1
|
Cheng F, Shen RJ, Zheng Z, Chen ZJ, Huang PJ, Feng ZK, Li X, Lin N, Zheng M, Liang Y, Qu J, Lu F, Jin ZB, Yang J. Distinct methylomic signatures of high-altitude acclimatization and adaptation in the Tibetan Plateau. Cell Discov 2025; 11:45. [PMID: 40328746 PMCID: PMC12056056 DOI: 10.1038/s41421-025-00795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/17/2025] [Indexed: 05/08/2025] Open
Abstract
High altitude presents a challenging environment for human settlement. DNA methylation is an essential epigenetic mechanism that responds to environmental stimuli, but its roles in high-altitude short-term acclimatization (STA) and long-term adaptation (LTA) are poorly understood. Here, we conducted a methylome-wide association study involving 687 native highlanders and 299 acclimatized newcomers in the Tibetan Plateau and 462 native lowlanders to identify differentially methylated sites (DMSs) associated with STA or LTA. We identified 93 and 4070 DMSs for STA and LTA, respectively, which had no overlap, showed opposite asymmetric effect size patterns, and resided near genes enriched in distinct biological pathways/processes (e.g., cell cycle for STA and immune diseases and calcium signalling pathway for LTA). Epigenetic clock analysis revealed evidence of accelerated ageing in the acclimatized newcomers compared to the native lowlanders. Our research provides novel insights into epigenetic regulation in relation to high altitude and intervention strategies for altitude-related ageing or illnesses.
Collapse
Affiliation(s)
- Feifei Cheng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhili Zheng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhen Ji Chen
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peng-Juan Huang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuo-Kun Feng
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoman Li
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Na Lin
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meiqin Zheng
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanbo Liang
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fan Lu
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Rossetti MF, Schumacher R, Canesini G, Fernandez P, Gaydou L, Stoker C, Ramos JG. Neonatal overfeeding promotes anxiety, impairs episodic-like memory, and disrupts transcriptional regulation of hippocampal steroidogenic enzymes. J Nutr Biochem 2024; 134:109739. [PMID: 39154791 DOI: 10.1016/j.jnutbio.2024.109739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The objective of our study was to investigate the impact of neonatal overfeeding on cognitive functions and neurosteroidogenesis in male rats. Offspring were assigned to either small litters (SL; 4 pups/mother), resulting in increased milk intake and body weight gain, or normal litters (NL; 10 pups/mother). On postnatal day (PND) 21, half of the male rats were euthanized, while the remaining were kept under standard conditions (4 rats/cage) until PND70. At this stage, subjects underwent assessments for locomotor activity, anxiety levels via the elevated plus maze, and episodic-like memory (ELM) tests. By PND90, the rats were euthanized for brain dissection. Utilizing micropunch techniques, dentate gyrus (DG), CA1, and CA3 regions were extracted for analysis of mRNA expression and methylation patterns. At PND21, SL rats exhibited increased body and adipose tissue weights, alongside elevated cholesterol, glucose, and triglyceride levels compared to NL counterparts. By PND90, although metabolic disparities were no longer evident, SL rats demonstrated heightened anxiety-like behavior and diminished performance in ELM tests. Early life changes included a decreased expression of aromatase (P450arom) and 3α-HSD in CA1, with increased levels in CA3 and DG among SL rats. Additionally, PND90 rats from SL exhibited increased P450arom and decreased 5α-reductase 1 (5αR-1) expression in DG. Notably, some of these variations were correlated with changes in methylation patterns of their promoter regions. Our findings reveal that neonatal overfeeding exerts a long-term adverse effect on cognitive abilities and neurosteroidogenic pathways, underscoring the lasting impact of nutritional experiences during critical early postnatal development periods.
Collapse
Affiliation(s)
- Maria Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | | | - Guillermina Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Nutrición en Situaciones Patológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Pamela Fernandez
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Nutrición en Situaciones Patológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luisa Gaydou
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Cora Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge Guillermo Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
3
|
Choi KM, Mun SH, Shin D, Kim CH, Kim TH, Jung JH. The toxic effects of exposure to fibrous and fragmented microplastic in juvenile rockfish based on two omics approach. CHEMOSPHERE 2024; 367:143541. [PMID: 39419335 DOI: 10.1016/j.chemosphere.2024.143541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Although the hazards of environmental microplastics (MPs) are well known, it is unclear which of their characteristics have the greatest effects on organism. We investigated the toxic effects of oral administration according to physical properties, including the shape of fragmented polyethylene terephthalate (PET) (FrPET) and fibrous PET (FiPET) MPs. After 72 h of exposure, apoptosis and phagocytic activity varied significantly among juvenile rockfish (Sebastes schlegeli) exposed to both FrPET and FiPET. The levels of immune-related genes and hepatic metabolic activity also increased after exposure to both shapes of MPs, but the variation in responses was greater in fish exposed to FiPET compared with those exposed to FrPET. The transcriptomic and metabolomics analysis results indicated that the maintenance and homeostasis of immune system was affected by oral exposure to FrPET and FiPET. The amino acid metabolic processes were identified in rockfish exposed to FrPET, but the notch signaling pathway were evident in the FiPET exposure group. Metabolomics analysis revealed that oral ingestion of MP fibers led to a stronger inflammatory response and greater oxidative stress in juvenile rockfish. These results can be used to understand environmentally dominant MP toxic effects such as type, size, shapes, as well as to prioritize ecotoxicological management.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea
| | - Seong Hee Mun
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea
| | - Dongju Shin
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea
| | - Chae Hwa Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| | - Tae Hee Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| | - Jee-Hyun Jung
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea; Ocean Science, University of Science and Technology, 217 Gajeong-ro, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Li X, Shen K, Yuan D, Fan J, Yang Y, Tian F, Quan J, Li C, Wang J. Sodium arsenite exposure enhances H3K14 acetylation and impairs male spermatogenesis in rat testes. Reprod Toxicol 2023; 122:108474. [PMID: 37757915 DOI: 10.1016/j.reprotox.2023.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/26/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Histone modifications play important roles in the epigenetic regulation of spermatogenesis via mediating gene transcription. Steroidogenic regulatory enzymes control testosterone biosynthesis, which are essential for spermatogenesis. Arsenic exposure inhibits the expression of steroidogenic genes by significantly increasing tri-methylation of H3K9 (H3K9me3) level in rat testis, finally diminishes testosterone release and lowers the rat sperm quality. Acetylation of H3K14 (H3K14ac) is associated with testosterone production and spermatogenesis. Co-occurrence of H3K9me3/H3K14ac has been identified previously by mass spectrometry in histone H3 isolated from different human cell types. H3K9me3/H3K14ac dually marked regions are in a poised inactive state to inhibit the gene expression. Whereas, whether inorganic arsenic exposure affects spermatogenesis and steroidogenic regulatory enzymes via mediating H3K14ac level has not been studied. Thereupon, the male Sprague-Dawley (SD) rats were exposed to (NaAsO2) for 6 weeks, then the sperm density and motility, testosterone level in serum, arsenic in rat testis were detected. mRNA expression of steroidogenic regulatory enzymes Star, Cyp11a1, Hsd3b and Hsd17b were determined by RT-PCR. H3K14ac level and the expression of histone acetylases of H3K14 (KAT2A and EP300), histone deacetylases of H3K14 (HDAC6 and HDAC3), the reader of H3K14ac (BAZ2A) were determined. The results suggested arsenic enhances H3K14ac in rat testis, which was associated with repression of steroidogenic regulatory genes expression, further reduced testosterone production, and impaired the spermatogenesis.
Collapse
Affiliation(s)
- Xiangli Li
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Kaina Shen
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Dunxuan Yuan
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Jinping Fan
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Yan Yang
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Fangzhou Tian
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Jinrou Quan
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Chengyun Li
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Junling Wang
- School of Public Health, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
5
|
Huang Z, Li X, Wei B, Yu Y. Global metabolomics study on the pathogenesis of pediatric medulloblastoma via UPLC- Q/E-MS/MS. PLoS One 2023; 18:e0287121. [PMID: 37319142 PMCID: PMC10270352 DOI: 10.1371/journal.pone.0287121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
Medulloblastoma is one of the most frequent malignant brain tumors in infancy and childhood. Early diagnosis and treatment are quite crucial for the prognosis. However, the pathogenesis of medulloblastoma is still not completely clarified. High-resolution mass spectrometry has enabled a comprehensive investigation on the mechanism of disease from the perspective of metabolism. Herein, we compared the difference of metabolic profiles of serum between medulloblastoma (n = 33) and healthy control (HC, n = 16) by using UPLC-Q/E-MS/MS. Principal component analysis and orthogonal projections to latent structures discriminant analysis (OPLS-DA) intuitively revealed the significantly distinct metabolic profiles between medulloblastoma and HC (p < 0.01 for permutation test on OPLS-DA model). Total of 25 significantly changed metabolites were identified. ROC analysis reported that six of them (Phosphatidic acid (8:0/15:0), 3'-Sialyllactose, Isocoproporphyrin, Acetylspermidine, Fructoseglycine and 3-Hydroxydodecanedioate) showed high specificity and precision to be potential diagnosis biomarkers (AUC > 0.98). Functional analysis discovered that there are four pathways notably perturbed for medulloblastoma. These pathways are related with the dysfunction of arachidonic acid metabolism, steroid hormone biosynthesis, and folate-related metabolism. The target intervention on these pathways may reduce the mortality of medulloblastoma.
