1
|
Liu J, Liu Z, Xu D, Zhou T, Li A, Hu J, Li H, Li W, Wang Z, Yu Z, Zeng L. Pretreatment Lipoprotein(a) as a Biomarker for EGFR Mutation and Prognosis in Lung Adenocarcinoma. Int J Gen Med 2024; 17:6465-6478. [PMID: 39742033 PMCID: PMC11687294 DOI: 10.2147/ijgm.s501401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose This study aims to investigate the correlation between pretreatment serum lipoprotein(a) [Lp(a)] and epidermal growth factor receptor (EGFR) gene mutations, as well as its predictive value for progression-free survival (PFS) in advanced lung adenocarcinoma patients receiving epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) therapy. Patients and Methods We determined the optimal cutoff value for Lp(a) by receiver operating characteristic (ROC) curves and Youden's index to categorize Lp(a) into high and low groups. Logistic regression was used to analyze the EGFR mutation rate in different groups. Additionally, the relationship between pretreatment Lp(a) levels and prognostic PFS in patients with advanced (TNM stage IIIB-IV) lung adenocarcinoma treated with EGFR-TKIs was retrospectively analyzed by Cox regression, survival and stratified analysis methods. Results We included 338 advanced lung adenocarcinoma patients, with median age of 64 years, and slightly more female patients (51.8%), most of whom had no smoking history (70.7%), no history of chronic lung disease (87.9%), and stage IV (81.1%) patients. The EGFR gene mutation rate was 55.3% and 123 patients were included in the prognostic evaluation through screening. The optimal cutoff value for Lp(a) was 20.48 mg/L. The mutation rate in the high Lp(a) group was significantly lower than the low Lp(a) group (48.0% vs 65.5%, p = 0.001). Multivariate logistic regression analysis indicated that Lp(a) is an independent predictor of EGFR mutations (OR = 0.41, 95% CI: 0.25-0.66, p<0.001). Survival analysis showed that the median PFS was significantly longer in the high Lp(a) level group compared to the low level group (16.1 months, 95% CI: 11.9-23.8 months vs 9.6 months, 95% CI: 8.9-13.3 months, p=0.015). Multivariate analysis confirmed that Lp(a) is an independent predictor of PFS in advanced lung adenocarcinoma patients receiving EGFR-TKIs treatment (HR = 0.42, 95% CI: 0.26-0.68, p<0.001). Conclusion Pretreatment Lp(a) may be a biomarker for EGFR mutations and the PFS in advanced lung adenocarcinoma patients undergoing EGFR-TKIs treatment.
Collapse
Affiliation(s)
- Ji Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Zhekang Liu
- Rheumatology and Immunology department, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Deming Xu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Tao Zhou
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Ang Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Jiali Hu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Hong Li
- Department of Geriatrics, the First People’s Hospital of Jiashan County, Jiaxing, Zhejiang Province, People’s Republic of China
| | - Wenjie Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Zengqing Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Zhiping Yu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Linxiang Zeng
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| |
Collapse
|
2
|
Lingwood C. Is cholesterol both the lock and key to abnormal transmembrane signals in Autism Spectrum Disorder? Lipids Health Dis 2024; 23:114. [PMID: 38643132 PMCID: PMC11032007 DOI: 10.1186/s12944-024-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/22/2024] Open
Abstract
Disturbances in cholesterol homeostasis have been associated with ASD. Lipid rafts are central in many transmembrane signaling pathways (including mTOR) and changes in raft cholesterol content affect their order function. Cholesterol levels are controlled by several mechanisms, including endoplasmic reticulum associated degradation (ERAD) of the rate limiting HMGCoA reductase. A new approach to increase cholesterol via temporary ERAD blockade using a benign bacterial toxin-derived competitor for the ERAD translocon is suggested.A new lock and key model for cholesterol/lipid raft dependent signaling is proposed in which the rafts provide both the afferent and efferent 'tumblers' across the membrane to allow 'lock and key' receptor transmembrane signals.
Collapse
Affiliation(s)
- Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Departments of Biochemistry and Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
3
|
Guerrero-Ochoa P, Rodríguez-Zapater S, Anel A, Esteban LM, Camón-Fernández A, Espilez-Ortiz R, Gil-Sanz MJ, Borque-Fernando Á. Prostate Cancer and the Mevalonate Pathway. Int J Mol Sci 2024; 25:2152. [PMID: 38396837 PMCID: PMC10888820 DOI: 10.3390/ijms25042152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Antineoplastic therapies for prostate cancer (PCa) have traditionally centered around the androgen receptor (AR) pathway, which has demonstrated a significant role in oncogenesis. Nevertheless, it is becoming progressively apparent that therapeutic strategies must diversify their focus due to the emergence of resistance mechanisms that the tumor employs when subjected to monomolecular treatments. This review illustrates how the dysregulation of the lipid metabolic pathway constitutes a survival strategy adopted by tumors to evade eradication efforts. Integrating this aspect into oncological management could prove valuable in combating PCa.
Collapse
Affiliation(s)
- Patricia Guerrero-Ochoa
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
| | - Sergio Rodríguez-Zapater
- Minimally Invasive Research Group (GITMI), Faculty of Veterinary Medicine, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Alberto Anel
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Luis Mariano Esteban
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Institute for Biocomputation and Physic of Complex Systems, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain
| | - Alejandro Camón-Fernández
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
| | - Raquel Espilez-Ortiz
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Area of Urology, Department of Surgery, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - María Jesús Gil-Sanz
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Ángel Borque-Fernando
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Institute for Biocomputation and Physic of Complex Systems, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Area of Urology, Department of Surgery, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Guo J, Chen S, Zhang Y, Liu J, Jiang L, Hu L, Yao K, Yu Y, Chen X. Cholesterol metabolism: physiological regulation and diseases. MedComm (Beijing) 2024; 5:e476. [PMID: 38405060 PMCID: PMC10893558 DOI: 10.1002/mco2.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
Cholesterol homeostasis is crucial for cellular and systemic function. The disorder of cholesterol metabolism not only accelerates the onset of cardiovascular disease (CVD) but is also the fundamental cause of other ailments. The regulation of cholesterol metabolism in the human is an extremely complex process. Due to the dynamic balance between cholesterol synthesis, intake, efflux and storage, cholesterol metabolism generally remains secure. Disruption of any of these links is likely to have adverse effects on the body. At present, increasing evidence suggests that abnormal cholesterol metabolism is closely related to various systemic diseases. However, the exact mechanism by which cholesterol metabolism contributes to disease pathogenesis remains unclear, and there are still unknown factors. In this review, we outline the metabolic process of cholesterol in the human body, especially reverse cholesterol transport (RCT). Then, we discuss separately the impact of abnormal cholesterol metabolism on common diseases and potential therapeutic targets for each disease, including CVD, tumors, neurological diseases, and immune system diseases. At the end of this review, we focus on the effect of cholesterol metabolism on eye diseases. In short, we hope to provide more new ideas for the pathogenesis and treatment of diseases from the perspective of cholesterol.
Collapse
Affiliation(s)
- Jiarui Guo
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Silong Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ying Zhang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Jinxia Liu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Luyang Jiang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Lidan Hu
- National Clinical Research Center for Child HealthThe Children's HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ke Yao
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Yibo Yu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Xiangjun Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| |
Collapse
|
5
|
Isik OA, Cizmecioglu O. Rafting on the Plasma Membrane: Lipid Rafts in Signaling and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:87-108. [PMID: 36648750 DOI: 10.1007/5584_2022_759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The plasma membrane is not a uniform phospholipid bilayer; it has specialized membrane nano- or microdomains called lipid rafts. Lipid rafts are small cholesterol and sphingolipid-rich plasma membrane islands. Although their existence was long debated, their presence in the plasma membrane of living cells is now well accepted with the advent of super-resolution imaging techniques. It is interesting to note that lipid rafts function to compartmentalize receptors and their regulators and substantially modulate cellular signaling. In this review, we will examine the role of lipid rafts and caveolae-lipid raft-like microdomains with a distinct 3D morphology-in cellular signaling. Moreover, we will investigate how raft compartmentalized signaling regulates diverse physiological processes such as proliferation, apoptosis, immune signaling, and development. Also, the deregulation of lipid raft-mediated signaling during tumorigenesis and metastasis will be explored.
Collapse
Affiliation(s)
- Ozlem Aybuke Isik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Onur Cizmecioglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| |
Collapse
|
6
|
Li YD, Ren ZJ, Gao L, Ma JH, Gou YQ, Tan W, Liu C. Cholelithiasis increased prostate cancer risk: evidence from a case-control study and a meta-analysis. BMC Urol 2022; 22:160. [PMID: 36192737 PMCID: PMC9528176 DOI: 10.1186/s12894-022-01110-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Cholelithiasis represents a known risk factor for digestive system neoplasm. Few studies reported the association between cholelithiasis and the risk of prostate cancer (PCa), and the results were controversial. Methods We reviewed the medical records of the Second Affiliated Hospital of Chongqing Medical University Hospital to perform a retrospective matched case–control study, which included newly diagnosed 221 PCa patients and 219 matched controls. Logistic regression was applied to compare cholelithiasis exposure and adjusted for confounding factors. Additionally, we conducted a meta-analysis pooling this and published studies further to evaluate the association between cholelithiasis and PCa risk. Related ratio (RR) and 95% confidence interval (95%CI) were used to assess the strength of associations. Results Our case–control study showed that cholelithiasis was associated with a higher incidence of PCa (OR = 1.87, 95% CI: 1.06–3.31) after multivariable adjustment for covariates. The incidence of PCa was increased in patients with gallstones but not cholecystectomy. 7 studies involving 80,403 individuals were included in the meta-analysis. Similarly, the results demonstrated that cholelithiasis was associated with an increased risk of PCa (RR = 1.35, 95%CI: 1.17–1.56) with moderate-quality evidence. Cholelithiasis patients with low BMI increased the PCa incidence. Moreover, Subgroup analysis based on region showed that cholelithiasis was associated with PCa in Europe (RR = 1.24, 95%CI 1.03–1.51) and Asia (RR = 1.32, 95%CI 1.24–1.41). Conclusions The results suggested an association between cholelithiasis and the risk of PCa. There was no significant relationship between cholecystectomy therapy and PCa risk. Further cohort studies should be conducted to demonstrate the results better.
