarization reserve was reduced by block of the ultra-rapid repolarizing current with 4-aminopyridine or the rapidly activating delayed rectifier potassium outward current with E-4031. CONCLUSION I Ks exists in hiPSC-aCM with biophysics not different from aCM. As in adult human atrium (SR and AF), IKs does not appear to relevantly contribute to repolarization in hiPSC-aCM.
Collapse
Affiliation(s)
- Muhammed Ikbal Sönmez
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Silvana Goldack
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Elina Nurkkala
- Tech Unit and Centre of Excellence in Body-on-Chip Research (CoEBoC), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finnland
| | - Carl Schulz
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Thomas Schulze
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jussi Koivumäki
- Tech Unit and Centre of Excellence in Body-on-Chip Research (CoEBoC), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finnland
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
14
|
Lu RXZ, Zhao Y, Radisic M. The emerging role of heart-on-a-chip systems in delineating mechanisms of SARS-CoV-2-induced cardiac dysfunction. Bioeng Transl Med 2024; 9:e10581. [PMID: 38818123 PMCID: PMC11135153 DOI: 10.1002/btm2.10581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 06/01/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been a major global health concern since its emergence in 2019, with over 680 million confirmed cases as of April 2023. While COVID-19 has been strongly associated with the development of cardiovascular complications, the specific mechanisms by which viral infection induces myocardial dysfunction remain largely controversial as studies have shown that the severe acute respiratory syndrome coronavirus-2 can lead to heart failure both directly, by causing damage to the heart cells, and indirectly, by triggering an inflammatory response throughout the body. In this review, we summarize the current understanding of potential mechanisms that drive heart failure based on in vitro studies. We also discuss the significance of three-dimensional heart-on-a-chip technology in the context of the current and future pandemics.
Collapse
Affiliation(s)
- Rick Xing Ze Lu
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Yimu Zhao
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
- Toronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Milica Radisic
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
- Toronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
- Terence Donnelly Centre for Cellular & Biomolecular ResearchUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
15
|
Seibertz F, Voigt N. High-throughput methods for cardiac cellular electrophysiology studies: the road to personalized medicine. Am J Physiol Heart Circ Physiol 2024; 326:H938-H949. [PMID: 38276947 PMCID: PMC11279751 DOI: 10.1152/ajpheart.00599.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Personalized medicine refers to the tailored application of medical treatment at an individual level, considering the specific genotype or phenotype of each patient for targeted therapy. In the context of cardiovascular diseases, implementing personalized medicine is challenging due to the high costs involved and the slow pace of identifying the pathogenicity of genetic variants, deciphering molecular mechanisms of disease, and testing treatment approaches. Scalable cellular models such as human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) serve as useful in vitro tools that reflect individual patient genetics and retain clinical phenotypes. High-throughput functional assessment of these constructs is necessary to rapidly assess cardiac pathogenicity and test new therapeutics if personalized medicine is to become a reality. High-throughput photometry recordings of single cells coupled with potentiometric probes offer cost-effective alternatives to traditional patch-clamp assessments of cardiomyocyte action potential characteristics. Importantly, automated patch-clamp (APC) is rapidly emerging in the pharmaceutical industry and academia as a powerful method to assess individual membrane-bound ionic currents and ion channel biophysics over multiple cells in parallel. Now amenable to primary cell and hiPSC-CM measurement, APC represents an exciting leap forward in the characterization of a multitude of molecular mechanisms that underlie clinical cardiac phenotypes. This review provides a summary of state-of-the-art high-throughput electrophysiological techniques to assess cardiac electrophysiology and an overview of recent works that successfully integrate these methods into basic science research that could potentially facilitate future implementation of personalized medicine at a clinical level.
Collapse
Affiliation(s)
- Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," Georg-August University Göttingen, Göttingen, Germany
- Nanion Technologies, GmbH, Munich, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Coppola U, Kenney J, Waxman JS. A Foxf1-Wnt-Nr2f1 cascade promotes atrial cardiomyocyte differentiation in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584759. [PMID: 38558972 PMCID: PMC10980076 DOI: 10.1101/2024.03.13.584759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Nr2f transcription factors (TFs) are conserved regulators of vertebrate atrial cardiomyocyte (AC) differentiation. However, little is known about the mechanisms directing Nr2f expression in ACs. Here, we identified a conserved enhancer 3' to the nr2f1a locus, which we call 3'reg1-nr2f1a (3'reg1), that can promote Nr2f1a expression in ACs. Sequence analysis of the enhancer identified putative Lef/Tcf and Foxf TF binding sites. Mutation of the Lef/Tcf sites within the 3'reg1 reporter, knockdown of Tcf7l1a, and manipulation of canonical Wnt signaling support that Tcf7l1a is derepressed via Wnt signaling to activate the transgenic enhancer and promote AC differentiation. Similarly, mutation of the Foxf binding sites in the 3'reg1 reporter, coupled with gain- and loss-of-function analysis supported that Foxf1 promotes expression of the enhancer and AC differentiation. Functionally, we find that Wnt signaling acts downstream of Foxf1 to promote expression of the 3'reg1 reporter within ACs and, importantly, both Foxf1 and Wnt signaling require Nr2f1a to promote a surplus of differentiated ACs. CRISPR-mediated deletion of the endogenous 3'reg1 abrogates the ability of Foxf1 and Wnt signaling to produce surplus ACs in zebrafish embryos. Together, our data support that downstream members of a conserved regulatory network involving Wnt signaling and Foxf1 function on a nr2f1a enhancer to promote AC differentiation in the zebrafish heart.
Collapse
Affiliation(s)
- Ugo Coppola
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jennifer Kenney
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Developmental Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
17
|
Butler AS, Ascione R, Marrion NV, Harmer SC, Hancox JC. In situ monolayer patch clamp of acutely stimulated human iPSC-derived cardiomyocytes promotes consistent electrophysiological responses to SK channel inhibition. Sci Rep 2024; 14:3185. [PMID: 38326449 PMCID: PMC10850090 DOI: 10.1038/s41598-024-53571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) represent an in vitro model of cardiac function. Isolated iPSC-CMs, however, exhibit electrophysiological heterogeneity which hinders their utility in the study of certain cardiac currents. In the healthy adult heart, the current mediated by small conductance, calcium-activated potassium (SK) channels (ISK) is atrial-selective. Functional expression of ISK within atrial-like iPSC-CMs has not been explored thoroughly. The present study therefore aimed to investigate atrial-like iPSC-CMs as a model system for the study of ISK. iPSCs were differentiated using retinoic acid (RA) to produce iPSC-CMs which exhibited an atrial-like phenotype (RA-iPSC-CMs). Only 18% of isolated RA-iPSC-CMs responded to SK channel inhibition by UCL1684 and isolated iPSC-CMs exhibited substantial cell-to-cell electrophysiological heterogeneity. This variability was significantly reduced by patch clamp of RA-iPSC-CMs in situ as a monolayer (iPSC-ML). A novel method of electrical stimulation was developed to facilitate recording from iPSC-MLs via In situ Monolayer Patch clamp of Acutely Stimulated iPSC-CMs (IMPASC). Using IMPASC, > 95% of iPSC-MLs could be paced at a 1 Hz. In contrast to isolated RA-iPSC-CMs, 100% of RA-iPSC-MLs responded to UCL1684, with APD50 being prolonged by 16.0 ± 2.0 ms (p < 0.0001; n = 12). These data demonstrate that in conjunction with IMPASC, RA-iPSC-MLs represent an improved model for the study of ISK. IMPASC may be of wider value in the study of other ion channels that are inconsistently expressed in isolated iPSC-CMs and in pharmacological studies.
Collapse
Affiliation(s)
- Andrew S Butler
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Raimondo Ascione
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, BS2 8HW, UK
| | - Neil V Marrion
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Stephen C Harmer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
18
|
Seibertz F, Rubio T, Springer R, Popp F, Ritter M, Liutkute A, Bartelt L, Stelzer L, Haghighi F, Pietras J, Windel H, Pedrosa NDI, Rapedius M, Doering Y, Solano R, Hindmarsh R, Shi R, Tiburcy M, Bruegmann T, Kutschka I, Streckfuss-Bömeke K, Kensah G, Cyganek L, Zimmermann WH, Voigt N. Atrial fibrillation-associated electrical remodelling in human induced pluripotent stem cell-derived atrial cardiomyocytes: a novel pathway for antiarrhythmic therapy development. Cardiovasc Res 2023; 119:2623-2637. [PMID: 37677054 PMCID: PMC10730244 DOI: 10.1093/cvr/cvad143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
AIMS Atrial fibrillation (AF) is associated with tachycardia-induced cellular electrophysiology alterations which promote AF chronification and treatment resistance. Development of novel antiarrhythmic therapies is hampered by the absence of scalable experimental human models that reflect AF-associated electrical remodelling. Therefore, we aimed to assess if AF-associated remodelling of cellular electrophysiology can be simulated in human atrial-like cardiomyocytes derived from induced pluripotent stem cells in the presence of retinoic acid (iPSC-aCM), and atrial-engineered human myocardium (aEHM) under short term (24 h) and chronic (7 days) tachypacing (TP). METHODS AND RESULTS First, 24-h electrical pacing at 3 Hz was used to investigate whether AF-associated remodelling in iPSC-aCM and aEHM would ensue. Compared to controls (24 h, 1 Hz pacing) TP-stimulated iPSC-aCM presented classical hallmarks of AF-associated remodelling: (i) decreased L-type Ca2+ current (ICa,L) and (ii) impaired activation of acetylcholine-activated inward-rectifier K+ current (IK,ACh). This resulted in action potential shortening and an absent response to the M-receptor agonist carbachol in both iPSC-aCM and aEHM subjected to TP. Accordingly, mRNA expression of the channel-subunit Kir3.4 was reduced. Selective IK,ACh blockade with tertiapin reduced basal inward-rectifier K+ current only in iPSC-aCM subjected to TP, thereby unmasking an agonist-independent constitutively active IK,ACh. To allow for long-term TP, we developed iPSC-aCM and aEHM expressing the light-gated ion-channel f-Chrimson. The same hallmarks of AF-associated remodelling were observed after optical-TP. In addition, continuous TP (7 days) led to (i) increased amplitude of inward-rectifier K+ current (IK1), (ii) hyperpolarization of the resting membrane potential, (iii) increased action potential-amplitude and upstroke velocity as well as (iv) reversibly impaired contractile function in aEHM. CONCLUSIONS Classical hallmarks of AF-associated remodelling were mimicked through TP of iPSC-aCM and aEHM. The use of the ultrafast f-Chrimson depolarizing ion channel allowed us to model the time-dependence of AF-associated remodelling in vitro for the first time. The observation of electrical remodelling with associated reversible contractile dysfunction offers a novel platform for human-centric discovery of antiarrhythmic therapies.