Collapse
Affiliation(s)
- Zhehao Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xianglan Li
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yin Yu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Tovo PA, Marozio L, Abbona G, Calvi C, Frezet F, Gambarino S, Dini M, Benedetto C, Galliano I, Bergallo M. Pregnancy Is Associated with Impaired Transcription of Human Endogenous Retroviruses and of TRIM28 and SETDB1, Particularly in Mothers Affected by Multiple Sclerosis. Viruses 2023; 15:v15030710. [PMID: 36992419 PMCID: PMC10051116 DOI: 10.3390/v15030710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Accumulating evidence highlights the pathogenetic role of human endogenous retroviruses (HERVs) in eliciting and maintaining multiple sclerosis (MS). Epigenetic mechanisms, such as those regulated by TRIM 28 and SETDB1, are implicated in HERV activation and in neuroinflammatory disorders, including MS. Pregnancy markedly improves the course of MS, but no study explored the expressions of HERVs and of TRIM28 and SETDB1 during gestation. Using a polymerase chain reaction real-time Taqman amplification assay, we assessed and compared the transcriptional levels of pol genes of HERV-H, HERV-K, HERV-W; of env genes of Syncytin (SYN)1, SYN2, and multiple sclerosis associated retrovirus (MSRV); and of TRIM28 and SETDB1 in peripheral blood and placenta from 20 mothers affected by MS; from 27 healthy mothers, in cord blood from their neonates; and in blood from healthy women of child-bearing age. The HERV mRNA levels were significantly lower in pregnant than in nonpregnant women. Expressions of all HERVs were downregulated in the chorion and in the decidua basalis of MS mothers compared to healthy mothers. The former also showed lower mRNA levels of HERV-K-pol and of SYN1, SYN2, and MSRV in peripheral blood. Significantly lower expressions of TRIM28 and SETDB1 also emerged in pregnant vs. nonpregnant women and in blood, chorion, and decidua of mothers with MS vs. healthy mothers. In contrast, HERV and TRIM28/SETDB1 expressions were comparable between their neonates. These results show that gestation is characterized by impaired expressions of HERVs and TRIM28/SETDB1, particularly in mothers with MS. Given the beneficial effects of pregnancy on MS and the wealth of data suggesting the putative contribution of HERVs and epigenetic processes in the pathogenesis of the disease, our findings may further support innovative therapeutic interventions to block HERV activation and to control aberrant epigenetic pathways in MS-affected patients.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: (P.-A.T.); (M.B.)
| | - Luca Marozio
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Giancarlo Abbona
- Pathology Unit, Department Laboratory Medicine, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Federica Frezet
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Stefano Gambarino
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Maddalena Dini
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: (P.-A.T.); (M.B.)
| |
Collapse
|
7
|
Su J, Yi S, Gao Z, Abbas K, Zhou X. DNA methylation mediates gonadal development via regulating the expression levels of cyp19a1a in loach Misgurnus anguillicaudatus. Int J Biol Macromol 2023; 235:123794. [PMID: 36828090 DOI: 10.1016/j.ijbiomac.2023.123794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
DNA methylation-mediated transcriptional regulation has been considered to significantly impact some steroidogenic enzyme genes expression. To uncover the roles of DNA methylation on the regulation of aromatase gene expression during gametogenesis in Misgurnus anguillicaudatus, the expression profiles and cellular localization of cyp19a1a and cyp19a1b were analyzed, and the landscape of DNA methylation dynamics was investigated. We found that cyp19a1a was predominantly expressed in granulosa cells of oocytes, while cyp19a1b expression was enriched in radial glial cells of the forebrain. In ovary, cyp19a1a was highly expressed until the vitellogenesis stage. The average methylation levels, especially for two CpG sites within the cAMP response element, were negatively correlated with cyp19a1a expression levels, indicating that methylation could regulate cyp19a1a transcriptional activity by modulating the binding efficiency of cAMP to its response elements. Compared with in ovary, cyp19a1a showed lower expression in testis but was hypermethylated. Cyp19a1b in female brain weakly expressed before the vitellogenesis stage, but significantly elevated at the maturation stage. In both sexes, it maintained high methylation levels in brain despite the obvious fluctuation of the cyp19a1b expression. This study revealed that DNA methylation plays a key role in establishing cyp19a1a spatiotemporal expression patterns and thus mediates gonadal development in teleosts.
Collapse
Affiliation(s)
- Junxiao Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shaokui Yi
- College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Zexia Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Khalid Abbas
- Aquaculture Biotechnology Lab, Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Xiaoyun Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Wang J, Shi R, Yang Q, Chen Z, Wang J, Gong Z, Chen S, Wang N. Characterization and potential function of 7-dehydrocholesterol reductase (dhcr7) and lathosterol 5-desaturase (sc5d) in Cynoglossus semilaevis sexual size dimorphism. Gene X 2023; 853:147089. [PMID: 36470484 DOI: 10.1016/j.gene.2022.147089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The typical sexual size dimorphism (SSD) phenomenon of Chinese tongue sole (Cynoglossus semilaevis) seriously restricts the sustainable development of the fishing industry. Previous transcriptome analysis has found a close relationship between the steroid biosynthesis and C. semilaevis SSD. The 7-dehydrocholesterol reductase (dhcr7) and lathosterol 5-desaturase (sc5d) are two genes in the steroid biosynthesis pathway, playing important roles in lipid synthesis, cellular metabolism, and growth. The present study assessed their roles in the mechanism of C. semilaevis SSD. The quantitative polymerase chain reaction (qPCR) results showed that C. semilaevis dhcr7 was mainly expressed in female livers, and C. semilaevis sc5d was highly expressed in female livers and gonads. Dual-luciferase experiment showed that dhcr7 and sc5d promoters had strong transcriptional activity. The transcription factors E2F transcription factor 1 (E2F1), and CCAAT enhancer binding protein alpha (C/EBPα) significantly regulated the transcriptional activity of dhcr7 and sc5d promoters, respectively. Furthermore, small interfering RNA (siRNA) knockdown results showed that expression levels of several genes [SREBF chaperone (scap), membrane-bound transcription factor peptidase, site 1 (mbtps1), fatty acid synthase (fasn), sonic hedgehog (shh), bone morphogenetic protein 2b (bmp2b) and AKT serine/threonine kinase 1 (akt1)] were suppressed. Protein subcellular localization results indicated that Dhcr7 and Sc5d were both specifically distributed in the cytoplasm, with co-localization been observed. The present study provides evidence that dhcr7 and sc5d might regulate C. semilaevis sexual size dimorphism by involving in energy homeostasis and cell cycle, or by affecting PI3K-Akt and Shh signaling pathways. The detailed roles of these steroid biosynthesis genes regulating C. semilaevis SSD needed more information.
Collapse
Affiliation(s)
- Jialin Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Rui Shi
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qian Yang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhangfan Chen
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao 266071, China
| | - Jiacheng Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihong Gong
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Marine Life, Ocean University of China, Qingdao 266100, China
| | - Songlin Chen
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao 266071, China.
| | - Na Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao 266071, China.
| |
Collapse
|
9
|
Rossetti MF, Varayoud J, Ramos JG. Steroidogenic enzymes in the hippocampus: Transcriptional regulation aspects. VITAMINS AND HORMONES 2022; 118:171-198. [PMID: 35180926 DOI: 10.1016/bs.vh.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neurosteroids are steroids synthesized de novo from cholesterol in brain regions, and regulate processes associated with the development and functioning of the nervous system. Enzymes and proteins involved in the synthesis of these steroids have been detected in several brain regions, including hippocampus, hypothalamus, and cerebral cortex. Hippocampus has long been associated with learning and memory functions, while the loss of its functionality has been linked to neurodegenerative pathologies. In this sense, neurosteroids are critical for the maintenance of hippocampal functions and neuroprotective effects. Moreover, several factors have been shown to deregulate expression of steroidogenic enzymes in the rodent brain, including aging, enrichment experiences, diet habits, drug/alcohol consumption, hormone fluctuations, neurodegenerative processes and other diseases. These transcriptional deregulations are mediated mainly by transcription factors and epigenetic mechanisms. An epigenetic modification of chromatin involves changes in bases and associated proteins in the absence of changes in the DNA sequence. One of the most well-studied mechanisms related to gene silencing is DNA methylation, which involves a reversible addition of methyl groups in a cytosine base. Importantly, these epigenetic marks could be maintained over time and could be transmitted transgenerationally. The aim of this chapter is to present the most relevant steroidogenic enzymes described in rodent hippocampus; to discuss about their transcriptional regulation under different conditions; to show the main gene control regions and to propose DNA methylation as an epigenetic mechanism through which the expression of these enzymes could be controlled.
Collapse
Affiliation(s)
- María Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge Guillermo Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
10
|
Alam MN, Han X, Nan B, Liu L, Tian M, Shen H, Huang Q. Chronic low-level perfluorooctane sulfonate (PFOS) exposure promotes testicular steroidogenesis through enhanced histone acetylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117518. [PMID: 34261222 DOI: 10.1016/j.envpol.2021.117518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctane sulfonate (PFOS), an artificial perfluorinated compound, has been associated with male reproductive disorders. Histone modifications are important epigenetic mediators; however, the impact of PFOS exposure on testicular steroidogenesis through histone modification regulations remains to be elucidated. In this study, we examined the roles of histone modifications in regulating steroid hormone production in male rats chronically exposed to low-level PFOS. The results indicate that PFOS exposure significantly up-regulated the expressions of StAR, CYP11A1 and 3β-HSD, while CYP17A1 and 17β-HSD were down-regulated, thus contributing to the elevated progesterone and testosterone levels. Furthermore, PFOS significantly increased the histones H3K9me2, H3K9ac and H3K18ac while reduced H3K9me3 in rat testis. It is known that histone modifications are closely involved in gene transcription. Therefore, to investigate the association between histone modifications and steroidogenic gene regulation, the levels of these histone marks were further measured in steroidogenic gene promoter regions by ChIP. It was found that H3K18ac was augmented in Cyp11a1 promoter, and H3K9ac was increased in Hsd3b after PFOS exposure, which is proposed to result in the activation of CYP11A1 and 3β-HSD, respectively. To sum up, chronic low-level PFOS exposure activated key steroidogenic gene expression through enhancing histone acetylation (H3K9ac and H3K18ac), ultimately stimulating steroid hormone biosynthesis in rat testis.