Collapse
Affiliation(s)
- Ya-Dong Li
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zheng-Ju Ren
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Liang Gao
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jun-Hao Ma
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan-Qing Gou
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wei Tan
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chuan Liu
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Ma J, Bai Y, Liu M, Jiao T, Chen Y, Yuan B, Liu B, Zeng L, Ming Z, Li W, Sun R, Yang X, Yang S. Pretreatment HDL-C and ApoA1 are predictive biomarkers of progression-free survival in patients with EGFR mutated advanced non-small cell lung cancer treated with TKI. Thorac Cancer 2022; 13:1126-1135. [PMID: 35274478 PMCID: PMC9013640 DOI: 10.1111/1759-7714.14367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND We aimed to explore the correlation between blood lipids (high density lipoprotein cholesterol [HDL-C] and apolipoprotein A1 [ApoA1]) and epidermal growth factor receptor (EGFR) T790M mutation, as well as its predictive role in clinical efficacy and progression-free survial (PFS) in advanced non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (EGFR-TKI). METHODS We retrospectively collected information of 153 patients with advanced NSCLC harboring exon EGFR mutation and receiving EGFR-TKI. RESULTS The best cutoff value for HDL-C and ApoA1 was determined to be 1.15 and 1.14 mmol/l. The overall response rate (ORR) was 67.7% in the high HDL-C group and 46.6% in the low HDL-C group, respectively. The ORR of the high ApoA1 group showed a significant increase than that of the low ApoA1 group (68.1% vs. 38.5%). The mean ApoA1 level of the EGFR T790M mutation-positive group was significantly higher than that of the EGFR T790M mutation-negative group (1.13 g/l vs. 1.01 g/l). Patients with high ApoA1 levels were related to the EGFR T790M mutation (r = 0.324). (3) The median progression-free survival (PFS) of the high HDL-C group and low HDL-C group were 13.00 months and 10.20 months. The median PFS of the high ApoA1 group and the low ApoA1 group were 12.10 and 10.00 months, respectively. Multivariate Cox stepwise regression model analysis demonstrated ECOG PS, pathological type and HDL-C were confirmed as critical and independent predictors of PFS. CONCLUSIONS Patients with EGFR T790M mutations often show higher ApoA1 levels. Peripheral serum HDL-C and ApoA1 before treatment can be used as potential significant factors for predicting clinical efficacy and PFS in advanced NSCLC patients treated with EGFR-TKI.
Collapse
Affiliation(s)
- Juan Ma
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ying Bai
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mei Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Jiao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Yuan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Boxuan Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zongjuan Ming
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiying Sun
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xia Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Wang TH, Lee CY, Lee TY, Huang HD, Hsu JBK, Chang TH. Biomarker Identification through Multiomics Data Analysis of Prostate Cancer Prognostication Using a Deep Learning Model and Similarity Network Fusion. Cancers (Basel) 2021; 13:cancers13112528. [PMID: 34064004 PMCID: PMC8196729 DOI: 10.3390/cancers13112528] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Around 30% of men treated with adjuvant therapy experience recurrences of prostate cancer (PC). Current monitoring of the relapse of PC requires regular postoperative prostate-specific antigen (PSA) value follow-up. Our study aims to identify potential multiomics biomarkers using modern computational analytic methods, deep learning (DL), similarity network fusion (SNF), and the Cancer Genome Atlas (TCGA) prostate adenocarcinoma (PRAD) dataset. Six significantly intersected omics biomarkers from the two models, TELO2, ZMYND19, miR-143, miR-378a, cg00687383 (MED4), and cg02318866 (JMJD6; METTL23) were collected for multiomics panel construction. The difference between the Kaplan–Meier curves of high and low recurrence-risk groups generated from the multiomics panels and clinical information achieve p-value = 2.97 × 10−15 and C-index = 0.713, and the prediction performance of five-year recurrence achieves AUC = 0.789. The results show that the multiomics panel provided valuable biomarkers for the early detection of high-risk recurrent patients, and integrating multiomics data gave us the power to detect the complex mechanisms of cancer among the interactions of different genetic and epigenetic factors. Abstract This study is to identify potential multiomics biomarkers for the early detection of the prognostic recurrence of PC patients. A total of 494 prostate adenocarcinoma (PRAD) patients (60-recurrent included) from the Cancer Genome Atlas (TCGA) portal were analyzed using the autoencoder model and similarity network fusion. Then, multiomics panels were constructed according to the intersected omics biomarkers identified from the two models. Six intersected omics biomarkers, TELO2, ZMYND19, miR-143, miR-378a, cg00687383 (MED4), and cg02318866 (JMJD6; METTL23), were collected for multiomics panel construction. The difference between the Kaplan–Meier curves of high and low recurrence-risk groups generated from the multiomics panel achieved p-value = 5.33 × 10−9, which is better than the former study (p-value = 5 × 10−7). Additionally, when evaluating the selected multiomics biomarkers with clinical information (Gleason score, age, and cancer stage), a high-performance prediction model was generated with C-index = 0.713, p-value = 2.97 × 10−15, and AUC = 0.789. The risk score generated from the selected multiomics biomarkers worked as an effective indicator for the prediction of PRAD recurrence. This study helps us to understand the etiology and pathways of PRAD and further benefits both patients and physicians with potential prognostic biomarkers when making clinical decisions after surgical treatment.
Collapse
Affiliation(s)
- Tzu-Hao Wang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (T.-H.W.); (C.-Y.L.)
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Yang Lee
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (T.-H.W.); (C.-Y.L.)
- Office of Information Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China; (T.-Y.L.); (H.-D.H.)
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China; (T.-Y.L.); (H.-D.H.)
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Justin Bo-Kai Hsu
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (J.B.-K.H.); (T.-H.C.)
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (T.-H.W.); (C.-Y.L.)
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (J.B.-K.H.); (T.-H.C.)
| |
Collapse
|
9
|
Mollinedo F, Gajate C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy: Thematic Review Series: Biology of Lipid Rafts. J Lipid Res 2020; 61:611-635. [PMID: 33715811 PMCID: PMC7193951 DOI: 10.1194/jlr.tr119000439] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), E-28040 Madrid, Spain. mailto:
| | - Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), E-28040 Madrid, Spain
| |
Collapse
|
10
|
Howell MC, Green R, Khalil R, Foran E, Quarni W, Nair R, Stevens S, Grinchuk A, Hanna A, Mohapatra S, Mohapatra S. Lung cancer cells survive epidermal growth factor receptor tyrosine kinase inhibitor exposure through upregulation of cholesterol synthesis. FASEB Bioadv 2020; 2:90-105. [PMID: 32123859 PMCID: PMC7003654 DOI: 10.1096/fba.2019-00081] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 01/09/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) provide clinical benefits over chemotherapy for lung cancer patients with EGFR activating mutations. Despite initial clinical responses, long-term efficacy is not possible because of acquired resistance to these therapies. We have developed EGFR TKI drug-tolerant (DT) human lung cancer cell lines as a model for de novo resistance. Mass spectroscopic analysis revealed that the cytochrome P450 protein, CYP51A1 (Lanosterol 14α-demethylase), which is directly involved with cholesterol synthesis, was significantly upregulated in the DT cells. Total cellular cholesterol, and more specifically, mitochondrial cholesterol, were found to be upregulated in DT cells. We then used the CYP51A1 inhibitor, ketoconazole, to downregulate cholesterol synthesis. In both parental and DT cells, ketoconazole and EGFR TKIs acted synergistically to induce apoptosis and overcome the development of EGFR tolerance. Lastly, this combination therapy was shown to shrink the growth of tumors in an in vivo mouse model of EGFR TKI resistance. Thus, our study demonstrates for the first time that ketoconazole treatment inhibits upregulation of mitochondrial cholesterol and thereby overcomes EGFR-TKI resistance in lung cancer cells.
Collapse
Affiliation(s)
- Mark C. Howell
- Molecular Medicine DepartmentUniversity of South FloridaTampaFLUSA
- Center for Research & Education in NanobioengineeringUniversity of South FloridaTampaFLUSA
| | - Ryan Green
- Molecular Medicine DepartmentUniversity of South FloridaTampaFLUSA
- Center for Research & Education in NanobioengineeringUniversity of South FloridaTampaFLUSA
| | - Roukiah Khalil
- Molecular Medicine DepartmentUniversity of South FloridaTampaFLUSA
| | - Elspeth Foran
- Molecular Medicine DepartmentUniversity of South FloridaTampaFLUSA
| | - Waise Quarni
- Molecular Medicine DepartmentUniversity of South FloridaTampaFLUSA
| | | | - Stanley Stevens
- Cell Biology, Microbiology, and Molecular BiologyCollege of Arts and SciencesUniversity of South FloridaTampaFLUSA
| | | | - Andrew Hanna
- Molecular Medicine DepartmentUniversity of South FloridaTampaFLUSA
| | - Shyam Mohapatra
- Center for Research & Education in NanobioengineeringUniversity of South FloridaTampaFLUSA
- Division of Translational MedicineInternal MedicineMorsani College of MedicineUniversity of South FloridaTampaFLUSA
- James A Haley Veterans HospitalTampaFLUSA
| | - Subhra Mohapatra
- Molecular Medicine DepartmentUniversity of South FloridaTampaFLUSA
- Center for Research & Education in NanobioengineeringUniversity of South FloridaTampaFLUSA
- James A Haley Veterans HospitalTampaFLUSA
| |
Collapse
|
11
|
Defining Metabolic Rewiring in Lung Squamous Cell Carcinoma. Metabolites 2019; 9:metabo9030047. [PMID: 30866469 PMCID: PMC6468359 DOI: 10.3390/metabo9030047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 01/19/2023] Open
Abstract
Metabolomics based on untargeted flow infusion electrospray ionization high-resolution mass spectrometry (FIE-HRMS) can provide a snap-shot of metabolism in living cells. Lung Squamous Cell Carcinoma (SCC) is one of the predominant subtypes of Non-Small Cell Lung Cancers (NSCLCs), which usually shows a poor prognosis. We analysed lung SCC samples and matched histologically normal lung tissues from eight patients. Metabolites were profiled by FIE-HRMS and assessed using t-test and principal component analysis (PCA). Differentially accumulating metabolites were mapped to pathways using the mummichog algorithm in R, and biologically meaningful patterns were indicated by Metabolite Set Enrichment Analysis (MSEA). We identified metabolic rewiring networks, including the suppression of the oxidative pentose pathway and found that the normal tricarboxylic acid (TCA) cycle were decoupled from increases in glycolysis and glutamine reductive carboxylation. Well-established associated effects on nucleotide, amino acid and thiol metabolism were also seen. Novel aspects in SCC tissue were increased in Vitamin B complex cofactors, serotonin and a reduction of γ-aminobutyric acid (GABA). Our results show the value of FIE-HRMS as a high throughput screening method that could be exploited in clinical contexts.