Collapse
Affiliation(s)
- Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
| | - Tony Rubio
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Robin Springer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Fiona Popp
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Melanie Ritter
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Aiste Liutkute
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Lena Bartelt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Lea Stelzer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Fereshteh Haghighi
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Jan Pietras
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Hendrik Windel
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Núria Díaz i Pedrosa
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | | | - Yannic Doering
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Richard Solano
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Robin Hindmarsh
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Germany
| | - Runzhu Shi
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
| | - Tobias Bruegmann
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Ingo Kutschka
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Katrin Streckfuss-Bömeke
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - George Kensah
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Department of Cardiothoracic and Vascular Surgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Germany
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
- Campus-Institute Data Science (CIDAS), University of Göttingen, Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Chapotte-Baldacci CA, Pierre M, Djemai M, Pouliot V, Chahine M. Biophysical properties of Na V1.5 channels from atrial-like and ventricular-like cardiomyocytes derived from human induced pluripotent stem cells. Sci Rep 2023; 13:20685. [PMID: 38001331 PMCID: PMC10673932 DOI: 10.1038/s41598-023-47310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Generating atrial-like cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) is crucial for modeling and treating atrial-related diseases, such as atrial arrythmias including atrial fibrillations. However, it is essential to obtain a comprehensive understanding of the electrophysiological properties of these cells. The objective of the present study was to investigate the molecular, electrical, and biophysical properties of several ion channels, especially NaV1.5 channels, in atrial hiPSC cardiomyocytes. Atrial cardiomyocytes were obtained by the differentiation of hiPSCs treated with retinoic acid (RA). The quality of the atrial specification was assessed by qPCR, immunocytofluorescence, and western blotting. The electrophysiological properties of action potentials (APs), Ca2+ dynamics, K+ and Na+ currents were investigated using patch-clamp and optical mapping approaches. We evaluated mRNA transcript and protein expressions to show that atrial cardiomyocytes expressed higher atrial- and sinoatrial-specific markers (MYL7, CACNA1D) and lower ventricular-specific markers (MYL2, CACNA1C, GJA1) than ventricular cardiomyocytes. The amplitude, duration, and steady-state phase of APs in atrial cardiomyocytes decreased, and had a shape similar to that of mature atrial cardiomyocytes. Interestingly, NaV1.5 channels in atrial cardiomyocytes exhibited lower mRNA transcripts and protein expression, which could explain the lower current densities recorded by patch-clamp. Moreover, Na+ currents exhibited differences in activation and inactivation parameters. These differences could be explained by an increase in SCN2B regulatory subunit expression and a decrease in SCN1B and SCN4B regulatory subunit expressions. Our results show that a RA treatment made it possible to obtain atrial cardiomyocytes and investigate differences in NaV1.5 channel properties between ventricular- and atrial-like cells.
Collapse
Affiliation(s)
- Charles-Albert Chapotte-Baldacci
- Department of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Marion Pierre
- Department of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Mohammed Djemai
- Department of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Valérie Pouliot
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Mohamed Chahine
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada.
| |
Collapse
|
20
|
Schulz C, Sönmez M, Krause J, Schwedhelm E, Bangfen P, Alihodzic D, Hansen A, Eschenhagen T, Christ T. A critical role of retinoic acid concentration for the induction of a fully human-like atrial action potential phenotype in hiPSC-CM. Stem Cell Reports 2023; 18:2096-2107. [PMID: 37922915 PMCID: PMC10679650 DOI: 10.1016/j.stemcr.2023.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Retinoic acid (RA) induces an atrial phenotype in human induced pluripotent stem cells (hiPSCs), but expression of atrium-selective currents such as the ultrarapid (IKur) and acetylcholine-stimulated K+ current is variable and less than in the adult human atrium. We suspected methodological issues and systematically investigated the concentration dependency of RA. RA treatment increased IKur concentration dependently from 1.1 ± 0.54 pA/pF (0 RA) to 3.8 ± 1.1, 5.8 ± 2.5, and 12.2 ± 4.3 at 0.01, 0.1, and 1 μM, respectively. Only 1 μM RA induced enough IKur to fully reproduce human atrial action potential (AP) shape and a robust shortening of APs upon carbachol. We found that sterile filtration caused substantial loss of RA. We conclude that 1 μM RA seems to be necessary and sufficient to induce a full atrial AP shape in hiPSC-CM in EHT format. RA concentrations are prone to methodological issues and may profoundly impact the success of atrial differentiation.
Collapse
Affiliation(s)
- Carl Schulz
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Muhammed Sönmez
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Julia Krause
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Edzard Schwedhelm
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany; Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pan Bangfen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Dzenefa Alihodzic
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
21
|
Kayser A, Dittmann S, Šarić T, Mearini G, Verkerk AO, Schulze-Bahr E. The W101C KCNJ5 Mutation Induces Slower Pacing by Constitutively Active GIRK Channels in hiPSC-Derived Cardiomyocytes. Int J Mol Sci 2023; 24:15290. [PMID: 37894977 PMCID: PMC10607318 DOI: 10.3390/ijms242015290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Mutations in the KCNJ5 gene, encoding one of the major subunits of cardiac G-protein-gated inwardly rectifying K+ (GIRK) channels, have been recently linked to inherited forms of sinus node dysfunction. Here, the pathogenic mechanism of the W101C KCNJ5 mutation underlying sinus bradycardia in a patient-derived cellular disease model of sinus node dysfunction (SND) was investigated. A human-induced pluripotent stem cell (hiPSCs) line of a mutation carrier was generated, and CRISPR/Cas9-based gene targeting was used to correct the familial mutation as a control line. Both cell lines were further differentiated into cardiomyocytes (hiPSC-CMs) that robustly expressed GIRK channels which underly the acetylcholine-regulated K+ current (IK,ACh). hiPSC-CMs with the W101C KCNJ5 mutation (hiPSCW101C-CM) had a constitutively active IK,ACh under baseline conditions; the application of carbachol was able to increase IK,ACh, further indicating that not all available cardiac GIRK channels were open at baseline. Additionally, hiPSCW101C-CM had a more negative maximal diastolic potential (MDP) and a slower pacing frequency confirming the bradycardic phenotype. Of note, the blockade of the constitutively active GIRK channel with XAF-1407 rescued the phenotype. These results provide further mechanistic insights and may pave the way for the treatment of SND patients with GIRK channel dysfunction.
Collapse
Affiliation(s)
- Anne Kayser
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149 Münster, Germany (S.D.); (E.S.-B.)
| | - Sven Dittmann
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149 Münster, Germany (S.D.); (E.S.-B.)
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Arie O. Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149 Münster, Germany (S.D.); (E.S.-B.)
| |
Collapse
|
22
|
Aitova A, Berezhnoy A, Tsvelaya V, Gusev O, Lyundup A, Efimov AE, Agapov I, Agladze K. Biomimetic Cardiac Tissue Models for In Vitro Arrhythmia Studies. Biomimetics (Basel) 2023; 8:487. [PMID: 37887618 PMCID: PMC10604593 DOI: 10.3390/biomimetics8060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiac arrhythmias are a major cause of cardiovascular mortality worldwide. Many arrhythmias are caused by reentry, a phenomenon where excitation waves circulate in the heart. Optical mapping techniques have revealed the role of reentry in arrhythmia initiation and fibrillation transition, but the underlying biophysical mechanisms are still difficult to investigate in intact hearts. Tissue engineering models of cardiac tissue can mimic the structure and function of native cardiac tissue and enable interactive observation of reentry formation and wave propagation. This review will present various approaches to constructing cardiac tissue models for reentry studies, using the authors' work as examples. The review will highlight the evolution of tissue engineering designs based on different substrates, cell types, and structural parameters. A new approach using polymer materials and cellular reprogramming to create biomimetic cardiac tissues will be introduced. The review will also show how computational modeling of cardiac tissue can complement experimental data and how such models can be applied in the biomimetics of cardiac tissue.
Collapse
Affiliation(s)
- Aleria Aitova
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 423450 Almetyevsk, Russia
| | - Andrey Berezhnoy
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 423450 Almetyevsk, Russia
| | - Valeriya Tsvelaya
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 423450 Almetyevsk, Russia
| | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420018 Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | | | - Anton E. Efimov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Igor Agapov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Konstantin Agladze
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
| |
Collapse
|
23
|
Shiti A, Arbil G, Shaheen N, Huber I, Setter N, Gepstein L. Utilizing human induced pluripotent stem cells to study atrial arrhythmias in the short QT syndrome. J Mol Cell Cardiol 2023; 183:42-53. [PMID: 37579942 PMCID: PMC10589759 DOI: 10.1016/j.yjmcc.2023.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Among the monogenic inherited causes of atrial fibrillation is the short QT syndrome (SQTS), a rare channelopathy causing atrial and ventricular arrhythmias. One of the limitations in studying the mechanisms and optimizing treatment of SQTS-related atrial arrhythmias has been the lack of relevant human atrial tissues models. OBJECTIVE To generate a unique model to study SQTS-related atrial arrhythmias by combining the use of patient-specific human induced pluripotent stem cells (hiPSCs), atrial-specific differentiation schemes, two-dimensional tissue modeling, optical mapping, and drug testing. METHODS AND RESULTS SQTS (N588K KCNH2 mutation), isogenic-control, and healthy-control hiPSCs were coaxed to differentiate into atrial cardiomyocytes using a retinoic-acid based differentiation protocol. The atrial identity of the cells was confirmed by a distinctive pattern of MLC2v downregulation, connexin 40 upregulation, shorter and triangular-shaped action potentials (APs), and expression of the atrial-specific acetylcholine-sensitive potassium current. In comparison to the healthy- and isogenic control cells, the SQTS-hiPSC atrial cardiomyocytes displayed abbreviated APs and refractory periods along with an augmented rapidly activating delayed-rectifier potassium current (IKr). Optical mapping of a hiPSC-based atrial tissue model of the SQTS displayed shortened APD and altered biophysical properties of spiral waves induced in this model, manifested by accelerated spiral-wave frequency and increased rotor curvature. Both AP shortening and arrhythmia irregularities were reversed by quinidine and vernakalant treatment, but not by sotalol. CONCLUSIONS Patient-specific hiPSC-based atrial cellular and tissue models of the SQTS were established, which provide examples on how this type of modeling can shed light on the pathogenesis and pharmacological treatment of inherited atrial arrhythmias.
