1
|
M'hamdi HI. Language and labels from the lab: Definitions in the stem cell-based embryo model debate. Stem Cell Reports 2025; 20:102477. [PMID: 40250440 DOI: 10.1016/j.stemcr.2025.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/20/2025] Open
Abstract
This article examines the definitional challenges surrounding stem cell-based embryo models. Terms like "synthetic embryos" misrepresent their nature and influence public discourse. I argue for a multidisciplinary approach, integrating scientific precision with linguistic and ethical considerations, to ensure clarity, honesty, and respect in both scientific and societal debates.
Collapse
Affiliation(s)
- Hafez Ismaili M'hamdi
- Department of Health Ethics and Society, Department of Health, Ethics and Society Maastricht University, Postbus 616, 6200 MD Maastricht, the Netherlands; School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands; School for Care and Public Health Research (CAPHRI), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Kim H, Kim E. Current Status of Synthetic Mammalian Embryo Models. Int J Mol Sci 2024; 25:12862. [PMID: 39684574 PMCID: PMC11641582 DOI: 10.3390/ijms252312862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Advances in three-dimensional culture technologies have facilitated the development of synthetic embryo models, such as blastoids, through the co-culturing of diverse stem cell types. These in vitro models enable precise investigation of developmental processes, including gastrulation, neurulation, and lineage specification, thereby advancing our understanding of early embryogenesis. By providing controllable, ethically viable platforms, they help circumvent the limitations of in vivo mammalian embryo studies and contribute to developing regenerative medicine strategies. Nonetheless, ethical challenges, particularly regarding human applications, persist. Comparative studies across various species-such as mice, humans, non-human primates, and ungulates, like pigs and cattle-offer crucial insights into both species-specific and conserved developmental mechanisms. In this review, we outline the species-specific differences in embryonic development and discuss recent advancements in stem cell and synthetic embryo models. Specifically, we focus on the latest stem cell research involving ungulates, such as pigs and cattle, and provide a comprehensive overview of the improvements in synthetic embryo technology. These insights contribute to our understanding of species-specific developmental biology, help improve model efficiency, and guide the development of new models.
Collapse
Affiliation(s)
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| |
Collapse
|
3
|
Stougiannou TM, Christodoulou KC, Karangelis D. In Vitro Models of Cardiovascular Disease: Embryoid Bodies, Organoids and Everything in Between. Biomedicines 2024; 12:2714. [PMID: 39767621 PMCID: PMC11726960 DOI: 10.3390/biomedicines12122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Cardiovascular disease comprises a group of disorders affecting or originating within tissues and organs of the cardiovascular system; most, if not all, will eventually result in cardiomyocyte dysfunction or death, negatively impacting cardiac function. Effective models of cardiac disease are thus important for understanding crucial aspects of disease progression, while recent advancements in stem cell biology have allowed for the use of stem cell populations to derive such models. These include three-dimensional (3D) models such as stem cell-based models of embryos (SCME) as well as organoids, many of which are frequently derived from embryoid bodies (EB). Not only can they recapitulate 3D form and function, but the developmental programs governing the self-organization of cell populations into more complex tissues as well. Many different organoids and SCME constructs have been generated in recent years to recreate cardiac tissue and the complex developmental programs that give rise to its cellular composition and unique tissue morphology. It is thus the purpose of this narrative literature review to describe and summarize many of the recently derived cardiac organoid models as well as their use for the recapitulation of genetic and acquired disease. Owing to the cellular composition of the models examined, this review will focus on disease and tissue injury associated with embryonic/fetal tissues.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, Democritus University of Thrace University General Hospital, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
4
|
Denker HW. Embryoids, models, embryos? We need to take a new look at legal norms concerning the beginning of organismic development. Mol Hum Reprod 2023; 30:gaad047. [PMID: 38113415 DOI: 10.1093/molehr/gaad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/24/2023] [Indexed: 12/21/2023] Open
|
5
|
de Graeff N, De Proost L, Munsie M. 'Ceci n'est pas un embryon?' The ethics of human embryo model research. Nat Methods 2023; 20:1863-1867. [PMID: 38057511 PMCID: PMC7615661 DOI: 10.1038/s41592-023-02066-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Increasingly advanced in vitro stem-cell-derived human embryo models raise novel ethical questions and shed a light on long-standing questions regarding research on human embryos.