Collapse
Affiliation(s)
- Md Nur Alam
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejingping Han
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
11
|
Zheng C, Wu Y, Liang ZH, Pi JS, Cheng SB, Wei WZ, Liu JB, Lu LZ, Li CF, Zhang H. Plasma metabolites associated with physiological and biochemical indexes indicate the effect of caging stress on mallard ducks (Anas platyrhynchos). Anim Biosci 2021; 35:224-235. [PMID: 34474531 PMCID: PMC8738941 DOI: 10.5713/ab.21.0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/23/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Cage rearing has critical implications for the laying duck industry because it is convenient for feeding and management. However, caging stress is a type of chronic stress that induces maladaptation. Environmental stress responses have been extensively studied, but no detailed information is available about the comprehensive changes in plasma metabolites at different stages of caging stress in ducks. We designed this experiment to analyze the effects of caging stress on performance parameters and oxidative stress indexes in ducks. Methods Liquid chromatography tandem mass spectrometry (LC/MS-MS) was used to determine the changes in metabolites in duck plasma at 5 (CR5), 10 (CR10), and 15 (CR15) days after cage rearing and traditional breeding (TB). The associated pathways of differentially altered metabolites were analyzed using Kyoto encyclopedia of genes and genomes (KEGG) database. Results The results of this study indicate that caging stress decreased performance parameters, and the plasma total superoxide dismutase levels were increased in the CR10 group compared with the other groups. In addition, 1,431 metabolites were detected. Compared with the TB group, 134, 381, and 190 differentially produced metabolites were identified in the CR5, CR10, and CR15 groups, respectively. The results of principal component analysis (PCA) show that the selected components sufficiently distinguish the TB group and CR10 group. KEGG analysis results revealed that the differentially altered metabolites in duck plasma from the CR5 and TB groups were mainly associated with ovarian steroidogenesis, biosynthesis of unsaturated fatty acids, and phenylalanine metabolism. Conclusion In this study, the production performance, blood indexes, number of metabolites and PCA were compared to determine effect of the caging stress stage on ducks. We inferred from the experimental results that caging-stressed ducks were in the sensitive phase in the first 5 days after caging, caging for approximately 10 days was an important transition phase, and then the duck continually adapted.
Collapse
Affiliation(s)
- Chao Zheng
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yan Wu
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China
| | - Zhen Hua Liang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China
| | - Jin Song Pi
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China
| | - Shi Bin Cheng
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China
| | | | - Jing Bo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Li Zhi Lu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cheng Feng Li
- Hubei Shendan Healthy Food Co..Ltd, Anlu, 432600, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China
| |
Collapse
|
12
|
Lozi AA, Pinto da Matta SL, Sarandy MM, Silveira Alves de Melo FC, Araujo DC, Novaes RD, Gonçalves RV. Relevance of the Isoflavone Absorption and Testicular Function: A Systematic Review of Preclinical Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8853172. [PMID: 33628321 PMCID: PMC7895610 DOI: 10.1155/2021/8853172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/09/2022]
Abstract
Isoflavone is a phytoestrogen found in different types of food that can act as endocrine disrupters leading to testicular dysfunction. Currently, fragmented data on the action of this compound in the testicles make it difficult to assess its effects to define a safe dose. Thus, we systematically reviewed the preclinical evidence of the impact of isoflavone on testicular function. We also determined which form (aglycones or glycosylated) was the most used, which allowed us to understand the main biological processes involved in testicular function after isoflavone exposure. This systematic review was carried out according to the PRISMA guidelines using a structured search on the biomedical databases MEDLINE (PubMed), Scopus, and Web of Science, recovering and analyzing 22 original studies. The bias analysis and the quality of the studies were assessed by the criteria described in the risk of bias tool developed by SYRCLE (Systematic Review Centre for Laboratory Animal Experimentation). The aglycones and glycosylated isoflavones proved to be harmful to the reproductive health, and the glycosylates at doses of 50, 100, 146, 200, 300, 500, and 600 mg/kg, in addition to 190 and 1000 mg/L, appear to be even more harmful. The main testicular pathologies resulting from the use of isoflavones are associated with Leydig cells resulting from changes in molecular functions and cellular components. The most used isoflavone to evaluate testicular changes was the genistein/daidzein conjugate. The consumption of high doses of isoflavones promotes changes in the functioning of Leydig cells, inducing testicular changes and leading to infertility in murine models.
Collapse
Affiliation(s)
- Amanda Alves Lozi
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | - Diane Costa Araujo
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | |
Collapse
|
13
|
Blesson CS, Schutt AK, Vipin VA, Tanchico DT, Mathew PR, Balakrishnan M, Betancourt A, Yallampalli C. In utero low-protein-diet-programmed type 2 diabetes in adult offspring is mediated by sex hormones in rats†. Biol Reprod 2020; 103:1110-1120. [PMID: 32766739 PMCID: PMC7609843 DOI: 10.1093/biolre/ioaa133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Sex steroids regulate insulin sensitivity and glucose metabolism. We had characterized a lean type 2 diabetes (T2D) rat model using gestational low-protein (LP) diet programming. Our objective was to identify if endocrine dysfunction leading to decreased sex hormone levels will precede the development of T2D and if steroid replacement will prevent the onset of the disease. Pregnant rats were fed control or isocaloric LP diet from gestational day 4 until delivery. Normal diet was given to all mothers after delivery and to pups after weaning. LP offspring developed glucose intolerance and insulin resistance at 4 months. We measured sex steroid hormone profiles and expression of key genes involved in steroidogenesis in testis and ovary. Furthermore, one-month old rats were implanted with 90-day slow release T and E2 pellets for males and females, respectively. Glucose tolerance test (GTT) and euglycemic hyperinsulinemic clamp was performed at 4 months. LP-programmed T2D males had low T levels and females had low E2 levels due to dysregulated gene expression during steroidogenesis in gonads. GTT and euglycemic hyperinsulinemic clamp showed that LP males and females were glucose intolerant and insulin resistant; however, steroid supplementation prevented the onset of glucose intolerance and insulin resistance. Rats that developed T2D by LP programming have compromised gonadal steroidogenesis leading to low T and E2 in males and females, respectively. Sex steroid supplementation prevented the onset of glucose intolerance and insulin resistance indicating low sex steroid levels could cause compromised glucose metabolism ultimately leading to T2D.
Collapse
Affiliation(s)
- Chellakkan S Blesson
- Division for Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baylor College of Medicine, and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030
| | - Amy K Schutt
- Division for Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baylor College of Medicine, and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030
| | - Vidyadharan A Vipin
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Daren T Tanchico
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Pretty R Mathew
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Meena Balakrishnan
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Ancizar Betancourt
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Chandra Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
14
|
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin A. Effects and Mechanisms of Phthalates' Action on Reproductive Processes and Reproductive Health: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6811. [PMID: 32961939 PMCID: PMC7559247 DOI: 10.3390/ijerph17186811] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
The production of plastic products, which requires phthalate plasticizers, has resulted in the problems for human health, especially that of reproductive health. Phthalate exposure can induce reproductive disorders at various regulatory levels. The aim of this review was to compile the evidence concerning the association between phthalates and reproductive diseases, phthalates-induced reproductive disorders, and their possible endocrine and intracellular mechanisms. Phthalates may induce alterations in puberty, the development of testicular dysgenesis syndrome, cancer, and fertility disorders in both males and females. At the hormonal level, phthalates can modify the release of hypothalamic, pituitary, and peripheral hormones. At the intracellular level, phthalates can interfere with nuclear receptors, membrane receptors, intracellular signaling pathways, and modulate gene expression associated with reproduction. To understand and to treat the adverse effects of phthalates on human health, it is essential to expand the current knowledge concerning their mechanism of action in the organism.
Collapse
Affiliation(s)
- Henrieta Hlisníková
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (I.P.); (B.K.); (M.Š.); (A.S.)
| | | | | | | | | |
Collapse
|
15
|
Al-Omar Z, Ozbakir B, Tulay P. Differential expression of genes involved in steroidogenesis pathway in human oocytes obtained from patients with polycystic ovaries. J Reprod Immunol 2020; 142:103191. [PMID: 32937223 DOI: 10.1016/j.jri.2020.103191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/28/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Follicular development can be disturbed due to many factors, including having polycystic ovaries. Aberrant expression of genes involved in steroidogenesis pathway could lead to aberrant oocyte development. In this study, the gene expression levels of a number of genes that is functioning in steroidogenesis pathway were investigated. MATERIALS AND METHODS The spare oocytes were collected from NEU Hospital IVF Center following controlled ovarian stimulation cycle. RNA was extracted using RNA/DNA Purification Kit (Norgen, Canada) and reverse transcription was performed using TruScript First Strand cDNA Synthesis Kit (Norgen, Canada). Real time PCR was conducted using LightCycler® 480 SYBR Green I Master (Roche, UK). RESULTS AND CONCLUSION The expression levels of CYP11, CYP17, CYP19, HSD17B1, HSD3B2 and ACTB were detected in human MII stage oocytes obtained from oocyte donors aged between 18-30 years. The number of follicles and oocytes collected from the patients with polycystic ovaries were slightly higher compared to the control group. The expression level of CYP11A1 was shown to be statistically different in the oocytes obtained from the patients who do not have polycystic ovaries (p < 0.05), whereas statistically significant expression levels were observed for CYP17 in the oocytes obtained from patients with polycystic ovaries (p < 0.05). The expression level of HSD17B1 was also shown to be statistically different in the oocytes (p < 0.05). The extrapolation of the results indicates that the genes involved in steroidogenesis pathway are altered in cases of polycystic ovaries. Thus, it may have a role in the development of polycystic ovaries.