Collapse
|
12
|
Lee HJ, Li J, Vickman RE, Li J, Liu R, Durkes AC, Elzey BD, Yue S, Liu X, Ratliff TL, Cheng JX. Cholesterol Esterification Inhibition Suppresses Prostate Cancer Metastasis by Impairing the Wnt/β-catenin Pathway. Mol Cancer Res 2018; 16:974-985. [PMID: 29545473 PMCID: PMC5984676 DOI: 10.1158/1541-7786.mcr-17-0665] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/11/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Dysregulation of cholesterol is a common characteristic of human cancers including prostate cancer. This study observed an aberrant accumulation of cholesteryl ester in metastatic lesions using Raman spectroscopic analysis of lipid droplets in human prostate cancer patient tissues. Inhibition of cholesterol esterification in prostate cancer cells significantly suppresses the development and growth of metastatic cancer lesions in both orthotopic and intracardiac injection mouse models. Gene expression profiling reveals that cholesteryl ester depletion suppresses the metastatic potential through upregulation of multiple regulators that negatively impact metastasis. In addition, Wnt/β-catenin, a vital pathway for metastasis, is downregulated upon cholesteryl ester depletion. Mechanistically, inhibition of cholesterol esterification significantly blocks secretion of Wnt3a through reduction of monounsaturated fatty acid levels, which limits Wnt3a acylation. These results collectively validate cholesterol esterification as a novel metabolic target for treating metastatic prostate cancer. Mol Cancer Res; 16(6); 974-85. ©2018 AACR.
Collapse
Affiliation(s)
- Hyeon Jeong Lee
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Jie Li
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Renee E Vickman
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Junjie Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Rui Liu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Abigail C Durkes
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Bennett D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
- Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Shuhua Yue
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xiaoqi Liu
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
- Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Timothy L Ratliff
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
- Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Ji-Xin Cheng
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Center for Cancer Research, Purdue University, West Lafayette, Indiana
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, Massachusetts
| |
Collapse
|
13
|
Jayakar SK, Loudig O, Brandwein-Gensler M, Kim RS, Ow TJ, Ustun B, Harris TM, Prystowsky MB, Childs G, Segall JE, Belbin TJ. Apolipoprotein E Promotes Invasion in Oral Squamous Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2259-2272. [PMID: 28751006 PMCID: PMC5762938 DOI: 10.1016/j.ajpath.2017.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023]
Abstract
Oral squamous cell carcinoma (OSCC) patients generally have a poor prognosis, because of the invasive nature of these tumors. In comparing transcription profiles between OSCC tumors with a more invasive (worst pattern of tumor invasion 5) versus a less invasive (worst pattern of tumor invasion 3) pattern of invasion, we identified a total of 97 genes that were overexpressed at least 1.5-fold in the more invasive tumor subtype. The most functionally relevant genes were assessed using in vitro invasion assays with an OSCC cell line (UM-SCC-1). Individual siRNA knockdown of 15 of these 45 genes resulted in significant reductions in tumor cell invasion compared to a nontargeting siRNA control. One gene whose knockdown had a strong effect on invasion corresponded to apolipoprotein E (APOE). Both matrix degradation and the number of mature invadopodia were significantly decreased with APOE knockdown. APOE knockdown also resulted in increased cellular cholesterol, consistent with APOE's role in regulating cholesterol efflux. APOE knockdown resulted in decreased levels of phospho-extracellular signal-regulated kinase 1/2, phospho-c-Jun N-terminal kinase, and phospho-cJun, as well as decreased activator protein 1 (AP-1) activity. Expression of matrix metalloproteinase 7 (MMP7), an AP-1 target, was also significantly decreased. Our findings suggest that APOE protein plays a significant role in OSCC tumor invasion because of its effects on cellular cholesterol and subsequent effects on cell signaling and AP-1 activity, leading to changes in the expression of invasion-related proteins, including MMP7.
Collapse
Affiliation(s)
- Sangeeta K Jayakar
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Olivier Loudig
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Margaret Brandwein-Gensler
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Department of Pathology and Anatomical Sciences, Erie County Medical Center, Buffalo, New York
| | - Ryung S Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas J Ow
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center, Bronx, New York
| | - Berrin Ustun
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas M Harris
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | | | - Geoffrey Childs
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey E Segall
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York.
| | - Thomas J Belbin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Discipline of Oncology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
14
|
Clotet S, Soler MJ, Riera M, Pascual J, Fang F, Zhou J, Batruch I, Vasiliou SK, Dimitromanolakis A, Barrios C, Diamandis EP, Scholey JW, Konvalinka A. Stable Isotope Labeling with Amino Acids (SILAC)-Based Proteomics of Primary Human Kidney Cells Reveals a Novel Link between Male Sex Hormones and Impaired Energy Metabolism in Diabetic Kidney Disease. Mol Cell Proteomics 2017; 16:368-385. [PMID: 28062795 DOI: 10.1074/mcp.m116.061903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/04/2017] [Indexed: 01/15/2023] Open
Abstract
Male sex predisposes to many kidney diseases. Considering that androgens exert deleterious effects in a variety of cell types within the kidney, we hypothesized that dihydrotestosterone (DHT) would alter the biology of the renal tubular cell by inducing changes in the proteome. We employed stable isotope labeling with amino acids (SILAC) in an indirect spike-in fashion to accurately quantify the proteome in DHT- and 17β-estradiol (EST)-treated human proximal tubular epithelial cells (PTEC). Of the 5043 quantified proteins, 76 were differentially regulated. Biological processes related to energy metabolism were significantly enriched among DHT-regulated proteins. SILAC ratios of 3 candidates representing glycolysis, N-acetylglucosamine metabolism and fatty acid β-oxidation, namely glucose-6-phosphate isomerase (GPI), glucosamine-6-phosphate-N-acetyltransferase 1 (GNPNAT1), and mitochondrial trifunctional protein subunit alpha (HADHA), were verified in vitro. In vivo, renal GPI and HADHA protein expression was significantly increased in males. Furthermore, male sex was associated with significantly higher GPI, GNPNAT1, and HADHA kidney protein expression in two different murine models of diabetes. Enrichment analysis revealed a link between our DHT-regulated proteins and oxidative stress within the diabetic kidney. This finding was validated in vivo, as we observed increased oxidative stress levels in control and diabetic male kidneys, compared with females. This in depth quantitative proteomics study of human primary PTEC response to sex hormone administration suggests that male sex hormone stimulation results in perturbed energy metabolism in kidney cells, and that this perturbation results in increased oxidative stress in the renal cortex. The proteome-level changes associated with androgens may play a crucial role in the development of structural and functional changes in the diseased kidney. With our findings, we propose a possible link between diabetic and non-diabetic kidney disease progression and male sex hormone levels. Data are available via ProteomeXchange (https://www.ebi.ac.uk/pride/archive/) with identifier PXD003811.
Collapse
Affiliation(s)
- Sergi Clotet
- From the ‡Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain, 08003; .,§Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,**Division of Nephrology, University Health Network, Toronto, Ontario M5G 2N2, Canada
| | - Maria Jose Soler
- From the ‡Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain, 08003
| | - Marta Riera
- From the ‡Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain, 08003
| | - Julio Pascual
- From the ‡Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain, 08003
| | - Fei Fang
- §Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Joyce Zhou
- §Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ihor Batruch
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1W7, Canada
| | - Stella K Vasiliou
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1W7, Canada.,‖Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario M5S 1A8, Canada
| | - Apostolos Dimitromanolakis
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1W7, Canada
| | - Clara Barrios
- From the ‡Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain, 08003
| | - Eleftherios P Diamandis
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1W7, Canada
| | - James W Scholey
- §Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,**Division of Nephrology, University Health Network, Toronto, Ontario M5G 2N2, Canada
| | - Ana Konvalinka
- §Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,**Division of Nephrology, University Health Network, Toronto, Ontario M5G 2N2, Canada
| |
Collapse
|
15
|
Shi Y, Tan SH, Ng S, Zhou J, Yang ND, Koo GB, McMahon KA, Parton RG, Hill MM, Del Pozo MA, Kim YS, Shen HM. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy 2016; 11:769-84. [PMID: 25945613 DOI: 10.1080/15548627.2015.1034411] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CAV1 (caveolin 1, caveolae protein, 22kDa) is well known as a principal scaffolding protein of caveolae, a specialized plasma membrane structure. Relatively, the caveolae-independent function of CAV1 is less studied. Autophagy is a process known to involve various membrane structures, including autophagosomes, lysosomes, and autolysosomes for degradation of intracellular proteins and organelles. Currently, the function of CAV1 in autophagy remains largely elusive. In this study, we demonstrate for the first time that CAV1 deficiency promotes both basal and inducible autophagy. Interestingly, the promoting effect was found mainly in the late stage of autophagy via enhancing lysosomal function and autophagosome-lysosome fusion. Notably, the regulatory function of CAV1 in lysosome and autophagy was found to be caveolae-independent, and acts through lipid rafts. Furthermore, the elevated autophagy level induced by CAV1 deficiency serves as a cell survival mechanism under starvation. Importantly, downregulation of CAV1 and enhanced autophagy level were observed in human breast cancer cells and tissues. Taken together, our data reveal a novel function of CAV1 and lipid rafts in breast cancer development via modulation of lysosomal function and autophagy.
Collapse
Key Words
- ATP6V0D1, ATPase H+ transporting lysosomal 38kDa, V0 subunit d1
- Baf, bafilomycin A1
- CAV1, caveolin 1
- CHO, water-soluble cholesterol
- CQ, choloroquine
- CTSL, cathepsin L
- CTxB, cholera toxin subunit B
- DRF, detergent-resistant fraction
- DSF, detergent-soluble fraction
- EGF, epidermal growth factor
- KO, knockout
- LAMP1, lysosomal-associated membrane protein 1
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MBCD, methyl-β-cyclodextrin
- MEF, mouse embryonic fibroblasts
- MTOR, mechanistic target of rapamycin
- PBS, phosphate-buffered saline
- PI, propidium iodide
- PLA, proximity ligation assay
- PTRF, polymerase I and transcript release factor
- TFRC, transferrin receptor
- TSC, tuberous sclerosis complex
- WT, wild type.