Collapse
Affiliation(s)
- Nienke de Graeff
- Department of Medical Ethics & Health Law, Leiden University Medical Center, Leiden University, Leiden, the Netherlands.
| | - Lien De Proost
- Department of Medical Ethics & Health Law, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
- Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Megan Munsie
- Stem Cell Biology Theme, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Iltis AS, Koster G, Reeves E, Matthews KRW. Ethical, legal, regulatory, and policy issues concerning embryoids: a systematic review of the literature. Stem Cell Res Ther 2023; 14:209. [PMID: 37605210 PMCID: PMC10441753 DOI: 10.1186/s13287-023-03448-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Recent advances in methods to culture pluripotent stem cells to model human development have resulted in entities that increasingly have recapitulated advanced stages of early embryo development. These entities, referred to by numerous terms such as embryoids, are becoming more sophisticated and could resemble human embryos ever more closely as research progresses. This paper reports a systematic review of the ethical, legal, regulatory, and policy questions and concerns found in the literature concerning human embryoid research published from 2016 to 2022. We identified 56 papers that use 53 distinct names or terms to refer to embryoids and four broad categories of ethical, legal, regulatory, or policy considerations in the literature: research justifications/benefits, ethical significance or moral status, permissible use, and regulatory and oversight challenges. Analyzing the full range of issues is a critical step toward fostering more robust ethical, legal, and social implications research in this emerging area and toward developing appropriate oversight.
Collapse
Affiliation(s)
- Ana S Iltis
- Center for Bioethics, Health and Society and Department of Philosophy, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Grace Koster
- Center for Bioethics, Health and Society and Department of Philosophy, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Emily Reeves
- Center for Bioethics, Health and Society and Department of Philosophy, Wake Forest University, Winston-Salem, NC, 27106, USA
| | | |
Collapse
|
7
|
Rivron NC, Martinez Arias A, Pera MF, Moris N, M'hamdi HI. An ethical framework for human embryology with embryo models. Cell 2023; 186:3548-3557. [PMID: 37595564 DOI: 10.1016/j.cell.2023.07.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/24/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
A human embryo's legal definition and its entitlement to protection vary greatly worldwide. Recently, human pluripotent stem cells have been used to form in vitro models of early embryos that have challenged legal definitions and raised questions regarding their usage. In this light, we propose a refined legal definition of an embryo, suggest "tipping points" for when human embryo models could eventually be afforded similar protection to that of embryos, and then revisit basic ethical principles that might help to draft a roadmap for the gradual, justified usage of embryo models in a manner that aims to maximize benefits to society.
Collapse
Affiliation(s)
- Nicolas C Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria.
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, Doctor Aiguader 88 ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain
| | | | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Hafez Ismaili M'hamdi
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
8
|
Qin Y, Huang X, Cai Z, Cai B, He J, Yao Y, Zhou C, Kuang J, Yang Y, Chen H, Chen Y, Ou S, Chen L, Wu F, Guo N, Yuan Y, Zhang X, Pang W, Feng Z, Yu S, Liu J, Cao S, Pei D. Regeneration of the human segmentation clock in somitoids in vitro. EMBO J 2022; 41:e110928. [PMID: 36245268 PMCID: PMC9713707 DOI: 10.15252/embj.2022110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 01/15/2023] Open
Abstract
Each vertebrate species appears to have a unique timing mechanism for forming somites along the vertebral column, and the process in human remains poorly understood at the molecular level due to technical and ethical limitations. Here, we report the reconstitution of human segmentation clock by direct reprogramming. We first reprogrammed human urine epithelial cells to a presomitic mesoderm (PSM) state capable of long-term self-renewal and formation of somitoids with an anterior-to-posterior axis. By inserting the RNA reporter Pepper into HES7 and MESP2 loci of these iPSM cells, we show that both transcripts oscillate in the resulting somitoids at ~5 h/cycle. GFP-tagged endogenous HES7 protein moves along the anterior-to-posterior axis during somitoid formation. The geo-sequencing analysis further confirmed anterior-to-posterior polarity and revealed the localized expression of WNT, BMP, FGF, and RA signaling molecules and HOXA-D family members. Our study demonstrates the direct reconstitution of human segmentation clock from somatic cells, which may allow future dissection of the mechanism and components of such a clock and aid regenerative medicine.