Collapse
Affiliation(s)
- Z Al-Omar
- Near East University, Institute of Health Sciences, Department of Medical Biology and Genetics, Nicosia, Cyprus
| | - B Ozbakir
- Near East University, Faculty of Medicine, Department of Obstetrics and Gynecology, Nicosia, Cyprus; Near East University, DESAM Institute, Nicosia, Cyprus
| | - P Tulay
- Near East University, DESAM Institute, Nicosia, Cyprus; Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus.
| |
Collapse
|
16
|
Li H, Rong Z, Wang H, Zhang N, Pu C, Zhao Y, Zheng X, Lei C, Liu Y, Luo X, Chen J, Wang F, Wang A, Wang J. Proteomic analysis revealed common, unique and systemic signatures in gender-dependent hepatocarcinogenesis. Biol Sex Differ 2020; 11:46. [PMID: 32792008 PMCID: PMC7427087 DOI: 10.1186/s13293-020-00316-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and is highly malignant. Male prevalence and frequent activation of the Ras signaling pathway are distinct characteristics of HCC. However, the underlying mechanisms remain to be elucidated. By exploring Hras12V transgenic mice showing male-biased hepatocarcinogenesis, we performed a high-throughput comparative proteomic analysis based on tandem-mass-tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) on the tissue samples obtained from HCC (T) and their paired adjacent precancerous (P) of Hras12V transgenic male and female mice (Ras-Tg) and normal liver (W) of wild-type male and female mice (Non-Tg). The further validation and investigation were performed using quantitative real-time PCR and western blot. Totally, 5193 proteins were quantified, originating from 5733 identified proteins. Finally, 1344 differentially expressed proteins (DEPs) (quantified in all examined samples; |ratios| ≥ 1.5, p < 0.05) were selected for further analysis. Comparison within W, P, and T of males and females indicated that the number of DEPs in males was much higher than that in females. Bioinformatics analyses showed the common and unique cluster-enriched items between sexes, indicating the common and gender-disparate pathways towards HCC. Expression change pattern analysis revealed HCC positive/negative-correlated and ras oncogene positive/negative-correlated DEPs and pathways. In addition, it showed that the ras oncogene gradually and significantly reduced the responses to sex hormones from hepatocytes to hepatoma cells and therefore shrunk the gender disparity between males and females, which may contribute to the cause of the loss of HCC clinical responses to the therapeutic approaches targeting sex hormone pathways. Additionally, gender disparity in the expression levels of key enzymes involved in retinol metabolism and terpenoid backbone/steroid biosynthesis pathways may contribute to male prevalence in hepatocarcinogenesis. Further, the biomarkers, SAA2, Orm2, and Serpina1e, may be sex differences. In conclusion, common and unique DEPs and pathways toward HCC initiated by ras oncogene from sexually dimorphic hepatocytes provide valuable and novel insights into clinical investigation and practice.
Collapse
Affiliation(s)
- Huiling Li
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Zhuona Rong
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Hong Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Nan Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Chunwen Pu
- Department of Biobank, The Affiliated Sixth People's Hospital of Dalian Medical University, Dalian, 116031, China
| | - Yi Zhao
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xu Zheng
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Chuanyi Lei
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Yang Liu
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xiaoqin Luo
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jun Chen
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Fujin Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Aiguo Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Jingyu Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.
| |
Collapse
|
17
|
Patel SK, Singh SK. Pyroglutamylated RFamide peptide 43: A putative modulator of testicular steroidogenesis. Andrology 2020; 8:1815-1823. [PMID: 32652859 DOI: 10.1111/andr.12864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/04/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND We have recently shown that QRFP and its receptor are predominantly expressed in germ cells, Sertoli cells and Leydig cells in mice testes. OBJECTIVE The present study investigated the role of QRFP in testicular steroidogenesis in mice. MATERIALS AND METHODS Both ex vivo and in vivo experiments were performed. For ex vivo, testicular tissues were cultured with 0, 10, 100 and 1000 nM QRFP, with or without hCG, for 6, 12 and 24 h, and media were used for testosterone assay. The hCG-stimulated testicular tissues were used for immunoblot of SF1, StAR, CYP11A1, 3β- and 17β-HSD. For in vivo, mice received bilateral intratesticular injection of saline or 0.3, 1 and 3nmol QRFP and were killed at 6, 12 and 24 h post-injection. Testosterone in serum was measured at above durations, while qRT-PCR of HMG-CoA synthase 1 and SR-B1 and immunoblot of steroidogenesis-related markers were performed at 24 h post-injection. RESULTS Testosterone production under basal and hCG-stimulated conditions increased in a time-dependent manner, and QRFP supplementation to testicular culture caused an increase and a decrease in hormone production. The effect of QRFP on testosterone production under hCG-stimulated culture or in vivo conditions at 6 and 24h was similar. At 6h, testosterone production increased at 10 and 100 nM and also at 0.3 and 1nmol QRFP, while it decreased at 1000 nM and 3 nmol doses. At 24 h, testosterone level decreased at lower concentrations (10 nM and 0.3 nmol) and thereafter increased at middle (100nM and 1nmol) and higher (1000 nM and 3 nmol) concentrations under both hCG-stimulated culture and in vivo. DISCUSSION AND CONCLUSION QRFP induced production of testosterone by modulating steroidogenic machinery at optimal doses and durations. Further, findings of in vivo study indicate that QRFP besides directly regulating testicular steroidogenesis may also have modulated other factors which act together in a holistic manner to control steroidogenesis.
Collapse
Affiliation(s)
- Shishir K Patel
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shio K Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
18
|
Baumbach JL, Zovkic IB. Hormone-epigenome interactions in behavioural regulation. Horm Behav 2020; 118:104680. [PMID: 31927018 DOI: 10.1016/j.yhbeh.2020.104680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
Interactions between hormones and epigenetic factors are key regulators of behaviour, but the mechanisms that underlie their effects are complex. Epigenetic factors can modify sensitivity to hormones by altering hormone receptor expression, and hormones can regulate epigenetic factors by recruiting epigenetic regulators to DNA. The bidirectional nature of this relationship is becoming increasingly evident and suggests that the ability of hormones to regulate certain forms of behaviour may depend on their ability to induce changes in the epigenome. Moreover, sex differences have been reported for several epigenetic modifications, and epigenetic factors are thought to regulate sexual differentiation of behaviour, although specific mechanisms remain to be understood. Indeed, hormone-epigenome interactions are highly complex and involve both canonical and non-canonical regulatory pathways that may permit for highly specific gene regulation to promote variable forms of behavioural adaptation.
Collapse
Affiliation(s)
- Jennet L Baumbach
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Iva B Zovkic
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada.
| |
Collapse
|
19
|
Espinosa-Herrera F, Espín E, Tito-Álvarez AM, Beltrán LJ, Gómez-Correa D, Burgos G, Llamos A, Zurita C, Rojas S, Dueñas-Espín I, Cueva-Ludeña K, Salazar-Vega J, Pinto-Basto J. A report of congenital adrenal hyperplasia due to 17α-hydroxylase deficiency in two 46,XX sisters. Gynecol Endocrinol 2020; 36:24-29. [PMID: 31464148 DOI: 10.1080/09513590.2019.1650342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Congenital adrenal hyperplasia (CAH) is a group of rare orphan disorders caused by mutations in seven different enzymes that impair cortisol biosynthesis. The 17α-hydroxylase deficiency (17OHD) is one of the less common forms of CAH, corresponding to approximately 1% of the cases, with an estimated annual incidence of 1 in 50,000 newborns. Cases description - two phenotypically female Ecuadorian sisters, both with primary amenorrhea, absence of secondary sexual characteristics, and osteoporosis. High blood pressure was present in the older sister. Hypergonadotropic hypogonadism profile was observed: decreased cortisol and dehydroepiandrosterone sulfate (DHEAS), increased adrenocorticotropic hormone (ACTH) and normal levels of 17-hydroxyprogesterone, extremely high deoxycorticosterone (DOC) levels, and a tomography showed bilateral adrenal hyperplasia in both sisters. Consanguinity was evident in their ancestors. Furthermore, in the exon 7, the variant c.1216T > C, p.Trp406Arg was detected in homozygosis in the CYP17A1 gene of both sisters. We report a homozygous missense mutation in the CYP17A1 gene causing 17OHD in two sisters from Loja, Ecuador. According to the authors, this is the first time such deficiency and mutation are described in two members of the same family in Ecuador.