- autophagy
- breast cancer
- caveolin 1
- lipid rafts
- lysosome
- tfLC3B, mRFP-GFP tandem fluorescent-tagged LC3B
Collapse
Affiliation(s)
- Yin Shi
- a Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore ; Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The genomic actions of thyroid hormone and steroids depend upon primary interactions of the hormones with their specific nuclear receptor proteins. Formation of nuclear co-activator or co-repressor complexes involving the liganded receptors subsequently result in transcriptional events-either activation or suppression-at genes that are specific targets of thyroid hormone or steroids. Nongenomic actions of thyroid hormone and steroids are in contrast initiated at binding sites on the plasma membrane or in cytoplasm or organelles and do not primarily require formation of intranuclear receptor protein-hormone complexes. Importantly, hormonal actions that begin nongenomically outside the nucleus often culminate in changes in nuclear transcriptional events that are regulated by both traditional intranuclear receptors as well as other nuclear transcription factors. In the case of thyroid hormone, the extranuclear receptor can be the classical "nuclear" thyroid receptor (TR), a TR isoform, or integrin αvβ3. In the case of steroid hormones, the membrane receptor is usually, but not always, the classical "nuclear" steroid receptor. This concept defines the paradigm of overlapping nongenomic and genomic hormone mechanisms of action. Here we review some examples of how extranuclear signaling by thyroid hormone and by estrogens and androgens modulates intranuclear hormone signaling to regulate a number of vital biological processes both in normal physiology and in cancer progression. We also point out that nongenomic actions of thyroid hormone may mimic effects of estrogen in certain tumors.
Collapse
Affiliation(s)
- Stephen R Hammes
- Division of Endocrinology, Department of Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Paul J Davis
- Department of Medicine, Albany Medical College, Albany, NY, USA; Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
17
|
Guo D, Bell EH, Chakravarti A. Lipid metabolism emerges as a promising target for malignant glioma therapy. CNS Oncol 2015; 2:289-99. [PMID: 24159371 DOI: 10.2217/cns.13.20] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Malignant gliomas are one of the most treatment-refractory cancers. Development of resistance to chemo- and radio-therapies contributes to these tumors' aggressive phenotypes. Elevated lipid levels in gliomas have been reported for the last 50 years. However, the molecular mechanisms of how tumor tissues obtain lipids and utilize them are not well understood. Recently, the oncogenic signaling EGFR/PI3K/Akt pathway has been shown to enhance lipid synthesis and uptake by upregulating SREBP-1, a master transcriptional factor, to control lipid metabolism. This article discusses the analytical chemistry results of lipid components in glioma tissues from different research groups. The molecular mechanisms that link oncogenes with lipid programming, and identification of the key molecular targets and development of effective drugs to inhibit lipid metabolism in malignant gliomas will be discussed.
Collapse
|
18
|
Jung JH, Lee MY, Choi DY, Lee JW, You S, Lee KY, Kim J, Kim KP. Phospholipids of tumor extracellular vesicles stratify gefitinib-resistant nonsmall cell lung cancer cells from gefitinib-sensitive cells. Proteomics 2015; 15:824-35. [PMID: 25404199 DOI: 10.1002/pmic.201400243] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/06/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) such as gefitinib are one of gold standard treatment options for nonsmall-cell lung cancer (NSCLC) patients, which eventually fail due to the acquired resistance and relapse because of the development of secondary activating mutations such as T790M in EGFR. Predicting chemo-responsiveness of cancer patients provides a major challenge in chemotherapy. The goal of the present study is to determine whether phospholipid signatures of tumor extracellular vesicles (EV) are associated with gefitinib-resistance of NSCLC. A sophisticated MS-based shotgun lipidomic assays were performed for in-depth analysis of the lipidomes of gefitinib-resistant (PC9R) and responsive (PC9) NSCLC cells and their shed EV from these cell lines (PC9EV or PC9REV). Lipid MALDI-MS analysis showed that EV phospholipid composition was significantly distinct in PC9R, compared to PC9 cells. Following statistical analyses has identified 35 (20 positive and 15 negative ion mode) differentially regulated lipids, which are significantly over- or underexpressed in PC9R EV, compared to PC9 EV (p value < 0.01, fold change > 1.5). Our phospholipid signatures suggest that EV associates with drug sensitivity, which is worthy of additional investigation to assess chemoresistance in patients with NSCLC treated with anti-EGFR TKIs.
Collapse
Affiliation(s)
- Jae Hun Jung
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Alioui A, Celhay O, Baron S, Lobaccaro JMA. Lipids and prostate cancer adenocarcinoma. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.14.51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Ji LL, Tong L, Peng JB, Jin XH, Wei D, Xu BK, Wang ZY. Changes in the expression of the vitamin D receptor and LVSCC‑A1C in the rat hippocampus submitted to single prolonged stress. Mol Med Rep 2014; 9:1165-70. [PMID: 24535566 DOI: 10.3892/mmr.2014.1934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 01/30/2014] [Indexed: 11/06/2022] Open
Abstract
Vitamin D signaling not only controls calcium (Ca2+) and phosphorus uptake and transport, but also correlates with neurocognitive decline and neurodegenerative diseases. Almost all actions of Vitamin D are mediated by the transcription factor, vitamin D receptor (VDR), which has been widely identified in the central nervous system. Although previous studies have substantially advanced the understanding of the action of VDR in the brain, much remains unknown concerning how VDR relates to stress. Multiple lines of evidence indicate that the downregulation of L-type voltage-sensitive Ca2+-channels α-1C (LVSCC-A1C) by vitamin D in hippocampal neurons is able to reduce the influx and excitotoxic effects of Ca2+ to neurons. Along these lines, the purpose of the present study was to analyze the relative expression of VDR in the hippocampus of rats exposed to single prolonged stress (SPS) as a putative animal model for human post-traumatic stress disorder (PTSD). Furthermore, changes in the levels of expression of LVSCC-A1C and Ca2+ (neurotransmitter content) were examined during the onset periods of PTSD. The results revealed an increase in the expression of VDR at 1, 3 and 7 days post-stress compared with the control group. The intracellular free Ca2+ levels in the hippocampus increased 1 day after SPS exposure, and then decreased gradually to the normal level at 14 days, consistent with the expression pattern of LVSCC-A1C. These results indicated that VDR may be involved in the pathogenesis of SPS rats, thereby providing an alternative preparation to search for optimal therapeutic strategies for PTSD.
Collapse
Affiliation(s)
- Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jun-Bo Peng
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xue-Hua Jin
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dan Wei
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bao-Ku Xu
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhen-Yu Wang
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
21
|
Shafi AA, Yen AE, Weigel NL. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol Ther 2013; 140:223-38. [PMID: 23859952 DOI: 10.1016/j.pharmthera.2013.07.003] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 01/18/2023]
Abstract
In the United States, prostate cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in males and the second leading cause of cancer-related death for men. The prostate is an androgen-dependent organ and PCa is an androgen-dependent disease. Androgen action is mediated by the androgen receptor (AR), a hormone activated transcription factor. The primary treatment for metastatic PCa is androgen deprivation therapy (ADT). For the most part, tumors respond to ADT, but most become resistant to therapy within two years. There is persuasive evidence that castration resistant (also termed castration recurrent) PCa (CRPC) remains AR dependent. Recent studies have shown that there are numerous factors that contribute to AR reactivation despite castrate serum levels of androgens. These include changes in AR expression and structure through gene amplification, mutation, and alternative splicing. Changes in steroid metabolism, cell signaling, and coregulator proteins are also important contributors to AR reactivation in CRPC. Most AR targeted therapies have been directed at the hormone binding domain. The finding that constitutively active AR splice variants that lack the hormone binding domain are frequently expressed in CRPC highlights the need to develop therapies that target other portions of AR. In this review, the role of AR in normal prostate, in PCa, and particularly the mechanisms for its reactivation subsequent to ADT are summarized. In addition, recent clinical trials and novel approaches to target AR are discussed.
Collapse
Affiliation(s)
- Ayesha A Shafi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, M515, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
22
|
Gilk SD, Cockrell DC, Luterbach C, Hansen B, Knodler LA, Ibarra JA, Steele-Mortimer O, Heinzen RA. Bacterial colonization of host cells in the absence of cholesterol. PLoS Pathog 2013; 9:e1003107. [PMID: 23358892 PMCID: PMC3554619 DOI: 10.1371/journal.ppat.1003107] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/16/2012] [Indexed: 12/21/2022] Open
Abstract
Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24−/− mouse embryonic fibroblasts (MEFs). DHCR24−/− MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24−/− MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24−/− MEFs. In contrast, C. burnetii entry was significantly decreased in −cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated αVβ3 integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24−/− MEFs lacked the CD63-postive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions. Clustered receptors associated with cholesterol-rich microdomains, termed lipid rafts, are thought to provide plasma membrane signaling platforms that bacterial pathogens can subvert to gain entry into host cells. Moreover, cholesterol has been implicated as a critical structural lipid of several pathogen-occupied vacuoles. Cumulative data supporting these models have principally been derived using inhibitors of cholesterol metabolism and various sterol sequestering compounds, agents that can lack specificity and cause unwanted cellular affects. Here, we employed a new system to investigate pathogen reliance on cholesterol for host cell colonization that utilizes mouse embryonic fibroblasts that can synthesize precursor sterols, but not cholesterol. Cells lacking cholesterol displayed strong defects in lipid raft-based signaling. However, no defects were observed in entry, vacuole development, and growth of Salmonella enterica and Chlamydia trachomatis, bacterial pathogens previously shown to rely on cholesterol for optimal host cell parasitism. Entry by Coxiella burnetii, the bacterial cause of human Q fever, was significantly decreased in cholesterol-negative cells as was trafficking of membranous material to the pathogen vacuole. However, subsequent bacterial replication was unaltered. Our results should prompt a reevaluation of the overall importance of cholesterol in bacterial pathogenesis with the described experimental system providing an alternative approach for such studies.
Collapse
Affiliation(s)
- Stacey D. Gilk
- Coxiella Pathogenesis Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Diane C. Cockrell
- Coxiella Pathogenesis Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Courtney Luterbach
- Salmonella-Host Cell Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bryan Hansen
- Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Leigh A. Knodler
- Salmonella-Host Cell Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - J. Antonio Ibarra
- Salmonella-Host Cell Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Olivia Steele-Mortimer
- Salmonella-Host Cell Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
23
|
The Role of Cholesterol in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
24
|
Cholesterol and prostate cancer. Curr Opin Pharmacol 2012; 12:751-9. [PMID: 22824430 DOI: 10.1016/j.coph.2012.07.006] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 01/12/2023]
Abstract
Prostate cancer risk can be modified by environmental factors, however the molecular mechanisms affecting susceptibility to this disease are not well understood. As a result of a series of recently published studies, the steroidal lipid, cholesterol, has emerged as a clinically relevant therapeutic target in prostate cancer. This review summarizes the findings from human studies as well as animal and cell biology models, which suggest that high circulating cholesterol increases risk of aggressive prostate cancer, while cholesterol lowering strategies may confer protective benefit. Relevant molecular processes that have been experimentally tested and might explain these associations are described. We suggest that these promising results now could be applied prospectively to attempt to lower risk of prostate cancer in select populations.