Collapse
Affiliation(s)
- Assad Shiti
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gil Arbil
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Naim Shaheen
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Irit Huber
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noga Setter
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lior Gepstein
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel; Cardiolology Department, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
24
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|
25
|
Gafranek JT, D'Aniello E, Ravisankar P, Thakkar K, Vagnozzi RJ, Lim HW, Salomonis N, Waxman JS. Sinus venosus adaptation models prolonged cardiovascular disease and reveals insights into evolutionary transitions of the vertebrate heart. Nat Commun 2023; 14:5509. [PMID: 37679366 PMCID: PMC10485058 DOI: 10.1038/s41467-023-41184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
How two-chambered hearts in basal vertebrates have evolved from single-chamber hearts found in ancestral chordates remains unclear. Here, we show that the teleost sinus venosus (SV) is a chamber-like vessel comprised of an outer layer of smooth muscle cells. We find that in adult zebrafish nr2f1a mutants, which lack atria, the SV comes to physically resemble the thicker bulbus arteriosus (BA) at the arterial pole of the heart through an adaptive, hypertensive response involving smooth muscle proliferation due to aberrant hemodynamic flow. Single cell transcriptomics show that smooth muscle and endothelial cell populations within the adapting SV also take on arterial signatures. Bulk transcriptomics of the blood sinuses flanking the tunicate heart reinforce a model of greater equivalency in ancestral chordate BA and SV precursors. Our data simultaneously reveal that secondary complications from congenital heart defects can develop in adult zebrafish similar to those in humans and that the foundation of equivalency between flanking auxiliary vessels may remain latent within basal vertebrate hearts.
Collapse
Affiliation(s)
- Jacob T Gafranek
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Division of Molecular Cardiovascular Biology and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Enrico D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy
| | - Padmapriyadarshini Ravisankar
- Division of Molecular Cardiovascular Biology and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kairavee Thakkar
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Ronald J Vagnozzi
- Division of Cardiology, Gates Center for Regenerative Medicine, Consortium for Fibrosis Research and Translation (CFReT), University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Joshua S Waxman
- Division of Molecular Cardiovascular Biology and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
26
|
Yang Z, Zhang Y, Wang J, Yin J, Wang Z, Pei R. Cardiac organoid: multiple construction approaches and potential applications. J Mater Chem B 2023; 11:7567-7581. [PMID: 37477533 DOI: 10.1039/d3tb00783a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The human cardiac organoid (hCO) is three-dimensional tissue model that is similar to an in vivo organ and has great potential on heart development biology, disease modeling, drug screening and regenerative medicine. However, the construction of hCO presents a unique challenge compared with other organoids such as the lung, small intestine, pancreas, liver. Since heart disease is the dominant cause of death and the treatment of such disease is one of the most unmet medical needs worldwide, developing technologies for the construction and application of hCO is a critical task for the scientific community. In this review, we discuss the current classification and construction methods of hCO. In addition, we describe its applications in drug screening, disease modeling, and regenerative medicine. Finally, we propose the limitations of the cardiac organoid and future research directions. A detailed understanding of hCO will provide ways to improve its construction and expand its applications.
Collapse
Affiliation(s)
- Ziyi Yang
- School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Jine Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Jingbo Yin
- School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
| | - Zheng Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| |
Collapse
|
27
|
Izadifar M, Berecz T, Li B, Tang JKKY, Foldes G, Apati A, Nagy A. Speckle-Tracking Strain Analysis for Mapping Spatiotemporal Contractility of Induced Pluripotent Stem Cell (iPSC)-Derived Cardiomyocytes. Curr Protoc 2023; 3:e889. [PMID: 37747346 DOI: 10.1002/cpz1.889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) hold tremendous potential for cardiovascular disease modeling, drug screening, personalized medicine, and pathophysiology studies. The availability of a robust protocol and functional assay for studying phenotypic behavior of hiPSC-CMs is essential for establishing an in vitro disease model. Many heart diseases manifest due to changes in the mechanical strain of cardiac tissue. Therefore, non-invasive evaluation of the contractility properties of hiPSC-CMs remains crucial to gain an insight into the pathogenesis of cardiac diseases. Speckle tracking-based strain analysis is an efficient non-invasive method that uses video microscopy and image analysis of beating hiPSC-CMs for quantitative evaluation of mechanical contractility properties. This article presents step-by-step protocols for extracting quantitative contractility properties of an hiPSC-CM system obtained from five members of a family, of whom three were affected by DiGeorge syndrome, using speckle tracking-based strain analysis. The hiPSCs from the family members were differentiated and purified into hiPSC-CMs using metabolic selection. Time-lapse images of hiPSC-CMs were acquired using high-spatial-resolution and high-time-resolution phase-contrast video microscopy. Speckled images were characterized by evaluating the cross-correlation coefficient, speckle size, speckle contrast, and speckle quality of the images. The optimum parameters of the speckle tracking algorithm were determined by performing sensitivity analysis concerning computation time, effective mapping area, average contraction velocity, and strain. Furthermore, the hiPSC-CM response to adrenaline was evaluated to validate the sensitivity of the strain analysis algorithm. Then, we applied speckle tracking-based strain analysis to characterize the dynamic behavior of patient-specific hiPSC-CMs from the family members affected/unaffected by DiGeorge syndrome. Here, we report an efficient and manipulation-free method to analyze the contraction displacement vector and velocity field, contraction-relaxation strain rate, and contractile cycles. Implementation of this method allows for quantitative analysis of the contractile phenotype characteristics of hiPSC-CMs to distinguish possible cardiac manifestation of DiGeorge syndrome. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Differentiation of iPSCs into iPSC-derived cardiomyocytes (iPSC-CMs) and metabolic selection of differentiated iPSC-CMs Support Protocol 1: Culture, maintenance, and expansion of human iPSCs Support Protocol 2: Immunohistochemistry of iPSC-CMs Basic Protocol 2: Time-lapse speckle imaging of iPSC-CMs and speckle quality characterization Support Protocol 3: Enhancement of local contrast of videos by applying contrast limited adaptive histogram equalization (CLAHE) to all frames Support Protocol 4: Evaluation of average speckle size Support Protocol 5: Evaluation of average speckle contrast Support Protocol 6: Determination of relative peak height, Pc(x), of consecutive images acquired from video microscopy of iPSC-CMs Basic Protocol 3: Speckle tracking-based analysis of beating iPSC-CMs Support Protocol 7: Validation of sensitivity of the speckle tracking analysis for mapping the contractility of iPSC-CMs Basic Protocol 4: Data extraction, visualization, and mapping of contractile cycles of iPSC-CMs.
Collapse
Affiliation(s)
- Mohammad Izadifar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Tunde Berecz
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Biao Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | | | - Gabor Foldes
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Agota Apati
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Djemai M, Cupelli M, Boutjdir M, Chahine M. Optical Mapping of Cardiomyocytes in Monolayer Derived from Induced Pluripotent Stem Cells. Cells 2023; 12:2168. [PMID: 37681899 PMCID: PMC10487143 DOI: 10.3390/cells12172168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Optical mapping is a powerful imaging technique widely adopted to measure membrane potential changes and intracellular Ca2+ variations in excitable tissues using voltage-sensitive dyes and Ca2+ indicators, respectively. This powerful tool has rapidly become indispensable in the field of cardiac electrophysiology for studying depolarization wave propagation, estimating the conduction velocity of electrical impulses, and measuring Ca2+ dynamics in cardiac cells and tissues. In addition, mapping these electrophysiological parameters is important for understanding cardiac arrhythmia mechanisms. In this review, we delve into the fundamentals of cardiac optical mapping technology and its applications when applied to hiPSC-derived cardiomyocytes and discuss related advantages and challenges. We also provide a detailed description of the processing and analysis of optical mapping data, which is a crucial step in the study of cardiac diseases and arrhythmia mechanisms for extracting and comparing relevant electrophysiological parameters.
Collapse
Affiliation(s)
- Mohammed Djemai
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Michael Cupelli
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
29
|
Cofiño-Fabres C, Passier R, Schwach V. Towards Improved Human In Vitro Models for Cardiac Arrhythmia: Disease Mechanisms, Treatment, and Models of Atrial Fibrillation. Biomedicines 2023; 11:2355. [PMID: 37760796 PMCID: PMC10525681 DOI: 10.3390/biomedicines11092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Heart rhythm disorders, arrhythmias, place a huge economic burden on society and have a large impact on the quality of life of a vast number of people. Arrhythmias can have genetic causes but primarily arise from heart tissue remodeling during aging or heart disease. As current therapies do not address the causes of arrhythmias but only manage the symptoms, it is of paramount importance to generate innovative test models and platforms for gaining knowledge about the underlying disease mechanisms which are compatible with drug screening. In this review, we outline the most important features of atrial fibrillation (AFib), the most common cardiac arrhythmia. We will discuss the epidemiology, risk factors, underlying causes, and present therapies of AFib, as well as the shortcomings and opportunities of current models for cardiac arrhythmia, including animal models, in silico and in vitro models utilizing human pluripotent stem cell (hPSC)-derived cardiomyocytes.