Collapse
Affiliation(s)
- Yue Qin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life SciencesWestlake UniversityHangzhouChina
| | - Zepo Cai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Baomei Cai
- Center for Cell Lineage and AtlasBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Jiangping He
- Center for Cell Lineage and AtlasBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Yuxiang Yao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Chunhua Zhou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life SciencesWestlake UniversityHangzhouChina
| | - Yihang Yang
- Laboratory of Cell Fate Control, School of Life SciencesWestlake UniversityHangzhouChina
| | - Huan Chen
- Center for Cell Lineage and AtlasBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Yating Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Sihua Ou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Lijun Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Fang Wu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Ning Guo
- Laboratory of Cell Fate Control, School of Life SciencesWestlake UniversityHangzhouChina
| | - Yapei Yuan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Xiangyu Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Wei Pang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Ziyu Feng
- Center for Cell Lineage and AtlasBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Shengyong Yu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of the Chinese Academy of SciencesBeijingChina
- Center for Cell Lineage and AtlasBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Shangtao Cao
- Center for Cell Lineage and AtlasBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- Guangzhou LaboratoryGuangzhouChina
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life SciencesWestlake UniversityHangzhouChina
| |
Collapse
|
9
|
Sozen B, Conkar D, Veenvliet JV. Carnegie in 4D? Stem-cell-based models of human embryo development. Semin Cell Dev Biol 2022; 131:44-57. [PMID: 35701286 DOI: 10.1016/j.semcdb.2022.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
How cells build embryos is still a major mystery. Many unresolved questions require the study of the processes that pattern and shape the embryo in live specimens, in toto, across spatial and temporal scales. In mammalian embryogenesis, this remains a major challenge as the embryo develops in utero, precluding easy accessibility. For human embryos, technical, ethical and legal limitations further hamper the in-depth investigation of embryogenesis, especially beyond gastrulation stages. This has resulted in an over-reliance on model organisms, particularly mice, to understand mammalian development. However, recent efforts show critical differences between rodent and primate embryos, including timing, architecture and transcriptional regulation. Thus, a human-centric understanding of embryogenesis is much needed. To empower this, novel in vitro approaches, which coax human pluripotent stem cells to form embryonic organoids that model embryo development, are pivotal. Here, we summarize these emergent technologies that recapitulate aspects of human development "in a dish". We show how these technologies can provide insights into the molecular, cellular and morphogenetic processes that fuel the formation of a fully formed fetus, and discuss the potential of these platforms to revolutionize our understanding of human development in health and disease. Despite their clear promise, we caution against over-interpreting the extent to which these in vitro platforms model the natural embryo. In particular, we discuss how fate, form and function - a tightly coupled trinity in vivo, can be disconnected in vitro. Finally, we propose how careful benchmarking of existing models, in combination with rational protocol design based on an increased understanding of in vivo developmental dynamics and insights from mouse in vitro models of embryo development, will help guide the establishment of better models of human embryo development.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.
| | - Deniz Conkar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jesse V Veenvliet
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
10
|
Glykofrydis F, Elfick A. Exploring standards for multicellular mammalian synthetic biology. Trends Biotechnol 2022; 40:1299-1312. [PMID: 35803769 DOI: 10.1016/j.tibtech.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 01/21/2023]
Abstract
Synthetic biology is moving towards bioengineering multicellular mammalian systems that are poised to advance tissue engineering, biomedicine, and the food industry. Despite progress, the field lacks a framework of standards that could greatly accelerate further development. Here, we explore the landscape of standards for multicellular mammalian synthetic biology. We discuss the limits of current technical standards and categorise unaddressed parameters into an abstraction hierarchy. We then define the concept of a 'synthetic multicellular mammalian system' and apply our standard hierarchy framework to illustrate how it could aid bioengineering endeavours. We conclude with promising areas that could shape the future of the field, flagging the need for a critical and holistic consideration of standards that requires cross-disciplinary dialogue.
Collapse
Affiliation(s)
- Fokion Glykofrydis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BD, UK
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BD, UK.
| |
Collapse
|
11
|
Abstract
Cell fusions have a long history of supporting biomedical research. These experimental models, historically referred to as 'somatic cell hybrids', involve combining the plasma membranes of two cells and merging their nuclei within a single cytoplasm. Cell fusion studies involving human and chimpanzee pluripotent stem cells, rather than somatic cells, highlight the need for responsible communication and a revised nomenclature. Applying the terms 'hybrid' and 'parental' to the fused and source cell lines, respectively, evokes reproductive relationships that do not exist between humans and other species. These misnomers become more salient in the context of fused pluripotent stem cells derived from different but closely related species. Here, we propose a precise, versatile and generalizable framework to describe these fused cell lines. We recommend the term 'composite cell line', to distinguish cell lines that are experimentally created through fusions from both reproductive hybrids and natural cell fusion events without obscuring the model in overly technical terms. For scientific audiences, we further recommend technical nomenclature that describes the contributing species, ploidy and cell type.