Collapse
|
25
|
Clarion L, Schindler M, de Weille J, Lolmède K, Laroche-Clary A, Uro-Coste E, Robert J, Mersel M, Bakalara N. 7β-Hydroxycholesterol-induced energy stress leads to sequential opposing signaling responses and to death of C6 glioblastoma cells. Biochem Pharmacol 2011; 83:37-46. [PMID: 21983033 DOI: 10.1016/j.bcp.2011.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 11/25/2022]
Abstract
7β-Hydroxycholesterol cytotoxicity has been shown in vivo and in vitro to be dependent on the accumulation of its esters. We show in our study, using a detergent-free raft preparation and LC/MS lipid content analysis, that membrane microdomains isolated from 7β-hydroxycholesterol-treated C6 cells have a reduced cholesterol: cholesterol ester ratio and accumulate 7keto-hydroxycholesterol, 7β-hydroxycholesterol and 7β-hydroxycholesterol esters. These modifications in lipid content are accompanied by a redistribution of flotillin-1 in the lipid rafts. Transient increases of AMPK phosphorylation and mitochondrial activity during the first 12 h of 7β-hydroxycholesterol treatment indicate that C6 cells undergo energy stress and increase oxidative phosphorylation. Even so, ATP levels are maintained during 15 h until glucose uptake decreases. The cell's answers to raft modifications and energy stress are sequential activations of different signaling pathways such as ERK, AMPK and PI3K/Akt. These pathways, known to be activated under energy stress conditions, are transiently activated at 6 h (ERK, AMPK) and 12 h (Akt) of treatment respectively suggesting a shift from cell survival to cell proliferation. The persistence of 7β-hydroxycholesterol-induced stress led after 24 h to P38 activation, loss of GSK3β activation and to cell death. Finally we demonstrate that the observed signaling responses depend on 7β-hydroxycholesterol esterification, confirming that esterification of 7β-hydroxycholesterol is essential for cytotoxicity.
Collapse
|
26
|
Guo D, Reinitz F, Youssef M, Hong C, Nathanson D, Akhavan D, Kuga D, Amzajerdi AN, Soto H, Zhu S, Babic I, Tanaka K, Dang J, Iwanami A, Gini B, Dejesus J, Lisiero DD, Huang TT, Prins RM, Wen PY, Robins HI, Prados MD, Deangelis LM, Mellinghoff IK, Mehta MP, James CD, Chakravarti A, Cloughesy TF, Tontonoz P, Mischel PS. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov 2011; 1:442-56. [PMID: 22059152 DOI: 10.1158/2159-8290.cd-11-0102] [Citation(s) in RCA: 344] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor of adults and one of the most lethal of all cancers. Epidermal growth factor receptor (EGFR) mutations (EGFRvIII) and phosphoinositide 3-kinase (PI3K) hyperactivation are common in GBM, promoting tumor growth and survival, including through sterol regulatory element-binding protein 1 (SREBP-1)-dependent lipogenesis. The role of cholesterol metabolism in GBM pathogenesis, its association with EGFR/PI3K signaling, and its potential therapeutic targetability are unknown. In our investigation, studies of GBM cell lines, xenograft models, and GBM clinical samples, including those from patients treated with the EGFR tyrosine kinase inhibitor lapatinib, uncovered an EGFRvIII-activated, PI3K/SREBP-1-dependent tumor survival pathway through the low-density lipoprotein receptor (LDLR). Targeting LDLR with the liver X receptor (LXR) agonist GW3965 caused inducible degrader of LDLR (IDOL)-mediated LDLR degradation and increased expression of the ABCA1 cholesterol efflux transporter, potently promoting tumor cell death in an in vivo GBM model. These results show that EGFRvIII can promote tumor survival through PI3K/SREBP-1-dependent upregulation of LDLR and suggest a role for LXR agonists in the treatment of GBM patients.
Collapse
Affiliation(s)
- Deliang Guo
- Department of Radiation Oncology, Arthur G. James Comprehensive Cancer Center, The Ohio State University Medical School, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis 2011; 2:e200. [PMID: 21881602 PMCID: PMC3186899 DOI: 10.1038/cddis.2011.80] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Malignant gliomas contain a population of self-renewing tumorigenic stem-like cells; however, it remains unclear how these glioma stem cells (GSCs) self-renew or generate cellular diversity at the single-cell level. Asymmetric cell division is a proposed mechanism to maintain cancer stem cells, yet the modes of cell division that GSCs utilize remain undetermined. Here, we used single-cell analyses to evaluate the cell division behavior of GSCs. Lineage-tracing analysis revealed that the majority of GSCs were generated through expansive symmetric cell division and not through asymmetric cell division. The majority of differentiated progeny was generated through symmetric pro-commitment divisions under expansion conditions and in the absence of growth factors, occurred mainly through asymmetric cell divisions. Mitotic pair analysis detected asymmetric CD133 segregation and not any other GSC marker in a fraction of mitoses, some of which were associated with Numb asymmetry. Under growth factor withdrawal conditions, the proportion of asymmetric CD133 divisions increased, congruent with the increase in asymmetric cell divisions observed in the lineage-tracing studies. Using single-cell-based observation, we provide definitive evidence that GSCs are capable of different modes of cell division and that the generation of cellular diversity occurs mainly through symmetric cell division, not through asymmetric cell division.
Collapse
|
28
|
Abstract
Research into the role of cholesterol and prostate disease has been ongoing for many years, but our mechanistic and translational understanding is still poor. Recent evidence indicates that cholesterol-lowering drugs reduce the risk of aggressive prostate cancer. This article reviews the literature on the relationship between circulating cholesterol and prostate cancer. The data strongly point to hypercholesterolemia as a risk factor for prostate cancer progression and suggest clinical opportunities for the use of cholesterol-lowering therapies to alter disease course.
Collapse
Affiliation(s)
- Keith R. Solomon
- The Urological Diseases Research Center, Children’s Hospital Boston, Harvard Medical School, Enders Research Laboratories, 300 Longwood Ave. Boston, MA 02115
- Department of Orthopaedic Surgery, Children’s Hospital Boston, Harvard Medical School, Enders Research Laboratories, 300 Longwood Ave. Boston, MA 02115
| | - Michael R. Freeman
- The Urological Diseases Research Center, Children’s Hospital Boston, Harvard Medical School, Enders Research Laboratories, 300 Longwood Ave. Boston, MA 02115
- Department of Surgery, Children’s Hospital Boston, Harvard Medical School, Enders Research Laboratories, 300 Longwood Ave. Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Children’s Hospital Boston, Harvard Medical School, Enders Research Laboratories, 300 Longwood Ave. Boston, MA 02115
| |
Collapse
|
29
|
Fredericks WJ, McGarvey T, Wang H, Lal P, Puthiyaveettil R, Tomaszewski J, Sepulveda J, Labelle E, Weiss JS, Nickerson ML, Kruth HS, Brandt W, Wessjohann LA, Malkowicz SB. The bladder tumor suppressor protein TERE1 (UBIAD1) modulates cell cholesterol: implications for tumor progression. DNA Cell Biol 2011. [PMID: 21740188 DOI: 10.1089/dna.2011.1315] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Convergent evidence implicates the TERE1 protein in human bladder tumor progression and lipid metabolism. Previously, reduced TERE1 expression was found in invasive urologic cancers and inhibited cell growth upon re-expression. A role in lipid metabolism was suggested by TERE1 binding to APOE, a cholesterol carrier, and to TBL2, a candidate protein in triglyceride disorders. Natural TERE1 mutations associate with Schnyder's corneal dystrophy, characterized by lipid accumulation. TERE1 catalyzes menaquinone synthesis, known to affect cholesterol homeostasis. To explore this relationship, we altered TERE1 and TBL2 dosage via ectopic expression and interfering RNA and measured cholesterol by Amplex red. Protein interactions of wild-type and mutant TERE1 with GST-APOE were evaluated by binding assays and molecular modeling. We conducted a bladder tumor microarray TERE1 expression analysis and assayed tumorigenicity of J82 cells ectopically expressing TERE1. TERE1 expression was reduced in a third of invasive specimens. Ectopic TERE1 expression in J82 bladder cancer cells dramatically inhibited nude mouse tumorigenesis. TERE1 and TBL2 proteins inversely modulated cellular cholesterol in HEK293 and bladder cancer cells from 20% to 50%. TERE1 point mutations affected APOE interactions, and resulted in cholesterol levels that differed from wild type. Elevated tumor cell cholesterol is known to affect apoptosis and growth signaling; thus, loss of TERE1 in invasive bladder cancer may represent a defect in menaquinone-mediated cholesterol homeostasis that contributes to progression.
Collapse
Affiliation(s)
- William J Fredericks
- Division of Urology, Department of Surgery, University of Pennsylvania, VAMC Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fredericks WJ, McGarvey T, Wang H, Lal P, Puthiyaveettil R, Tomaszewski J, Sepulveda J, Labelle E, Weiss JS, Nickerson ML, Kruth HS, Brandt W, Wessjohann LA, Malkowicz SB. The bladder tumor suppressor protein TERE1 (UBIAD1) modulates cell cholesterol: implications for tumor progression. DNA Cell Biol 2011. [PMID: 21740188 DOI: 10.1089/dna.2011.1315]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Convergent evidence implicates the TERE1 protein in human bladder tumor progression and lipid metabolism. Previously, reduced TERE1 expression was found in invasive urologic cancers and inhibited cell growth upon re-expression. A role in lipid metabolism was suggested by TERE1 binding to APOE, a cholesterol carrier, and to TBL2, a candidate protein in triglyceride disorders. Natural TERE1 mutations associate with Schnyder's corneal dystrophy, characterized by lipid accumulation. TERE1 catalyzes menaquinone synthesis, known to affect cholesterol homeostasis. To explore this relationship, we altered TERE1 and TBL2 dosage via ectopic expression and interfering RNA and measured cholesterol by Amplex red. Protein interactions of wild-type and mutant TERE1 with GST-APOE were evaluated by binding assays and molecular modeling. We conducted a bladder tumor microarray TERE1 expression analysis and assayed tumorigenicity of J82 cells ectopically expressing TERE1. TERE1 expression was reduced in a third of invasive specimens. Ectopic TERE1 expression in J82 bladder cancer cells dramatically inhibited nude mouse tumorigenesis. TERE1 and TBL2 proteins inversely modulated cellular cholesterol in HEK293 and bladder cancer cells from 20% to 50%. TERE1 point mutations affected APOE interactions, and resulted in cholesterol levels that differed from wild type. Elevated tumor cell cholesterol is known to affect apoptosis and growth signaling; thus, loss of TERE1 in invasive bladder cancer may represent a defect in menaquinone-mediated cholesterol homeostasis that contributes to progression.