Collapse
Affiliation(s)
- Carla Cofiño-Fabres
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, The Netherlands;
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, The Netherlands;
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Verena Schwach
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, The Netherlands;
| |
Collapse
|
30
|
Abstract
BACKGROUND Atrial fibrillation (AF) is by far the most common cardiac arrhythmia. In about 3% of individuals, AF develops as a primary disorder without any identifiable trigger (idiopathic or historically termed lone AF). In line with the emerging field of autoantibody-related cardiac arrhythmias, the objective of this study was to explore whether autoantibodies targeting cardiac ion channels can underlie unexplained AF. METHODS Peptide microarray was used to screen patient samples for autoantibodies. We compared patients with unexplained AF (n=37 pre-existent AF; n=14 incident AF on follow-up) to age- and sex-matched controls (n=37). Electrophysiological properties of the identified autoantibody were then tested in vitro with the patch clamp technique and in vivo with an experimental mouse model of immunization. RESULTS A common autoantibody response against Kir3.4 protein was detected in patients with AF and even before the development of clinically apparent AF. Kir3.4 protein forms a heterotetramer that underlies the cardiac acetylcholine-activated inwardly rectifying K+ current, IKACh. Functional studies on human induced pluripotent stem cell-derived atrial cardiomyocytes showed that anti-Kir3.4 IgG purified from patients with AF shortened action potentials and enhanced the constitutive form of IKACh, both key mediators of AF. To establish a causal relationship, we developed a mouse model of Kir3.4 autoimmunity. Electrophysiological study in Kir3.4-immunized mice showed that Kir3.4 autoantibodies significantly reduced atrial effective refractory period and predisposed animals to a 2.8-fold increased susceptibility to AF. CONCLUSIONS To our knowledge, this is the first report of an autoimmune pathogenesis of AF with direct evidence of Kir3.4 autoantibody-mediated AF.
Collapse
Affiliation(s)
- Ange Maguy
- Institute of Physiology, University of Bern, Switzerland (A.M.)
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Canada (J.-C.T., D.B.)
| | - David Busseuil
- Montreal Heart Institute, Université de Montréal, Canada (J.-C.T., D.B.)
| | - Jin Li
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Switzerland (J.L.)
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland (J.L.)
| |
Collapse
|
31
|
Thorpe J, Perry MD, Contreras O, Hurley E, Parker G, Harvey RP, Hill AP, Vandenberg JI. Development of a robust induced pluripotent stem cell atrial cardiomyocyte differentiation protocol to model atrial arrhythmia. Stem Cell Res Ther 2023; 14:183. [PMID: 37501071 PMCID: PMC10373292 DOI: 10.1186/s13287-023-03405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Atrial fibrillation is the most common arrhythmia syndrome and causes significant morbidity and mortality. Current therapeutics, however, have limited efficacy. Notably, many therapeutics shown to be efficacious in animal models have not proved effective in humans. Thus, there is a need for a drug screening platform based on human tissue. The aim of this study was to develop a robust protocol for generating atrial cardiomyocytes from human-induced pluripotent stem cells. METHODS A novel protocol for atrial differentiation, with optimized timing of retinoic acid during mesoderm formation, was compared to two previously published methods. Each differentiation method was assessed for successful formation of a contractile syncytium, electrical properties assayed by optical action potential recordings and multi-electrode array electrophysiology, and response to the G-protein-gated potassium channel activator, carbamylcholine. Atrial myocyte monolayers, derived using the new differentiation protocol, were further assessed for cardiomyocyte purity, gene expression, and the ability to form arrhythmic rotors in response to burst pacing. RESULTS Application of retinoic acid at day 1 of mesoderm formation resulted in a robust differentiation of atrial myocytes with contractile syncytium forming in 16/18 differentiations across two cell lines. Atrial-like myocytes produced have shortened action potentials and field potentials, when compared to standard application of retinoic acid at the cardiac mesoderm stage. Day 1 retinoic acid produced atrial cardiomyocytes are also carbamylcholine sensitive, indicative of active Ikach currents, which was distinct from ventricular myocytes and standard retinoic addition in matched differentiations. A current protocol utilizing reduced Activin A and BMP4 can produce atrial cardiomyocytes with equivalent functionality but with reduced robustness of differentiation; only 8/17 differentiations produced a contractile syncytium. The day 1 retinoic acid protocol was successfully applied to 6 iPSC lines (3 male and 3 female) without additional optimization or modification. Atrial myocytes produced could also generate syncytia with rapid conduction velocities, > 40 cm s-1, and form rotor style arrhythmia in response to burst pacing. CONCLUSIONS This method combines an enhanced atrial-like phenotype with robustness of differentiation, which will facilitate further research in human atrial arrhythmia and myopathies, while being economically viable for larger anti-arrhythmic drug screens.
Collapse
Affiliation(s)
- Jordan Thorpe
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Matthew D Perry
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Osvaldo Contreras
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Emily Hurley
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - George Parker
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
32
|
Muniyandi P, O’Hern C, Popa MA, Aguirre A. Biotechnological advances and applications of human pluripotent stem cell-derived heart models. Front Bioeng Biotechnol 2023; 11:1214431. [PMID: 37560538 PMCID: PMC10407810 DOI: 10.3389/fbioe.2023.1214431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
In recent years, significant biotechnological advancements have been made in engineering human cardiac tissues and organ-like models. This field of research is crucial for both basic and translational research due to cardiovascular disease being the leading cause of death in the developed world. Additionally, drug-associated cardiotoxicity poses a major challenge for drug development in the pharmaceutical and biotechnological industries. Progress in three-dimensional cell culture and microfluidic devices has enabled the generation of human cardiac models that faithfully recapitulate key aspects of human physiology. In this review, we will discuss 3D pluripotent stem cell (PSC)-models of the human heart, such as engineered heart tissues and organoids, and their applications in disease modeling and drug screening.
Collapse
Affiliation(s)
- Priyadharshni Muniyandi
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Colin O’Hern
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Mirel Adrian Popa
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
33
|
Ahmad FS, Jin Y, Grassam-Rowe A, Zhou Y, Yuan M, Fan X, Zhou R, Mu-u-min R, O'Shea C, Ibrahim AM, Hyder W, Aguib Y, Yacoub M, Pavlovic D, Zhang Y, Tan X, Lei M, Terrar DA. Generation of cardiomyocytes from human-induced pluripotent stem cells resembling atrial cells with ability to respond to adrenoceptor agonists. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220312. [PMID: 37122218 PMCID: PMC10150206 DOI: 10.1098/rstb.2022.0312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/07/2022] [Indexed: 05/02/2023] Open
Abstract
Atrial fibrillation (AF) is the most common chronic arrhythmia presenting a heavy disease burden. We report a new approach for generating cardiomyocytes (CMs) resembling atrial cells from human-induced pluripotent stem cells (hiPSCs) using a combination of Gremlin 2 and retinoic acid treatment. More than 40% of myocytes showed rod-shaped morphology, expression of CM proteins (including ryanodine receptor 2, α-actinin-2 and F-actin) and striated appearance, all of which were broadly similar to the characteristics of adult atrial myocytes (AMs). Isolated myocytes were electrically quiescent until stimulated to fire action potentials with an AM profile and an amplitude of approximately 100 mV, arising from a resting potential of approximately -70 mV. Single-cell RNA sequence analysis showed a high level of expression of several atrial-specific transcripts including NPPA, MYL7, HOXA3, SLN, KCNJ4, KCNJ5 and KCNA5. Amplitudes of calcium transients recorded from spontaneously beating cultures were increased by the stimulation of α-adrenoceptors (activated by phenylephrine and blocked by prazosin) or β-adrenoceptors (activated by isoproterenol and blocked by CGP20712A). Our new approach provides human AMs with mature characteristics from hiPSCs which will facilitate drug discovery by enabling the study of human atrial cell signalling pathways and AF. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Faizzan S. Ahmad
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Cure8bio, Inc, 395 Fulton Street, Westbury, NY 11590, USA
| | - Yongcheng Jin
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | | | - Yafei Zhou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
- Shaanxi Institute for Pediatric Diseases, Department of Cardiology, Xi'an Children's Hospital, Xi'an 710003, People's Republic of China
| | - Meng Yuan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
| | - Rui Zhou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
| | - Razik Mu-u-min
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ayman M. Ibrahim
- Aswan Heart Centre, Aswan 1242770, Egypt
- Department of Zoology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Wajiha Hyder
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Yasmine Aguib
- Aswan Heart Centre, Aswan 1242770, Egypt
- National Heart and Lung Institute, Heart Science Centre, Imperial College London, Middlesex SW3 6LY, UK
| | - Magdi Yacoub
- Aswan Heart Centre, Aswan 1242770, Egypt
- National Heart and Lung Institute, Heart Science Centre, Imperial College London, Middlesex SW3 6LY, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yanmin Zhang
- Shaanxi Institute for Pediatric Diseases, Department of Cardiology, Xi'an Children's Hospital, Xi'an 710003, People's Republic of China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Derek A. Terrar
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
34
|
Hakim Khalili M, Zhang R, Wilson S, Goel S, Impey SA, Aria AI. Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering. Polymers (Basel) 2023; 15:2341. [PMID: 37242919 PMCID: PMC10221499 DOI: 10.3390/polym15102341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
In this brief review, we discuss the recent advancements in using poly(ethylene glycol) diacrylate (PEGDA) hydrogels for tissue engineering applications. PEGDA hydrogels are highly attractive in biomedical and biotechnology fields due to their soft and hydrated properties that can replicate living tissues. These hydrogels can be manipulated using light, heat, and cross-linkers to achieve desirable functionalities. Unlike previous reviews that focused solely on material design and fabrication of bioactive hydrogels and their cell viability and interactions with the extracellular matrix (ECM), we compare the traditional bulk photo-crosslinking method with the latest three-dimensional (3D) printing of PEGDA hydrogels. We present detailed evidence combining the physical, chemical, bulk, and localized mechanical characteristics, including their composition, fabrication methods, experimental conditions, and reported mechanical properties of bulk and 3D printed PEGDA hydrogels. Furthermore, we highlight the current state of biomedical applications of 3D PEGDA hydrogels in tissue engineering and organ-on-chip devices over the last 20 years. Finally, we delve into the current obstacles and future possibilities in the field of engineering 3D layer-by-layer (LbL) PEGDA hydrogels for tissue engineering and organ-on-chip devices.