Collapse
Affiliation(s)
- Fernando Espinosa-Herrera
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad de las Américas (UDLA), Quito, Ecuador
- Sociedad Ecuatoriana de Medicina Familiar (SEMF), Hospital Vozandes Quito, Quito, Ecuador
| | - Estefanía Espín
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad de las Américas (UDLA), Quito, Ecuador
| | - Ana M Tito-Álvarez
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de las Américas (UDLA), Quito, Ecuador
| | - Leonardo-J Beltrán
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad de las Américas (UDLA), Quito, Ecuador
| | - Diego Gómez-Correa
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad de las Américas (UDLA), Quito, Ecuador
| | - German Burgos
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad de las Américas (UDLA), Quito, Ecuador
| | - Arianne Llamos
- Facultad de Ciencias Médicas, de la Salud y de La Vida, Escuela de Odontología, Universidad Internacional del Ecuador (UIDE), Quito, Ecuador
| | - Camilo Zurita
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Cátedra de Inmunología, Facultad de Medicina, Universidad Central del Ecuador (UCE), Quito, Ecuador
| | - Samantha Rojas
- Hospital Isidro Ayora de Loja, Ministerio de Salud Pública del Ecuador, Quito, Ecuador
| | - Iván Dueñas-Espín
- Instituto de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Kenny Cueva-Ludeña
- Hospital General Docente de Calderón, Ministerio de Salud Pública del Ecuador, Quito, Ecuador
| | - Jorge Salazar-Vega
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad de las Américas (UDLA), Quito, Ecuador
- Hospital Eugenio Espejo, Ministerio de Salud Pública del Ecuador, Quito, Ecuador
| | - Jorge Pinto-Basto
- Molecular Diagnostics and Clinical Genomics Laboratories, CGC Genetics, Porto, Portugal
| |
Collapse
|
20
|
Abobaker H, Hu Y, Omer NA, Hou Z, Idriss AA, Zhao R. Maternal betaine suppresses adrenal expression of cholesterol trafficking genes and decreases plasma corticosterone concentration in offspring pullets. J Anim Sci Biotechnol 2019; 10:87. [PMID: 31827786 PMCID: PMC6862747 DOI: 10.1186/s40104-019-0396-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 11/30/2022] Open
Abstract
Background Laying hens supplemented with betaine demonstrate activated adrenal steroidogenesis and deposit higher corticosterone (CORT) in the egg yolk. Here we further investigate the effect of maternal betaine on the plasma CORT concentration and adrenal expression of steroidogenic genes in offspring pullets. Results Maternal betaine significantly reduced (P < 0.05) plasma CORT concentration and the adrenal expression of vimentin that is involved in trafficking cholesterol to the mitochondria for utilization in offspring pullets. Concurrently, voltage-dependent anion channel 1 and steroidogenic acute regulatory protein, the two mitochondrial proteins involved in cholesterol influx, were both down-regulated at mRNA and protein levels. However, enzymes responsible for steroid syntheses, such as cytochrome P450 family 11 subfamily A member 1 and cytochrome P450 family 21 subfamily A member 2, were significantly (P < 0.05) up-regulated at mRNA or protein levels in the adrenal gland of pullets derived from betaine-supplemented hens. Furthermore, expression of transcription factors, such as steroidogenic factor-1, sterol regulatory element-binding protein 1 and cAMP response element-binding protein, was significantly (P < 0.05) enhanced, together with their downstream target genes, such as 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, LDL receptor and sterol regulatory element-binding protein cleavage-activating protein. The promoter regions of most steroidogenic genes were significantly (P < 0.05) hypomethylated, although methyl transfer enzymes, such as AHCYL, GNMT1 and BHMT were up-regulated. Conclusions These results indicate that the reduced plasma CORT in betaine-supplemented offspring pullets is linked to suppressed cholesterol trafficking into the mitochondria, despite the activation of cholesterol and corticosteroid synthetic genes associated with promoter hypomethylation.
Collapse
Affiliation(s)
- Halima Abobaker
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yun Hu
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Nagmeldin A Omer
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,3College of Allied Medical Sciences, University of Nyala, 155 Nyala, Sudan
| | - Zhen Hou
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Abdulrahman A Idriss
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Ruqian Zhao
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| |
Collapse
|
21
|
Ntostis P, Kokkali G, Iles D, Huntriss J, Tzetis M, Picton H, Pantos K, Miller D. Can trophectoderm RNA analysis predict human blastocyst competency? Syst Biol Reprod Med 2019; 65:312-325. [PMID: 31244343 PMCID: PMC6816490 DOI: 10.1080/19396368.2019.1625085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 01/25/2023]
Abstract
A systematic review of the literature showed that trophectoderm biopsy could assist in the selection of healthy embryos for uterine transfer without affecting implantation rates. However, previous studies attempting to establish the relationship between trophectoderm gene expression profiles and implantation competency using either microarrays or RNA sequencing strategies, were not sufficiently optimized to handle the exceptionally low RNA inputs available from biopsied material. In this pilot study, we report that differential gene expression in human trophectoderm biopsies assayed by an ultra-sensitive next generation RNA sequencing strategy could predict blastocyst implantation competence. RNA expression profiles from isolated human trophectoderm cells were analysed with established clinical pregnancy being the primary endpoint. Following RNA sequencing, a total of 47 transcripts were found to be significantly differentially expressed between the trophectoderm cells from successfully implanted (competent) versus unsuccessful (incompetent) blastocysts. Of these, 36 transcripts were significantly down-regulated in the incompetent blastocysts, including Hydroxysteroid 17-Beta Dehydrogenase 1 (HSD17B1) and Cytochrome P450 Family 11 Subfamily A Member 1 (CYP11A1), while the remaining 11 transcripts were significantly up-regulated, including BCL2 Antagonist/Killer 1 (BAK1) and KH Domain Containing 1 Pseudogene 1 (KHDC1P1) of which the latter was always detected in the incompetent and absent in all competent blastocysts. Ontological analysis of differentially expressed RNAs revealed pathways involved in steroidogenic processes with high confidence. Novel differentially expressed transcripts were also noted by reference to a de novo sequence assembly. The selection of the blastocyst with the best potential to support full-term pregnancy following single embryo transfer could reduce the need for multiple treatment cycles and embryo transfers. The main limitation was the low sample size (N = 8). Despite this shortcoming, the pilot suggests that trophectoderm biopsy could assist with the selection of healthy embryos for embryo transfer. A larger cohort of samples is needed to confirm these findings. Abbreviations: AMA: advanced maternal age; ART: assisted reproductive technology; CP: clinical pregnancy; DE: differential expression; FDR: false discovery rate; IVF: in vitro fertilization; LD PCR: long distance PCR; qRT-PCR: quantitative real-time PCR; SET: single embryo transfer; TE: trophectoderm.
Collapse
Affiliation(s)
- Panagiotis Ntostis
- Department of Discovery and Translational Science, LICAMM, University of Leeds, Leeds, UK
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Kokkali
- Genesis Athens hospital, Reproductive medicine Unit, Athens, Greece
| | - David Iles
- Department of Discovery and Translational Science, LICAMM, University of Leeds, Leeds, UK
| | - John Huntriss
- Department of Discovery and Translational Science, LICAMM, University of Leeds, Leeds, UK
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Helen Picton
- Department of Discovery and Translational Science, LICAMM, University of Leeds, Leeds, UK
| | | | - David Miller
- Department of Discovery and Translational Science, LICAMM, University of Leeds, Leeds, UK
| |
Collapse
|
22
|
Decreased levels of H3K9ac and H3K27ac in the promotor region of ovarian P450 aromatase mediated low estradiol synthesis in female offspring rats induced by prenatal nicotine exposure as well as in human granulosa cells after nicotine treatment. Food Chem Toxicol 2019; 128:256-266. [DOI: 10.1016/j.fct.2019.03.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/18/2019] [Accepted: 03/30/2019] [Indexed: 12/27/2022]
|
23
|
Singh S, Singh SK. Prepubertal exposure to perfluorononanoic acid interferes with spermatogenesis and steroidogenesis in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:590-599. [PMID: 30576894 DOI: 10.1016/j.ecoenv.2018.12.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/11/2018] [Indexed: 05/15/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are widely used in industrial and commercial products and possess endocrine disrupting properties. Perfluorononanoic acid (PFNA), one of PFAAs, has been mainly reported to produce testicular toxicity in adult animals. The objective of the present study was to examine the effect of acute exposure of PFNA to prepubertal male Parkes (P) mice on spermatogenesis and testicular steroidogenesis, and to study the possible mechanism(s) of its action. PFNA (2 and 5 mg/kg) was orally administered to male P mice for 14 days from postnatal day 25-38. Histologically, testis in PFNA-treated mice showed non-uniform diverse degenerative changes in the seminiferous tubules; both normal and affected tubules were seen in the same testicular sections. The treatment caused a reduction in intra-testicular and serum testosterone levels accompanied by a decrease in testicular expression of SF1, StAR, CYP11A1, and 3β- and17β-HSD. Further, the activity of antioxidant enzymes and expression of Nrf2 and HO-1 in the testis were markedly decreased, while the level of lipid peroxidation and expression of IKKβ, NF-κB and caspase-3 were significantly increased in testis of PFNA-treated mice. There was also a decrease in PCNA expression and in PCNA-index and an increase in TUNEL-positive germ cells in testes of PFNA-treated mice. In conclusion, the results suggest that PFNA exposure to prepubertal male mice altered antioxidant enzymes activity and Nrf2-HO-1 signaling, leading to oxidative stress and a decrease in testosterone biosynthesis in the testis; these changes, in turn, caused increased apoptosis and decreased proliferation of germ cells, thereby suppression of spermatogenesis.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
24
|
The DNA methylation level is associated with the superior growth of the hybrid fry in snakehead fish (Channa argus × Channa maculata). Gene 2019; 703:125-133. [PMID: 30978477 DOI: 10.1016/j.gene.2019.03.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/17/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023]
Abstract
Hybrid vigour, or heterosis, refers to the increased productivity and growth rate of hybrid offsprings relative to the parents. Various heterosis have been well exploited in fish for fisheries. However, the molecular mechanisms underlying heterosis are largely unknown in fish. In this study, two inbred and hybrid lines between the northern snakehead (NS, Channa argus) and blotched snakehead (BS, Channa maculata) were generated. The analysis on various growth traits, including body length, head length, and body height, showed that hybrid fry obviously exhibited a spontaneous growth heterosis over the inbred. Moreover, the methylation-sensitive amplification polymorphism (MSAP) analysis revealed that the DNA methylation levels were negatively related to the body growth in all fry. Especially, the DNA methylation levels in the hybrid fry were significantly lower than those in the inbred. Additionally, qRT-PCR showed that the snakehead fish Dnmt3a mRNA was initially detectable in embryos at 12 hpf and gradually increased as developing. Intriguingly, the level of Dnmt3a mRNA expression was found to be closely correlated to the DNA methylation level in embryos/fry. The results of this study firstly demonstrated the correlations between growth heterosis, DNA methylation level and Dnmt3a mRNA expression in fish fry. The findings of this study implied that the hybrids' heterosis formation is probably accompanied by DNA methylation alterations and modulated by Dnmt3a gene in fish. This study would provide new clues for further investigations on mechanisms behind heterosis formation in fish hybrid.