Collapse
Affiliation(s)
- William J Fredericks
- Division of Urology, Department of Surgery, University of Pennsylvania, VAMC Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fredericks WJ, McGarvey T, Wang H, Lal P, Puthiyaveettil R, Tomaszewski J, Sepulveda J, Labelle E, Weiss JS, Nickerson ML, Kruth HS, Brandt W, Wessjohann LA, Malkowicz SB. The bladder tumor suppressor protein TERE1 (UBIAD1) modulates cell cholesterol: implications for tumor progression. DNA Cell Biol 2011; 30:851-64. [PMID: 21740188 DOI: 10.1089/dna.2011.1315] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Convergent evidence implicates the TERE1 protein in human bladder tumor progression and lipid metabolism. Previously, reduced TERE1 expression was found in invasive urologic cancers and inhibited cell growth upon re-expression. A role in lipid metabolism was suggested by TERE1 binding to APOE, a cholesterol carrier, and to TBL2, a candidate protein in triglyceride disorders. Natural TERE1 mutations associate with Schnyder's corneal dystrophy, characterized by lipid accumulation. TERE1 catalyzes menaquinone synthesis, known to affect cholesterol homeostasis. To explore this relationship, we altered TERE1 and TBL2 dosage via ectopic expression and interfering RNA and measured cholesterol by Amplex red. Protein interactions of wild-type and mutant TERE1 with GST-APOE were evaluated by binding assays and molecular modeling. We conducted a bladder tumor microarray TERE1 expression analysis and assayed tumorigenicity of J82 cells ectopically expressing TERE1. TERE1 expression was reduced in a third of invasive specimens. Ectopic TERE1 expression in J82 bladder cancer cells dramatically inhibited nude mouse tumorigenesis. TERE1 and TBL2 proteins inversely modulated cellular cholesterol in HEK293 and bladder cancer cells from 20% to 50%. TERE1 point mutations affected APOE interactions, and resulted in cholesterol levels that differed from wild type. Elevated tumor cell cholesterol is known to affect apoptosis and growth signaling; thus, loss of TERE1 in invasive bladder cancer may represent a defect in menaquinone-mediated cholesterol homeostasis that contributes to progression.
Collapse
Affiliation(s)
- William J Fredericks
- Division of Urology, Department of Surgery, University of Pennsylvania, VAMC Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bartoccini E, Marini F, Damaskopoulou E, Lazzarini R, Cataldi S, Cascianelli G, Gil Garcia M, Albi E. Nuclear lipid microdomains regulate nuclear vitamin D3 uptake and influence embryonic hippocampal cell differentiation. Mol Biol Cell 2011; 22:3022-31. [PMID: 21737687 PMCID: PMC3164451 DOI: 10.1091/mbc.e11-03-0196] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Despite recent advances in the understanding of the role of 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) in the CNS, the mechanism of action remains obscure. We demonstrate that some 1,25-(OH)(2)D(3) receptor (VDR) is localized in the cell nucleus in specialized microdomains enriched in sphingomyelin and cholesterol; the integrity of these microdomains is necessary for embryonic hippocampal cell differentiation. Sphingomyelinase (SMase) treatment reduces both VDR and labeled 1,25-(OH)(2)D(3) content in nuclear microdomains. We have previously shown that HN9.10e embryonic hippocampal cells differentiate when incubated with 100 nM 1,25-(OH)(2)D(3) in the presence of 10% fetal calf serum, while serum deprivation induces cell death. In this study, we have investigated whether conditions that alter lipid content of nuclear microdomains modify 1,25-(OH)(2)D(3)-induced differentiation. Serum deprivation activates SMase and modifies the composition of nuclear microdomains, which lose the 1,25-(OH)(2) vitamin D(3) receptor. The incubation of serum-deprived cells with 100 nM 1,25-(OH)(2)D(3) prevents differentiation. However, treatment with 400 nM 1,25-(OH)(2)D(3) during serum withdrawal increases the lipid content of the nuclear microdomains, allows the interaction of 1,25-(OH)(2)D(3) with its receptor, and results in differentiation. These results suggest the presence of VDR in nuclear microdomains is necessary for 1,25-(OH)(2)D(3)-induced differentiation in embryonic hippocampal cells.
Collapse
Affiliation(s)
- Elisa Bartoccini
- Physiopathology Section, Department of Clinical and Experimental Medicine, University School of Medicine, University of Perugia, Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Krug AW, Pojoga LH, Williams GH, Adler GK. Cell Membrane–Associated Mineralocorticoid Receptors? Hypertension 2011; 57:1019-25. [DOI: 10.1161/hypertensionaha.110.159459] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alexander W. Krug
- From the Brigham and Women's Hospital/Harvard Medical School, Department of Endocrinology, Diabetes, and Hypertension, Boston, MA
| | - Luminita H. Pojoga
- From the Brigham and Women's Hospital/Harvard Medical School, Department of Endocrinology, Diabetes, and Hypertension, Boston, MA
| | - Gordon H. Williams
- From the Brigham and Women's Hospital/Harvard Medical School, Department of Endocrinology, Diabetes, and Hypertension, Boston, MA
| | - Gail K. Adler
- From the Brigham and Women's Hospital/Harvard Medical School, Department of Endocrinology, Diabetes, and Hypertension, Boston, MA
| |
Collapse
|
34
|
Hakvoort TBM, Moerland PD, Frijters R, Sokolović A, Labruyère WT, Vermeulen JLM, Ver Loren van Themaat E, Breit TM, Wittink FRA, van Kampen AHC, Verhoeven AJ, Lamers WH, Sokolović M. Interorgan coordination of the murine adaptive response to fasting. J Biol Chem 2011; 286:16332-43. [PMID: 21393243 DOI: 10.1074/jbc.m110.216986] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Starvation elicits a complex adaptive response in an organism. No information on transcriptional regulation of metabolic adaptations is available. We, therefore, studied the gene expression profiles of brain, small intestine, kidney, liver, and skeletal muscle in mice that were subjected to 0-72 h of fasting. Functional-category enrichment, text mining, and network analyses were employed to scrutinize the overall adaptation, aiming to identify responsive pathways, processes, and networks, and their regulation. The observed transcriptomics response did not follow the accepted "carbohydrate-lipid-protein" succession of expenditure of energy substrates. Instead, these processes were activated simultaneously in different organs during the entire period. The most prominent changes occurred in lipid and steroid metabolism, especially in the liver and kidney. They were accompanied by suppression of the immune response and cell turnover, particularly in the small intestine, and by increased proteolysis in the muscle. The brain was extremely well protected from the sequels of starvation. 60% of the identified overconnected transcription factors were organ-specific, 6% were common for 4 organs, with nuclear receptors as protagonists, accounting for almost 40% of all transcriptional regulators during fasting. The common transcription factors were PPARα, HNF4α, GCRα, AR (androgen receptor), SREBP1 and -2, FOXOs, EGR1, c-JUN, c-MYC, SP1, YY1, and ETS1. Our data strongly suggest that the control of metabolism in four metabolically active organs is exerted by transcription factors that are activated by nutrient signals and serves, at least partly, to prevent irreversible brain damage.
Collapse
Affiliation(s)
- Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research (formerly AMC Liver Center), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wu H, Mahmood A, Lu D, Jiang H, Xiong Y, Zhou D, Chopp M. Attenuation of astrogliosis and modulation of endothelial growth factor receptor in lipid rafts by simvastatin after traumatic brain injury. J Neurosurg 2010; 113:591-7. [PMID: 19895202 PMCID: PMC3007601 DOI: 10.3171/2009.9.jns09859] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECT The authors' previous studies have demonstrated that simvastatin treatment promotes neuronal survival and reduces inflammatory cytokine release from astrocytes after traumatic brain injury (TBI) in rats. Since reactive astrocytes produce inflammation mediators, in the current study the authors investigated the effect of simvastatin on astrocyte activation after TBI and its underlying signaling mechanisms. METHODS Saline or simvastatin (1 mg/kg) was orally administered to rats starting at Day 1 after TBI and then daily for 14 days. Rats were killed at 1, 3, 7, and 14 days after treatment. Brain sections and tissues were prepared for immunohistochemical staining and Western blot analysis, respectively. Cultured astrocytes were subjected to oxygen-glucose deprivation (OGD) and followed by immunocytochemical staining with glial fibrillary acidic protein/caveolin-1 and Western blot analysis. Lipid rafts were isolated from the cell lysate and Western blotting was carried out to detect the changes in epidermal growth factor receptor (EGFR) expression and phosphorylation in the lipid rafts. RESULTS Simvastatin significantly promoted neuronal survival after TBI and attenuated activation of astrocytes. Simvastatin modified the caveolin-1 expression in lipid rafts in astrocyte cell membrane, suppressed the phosphorylation of EGFR in lipid rafts of astrocytes after OGD, and inhibited the OGD-induced interleukin-1 production. CONCLUSIONS These data suggest that simvastatin reduces reactive astrogliosis and rescues neuronal cells after TBI. These beneficial effects of simvastatin may be mediated by inhibiting astrocyte activation after TBI through modifying the caveolin-1 expression in lipid rafts and the subsequent modulation of EGFR phosphorylation in lipid rafts.