Collapse
Affiliation(s)
- Mohammad Hakim Khalili
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Rujing Zhang
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Sandra Wilson
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Saurav Goel
- School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK;
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Susan A. Impey
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Adrianus Indrat Aria
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| |
Collapse
|
35
|
Abstract
The heart is the first functional organ established during embryogenesis. Investigating heart development and disease is a fascinating and crucial field of research because cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Therefore, there is great interest in establishing in vitro models for recapitulating both physiological and pathological aspects of human heart development, tissue function and malfunction. Derived from pluripotent stem cells, a large variety of three-dimensional cardiac in vitro models have been introduced in recent years. In this At a Glance article, we discuss the available methods to generate such models, grouped according to the following classification: cardiac organoids, cardiac microtissues and engineered cardiac tissues. For these models, we provide a systematic overview of their applications for disease modeling and therapeutic development, as well as their advantages and limitations to assist scientists in choosing the most suitable model for their research purpose.
Collapse
Affiliation(s)
- Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| |
Collapse
|
36
|
Van de Sande D, Ghasemi M, Watters T, Burton F, Pham L, Altrocchi C, Gallacher DJ, Lu H, Smith G. Does Enhanced Structural Maturity of hiPSC-Cardiomyocytes Better for the Detection of Drug-Induced Cardiotoxicity? Biomolecules 2023; 13:676. [PMID: 37189424 PMCID: PMC10135569 DOI: 10.3390/biom13040676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are currently used following the Comprehensive in vitro Proarrhythmic Assay (CiPA) initiative and subsequent recommendations in the International Council for Harmonization (ICH) guidelines S7B and E14 Q&A, to detect drug-induced cardiotoxicity. Monocultures of hiPSC-CMs are immature compared to adult ventricular cardiomyocytes and might lack the native heterogeneous nature. We investigated whether hiPSC-CMs, treated to enhance structural maturity, are superior in detecting drug-induced changes in electrophysiology and contraction. This was achieved by comparing hiPSC-CMs cultured in 2D monolayers on the current standard (fibronectin matrix, FM), to monolayers on a coating known to promote structural maturity (CELLvo™ Matrix Plus, MM). Functional assessment of electrophysiology and contractility was made using a high-throughput screening approach involving the use of both voltage-sensitive fluorescent dyes for electrophysiology and video technology for contractility. Using 11 reference drugs, the response of the monolayer of hiPSC-CMs was comparable in the two experimental settings (FM and MM). The data showed no functionally relevant differences in electrophysiology between hiPSC-CMs in standard FM and MM, while contractility read-outs indicated an altered amplitude of contraction but not changes in time course. RNA profiling for cardiac proteins shows similarity of the RNA expression across the two forms of 2D culture, suggesting that cell-to-matrix adhesion differences may explain account for differences in contraction amplitude. The results support the view that hiPSC-CMs in both 2D monolayer FM and MM that promote structural maturity are equally effective in detecting drug-induced electrophysiological effects in functional safety studies.
Collapse
Affiliation(s)
- Dieter Van de Sande
- Global Safety Pharmacology, Nonclinical Safety, Janssen Pharmaceutical NV, B-2340 Beerse, Belgium
| | - Mohammadreza Ghasemi
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
- Clyde Biosciences Limited, BioCity Scotland, Lanarkshire ML1 5UH, Scotland, UK
| | - Taylor Watters
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
- Clyde Biosciences Limited, BioCity Scotland, Lanarkshire ML1 5UH, Scotland, UK
| | - Francis Burton
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
- Clyde Biosciences Limited, BioCity Scotland, Lanarkshire ML1 5UH, Scotland, UK
| | - Ly Pham
- Global Safety Pharmacology, Nonclinical Safety, Janssen Pharmaceutical NV, B-2340 Beerse, Belgium
| | - Cristina Altrocchi
- Global Safety Pharmacology, Nonclinical Safety, Janssen Pharmaceutical NV, B-2340 Beerse, Belgium
| | - David J. Gallacher
- Global Safety Pharmacology, Nonclinical Safety, Janssen Pharmaceutical NV, B-2340 Beerse, Belgium
| | - Huarong Lu
- Global Safety Pharmacology, Nonclinical Safety, Janssen Pharmaceutical NV, B-2340 Beerse, Belgium
| | - Godfrey Smith
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
- Clyde Biosciences Limited, BioCity Scotland, Lanarkshire ML1 5UH, Scotland, UK
| |
Collapse
|
37
|
Schulz C, Lemoine MD, Mearini G, Koivumäki J, Sani J, Schwedhelm E, Kirchhof P, Ghalawinji A, Stoll M, Hansen A, Eschenhagen T, Christ T. PITX2 Knockout Induces Key Findings of Electrical Remodeling as Seen in Persistent Atrial Fibrillation. Circ Arrhythm Electrophysiol 2023; 16:e011602. [PMID: 36763906 DOI: 10.1161/circep.122.011602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Electrical remodeling in human persistent atrial fibrillation is believed to result from rapid electrical activation of the atria, but underlying genetic causes may contribute. Indeed, common gene variants in an enhancer region close to PITX2 (paired-like homeodomain transcription factor 2) are strongly associated with atrial fibrillation, but the mechanism behind this association remains unknown. This study evaluated the consequences of PITX2 deletion (PITX2-/-) in human induced pluripotent stem cell-derived atrial cardiomyocytes. METHODS CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) was used to delete PITX2 in a healthy human iPSC line that served as isogenic control. Human induced pluripotent stem cell-derived atrial cardiomyocytes were differentiated with unfiltered retinoic acid and cultured in atrial engineered heart tissue. Force and action potential were measured in atrial engineered heart tissues. Single human induced pluripotent stem cell-derived atrial cardiomyocytes were isolated from atrial engineered heart tissue for ion current measurements. RESULTS PITX2-/- atrial engineered heart tissue beats slightly slower than isogenic control without irregularity. Force was lower in PITX2-/- than in isogenic control (0.053±0.015 versus 0.131±0.017 mN, n=28/3 versus n=28/4, PITX2-/- versus isogenic control; P<0.0001), accompanied by lower expression of CACNA1C and lower L-type Ca2+ current density. Early repolarization was weaker (action potential duration at 20% repolarization; 45.5±13.2 versus 8.6±5.3 ms, n=18/3 versus n=12/4, PITX2-/- versus isogenic control; P<0.0001), and maximum diastolic potential was more negative (-78.3±3.1 versus -69.7±0.6 mV, n=18/3 versus n=12/4, PITX2-/- versus isogenic control; P=0.001), despite normal inward rectifier currents (both IK1 and IK,ACh) and carbachol-induced shortening of action potential duration. CONCLUSIONS Complete PITX2 deficiency in human induced pluripotent stem cell-derived atrial cardiomyocytes recapitulates some findings of electrical remodeling of atrial fibrillation in the absence of fast beating, indicating that these abnormalities could be primary consequences of lower PITX2 levels.
Collapse
Affiliation(s)
- Carl Schulz
- Institute of Experimental Pharmacology and Toxicology (C.S., M.D.L., G.M., J.S., A.H., T.E., T.C.), University Medical Center Hamburg-Eppendorf, Germany
- German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (C.S., M.D.L., G.M., J.S., E.S., P.K.)
| | - Marc D Lemoine
- Institute of Experimental Pharmacology and Toxicology (C.S., M.D.L., G.M., J.S., A.H., T.E., T.C.), University Medical Center Hamburg-Eppendorf, Germany
- German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (C.S., M.D.L., G.M., J.S., E.S., P.K.)
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany (M.D.L., A.H., P.K., T.E., T.C.)
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology (C.S., M.D.L., G.M., J.S., A.H., T.E., T.C.), University Medical Center Hamburg-Eppendorf, Germany
- German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (C.S., M.D.L., G.M., J.S., E.S., P.K.)
- DiNAQOR AG, Pfäffikon, Switzerland (G.M., P.K.)
| | - Jussi Koivumäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Finland (J.K.)
| | - Jascha Sani
- Institute of Experimental Pharmacology and Toxicology (C.S., M.D.L., G.M., J.S., A.H., T.E., T.C.), University Medical Center Hamburg-Eppendorf, Germany
- German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (C.S., M.D.L., G.M., J.S., E.S., P.K.)
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology (E.S.), University Medical Center Hamburg-Eppendorf, Germany
- German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (C.S., M.D.L., G.M., J.S., E.S., P.K.)
| | - Paulus Kirchhof
- German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (C.S., M.D.L., G.M., J.S., E.S., P.K.)
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany (M.D.L., A.H., P.K., T.E., T.C.)
- DiNAQOR AG, Pfäffikon, Switzerland (G.M., P.K.)
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.K.)
| | - Amer Ghalawinji
- Division of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.G., M.S.)
| | - Monika Stoll
- Division of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.G., M.S.)
- Department of Biochemistry, CARIM School for Cardiovascular Sciences, Maastricht University, the Netherlands (M.S.)
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology (C.S., M.D.L., G.M., J.S., A.H., T.E., T.C.), University Medical Center Hamburg-Eppendorf, Germany
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany (M.D.L., A.H., P.K., T.E., T.C.)
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology (C.S., M.D.L., G.M., J.S., A.H., T.E., T.C.), University Medical Center Hamburg-Eppendorf, Germany
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany (M.D.L., A.H., P.K., T.E., T.C.)