Collapse
|
25
|
Rossetti MF, Schumacher R, Lazzarino GP, Gomez AL, Varayoud J, Ramos JG. The impact of sensory and motor enrichment on the epigenetic control of steroidogenic-related genes in rat hippocampus. Mol Cell Endocrinol 2019; 485:44-53. [PMID: 30721712 DOI: 10.1016/j.mce.2019.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
In the present study, we analyzed the effects of a short-term environmental enrichment on the mRNA expression and DNA methylation of steroidogenic enzymes in the hippocampus. Thus, young adult (80-day-old) and middle-aged (350-day-old) Wistar female rats were exposed to sensory (SE) or motor (ME) enrichment during 10 days and compared to animals housed under standard conditions. SE was provided by an assortment of objects that included plastic tubes and toys; for ME, rodent wheels were provided. In young adult animals, SE and ME increased the mRNA expression of cytochrome P450 17α-hydroxylase/c17,20-lyase, steroid 5α-reductase type 1 (5αR-1) and 3α-hydroxysteroid dehydrogenase and decreased the methylation levels of 5αR-1 gene. In middle-aged rats, ME and SE upregulated the gene expression of aldosterone synthase and decreased the methylation state of its promoter. These results propose that SE and ME differentially regulate the transcription of neurosteroidogenic enzymes through epigenetic mechanisms in young and aged rats.
Collapse
Affiliation(s)
- Maria Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Rocio Schumacher
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Gisela Paola Lazzarino
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Ayelen Luciana Gomez
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Jorge Guillermo Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
26
|
Liu M, Zhang Q, Pei L, Zou Y, Chen G, Wang H. Corticosterone rather than ethanol epigenetic programmed testicular dysplasia caused by prenatal ethanol exposure in male offspring rats. Epigenetics 2019; 14:245-259. [PMID: 30821590 DOI: 10.1080/15592294.2019.1581595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Prenatal ethanol exposure (PEE) could affect offspring's testicular development. This study aimed to illuminate its intrauterine origin and the programming mechanism caused by PEE. Pregnant Wistar rats were given ethanol (4 g/kg.d) by gavage administration during gestational days (GD) 9-20. Serum samples and testes of male offspring rats were collected on GD20, postnatal week (PW) 6, and PW12. We found that PEE induced testicular morphological abnormality, low serum testosterone levels, expressive suppression of 3β-hydroxysteroid dehydrogenase (3β-HSD), and low acetylation levels of histone 3 lysine 14 (H3K14ac) of 3β-HSD before and after birth. In utero, when fetal rats were overexposed to corticosterone by PEE, the expression levels of testicular glucocorticoid receptor (GR) and histone deacetylase 2 (HDAC2) were increased, while that of steroidogenic factor 1 (SF1) was decreased. In vitro, corticosterone (rather than ethanol) at 500 to 2,000 nM concentration decreased testosterone production and 3β-HSD expression in a concentration-dependent manner. Moreover, corticosterone downregulated SF1 and upregulated HDAC2 via activating GR, accompanied by a low H3K14ac level of 3β-HSD; SF1 overexpression could reverse the increased HDAC2 expression, and knockdown of HDAC2 could partially reverse the inhibitory effects of corticosterone on H3K14ac level and 3β-HSD expression but not on SF1 expression. Taken together, PEE caused testicular dysplasia in male offspring rats, which was associated with corticosterone-induced low-functional programming of 3β-HSD through the GR/SF1/HDAC2/H3K14ac pathway. This study provides new academic perspectives to illuminate the theory of 'Developmental Origins of Health and Disease.'
Collapse
Affiliation(s)
- Min Liu
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China
| | - Qi Zhang
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China
| | - Linguo Pei
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China.,b Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan , China
| | - Yunfei Zou
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China.,c School of public health , Wannan Medical College , Wuhu , China
| | - Guanghui Chen
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China
| | - Hui Wang
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China.,b Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan , China
| |
Collapse
|
27
|
Baquedano MS, Belgorosky A. Human Adrenal Cortex: Epigenetics and Postnatal Functional Zonation. Horm Res Paediatr 2018; 89:331-340. [PMID: 29742513 DOI: 10.1159/000487995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/27/2018] [Indexed: 11/19/2022] Open
Abstract
The human adrenal cortex, involved in adaptive responses to stress, fluid homeostasis, and secondary sexual characteristics, arises from a tightly regulated development of a zone and cell type-specific secretory pattern. However, the molecular mechanisms governing adrenal zonation, particularly postnatal zona reticularis development, which produce adrenal androgens in a lifetime-specific manner, remain poorly understood. Epigenetic events, including DNA and histone modifications as well as regulation by noncoding RNAs, are crucial in establishing or maintaining the expression pattern of specific genes and thus contribute to the stability of a specific differentiation state. Emerging evidence points to epigenetics as another regulatory layer that could contribute to establishing the adrenal zone-specific pattern of enzyme expression. Here, we outline the developmental milestones of the human adrenal cortex, focusing on current advances and understanding of epigenetic regulation of postnatal functional zonation. Numerous questions remain to be addressed emphasizing the need for additional investigations to elucidate the role of epigenetics in the human adrenal gland. Ultimately, improved understanding of the epigenetic factors involved in adrenal development and function could lead to novel therapeutic interventions.
Collapse
|
28
|
Rossetti MF, Varayoud J, Andreoli MF, Stoker C, Luque EH, Ramos JG. Sex- and age-associated differences in episodic-like memory and transcriptional regulation of hippocampal steroidogenic enzymes in rats. Mol Cell Endocrinol 2018; 470:208-218. [PMID: 29113830 DOI: 10.1016/j.mce.2017.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 11/24/2022]
Abstract
The aim of this study was to evaluate the episodic-like memory (ELM) and the transcriptional regulation of the enzymes involved in hippocampal allopregnanolone synthesis in young adult and middle-aged male and female rats. Young adult males, but not middle-aged ones, showed a good performance in the ELM task. In contrast, neither young nor middle-aged females were able to discriminate the spatial order in which the objects were presented. In females, aging decreased the transcription of steroidogenic-related genes. In addition, the mRNA levels of 5α-reductase-1 were higher and the methylation of its promoter was lower in young adult females than in males, suggesting an epigenetic control. Further studies are needed to establish correlations between ELM and the transcriptional regulation of hippocampal steroidogenic enzymes. Our results contribute to the knowledge of sex differences in gene expression, methylation and memory during aging.
Collapse
Affiliation(s)
- María F Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - María F Andreoli
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Cora Stoker
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
29
|
Wu GC, Chang CF. Primary males guide the femaleness through the regulation of testicular Dmrt1 and ovarian Cyp19a1a in protandrous black porgy. Gen Comp Endocrinol 2018; 261:198-202. [PMID: 28188743 DOI: 10.1016/j.ygcen.2017.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 11/30/2022]
Abstract
Controlling the development of the sexes is critically important for the broodstock management in aquaculture. Sex steroids are widely used for sex control of fish. However, hermaphroditic fish have a plastic sex, and a stable sex is difficult to maintain with sex steroids. We used the black porgy (Acanthopagrus schlegelii) as a model to understand the possible mechanism of sexual fate decision. Low exogenous estradiol (E2) induced male development. In contrast, high exogenous E2 induced the regression of the testis and the development of the ovary and resulted in an unstable expression of femaleness (passive femaleness, with ovaries containing only the primary oocytes). The removal of testicular tissue by surgery resulted in the early development of vitellogenic oocytes and active femaleness. Our data also demonstrated that the male-to-female sex change is blocked by the maintenance of male function with gonadotropin-induced dmrt1 expression in the testis. Furthermore, our data also indicated that ovarian cyp19a1a expression is regulated by the testis through epigenetic modifications. Therefore, the primary male guides the femaleness in the protandrous black porgy and the transition of sexual fate from male to female is determined by the status of the testicular tissue.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Ocean, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Ocean, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
30
|
Krieger N, Jahn JL, Waterman PD, Chen JT. Breast Cancer Estrogen Receptor Status According to Biological Generation: US Black and White Women Born 1915-1979. Am J Epidemiol 2018; 187:960-970. [PMID: 29036268 DOI: 10.1093/aje/kwx312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
Evidence suggests that contemporary population distributions of estrogen-receptor (ER) status among breast cancer patients may be shaped by earlier major societal events, such as the 1965 abolition of legal racial discrimination in the United States (state and local "Jim Crow" laws) and the Great Famine in China (1959-1961). We analyzed changes in ER status in relation to Jim Crow birthplace among the 46,417 black and 339,830 white US-born, non-Hispanic women in the Surveillance, Epidemiology, and End Results (SEER) 13 Registry Group who were born between 1915 and 1979 and diagnosed (ages 25-84 years, inclusive) during 1992-2012. We grouped the cases according to birth cohort and quantified the rate of change using the haldane (which scales change in relation to biological generation). The percentage of ER-positive cases rose according to birth cohort (1915-1919 to 1975-1979) only among women diagnosed before age 55. Changes according to biological generation were greater among black women than among white women, and among black women, they were greatest among those born in Jim Crow (versus non-Jim Crow) states, with this group being the only group to exhibit high haldane values (>|0.3|, indicating high rate of change). Our study's analytical approach and findings underscore the need to consider history and societal context when analyzing ER status among breast cancer patients and racial/ethnic inequities in its distribution.