Collapse
Affiliation(s)
- Hongtao Wu
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Dunyue Lu
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Hao Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
36
|
Lee SH, Koo KH, Park JW, Kim HJ, Ye SK, Park JB, Park BK, Kim YN. HIF-1 is induced via EGFR activation and mediates resistance to anoikis-like cell death under lipid rafts/caveolae-disrupting stress. Carcinogenesis 2010; 30:1997-2004. [PMID: 19789263 DOI: 10.1093/carcin/bgp233] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The plasma membrane microdomains, lipid rafts, are involved in regulation of cellular functions such as cell survival and adhesion. Cholesterol is a critical component of lipid rafts in terms of their integrity and functions and rafts disruption by cholesterol depletion can induce detachment-induced cell death. Hypoxia inducible factor-1 (HIF-1) alpha is stabilized in hypoxia and transactivates numerous genes required for cellular adaptation to hypoxia. It is also induced by non-hypoxic stimuli and contributes to cell survival. Because hypoxia inhibits cholesterol synthesis and HIF-1alpha plays a role in this process, we here explored a possible connection between lipid rafts and HIF-1alpha. We investigated whether HIF-1alpha is regulated during cholesterol depletion/rafts disruption in A431 cells in normoxic conditions. Methyl-beta cyclodextrin (MbetaCD), which induces cholesterol depletion, upregulated HIF-1alpha even under normoxic conditions and this upregulation required epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase 1 and 2 activation, but not Akt activation. MbetaCD treatment induced HIF-1alpha upregulation at both the transcriptional and translational levels but not at the posttranslational levels. In addition, MbetaCD robustly induced vascular endothelial growth factor production and stimulated an hypoxia response element-driven luciferase reporter activity under normoxic conditions, indicating that MbetaCD-induced HIF-1alpha is functionally activated. Both EGFR activity and HIF-1alpha expression were higher in the attached cells than in the detached cells after MbetaCD treatment. Furthermore, inhibition of HIF-1alpha by RNA interference accelerated cell detachment, thus increasing cell death, indicating that HIF-1alpha expression attenuates MbetaCD-induced anoikis-like cell death. These data suggest that, depending on cholesterol levels, lipid rafts or membrane fluidity are probably to regulate HIF-1alpha expression in normoxia by modulating rafts protein activities such as EGFR, and this connection between lipid rafts and HIF-1alpha regulation may provide cell survival under membrane-disturbing stress.
Collapse
Affiliation(s)
- Seong-Hee Lee
- Pediatric Oncology Branch, Division of Translational & Clinical Research II, National Cancer Center, 809 Madu 1-dong, Ilsan-gu Goyang-si, Gyeonggi-do, 411-769, Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Antalis CJ, Arnold T, Rasool T, Lee B, Buhman KK, Siddiqui RA. High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation. Breast Cancer Res Treat 2009; 122:661-70. [PMID: 19851860 DOI: 10.1007/s10549-009-0594-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/09/2009] [Indexed: 11/30/2022]
Abstract
The specific role of dietary fat in breast cancer progression is unclear, although a low-fat diet was associated with decreased recurrence of estrogen receptor alpha negative (ER(-)) breast cancer. ER(-) basal-like MDA-MB-231 and MDA-MB-436 breast cancer cell lines contained a greater number of cytoplasmic lipid droplets compared to luminal ER(+) MCF-7 cells. Therefore, we studied lipid storage functions in these cells. Both triacylglycerol and cholesteryl ester (CE) concentrations were higher in the ER(-) cells, but the ability to synthesize CE distinguished the two types of breast cancer cells. Higher baseline, oleic acid- and LDL-stimulated CE concentrations were found in ER(-) compared to ER(+) cells. The differences corresponded to greater mRNA and protein levels of acyl-CoA:cholesterol acyltransferase 1 (ACAT1), higher ACAT activity, higher caveolin-1 protein levels, greater LDL uptake, and lower de novo cholesterol synthesis in ER(-) cells. Human LDL stimulated proliferation of ER(-) MDA-MB-231 cells, but had little effect on proliferation of ER(+) MCF-7 cells. The functional significance of these findings was demonstrated by the observation that the ACAT inhibitor CP-113,818 reduced proliferation of breast cancer cells, and specifically reduced LDL-induced proliferation of ER(-) cells. Taken together, our studies show that a greater ability to take up, store and utilize exogenous cholesterol confers a proliferative advantage to basal-like ER(-) breast cancer cells. Differences in lipid uptake and storage capability may at least partially explain the differential effect of a low-fat diet on human breast cancer recurrence.
Collapse
Affiliation(s)
- Caryl J Antalis
- Cellular Biochemistry Laboratory, Methodist Research Institute, 1800 N. Capitol Ave, E504, Indianapolis, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Suomela S, Elomaa O, Skoog T, Ala-aho R, Jeskanen L, Pärssinen J, Latonen L, Grénman R, Kere J, Kähäri VM, Saarialho-Kere U. CCHCR1 is up-regulated in skin cancer and associated with EGFR expression. PLoS One 2009; 4:e6030. [PMID: 19551138 PMCID: PMC2696036 DOI: 10.1371/journal.pone.0006030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 05/21/2009] [Indexed: 01/21/2023] Open
Abstract
Despite chronic inflammation, psoriatic lesions hardly ever progress to skin cancer. Aberrant function of the CCHCR1 gene (Coiled-Coil α-Helical Rod protein 1, HCR) within the PSORS1 locus may contribute to the onset of psoriasis. As CCHCR1 is expressed in certain cancers and regulates keratinocyte (KC) proliferation in a transgenic mouse model, we studied its relation to proliferation in cutaneous squamous cell cancer (SCC) cell lines by expression arrays and quantitative RT-PCR and in skin tumors by immunohistochemistry. CCHCR1 protein was detected in the pushing border of SCC and lining basal cell carcinoma islands. Different from psoriasis, Ki67 had a similar expression pattern as CCHCR1. The most intense CCHCR1 staining occurred in areas positive for epidermal growth factor receptor (EGFR). Expression of CCHCR1 mRNA was upregulated 30–80% in SCC lines when compared to normal KCs and correlated positively with Ki67 expression. The most aggressive and invasive tumor cell lines (RT3, FaDu) expressed CCHCR1 mRNA less than non-tumorigenic HaCaT cells. Moreover, the tumor promoters okadaic acid and menadione downregulated CCHCR1 mRNA. We conclude that both in psoriasis and the early stages of KC transformation, CCHCR1 may function as a negative regulator of proliferation, but beyond a certain point in oncogenesis cannot control this phenomenon any longer.
Collapse
Affiliation(s)
- Sari Suomela
- Department of Dermatology, Helsinki University Central Hospital and Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Outi Elomaa
- Department of Medical Genetics, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Tiina Skoog
- Department of Biosciences and Nutrition at Novum, Karolinska Institutet, Huddinge, Sweden
- Departments of Clinical Science and Education and Section of Dermatology, Karolinska Institutet at Stockholm Söder Hospital, Stockholm, Sweden
| | - Risto Ala-aho
- Department of Dermatology, University of Turku, Turku University Central Hospital, Turku, Finland
- Medicity Research Laboratory, University of Turku, Turku, Finland
| | - Leila Jeskanen
- Department of Pathology, Helsinki University Central Hospital and Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Jenita Pärssinen
- Department of Dermatology, Helsinki University Central Hospital and Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Leena Latonen
- Molecular Cancer Biology Program and Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology-Head and Neck Surgery, Turku University Central Hospital, Turku, Finland
| | - Juha Kere
- Department of Medical Genetics, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Biosciences and Nutrition at Novum, Karolinska Institutet, Huddinge, Sweden
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku, Turku University Central Hospital, Turku, Finland
- Medicity Research Laboratory, University of Turku, Turku, Finland
| | - Ulpu Saarialho-Kere
- Department of Dermatology, Helsinki University Central Hospital and Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Departments of Clinical Science and Education and Section of Dermatology, Karolinska Institutet at Stockholm Söder Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
39
|
Park SJ, Kim HY, Kim H, Park SM, Joe EH, Jou I, Choi YH. Oxidative stress induces lipid-raft-mediated activation of Src homology 2 domain-containing protein-tyrosine phosphatase 2 in astrocytes. Free Radic Biol Med 2009; 46:1694-702. [PMID: 19348936 DOI: 10.1016/j.freeradbiomed.2009.03.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 03/23/2009] [Accepted: 03/30/2009] [Indexed: 01/18/2023]
Abstract
Several protein phosphatases are involved in neuroprotection in response to ischemic brain injury. Here, we report that reactive oxygen species (ROS)-mediated oxidative stress promotes phosphorylation of endogenous SHP-2 through lipid rafts in rat primary astrocytes. SHP-2 was transiently phosphorylated during hypoxia/reoxygenation, an effect abrogated by a ROS scavenger and an NADPH oxidase inhibitor. Additionally, exogenous treatment with hydrogen peroxide (H(2)O(2)) triggered SHP-2 phosphorylation in a time- and dose-dependent manner and led to its translocation into lipid rafts. H(2)O(2)-mediated SHP-2 phosphorylation and translocation were inhibited by filipin III and methyl-beta-cyclodextrin (MCD), lipid-raft-disrupting agents. In the presence of H(2)O(2), SHP-2 formed a complex with STAT-3 and reduced the steady-state STAT-3 phosphorylation level. Interestingly, the effect of H(2)O(2) on SHP-2 phosphorylation was cell-type specific. Remarkably, SHP-2 phosphorylation was induced strongly by H(2)O(2) in astrocytes, but barely detectable in microglia. Our results collectively indicate that SHP-2 is activated by ROS-mediated oxidative stress in astrocytes and functions as a component of the raft-mediated signaling pathway that acts through dephosphorylation and inactivation of other phosphotyrosine proteins, such as STAT-3.
Collapse
Affiliation(s)
- Soo Jung Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 442-721, Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Disruption of blood-testis barrier dynamics in ether-lipid-deficient mice. Cell Tissue Res 2009; 337:281-99. [DOI: 10.1007/s00441-009-0809-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/13/2009] [Indexed: 11/26/2022]
|
41
|
Korade Z, Kenworthy AK, Mirnics K. Molecular consequences of altered neuronal cholesterol biosynthesis. J Neurosci Res 2009; 87:866-75. [PMID: 18951487 DOI: 10.1002/jnr.21917] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The first dedicated step in de novo cholesterol biosynthesis begins with formation of squalene and ends with the reduction of 7-dehydrocholesterol by 7-dehydrocholesterol reductase (Dhcr7) into cholesterol, which is an essential structural and signaling molecule. Mutations in the Dhcr7 gene lead to Smith-Lemli-Opitz syndrome (SLOS), which is characterized by developmental deformities, incomplete myelination, and mental retardation. To understand better the molecular consequences of Dhcr7 deficiency in neuronal tissue, we analyzed the effect of cholesterol deficiency on the transcriptome in Neuro2a cells. Transient down-regulation of Dhcr7 by siRNA led to altered expression of multiple molecules that play critical roles in intracellular signaling or vesicular transport or are inserted into membrane rafts (e.g. Egr1, Snx, and Adam19). A similar down-regulation was also observed in stable Dhrc7-shRNA-transfected cell lines, and the findings were verified by qPCR. Furthermore, we investigated the Dhcr7-deficient and control cells for the expression of several critical genes involved in lipid biosynthesis. Among these, fatty acid synthase, sterol-regulatory element binding protein 2, SREBF chaperone, site-1 protease, and squalene synthase showed a significant down-regulation, suggesting that, in a neuronal cell line, Dhcr7 is a potent regulator of lipid biosynthesis. Importantly, the gene expression changes were present in both lipid-containing and cholesterol-deficient media, suggesting that intrinsic cholesterol biosynthesis is necessary for normal neuronal function and cannot be supplemented from extrinsic sources.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | |
Collapse
|
42
|
Cell and molecular biology of invadopodia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 275:1-34. [PMID: 19491051 DOI: 10.1016/s1937-6448(09)75001-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The controlled degradation of the extracellular matrix is crucial in physiological and pathological cell invasion alike. In vitro, degradation occurs at specific sites where invasive cells make contact with the extracellular matrix via specialized plasma membrane protrusions termed invadopodia. Considerable progress has been made in recent years toward understanding the basic molecular components and their ultrastructural features; generating substantial interest in invadopodia as a paradigm to study the complex interactions between the intracellular trafficking, signal transduction, and cytoskeleton regulation machineries. The next level will be to understand whether they may also represent valid biological targets to help advance the anticancer drug discovery process. Current knowledge will be reviewed here together with some of the most important open questions in invadopodia biology.