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology (C.S., M.D.L., G.M., J.S., A.H., T.E., T.C.), University Medical Center Hamburg-Eppendorf, Germany
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany (M.D.L., A.H., P.K., T.E., T.C.)
| |
Collapse
|
38
|
Ismaili D, Schulz C, Horváth A, Koivumäki JT, Mika D, Hansen A, Eschenhagen T, Christ T. Human induced pluripotent stem cell-derived cardiomyocytes as an electrophysiological model: Opportunities and challenges-The Hamburg perspective. Front Physiol 2023; 14:1132165. [PMID: 36875015 PMCID: PMC9978010 DOI: 10.3389/fphys.2023.1132165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Models based on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are proposed in almost any field of physiology and pharmacology. The development of human induced pluripotent stem cell-derived cardiomyocytes is expected to become a step forward to increase the translational power of cardiovascular research. Importantly they should allow to study genetic effects on an electrophysiological background close to the human situation. However, biological and methodological issues revealed when human induced pluripotent stem cell-derived cardiomyocytes were used in experimental electrophysiology. We will discuss some of the challenges that should be considered when human induced pluripotent stem cell-derived cardiomyocytes will be used as a physiological model.
Collapse
Affiliation(s)
- Djemail Ismaili
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Carl Schulz
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - András Horváth
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Jussi T. Koivumäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Delphine Mika
- Inserm, UMR-S 1180, Université Paris-Saclay, Orsay, France
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
39
|
Gabetti S, Sileo A, Montrone F, Putame G, Audenino AL, Marsano A, Massai D. Versatile electrical stimulator for cardiac tissue engineering-Investigation of charge-balanced monophasic and biphasic electrical stimulations. Front Bioeng Biotechnol 2023; 10:1031183. [PMID: 36686253 PMCID: PMC9846083 DOI: 10.3389/fbioe.2022.1031183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
The application of biomimetic physical stimuli replicating the in vivo dynamic microenvironment is crucial for the in vitro development of functional cardiac tissues. In particular, pulsed electrical stimulation (ES) has been shown to improve the functional properties of in vitro cultured cardiomyocytes. However, commercially available electrical stimulators are expensive and cumbersome devices while customized solutions often allow limited parameter tunability, constraining the investigation of different ES protocols. The goal of this study was to develop a versatile compact electrical stimulator (ELETTRA) for biomimetic cardiac tissue engineering approaches, designed for delivering controlled parallelizable ES at a competitive cost. ELETTRA is based on an open-source micro-controller running custom software and is combinable with different cell/tissue culture set-ups, allowing simultaneously testing different ES patterns on multiple samples. In particular, customized culture chambers were appositely designed and manufactured for investigating the influence of monophasic and biphasic pulsed ES on cardiac cell monolayers. Finite element analysis was performed for characterizing the spatial distributions of the electrical field and the current density within the culture chamber. Performance tests confirmed the accuracy, compliance, and reliability of the ES parameters delivered by ELETTRA. Biological tests were performed on neonatal rat cardiac cells, electrically stimulated for 4 days, by comparing, for the first time, the monophasic waveform (electric field = 5 V/cm) to biphasic waveforms by matching either the absolute value of the electric field variation (biphasic ES at ±2.5 V/cm) or the total delivered charge (biphasic ES at ±5 V/cm). Findings suggested that monophasic ES at 5 V/cm and, particularly, charge-balanced biphasic ES at ±5 V/cm were effective in enhancing electrical functionality of stimulated cardiac cells and in promoting synchronous contraction.
Collapse
Affiliation(s)
- Stefano Gabetti
- Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Antonio Sileo
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Federica Montrone
- Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Giovanni Putame
- Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Alberto L. Audenino
- Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Anna Marsano
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Diana Massai
- Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy,*Correspondence: Diana Massai,
| |
Collapse
|
40
|
Pan Z, Liang P. Human-Induced Pluripotent Stem Cell-Based Differentiation of Cardiomyocyte Subtypes for Drug Discovery and Cell Therapy. Handb Exp Pharmacol 2023; 281:209-233. [PMID: 37421443 DOI: 10.1007/164_2023_663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Drug attrition rates have increased over the past few years, accompanied with growing costs for the pharmaceutical industry and consumers. Lack of in vitro models connecting the results of toxicity screening assays with clinical outcomes accounts for this high attrition rate. The emergence of cardiomyocytes derived from human pluripotent stem cells provides an amenable source of cells for disease modeling, drug discovery, and cardiotoxicity screening. Functionally similar to to embryonic stem cells, but with fewer ethical concerns, induced pluripotent stem cells (iPSCs) can recapitulate patient-specific genetic backgrounds, which would be a huge revolution for personalized medicine. The generated iPSC-derived cardiomyocytes (iPSC-CMs) represent different subtypes including ventricular-, atrial-, and nodal-like cardiomyocytes. Purifying these subtypes for chamber-specific drug screening presents opportunities and challenges. In this chapter, we discuss the strategies for the purification of iPSC-CMs, the use of iPSC-CMs for drug discovery and cardiotoxicity test, and the current limitations of iPSC-CMs that should be overcome for wider and more precise cardiovascular applications.
Collapse
Affiliation(s)
- Ziwei Pan
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Ping Liang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
41
|
van der Velden J, Asselbergs FW, Bakkers J, Batkai S, Bertrand L, Bezzina CR, Bot I, Brundel BJJM, Carrier L, Chamuleau S, Ciccarelli M, Dawson D, Davidson SM, Dendorfer A, Duncker DJ, Eschenhagen T, Fabritz L, Falcão-Pires I, Ferdinandy P, Giacca M, Girao H, Gollmann-Tepeköylü C, Gyongyosi M, Guzik TJ, Hamdani N, Heymans S, Hilfiker A, Hilfiker-Kleiner D, Hoekstra AG, Hulot JS, Kuster DWD, van Laake LW, Lecour S, Leiner T, Linke WA, Lumens J, Lutgens E, Madonna R, Maegdefessel L, Mayr M, van der Meer P, Passier R, Perbellini F, Perrino C, Pesce M, Priori S, Remme CA, Rosenhahn B, Schotten U, Schulz R, Sipido KR, Sluijter JPG, van Steenbeek F, Steffens S, Terracciano CM, Tocchetti CG, Vlasman P, Yeung KK, Zacchigna S, Zwaagman D, Thum T. Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2022; 118:3016-3051. [PMID: 34999816 PMCID: PMC9732557 DOI: 10.1093/cvr/cvab370] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases represent a major cause of morbidity and mortality, necessitating research to improve diagnostics, and to discover and test novel preventive and curative therapies, all of which warrant experimental models that recapitulate human disease. The translation of basic science results to clinical practice is a challenging task, in particular for complex conditions such as cardiovascular diseases, which often result from multiple risk factors and comorbidities. This difficulty might lead some individuals to question the value of animal research, citing the translational 'valley of death', which largely reflects the fact that studies in rodents are difficult to translate to humans. This is also influenced by the fact that new, human-derived in vitro models can recapitulate aspects of disease processes. However, it would be a mistake to think that animal models do not represent a vital step in the translational pathway as they do provide important pathophysiological insights into disease mechanisms particularly on an organ and systemic level. While stem cell-derived human models have the potential to become key in testing toxicity and effectiveness of new drugs, we need to be realistic, and carefully validate all new human-like disease models. In this position paper, we highlight recent advances in trying to reduce the number of animals for cardiovascular research ranging from stem cell-derived models to in situ modelling of heart properties, bioinformatic models based on large datasets, and state-of-the-art animal models, which show clinically relevant characteristics observed in patients with a cardiovascular disease. We aim to provide a guide to help researchers in their experimental design to translate bench findings to clinical routine taking the replacement, reduction, and refinement (3R) as a guiding concept.