Collapse
Affiliation(s)
- Nancy Krieger
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jaquelyn L Jahn
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Pamela D Waterman
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jarvis T Chen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
31
|
Kilvitis HJ, Hanson H, Schrey AW, Martin LB. Epigenetic Potential as a Mechanism of Phenotypic Plasticity in Vertebrate Range Expansions. Integr Comp Biol 2018; 57:385-395. [PMID: 28859411 DOI: 10.1093/icb/icx082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
SYNOPSIS During range expansions, organisms are often exposed to multiple pressures, including novel enemies (i.e., predators, competitors and/or parasites) and unfamiliar or limited resources. Additionally, small propagule sizes at range edges can result in genetic founder effects and bottlenecks, which can affect phenotypic diversity and thus selection. Despite these obstacles, individuals in expanding populations often thrive at the periphery of a range, and this success may be mediated by phenotypic plasticity. Increasing evidence suggests that epigenetic mechanisms may underlie such plasticity because they allow for more rapid phenotypic responses to novel environments than are possible via the accumulation of genetic variation. Here, we review how molecular epigenetic mechanisms could facilitate plasticity in range-expanding organisms, emphasizing the roles of DNA methylation and other epigenetic marks in the physiological regulatory networks that drive whole-organism performance. We focus on the hypothalamic-pituitary-adrenal (HPA) axis, arguing that epigenetically-mediated plasticity in the regulation of glucocorticoids in particular might strongly impact range expansions. We hypothesize that novel environments release and/or select for epigenetic potential in HPA variation and hence organismal performance and ultimately fitness.
Collapse
Affiliation(s)
- Holly J Kilvitis
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Haley Hanson
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Aaron W Schrey
- Department of Biology, Armstrong State University, Savannah, GA 31419, USA
| | - Lynn B Martin
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
32
|
Lazzarino GP, Andreoli MF, Rossetti MF, Stoker C, Tschopp MV, Luque EH, Ramos JG. Cafeteria diet differentially alters the expression of feeding-related genes through DNA methylation mechanisms in individual hypothalamic nuclei. Mol Cell Endocrinol 2017; 450:113-125. [PMID: 28479374 DOI: 10.1016/j.mce.2017.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 12/30/2022]
Abstract
We evaluated the effect of cafeteria diet (CAF) on the mRNA levels and DNA methylation state of feeding-related neuropeptides, and neurosteroidogenic enzymes in discrete hypothalamic nuclei. Besides, the expression of steroid hormone receptors was analyzed. Female rats fed with CAF from weaning increased their energy intake, body weight, and fat depots, but did not develop metabolic syndrome. The increase in energy intake was related to an orexigenic signal of paraventricular (PVN) and ventromedial (VMN) nuclei, given principally by upregulation of AgRP and NPY. This was mildly counteracted by the arcuate nucleus, with decreased AgRP expression and increased POMC and kisspeptin expression. CAF altered the transcription of neurosteroidogenic enzymes in PVN and VMN, and epigenetic mechanisms associated with differential promoter methylation were involved. The changes observed in the hypothalamic nuclei studied could add information about their differential role in food intake control and how their action is disrupted in obesity.
Collapse
Affiliation(s)
- Gisela Paola Lazzarino
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - María Florencia Andreoli
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - María Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Cora Stoker
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - María Virgina Tschopp
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Enrique Hugo Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Jorge Guillermo Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
33
|
Alamdar A, Xi G, Huang Q, Tian M, Eqani SAMAS, Shen H. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation. Toxicol Appl Pharmacol 2017; 326:7-14. [DOI: 10.1016/j.taap.2017.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
|
34
|
Si Q, Luo JY, Hu Z, Zhang W, Zhou CF. De novo transcriptome of the mayfly Cloeon viridulum and transcriptional signatures of Prometabola. PLoS One 2017. [PMID: 28636618 PMCID: PMC5479533 DOI: 10.1371/journal.pone.0179083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mayflies (Ephemeroptera) display many primitive characters and a unique type of metamorphosis (Prometabola). However, information on the genomes and transcriptomes of this insect group is limited. The RNA sequencing study presented here generated the first de novo transcriptome assembly of Cloeon viridulum (Ephemeroptera: Baetidae), and compared gene expression signatures among the young larva (YL), mature larva (ML), subimago (SI), and imago (IM) stages of this mayfly. The transcriptome, based on 88 Gb of sequence data, comprised a set of 81,185 high quality transcripts. The number of differentially expressed genes (DEGs) in YL vs. ML, ML vs. SI, and SI vs. IM, was 4,825, 1,584, and 1,278, respectively, according to the reads per kilobase of transcript per million mapped reads analysis, assuming a false discovery rate <0.05 and a fold change >2. Gene enrichment analysis revealed that these DEGs were enriched in the "chitin metabolic process", "germ cell development", "steroid hormone biosynthesis", and "cutin, suberine, and wax biosynthesis" pathways. Finally, the expression pattern of a selected group of candidate signature genes for Prometabola, including vestigial, methoprene-tolerant, wingless, and broad-complex were confirmed by quantitative real time-PCR analysis. The Q-PCR analysis of larval, subimaginal, and imaginal stages of C. viridulum suggests that the development of mayflies more closely resembles hemimetamorphosis than holometamorphosis.
Collapse
Affiliation(s)
- Qin Si
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Juan-Yan Luo
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ze Hu
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Zhang
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chang-Fa Zhou
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
35
|
Fan Z, Zou Y, Jiao S, Tan X, Wu Z, Liang D, Zhang P, You F. Significant association of cyp19a promoter methylation with environmental factors and gonadal differentiation in olive flounder Paralichthys olivaceus. Comp Biochem Physiol A Mol Integr Physiol 2017; 208:70-79. [DOI: 10.1016/j.cbpa.2017.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/09/2017] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
|
36
|
Singh VK, Lal B. Pro-steroidogenic and pro-spermatogenic actions of nitric oxide (NO) on the catfish, Clarias batrachus: An in vivo study. Gen Comp Endocrinol 2017; 242:1-10. [PMID: 27151877 DOI: 10.1016/j.ygcen.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/13/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
Abstract
In an earlier study we have demonstrated reproductive-stage dependent, cell specific existence of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS)/NO system in testis of the catfish, Clarias batrachus. The present study is an extension to examine the role of NO in steroidogenesis and spermatogenesis through in vivo administration of a NO donor, sodium nitroprusside (SNP) and a NOS inhibitor, N-nitro-l-arginine methyl ester (l-NAME) during the quiescence and recrudescence phase of the reproductive cycle of the catfish. Effects of these chemicals were assessed on the gonadosomatic index (GSI), levels of circulating & testicular testosterone, NO, activities of 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD) in testis, expression of different NOS isoforms and testicular morphology in relation to spermatogenesis. SNP treatment increased the GSI, testicular and circulating testosterone & NO, activities of testicular 3β-HSD & 17β-HSD, and expression of NOS isoforms. It also increased the area and perimeters of interstitium and seminiferous tubules in the testis. It accelerated the spermatogenesis, as was evident from the large number of spermatids/spermatozoa in seminiferous tubules and very few spermatogonial cells/primary spermatocytes in comparison to the control testis. On the contrary, l-NAME significantly suppressed GSI, testosterone & NO levels in serum and testis, and activities of testicular 3β-HSD & 17β-HSD. It also suppressed the expression of NOSs in testis. Though l-NAME did not alter the spermatogonial mitotic proliferation with the advancement of testicular recrudescence, it halted the progression of spermatogenesis (meiotic division and spermatozoa formation) as was clear from the increase in spermatogonial cells and very few advanced germ cells in the seminiferous tubules in l-NAME treated testis, compared to the control testis. The above noted effects were highly pronounced in the recrudescing catfish. Their effects were very marginal and at a particular dose levels of SNP and l-NAME in the quiescent testis. This study distinctly provides evidence of pro-steroidogenic and pro-spermatogenic role of NO. This study also demonstrates the existence of eNOS in fish testis for the first time. The positive feedback control of expression of all isoform of NOS in testis by NO is also noteworthy.
Collapse
Affiliation(s)
- Vinay Kumar Singh
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bechan Lal
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
37
|
Mizuno G, Munetsuna E, Yamada H, Ando Y, Yamazaki M, Murase Y, Kondo K, Ishikawa H, Teradaira R, Suzuki K, Ohashi K. Fructose intake during gestation and lactation differentially affects the expression of hippocampal neurosteroidogenic enzymes in rat offspring. Endocr Res 2017; 42:71-77. [PMID: 27260693 DOI: 10.1080/07435800.2016.1182186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neurosteroids, steroidal hormones synthesized de novo from cholesterol within the brain, stimulate hippocampal functions such as neuron protection and synapse formation. Previously, we examined the effect of maternal fructose on the transcriptional regulation of neurosteroidogenic enzymes. We found that the mRNA expression level of the steroidogenic acute regulatory protein (StAR), peripheral benzodiazepine receptor (PBR), cytochrome P450(11β), 11β-hydroxysteroid dehydrogenase (HSD), and 17β-HSD was altered. However, we could not determine whether maternal fructose intake played a role in the gestation or lactation period because the dam rats were fed fructose solution during both periods. Thus, in this study, we analyzed the hippocampi of the offspring of dams fed fructose during the gestation or lactation period. Maternal fructose consumption during either the gestation or lactation period did not affect the mRNA levels of StAR, P450(17α), 11β-HSD-2, and 17β-HSD-1. PBR expression was down-regulated, even when rats consumed fructose during the lactation period only, while fructose consumption during gestation tended to activate the expression of P450(11β)-2. We found that maternal fructose intake during gestation and lactation differentially affected the expression of hippocampal neurosteroidogenic enzymes in the offspring.