Collapse
|
43
|
Abstract
Androgens promote the growth and differentiation of prostate cells through ligand activation of the androgen receptor (AR). Sensitization of the androgenic response by multifunctional growth factor signaling pathways is one of the mechanisms via which AR contributes to the emergence of androgen-independent prostate tumors. The ability of AR to cross-talk with key growth factor signaling events toward the regulation of cell cycle, apoptosis, and differentiation outcomes in prostate cancer cells is established. In this paper, we review the functional interaction between AR and an array of growth factor signal transduction events (including epidermal growth factor; fibroblast growth factor; IGF1; vascular endothelial growth factor; transforming growth factor-beta) in prostate tumors. The significance of this derailed cross-talk between androgens and key signaling networks in prostate cancer progression and its value as a therapeutic forum targeting androgen-independent metastatic prostate cancer is discussed.
Collapse
Affiliation(s)
- Meng-Lei Zhu
- Departments of Urology and Toxicology, University of Kentucky College of Medicine, University of Kentucky Medical Center, Combs Research Building Room 306, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
44
|
Caldieri G, Giacchetti G, Beznoussenko G, Attanasio F, Ayala I, Buccione R. Invadopodia biogenesis is regulated by caveolin-mediated modulation of membrane cholesterol levels. J Cell Mol Med 2008; 13:1728-1740. [PMID: 19175685 DOI: 10.1111/j.1582-4934.2008.00568.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Invadopodia are proteolytically active protrusions formed by invasive tumoural cells when grown on an extracellular matrix (ECM) substratum. Clearly, invadopodia are specialized membrane domains acting as sites of signal transduction and polarized delivery of components required for focalized ECM degradation. For these reasons, invadopodia are a model to study focal ECM degradation by tumour cells. We investigated the features of invadopodia membrane domains and how altering their composition would affect invadopodia biogenesis and function. This was achieved through multiple approaches including manipulation of the levels of cholesterol and other lipids at the plasma membrane, alteration of cholesterol trafficking by acting on caveolin 1 expression and phosphorylation. We show that cholesterol depletion impairs invadopodia formation and persistence, and that invadopodia themselves are cholesterol-rich membranes. Furthermore, the inhibition of invadopodia formation and ECM degradation after caveolin 1 knock-down was efficiently reverted by simple provision of cholesterol. In addition, the inhibitory effect of caveolin 3(DGV) expression, a mutant known to block cholesterol transport to the plasma membrane, was similarly reverted by provision of cholesterol. We suggest that invadopodia biogenesis, function and structural integrity rely on appropriate levels of plasma membrane cholesterol, and that invadopodia display the properties of cholesterol-rich membranes. Also, caveolin 1 exerts its function in invadopodia formation by regulating cholesterol balance at the plasma membrane. These findings support the connection between cholesterol, cancer and caveolin 1, provide further understanding of the role of cholesterol in cancer progression and suggest a mechanistic framework for the proposed anti-cancer activity of statins, tightly related to their blood cholesterol-lowering properties.
Collapse
Affiliation(s)
- Giusi Caldieri
- Tumor Cell Invasion Laboratory, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Giada Giacchetti
- Tumor Cell Invasion Laboratory, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Galina Beznoussenko
- Tumor Cell Invasion Laboratory, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Francesca Attanasio
- Tumor Cell Invasion Laboratory, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Inmaculada Ayala
- Tumor Cell Invasion Laboratory, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Roberto Buccione
- Tumor Cell Invasion Laboratory, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| |
Collapse
|
45
|
Bonaccorsi L, Luciani P, Nesi G, Mannucci E, Deledda C, Dichiara F, Paglierani M, Rosati F, Masieri L, Serni S, Carini M, Proietti-Pannunzi L, Monti S, Forti G, Danza G, Serio M, Peri A. Androgen receptor regulation of the seladin-1/DHCR24 gene: altered expression in prostate cancer. J Transl Med 2008; 88:1049-56. [PMID: 18762779 DOI: 10.1038/labinvest.2008.80] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Prostate cancer (CaP) represents a major leading cause of morbidity and mortality in the Western world. Elevated cholesterol levels, resulting from altered cholesterol metabolism, have been found in CaP cells. Seladin-1 (SELective Alzheimer Disease INdicator-1)/DHCR24 is a recently described gene involved in cholesterol biosynthesis. Here, we demonstrated the androgen regulation of seladin-1/DHCR24 expression, due to the presence of androgen responsive element sequences in its promoter region. In metastatic androgen receptor-negative CaP cells seladin-1/DHCR24 expression and cholesterol amount were reduced compared to androgen receptor-positive cells. In tumor samples from 61 patients who underwent radical prostatectomy the expression of seladin-1/DHCR24 was significantly higher with respect to normal tissues. In addition, in cancer tissues mRNA levels were positively related to T stage. In tumor specimens from 23 patients who received androgen ablation treatment for 3 months before surgery seladin-1/DHCR24 expression was significantly lower with respect to patients treated by surgery only. In conclusion, our study demonstrated for the first time the androgen regulation of the seladin-1/DHCR24 gene and the presence of a higher level of expression in CaP tissues, compared to the normal prostate. These findings, together with the results previously obtained in metastatic disease, suggest an involvement of this gene in CaP.
Collapse
Affiliation(s)
- Lorella Bonaccorsi
- Unit of Andrology, Department of Clinical Physiopathology, Center for Transfer, High Education and Technology (DENOThe), University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
While normal tissues are tightly regulated by nutrition and a carefully balanced system of glycolysis and fatty acid synthesis, tumor cells are under significant evolutionary pressure to bypass many of the checks and balances afforded normally. Cancer cells have high energy expenditure from heightened proliferation and metabolism and often show increased lipogenesis. Fatty acid synthase (FASN), the enzyme responsible for catalyzing the ultimate steps of fatty acid synthesis in cells, is expressed at high levels in tumor cells and is mostly absent in corresponding normal cells. Because of the unique expression profile of FASN, there is considerable interest not only in understanding its contribution to tumor cell growth and proliferation, but also in developing inhibitors that target FASN specifically as an anti-tumor modality. Pharmacological blockade of FASN activity has identified a pleiotropic role for FASN in mediating aspects of proliferation, growth and survival. As a result, a clearer understanding of the role of FASN in tumor cells has been developed.
Collapse
|
47
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2008; 15:284-299. [PMID: 18438178 DOI: 10.1097/med.0b013e3283040e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Patra SK. Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta Rev Cancer 2007; 1785:182-206. [PMID: 18166162 DOI: 10.1016/j.bbcan.2007.11.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/24/2007] [Accepted: 11/29/2007] [Indexed: 01/09/2023]
Abstract
Cancer is one of the most devastating disorders in our lives. Higher rate of proliferation than death of cells is one of the essential factors for development of cancer. The dynamicity of cell membrane plays some vital roles in cell survival and cell death, including protection, endocytosis, signaling, and increases in mechanical stability during cell division, as well as decrease of shear forces during separation of two cells after division, and cell separation from tissues for cancer metastasis. Within the membrane, there are specialized domains, known as lipid rafts. A raft can coordinate various signaling pathways. Recent data on the proteomics of lipid rafts/caveolae have highlighted the enigmatic role of various signaling proteins in cancer development. Analysis of these data of raft proteome from various tumors, cancer tissues, and cell lines cultured without and with therapeutic agents, as well as from model rafts revealed that there may be two subsets of raft assemblage in cell membrane. One subset of raft is enriched with cholesterol-sphingomyeline-ganglioside-cav-1/Src/EGFR (hereafter, "chol-raft") that is involved in normal cell signaling, and when dysregulated promotes cell transformation and tumor progression; another subset of raft is enriched with ceramide-sphingomyeline-ganglioside-FAS/Ezrin (hereafter, "cer-raft") that generally promotes apoptosis. In view of this, and to focus insight into the cancer cell physiology caused by the lipid rafts mediated signals and their receptors, and the downstream transmitters, either proliferative (for example, EGF and EGFR) or death-inducing (for example, FASL and FAS), and the precise roles of some therapeutic drugs and endogenous acid sphingomylenase in this scenario in in situ transformation of "chol-raft" into "cer-raft" are summarized and discussed in this contribution.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Cancer Epigenetics Research, Kalyani (B-7/183), Nadia, West Bengal, India-741235.
| |
Collapse
|
49
|
Abstract
Rapid effects of steroid hormones result from the actions of specific receptors localized most often to the plasma membrane. Fast-acting membrane-initiated steroid signaling (MISS) leads to the modification of existing proteins and cell behaviors. Rapid steroid-triggered signaling through calcium, amine release, and kinase activation also impacts the regulation of gene expression by steroids, sometimes requiring integration with nuclear steroid receptor function. In this and other ways, the integration of all steroid actions in the cell coordinates outcomes such as cell fate, proliferation, differentiation, and migration. The nature of the receptors is of intense interest, and significant data suggest that extranuclear and nuclear steroid receptor pools are the same proteins. Insights regarding the structural determinants for membrane localization and function, as well as the nature of interactions with G proteins and other signaling molecules in confined areas of the membrane, have led to a fuller understanding of how steroid receptors effect rapid actions. Increasingly, the relevance of rapid signaling for the in vivo functions of steroid hormones has been established. Examples include steroid effects on reproductive organ development and function, cardiovascular responsiveness, and cancer biology. However, although great strides have been made, much remains to be understood concerning the integration of extranuclear and nuclear receptor functions to organ biology. In this review, we highlight the significant progress that has been made in these areas.
Collapse
Affiliation(s)
- Stephen R Hammes
- Department of Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8857, USA.
| | | |
Collapse
|