Collapse
|
12
|
Rossant J, Tam PP. Early human embryonic development: Blastocyst formation to gastrulation. Dev Cell 2022; 57:152-165. [DOI: 10.1016/j.devcel.2021.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
|
13
|
OUP accepted manuscript. Mol Hum Reprod 2022; 28:6551255. [DOI: 10.1093/molehr/gaac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Veenvliet JV, Lenne PF, Turner DA, Nachman I, Trivedi V. Sculpting with stem cells: how models of embryo development take shape. Development 2021; 148:dev192914. [PMID: 34908102 PMCID: PMC8722391 DOI: 10.1242/dev.192914] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryogenesis, organisms acquire their shape given boundary conditions that impose geometrical, mechanical and biochemical constraints. A detailed integrative understanding how these morphogenetic information modules pattern and shape the mammalian embryo is still lacking, mostly owing to the inaccessibility of the embryo in vivo for direct observation and manipulation. These impediments are circumvented by the developmental engineering of embryo-like structures (stembryos) from pluripotent stem cells that are easy to access, track, manipulate and scale. Here, we explain how unlocking distinct levels of embryo-like architecture through controlled modulations of the cellular environment enables the identification of minimal sets of mechanical and biochemical inputs necessary to pattern and shape the mammalian embryo. We detail how this can be complemented with precise measurements and manipulations of tissue biochemistry, mechanics and geometry across spatial and temporal scales to provide insights into the mechanochemical feedback loops governing embryo morphogenesis. Finally, we discuss how, even in the absence of active manipulations, stembryos display intrinsic phenotypic variability that can be leveraged to define the constraints that ensure reproducible morphogenesis in vivo.
Collapse
Affiliation(s)
- Jesse V. Veenvliet
- Stembryogenesis Lab, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Pierre-François Lenne
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, 13288, Marseille, France
| | - David A. Turner
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, University of Liverpool, Liverpool, L7 8TX, UK
| | - Iftach Nachman
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Vikas Trivedi
- European Molecular Biology Laboratories (EMBL), Barcelona, 08003, Spain
- EMBL Heidelberg, Developmental Biology Unit, 69117, Heidelberg, Germany
| |
Collapse
|
15
|
Hengstschläger M, Rosner M. Embryoid research calls for reassessment of legal regulations. Stem Cell Res Ther 2021; 12:356. [PMID: 34147132 PMCID: PMC8214764 DOI: 10.1186/s13287-021-02442-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
It is known that in countries, in which basic research on human embryos is in fact prohibited by law, working with imported human embryonic stem cells (hESCs) can still be permitted. As long as hESCs are not capable of development into a complete human being, it might be the case that they do not fulfill all criteria of the local definition of an embryo. Recent research demonstrates that hESCs can be developed into entities, called embryoids, which increasingly could come closer to actual human embryos in future. By discussing the Austrian situation, we want to highlight that current embryoid research could affect the prevailing opinion on the legal status of work with hESCs and therefore calls for reassessment of the regulations in all countries with comparable definitions of the embryo.
Collapse
Affiliation(s)
- Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria.
| | - Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| |
Collapse
|
16
|
Denker HW. Autonomy in the Development of Stem Cell-Derived Embryoids: Sprouting Blastocyst-Like Cysts, and Ethical Implications. Cells 2021; 10:1461. [PMID: 34200796 PMCID: PMC8230544 DOI: 10.3390/cells10061461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
The experimental production of complex structures resembling mammalian embryos (e.g., blastoids, gastruloids) from pluripotent stem cells in vitro has become a booming research field. Since some of these embryoid models appear to reach a degree of complexity that may come close to viability, a broad discussion has set in with the aim to arrive at a consensus on the ethical implications with regard to acceptability of the use of this technology with human cells. The present text focuses on aspects of the gain of organismic wholeness of such stem cell-derived constructs, and of autonomy of self-organization, raised by recent reports on blastocyst-like cysts spontaneously budding in mouse stem cell cultures, and by previous reports on likewise spontaneous formation of gastrulating embryonic disc-like structures in primate models. Mechanisms of pattern (axis) formation in early embryogenesis are discussed in the context of self-organization of stem cell clusters. It is concluded that ethical aspects of development of organismic wholeness in the formation of embryoids need to receive more attention in the present discussions about new legal regulations in this field.
Collapse
Affiliation(s)
- Hans-Werner Denker
- Universitätsklinikum, Institut für Anatomie, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|