Collapse
Grants
- R01 HL150359 NHLBI NIH HHS
- RG/16/14/32397 British Heart Foundation
- FS/18/37/33642 British Heart Foundation
- PG/17/64/33205 British Heart Foundation
- PG/15/88/31780 British Heart Foundation
- FS/RTF/20/30009, NH/19/1/34595, PG/18/35/33786, CS/17/4/32960, PG/15/88/31780, and PG/17/64/33205 British Heart Foundation
- NC/T001488/1 National Centre for the Replacement, Refinement and Reduction of Animals in Research
- PG/18/44/33790 British Heart Foundation
- CH/16/3/32406 British Heart Foundation
- FS/RTF/20/30009 British Heart Foundation
- NWO-ZonMW
- ZonMW and Heart Foundation for the translational research program
- Dutch Cardiovascular Alliance (DCVA)
- Leducq Foundation
- Dutch Research Council
- Association of Collaborating Health Foundations (SGF)
- UCL Hospitals NIHR Biomedical Research Centre, and the DCVA
- Netherlands CardioVascular Research Initiative CVON
- Stichting Hartekind and the Dutch Research Counsel (NWO) (OCENW.GROOT.2019.029)
- National Fund for Scientific Research, Belgium and Action de Recherche Concertée de la Communauté Wallonie-Bruxelles, Belgium
- Netherlands CardioVascular Research Initiative CVON (PREDICT2 and CONCOR-genes projects), the Leducq Foundation
- ERA PerMed (PROCEED study)
- Netherlands Cardiovascular Research Initiative
- Dutch Heart Foundation
- German Centre of Cardiovascular Research (DZHH)
- Chest Heart and Stroke Scotland
- Tenovus Scotland
- Friends of Anchor and Grampian NHS-Endowments
- National Institute for Health Research University College London Hospitals Biomedical Research Centre
- German Centre for Cardiovascular Research
- European Research Council (ERC-AG IndivuHeart), the Deutsche Forschungsgemeinschaft
- European Union Horizon 2020 (REANIMA and TRAINHEART)
- German Ministry of Education and Research (BMBF)
- Centre for Cardiovascular Research (DZHK)
- European Union Horizon 2020
- DFG
- National Research, Development and Innovation Office of Hungary
- Research Excellence Program—TKP; National Heart Program
- Austrian Science Fund
- European Union Commission’s Seventh Framework programme
- CVON2016-Early HFPEF
- CVON She-PREDICTS
- CVON Arena-PRIME
- European Union’s Horizon 2020 research and innovation programme
- Deutsche Forschungsgemeinschaft
- Volkswagenstiftung
- French National Research Agency
- ERA-Net-CVD
- Fédération Française de Cardiologie, the Fondation pour la Recherche Médicale
- French PIA Project
- University Research Federation against heart failure
- Netherlands Heart Foundation
- Dekker Senior Clinical Scientist
- Health Holland TKI-LSH
- TUe/UMCU/UU Alliance Fund
- south African National Foundation
- Cancer Association of South Africa and Winetech
- Netherlands Heart Foundation/Applied & Engineering Sciences
- Dutch Technology Foundation
- Pie Medical Imaging
- Netherlands Organisation for Scientific Research
- Dr. Dekker Program
- Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation
- Dutch Federation of University Medical Centres
- Netherlands Organization for Health Research and Development and the Royal Netherlands Academy of Sciences for the GENIUS-II project
- Netherlands Organization for Scientific Research (NWO) (VICI grant); the European Research Council
- Incyte s.r.l. and from Ministero dell’Istruzione, Università e Ricerca Scientifica
- German Center for Cardiovascular Research (Junior Research Group & Translational Research Project), the European Research Council (ERC Starting Grant NORVAS),
- Swedish Heart-Lung-Foundation
- Swedish Research Council
- National Institutes of Health
- Bavarian State Ministry of Health and Care through the research project DigiMed Bayern
- ERC
- ERA-CVD
- Dutch Heart Foundation, ZonMw
- the NWO Gravitation project
- Ministero dell'Istruzione, Università e Ricerca Scientifica
- Regione Lombardia
- Netherlands Organisation for Health Research and Development
- ITN Network Personalize AF: Personalized Therapies for Atrial Fibrillation: a translational network
- MAESTRIA: Machine Learning Artificial Intelligence Early Detection Stroke Atrial Fibrillation
- REPAIR: Restoring cardiac mechanical function by polymeric artificial muscular tissue
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- European Union H2020 program to the project TECHNOBEAT
- EVICARE
- BRAV3
- ZonMw
- German Centre for Cardiovascular Research (DZHK)
- British Heart Foundation Centre for Cardiac Regeneration
- British Heart Foundation studentship
- NC3Rs
- Interreg ITA-AUS project InCARDIO
- Italian Association for Cancer Research
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science and Institute of Health Informatics, University College London, London, UK
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sandor Batkai
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Luc Bertrand
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Connie R Bezzina
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Ilze Bot
- Heart Center, Department of Experimental Cardiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bianca J J M Brundel
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Steven Chamuleau
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Odontology, University of Salerno, Fisciano (SA), Italy
| | - Dana Dawson
- Department of Cardiology, Aberdeen Cardiovascular and Diabetes Centre, Aberdeen Royal Infirmary and University of Aberdeen, Aberdeen, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- University Center of Cardiovascular Sciences and Department of Cardiology, University Heart Center Hamburg, Germany and Institute of Cardiovascular Sciences, University of Birmingham, UK
| | - Ines Falcão-Pires
- UnIC - Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal
| | - Péter Ferdinandy
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Mauro Giacca
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Henrique Girao
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | | | - Mariann Gyongyosi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Tomasz J Guzik
- Instutute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Nazha Hamdani
- Division Cardiology, Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Andres Hilfiker
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Comprehensive Cancer Centre, Philipps-Universität Marburg, Germany
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Sébastien Hulot
- Université de Paris, INSERM, PARCC, F-75015 Paris, France
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, F-75015 Paris, France
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Linda W van Laake
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27B, 48149 Muenster, Germany
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56124 Pisa, Italy
- Department of Internal Medicine, Cardiology Division, University of Texas Medical School in Houston, Houston, TX, USA
| | - Lars Maegdefessel
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500AE Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Filippo Perbellini
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro cardiologico Monzino, IRCCS, Milan, Italy
| | - Silvia Priori
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Pavia, Italy
- University of Pavia, Pavia, Italy
| | - Carol Ann Remme
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Bodo Rosenhahn
- Institute for information Processing, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Karin R Sipido
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, Regenerative Medicine Center Utrecht, Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Steenbeek
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center for Clinical and Translational Research (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Patricia Vlasman
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Amsterdam UMC, Vrije Universiteit, Surgery, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Dayenne Zwaagman
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Thomas Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
42
|
Li J, Wiesinger A, Fokkert L, Boukens BJ, Verkerk AO, Christoffels VM, Boink GJ, Devalla HD. Molecular and electrophysiological evaluation of human cardiomyocyte subtypes to facilitate generation of composite cardiac models. J Tissue Eng 2022; 13:20417314221127908. [PMID: 36277058 PMCID: PMC9583221 DOI: 10.1177/20417314221127908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
Paucity of physiologically relevant cardiac models has limited the widespread application of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes in drug development. Here, we performed comprehensive characterization of hiPSC-derived cardiomyocyte subtypes from 2D and 3D cultures and established a novel 3D model to study impulse initiation and propagation. Directed differentiation approaches were used to generate sinoatrial nodal (SANCM), atrial (ACM) and ventricular cardiomyocytes (VCM). Single cell RNA sequencing established that the protocols yield distinct cell populations in line with expected identities, which was also confirmed by electrophysiological characterization. In 3D EHT cultures of all subtypes, we observed prominent expression of stretch-responsive genes such as NPPA. Response to rate modulating drugs noradrenaline, carbachol and ivabradine were comparable in single cells and EHTs. Differences in the speed of impulse propagation between the subtypes were more pronounced in EHTs compared with 2D monolayers owing to a progressive increase in conduction velocities in atrial and ventricular cardiomyocytes, in line with a more mature phenotype. In a novel binary EHT model of pacemaker-atrial interface, the SANCM end of the tissue consistently paced the EHTs under baseline conditions, which was inhibited by ivabradine. Taken together, our data provide comprehensive insights into molecular and electrophysiological properties of hiPSC-derived cardiomyocyte subtypes, facilitating the creation of next generation composite cardiac models for drug discovery, disease modeling and cell-based regenerative therapies.
Collapse
Affiliation(s)
- Jiuru Li
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands
| | - Alexandra Wiesinger
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands
| | - Lianne Fokkert
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands
| | - Bastiaan J. Boukens
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands
| | - Arie O. Verkerk
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands,Department of Experimental Cardiology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands
| | - Vincent M. Christoffels
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands
| | - Gerard J.J. Boink
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands,Department of Cardiology, Amsterdam
University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands
| | - Harsha D. Devalla
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands,Harsha D Devalla, Department of Medical
Biology, Amsterdam University Medical Centers, University of Amsterdam,
Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
43
|
Kałużna E, Nadel A, Zimna A, Rozwadowska N, Kolanowski T. Modeling the human heart ex vivo-current possibilities and strive for future applications. J Tissue Eng Regen Med 2022; 16:853-874. [PMID: 35748158 PMCID: PMC9796015 DOI: 10.1002/term.3335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/20/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The high organ specification of the human heart is inversely proportional to its functional recovery after damage. The discovery of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has accelerated research in human heart regeneration and physiology. Nevertheless, due to the immaturity of iPSC-CMs, they are far from being an representative model of the adult heart physiology. Therefore, number of laboratories strive to obtain a heart tissues by engineering methods by structuring iPSC-CMs into complex and advanced platforms. By using the iPSC-CMs and arranging them in 3D cultures it is possible to obtain a human heart muscle with physiological capabilities potentially similar to the adult heart, while remaining in vitro. Here, we attempt to describe existing examples of heart muscle either in vitro or ex vivo models and discuss potential options for the further development of such structures. This will be a crucial step for ultimate derivation of complete heart tissue-mimicking organs and their future use in drug development, therapeutic approaches testing, pre-clinical studies, and clinical applications. This review particularly aims to compile available models of advanced human heart tissue for scientists considering which model would best fit their research needs.
Collapse
Affiliation(s)
- Ewelina Kałużna
- Institute of Human GeneticsPolish Academy of SciencesPoznanPoland
| | - Agnieszka Nadel
- Institute of Human GeneticsPolish Academy of SciencesPoznanPoland
| | - Agnieszka Zimna
- Institute of Human GeneticsPolish Academy of SciencesPoznanPoland
| | | | | |
Collapse
|
44
|
Leowattana W, Leowattana T, Leowattana P. Human-induced pluripotent stem cell-atrial-specific cardiomyocytes and atrial fibrillation. World J Clin Cases 2022; 10:9588-9601. [PMID: 36186184 PMCID: PMC9516943 DOI: 10.12998/wjcc.v10.i27.9588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
Patient-specific human-induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs) may be produced, genome-edited, and differentiated into multiple cell types for regenerative medicine, disease modeling, drug testing, toxicity screening, and three-dimensional tissue fabrication. There is presently no complete model of atrial fibrillation (AF) available for studying human pharmacological responses and evaluating the toxicity of potential medication candidates. It has been demonstrated that hiPSC-aCMs can replicate the electrophysiological disease phenotype and genotype of AF. The hiPSC-aCMs, however, are immature and do not reflect the maturity of aCMs in the native myocardium. Numerous laboratories utilize a variety of methodologies and procedures to improve and promote aCM maturation, including electrical stimulation, culture duration, biophysical signals, and changes in metabolic variables. This review covers the current methods being explored for use in the maturation of patient-specific hiPSC-aCMs and their application towards a personalized approach to the pharmacologic therapy of AF.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
45
|
Purnama U, Castro-Guarda M, Sahoo OS, Carr CA. Modelling Diabetic Cardiomyopathy: Using Human Stem Cell-Derived Cardiomyocytes to Complement Animal Models. Metabolites 2022; 12:metabo12090832. [PMID: 36144236 PMCID: PMC9503602 DOI: 10.3390/metabo12090832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetes is a global epidemic, with cardiovascular disease being the leading cause of death in diabetic patients. There is a pressing need for an in vitro model to aid understanding of the mechanisms driving diabetic heart disease, and to provide an accurate, reliable tool for drug testing. Human induced-pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have potential as a disease modelling tool. There are several factors that drive molecular changes inside cardiomyocytes contributing to diabetic cardiomyopathy, including hyperglycaemia, lipotoxicity and hyperinsulinemia. Here we discuss these factors and how they can be seen in animal models and utilised in cell culture to mimic the diabetic heart. The use of human iPSC-CMs will allow for a greater understanding of disease pathogenesis and open up new avenues for drug testing.
Collapse
Affiliation(s)
- Ujang Purnama
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Marcos Castro-Guarda
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Om Saswat Sahoo
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713216, India
| | - Carolyn A. Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Correspondence: ; Tel.: +44-1865-282247
| |
Collapse
|
46
|
Ismaili D, Gurr K, Horváth A, Yuan L, Lemoine MD, Schulz C, Sani J, Petersen J, Reichenspurner H, Kirchhof P, Jespersen T, Eschenhagen T, Hansen A, Koivumäki JT, Christ T. Regulation of APD and Force by the Na +/Ca 2+ Exchanger in Human-Induced Pluripotent Stem Cell-Derived Engineered Heart Tissue. Cells 2022; 11:cells11152424. [PMID: 35954268 PMCID: PMC9368200 DOI: 10.3390/cells11152424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
The physiological importance of NCX in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is not well characterized but may depend on the relative strength of the current, compared to adult cardiomyocytes, and on the exact spatial arrangement of proteins involved in Ca2+ extrusion. Here, we determined NCX currents and its contribution to action potential and force in hiPSC-CMs cultured in engineered heart tissue (EHT). The results were compared with data from rat and human left ventricular tissue. The NCX currents in hiPSC-CMs were larger than in ventricular cardiomyocytes isolated from human left ventricles (1.3 ± 0.2 pA/pF and 3.2 ± 0.2 pA/pF for human ventricle and EHT, respectively, p < 0.05). SEA0400 (10 µM) markedly shortened the APD90 in EHT (by 26.6 ± 5%, p < 0.05) and, to a lesser extent, in rat ventricular tissue (by 10.7 ± 1.6%, p < 0.05). Shortening in human left ventricular preparations was small and not different from time-matched controls (TMCs; p > 0.05). Force was increased by the NCX block in rat ventricle (by 31 ± 5.4%, p < 0.05) and EHT (by 20.8 ± 3.9%, p < 0.05), but not in human left ventricular preparations. In conclusion, hiPSC-CMs possess NCX currents not smaller than human left ventricular tissue. Robust NCX block-induced APD shortening and inotropy makes EHT an attractive pharmacological model.
Collapse
Affiliation(s)
- Djemail Ismaili
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
- Correspondence: (D.I.); (T.C.); Tel.: +49-40-7410-42414 (T.C.)
| | - Katrin Gurr
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - András Horváth
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Lei Yuan
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marc D. Lemoine
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Carl Schulz
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Jascha Sani
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Johannes Petersen
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
- Department of Cardiovascular Surgery, University Heart and Vascular Center, 20246 Hamburg, Germany
| | - Hermann Reichenspurner
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
- Department of Cardiovascular Surgery, University Heart and Vascular Center, 20246 Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Thomas Jespersen
- Department of Cardiovascular Surgery, University Heart and Vascular Center, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Jussi T. Koivumäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
- Correspondence: (D.I.); (T.C.); Tel.: +49-40-7410-42414 (T.C.)
| |
Collapse
|
47
|
Charwat V, Charrez B, Siemons BA, Finsberg H, Jæger KH, Edwards AG, Huebsch N, Wall S, Miller E, Tveito A, Healy KE. Validating the Arrhythmogenic Potential of High-, Intermediate-, and Low-Risk Drugs in a Human-Induced Pluripotent Stem Cell-Derived Cardiac Microphysiological System. ACS Pharmacol Transl Sci 2022; 5:652-667. [PMID: 35983280 PMCID: PMC9380217 DOI: 10.1021/acsptsci.2c00088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Evaluation of arrhythmogenic drugs is required by regulatory agencies before any new compound can obtain market approval. Despite rigorous review, cardiac disorders remain the second most common cause for safety-related market withdrawal. On the other hand, false-positive preclinical findings prohibit potentially beneficial candidates from moving forward in the development pipeline. Complex in vitro models using cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CM) have been identified as a useful tool that allows for rapid and cost-efficient screening of proarrhythmic drug risk. Currently available hiPSC-CM models employ simple two-dimensional (2D) culture formats with limited structural and functional relevance to the human heart muscle. Here, we present the use of our 3D cardiac microphysiological system (MPS), composed of a hiPSC-derived heart micromuscle, as a platform for arrhythmia risk assessment. We employed two different hiPSC lines and tested seven drugs with known ion channel effects and known clinical risk: dofetilide and bepridil (high risk); amiodarone and terfenadine (intermediate risk); and nifedipine, mexiletine, and lidocaine (low risk). The cardiac MPS successfully predicted drug cardiotoxicity risks based on changes in action potential duration, beat waveform (i.e., shape), and occurrence of proarrhythmic events of healthy patient hiPSC lines in the absence of risk cofactors. We showcase examples where the cardiac MPS outperformed existing hiPSC-CM 2D models.
Collapse
Affiliation(s)
- Verena Charwat
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, United States
| | - Bérénice Charrez
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, United States
| | - Brian A. Siemons
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, United States
| | | | | | | | - Nathaniel Huebsch
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, United States
| | - Samuel Wall
- Simula Research Laboratory, 0164 Oslo, Norway
| | - Evan Miller
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | | | - Kevin E. Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
48
|
Bremner SB, Gaffney KS, Sniadecki NJ, Mack DL. A Change of Heart: Human Cardiac Tissue Engineering as a Platform for Drug Development. Curr Cardiol Rep 2022; 24:473-486. [PMID: 35247166 PMCID: PMC8897733 DOI: 10.1007/s11886-022-01668-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Human cardiac tissue engineering holds great promise for early detection of drug-related cardiac toxicity and arrhythmogenicity during drug discovery and development. We describe shortcomings of the current drug development pathway, recent advances in the development of cardiac tissue constructs as drug testing platforms, and the challenges remaining in their widespread adoption. RECENT FINDINGS Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have been used to develop a variety of constructs including cardiac spheroids, microtissues, strips, rings, and chambers. Several ambitious studies have used these constructs to test a significant number of drugs, and while most have shown proper negative inotropic and arrhythmogenic responses, few have been able to demonstrate positive inotropy, indicative of relative hPSC-CM immaturity. Several engineered human cardiac tissue platforms have demonstrated native cardiac physiology and proper drug responses. Future studies addressing hPSC-CM immaturity and inclusion of patient-specific cell lines will further advance the utility of such models for in vitro drug development.
Collapse
Affiliation(s)
- Samantha B. Bremner
- Department of Bioengineering, University of Washington, Seattle, WA USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Karen S. Gaffney
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Nathan J. Sniadecki
- Department of Bioengineering, University of Washington, Seattle, WA USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - David L. Mack
- Department of Bioengineering, University of Washington, Seattle, WA USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA USA
| |
Collapse
|
49
|
Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nat Biomed Eng 2022; 6:327-338. [PMID: 35478227 DOI: 10.1038/s41551-022-00885-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Engineered human cardiac tissues facilitate progress in regenerative medicine, disease modelling and drug development. In this Perspective, we reflect on the most notable advances in cardiac tissue engineering from the past two decades by analysing pivotal studies and critically examining the most consequential developments. This retrospective analysis led us to identify key milestones and to outline a set of opportunities, along with their associated challenges, for the further advancement of engineered human cardiac tissues.
Collapse
|
50
|
Rivera-Arbeláez JM, Cofiño-Fabres C, Schwach V, Boonen T, ten Den SA, Vermeul K, van den Berg A, Segerink LI, Ribeiro MC, Passier R. Contractility analysis of human engineered 3D heart tissues by an automatic tracking technique using a standalone application. PLoS One 2022; 17:e0266834. [PMID: 35421132 PMCID: PMC9009597 DOI: 10.1371/journal.pone.0266834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
The use of Engineered Heart Tissues (EHT) as in vitro model for disease modeling and drug screening has increased, as they provide important insight into the genetic mechanisms, cardiac toxicity or drug responses. Consequently, this has highlighted the need for a standardized, unbiased, robust and automatic way to analyze hallmark physiological features of EHTs. In this study we described and validated a standalone application to analyze physiological features of EHTs in an automatic, robust, and unbiased way, using low computational time. The standalone application “EHT Analysis” contains two analysis modes (automatic and manual) to analyzes the contractile properties and the contraction kinetics of EHTs from high speed bright field videos. As output data, the graphs of displacement, contraction force and contraction kinetics per file will be generated together with the raw data. Additionally, it also generates a summary file containing all the data from the analyzed files, which facilitates and speeds up the post analysis. From our study we highlight the importance of analyzing the axial stress which is the force per surface area (μN/mm2). This allows to have a readout overtime of tissue compaction, axial stress and leave the option to calculate at the end point of an experiment the physiological cross-section area (PSCA). We demonstrated the utility of this tool by analyzing contractile properties and compaction over time of EHTs made out of a double reporter human pluripotent stem cell (hPSC) line (NKX2.5EGFP/+-COUP-TFIImCherry/+) and different ratios of human adult cardiac fibroblasts (HCF). Our standalone application “EHT Analysis” can be applied for different studies where the physiological features of EHTs needs to be analyzed under the effect of a drug compound or in a disease model.
Collapse
Affiliation(s)
- José M. Rivera-Arbeláez
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, The Netherlands
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, The Netherlands
| | - Carla Cofiño-Fabres
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Verena Schwach
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Tom Boonen
- River BioMedics, Enschede, The Netherlands
| | - Simone A. ten Den
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Kim Vermeul
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Albert van den Berg
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, The Netherlands
| | - Loes I. Segerink
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, The Netherlands
| | - Marcelo C. Ribeiro
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, The Netherlands
- River BioMedics, Enschede, The Netherlands
| | - Robert Passier
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, The Netherlands
- Department Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|