Collapse
Affiliation(s)
- Genki Mizuno
- a Department of Clinical Biochemistry , Fujita Health University School of Health Sciences , Toyoake , Japan
| | - Eiji Munetsuna
- b Department of Biochemistry , Fujita Health University School of Medicine , Toyoake , Japan
| | - Hiroya Yamada
- c Department of Hygiene , Fujita Health University School of Medicine , Toyoake , Japan
| | - Yoshitaka Ando
- d Department of Joint Research Laboratory of Clinical Medicine , Fujita Health University School of Medicine , Toyoake , Japan
| | - Mirai Yamazaki
- a Department of Clinical Biochemistry , Fujita Health University School of Health Sciences , Toyoake , Japan
| | - Yuri Murase
- a Department of Clinical Biochemistry , Fujita Health University School of Health Sciences , Toyoake , Japan
| | - Kanako Kondo
- a Department of Clinical Biochemistry , Fujita Health University School of Health Sciences , Toyoake , Japan
| | - Hiroaki Ishikawa
- a Department of Clinical Biochemistry , Fujita Health University School of Health Sciences , Toyoake , Japan
| | - Ryoji Teradaira
- a Department of Clinical Biochemistry , Fujita Health University School of Health Sciences , Toyoake , Japan
| | - Koji Suzuki
- e Department of Public Health , Fujita Health University School of Health Sciences , Toyoake , Japan
| | - Koji Ohashi
- a Department of Clinical Biochemistry , Fujita Health University School of Health Sciences , Toyoake , Japan
| |
Collapse
|
38
|
Cheong JN, Cuffe JSM, Jefferies AJ, Anevska K, Moritz KM, Wlodek ME. Sex-Specific Metabolic Outcomes in Offspring of Female Rats Born Small or Exposed to Stress During Pregnancy. Endocrinology 2016; 157:4104-4120. [PMID: 27571133 DOI: 10.1210/en.2016-1335] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Low birth weight increases adult metabolic disease risk in both the first (F1) and second (F2) generation. Physiological stress during pregnancy in F1 females that were born small induces F2 fetal growth restriction, but the long-term metabolic health of these F2 offspring is unknown. Uteroplacental insufficiency (restricted) or sham (control) surgery was performed in F0 rats. F1 females (control, restricted) were allocated to unstressed or stressed pregnancies. F2 offspring exposed to maternal stress in utero had reduced birth weight. At 6 months, F2 stressed males had elevated fasting glucose. In contrast, F2 restricted males had reduced pancreatic β-cell mass. Interestingly, these metabolic deficits were not present at 12 month. F2 males had increased adrenal mRNA expression of steroidogenic acute regulatory protein and IGF-1 receptor when their mothers were born small or exposed to stress during pregnancy. Stressed control F2 males had increased expression of adrenal genes that regulate androgen signaling at 6 months, whereas expression increased in restricted male and female offspring at 12 months. F2 females from stressed mothers had lower area under the glucose curve during glucose tolerance testing at 12 months compared with unstressed females but were otherwise unaffected. If F1 mothers were either born small or exposed to stress during her pregnancy, F2 offspring had impaired physiological outcomes in a sex- and age-specific manner. Importantly, stress during pregnancy did not exacerbate disease risk in F2 offspring of mothers born small, suggesting that they independently program disease in offspring through different mechanisms.
Collapse
Affiliation(s)
- Jean N Cheong
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - James S M Cuffe
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Andrew J Jefferies
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Kristina Anevska
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Karen M Moritz
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Mary E Wlodek
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
39
|
Voisin AS, Fellous A, Earley RL, Silvestre F. Delayed impacts of developmental exposure to 17-α-ethinylestradiol in the self-fertilizing fish Kryptolebias marmoratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:247-257. [PMID: 27750118 DOI: 10.1016/j.aquatox.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/22/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
17-α-ethinylestradiol (EE2) is one of the most potent endocrine disrupting compounds found in the aquatic environments, and is known to strongly alter fish reproduction and fitness. While the effects of direct exposure to EE2 are well studied in adults, there is an increasing need to assess the impacts of exposure during early life stages. Sensitivity to pollutants during this critical window can potentially affect the phenotype later in life or in subsequent generations. This study investigated phenotypic outcome of early-life exposure to 17-α-ethinylestradiol during development and in adults of the mangrove rivulus, Kryptolebias marmoratus. Being one of the only two known self-fertilizing hermaphroditic vertebrates, this fish makes it possible to work with genetically identical individuals. Therefore, using rivulus makes it possible to examine, explicitly, the phenotypic effects of environmental variance while eliminating the effects of genetic variance. Genetically identical rivulus were exposed for the first 28days post hatching (dph) to 0, 4 or 120ng/L of EE2, and then were reared in uncontaminated water until 168dph. Growth, egg laying and steroid hormone levels (estradiol, cortisol, 11-ketotestosterone, testosterone) were measured throughout development. Exposed fish showed a reduction in standard length directly after exposure (28dph), which was more pronounced in the 120ng/L group. This was followed by compensatory growth when reared in clean water: all fish recovered a similar size as controls by 91dph. There was no difference in the age at maturity and the proportions of mature, non-mature and male individuals at 168dph. At 4ng/L, fish layed significantly fewer eggs than controls, while, surprisingly, reproduction was not affected at 120ng/L. Despite a decrease in fecundity at 4ng/L, there were no changes in hormones levels at the lower concentration. In addition, there were no significant differences among treatments immediately after exposure. However, 120ng/L exposed fish exhibited significantly higher levels of testosterone at 91 and 168dph and 11-ketotestosterone at 168dph, up to 140days after exposure. These results indicate that early-life exposure to EE2 had both immediate and delayed impacts on the adult's phenotype. While fish growth was impaired during exposure, compensatory growth, reduced fecundity and modification of the endocrine status were observed after exposure ceased.
Collapse
Affiliation(s)
- Anne-Sophie Voisin
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| | - Alexandre Fellous
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| | - Ryan L Earley
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, Tuscaloosa, AL, 35487, USA.
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| |
Collapse
|
40
|
Liu L, Wang JF, Fan J, Rao YS, Liu F, Yan YE, Wang H. Nicotine Suppressed Fetal Adrenal StAR Expression via YY1 Mediated-Histone Deacetylation Modification Mechanism. Int J Mol Sci 2016; 17:ijms17091477. [PMID: 27598153 PMCID: PMC5037755 DOI: 10.3390/ijms17091477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/10/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022] Open
Abstract
Steroidogenic acute regulatory (StAR) protein plays a pivotal role in steroidogenesis. Previously, we have demonstrated that prenatal nicotine exposure suppressed fetal adrenal steroidogenesis via steroidogenic factor 1 deacetylation. This study further explored the potential role of the transcriptional repressor Yin Yang 1 (YY1) in nicotine-mediated StAR inhibition. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice per day and NCI-H295A cells were treated with nicotine. StAR and YY1 expression were analyzed by real-time PCR, immunohistochemistry, and Western blotting. Histone modifications and the interactions between the YY1 and StAR promoter were assessed using chromatin immunoprecipitation (ChIP). Prenatal nicotine exposure increased YY1 expression and suppressed StAR expression. ChIP assay showed that there was a decreasing trend for histone acetylation at the StAR promoter in fetal adrenal glands, whereas H3 acetyl-K14 at the YY1 promoter presented an increasing trend following nicotine exposure. Furthermore, in nicotine-treated NCI-H295A cells, nicotine enhanced YY1 expression and inhibited StAR expression. ChIP assay showed that histone acetylation decreased at the StAR promoter in NCI-H295A cells and that the interaction between the YY1 and StAR promoter increased. These data indicated that YY1-medicated histone deacetylation modification in StAR promoters might play an important role in the inhibitory effect of nicotine on StAR expression.
Collapse
Affiliation(s)
- Lian Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434000, China.
| | - Jian-Fei Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Jie Fan
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Yi-Song Rao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Fang Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - You-E Yan
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
41
|
Okada M, Lee L, Maekawa R, Sato S, Kajimura T, Shinagawa M, Tamura I, Taketani T, Asada H, Tamura H, Sugino N. Epigenetic Changes of the Cyp11a1 Promoter Region in Granulosa Cells Undergoing Luteinization During Ovulation in Female Rats. Endocrinology 2016; 157:3344-54. [PMID: 27428926 DOI: 10.1210/en.2016-1264] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ovulatory LH surge induces rapid up-regulation of Cyp11a1 in granulosa cells (GCs) undergoing luteinization during ovulation. This study investigated in vivo whether epigenetic controls including histone modifications and DNA methylation in the promoter region are associated with the rapid increase of Cyp11a1 gene expression after LH surge. GCs were obtained from rats treated with equine chorionic gonadotropin (CG) before (0 h) and 4 h and 12 h after human (h)CG injection. Cyp11a1 mRNA levels rapidly increased after hCG injection, reached a peak at 4 hours, and then remained elevated until 12 hours. DNA methylation status in the Cyp11a1 proximal promoter region was hypomethylated and did not change at any of the observed times after hCG injection. Chromatin immunoprecipitation assays revealed that the levels of trimethylation of lysine 4 on histone H3 (H3K4me3), an active mark for transcription, increased, whereas the levels of H3K9me3 and H3K27me3, which are marks associated with repression of transcription, decreased in the Cyp11a1 proximal promoter after hCG injection. Chromatin condensation, which was analyzed using deoxyribonuclease I, decreased in the Cyp11a1 proximal promoter after hCG injection. Chromatin immunoprecipitation assays also showed that the binding activity of CAATT/enhancer-binding protein-β to the Cyp11a1 proximal promoter increased after hCG injection. Luciferase assays revealed that the CAATT/enhancer-binding protein-β-binding site had transcriptional activity and contributed to basal and cAMP-induced Cyp11a1 expression. These results suggest that changes in histone modification and chromatin structure in the Cyp11a1 proximal promoter are involved in the rapid increase of Cyp11a1 gene expression in GCs undergoing luteinization during ovulation.
Collapse
Affiliation(s)
- Maki Okada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Lifa Lee
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Takuya Kajimura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Hiromi Asada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| |
Collapse
|
42
|
Rossetti MF, Varayoud J, Lazzarino GP, Luque EH, Ramos JG. Pregnancy and lactation differentially modify the transcriptional regulation of steroidogenic enzymes through DNA methylation mechanisms in the hippocampus of aged rats. Mol Cell Endocrinol 2016; 429:73-83. [PMID: 27040308 DOI: 10.1016/j.mce.2016.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/10/2023]
Abstract
In the present study, we examined the mRNA expression and DNA methylation state of steroidogenic enzymes in the hippocampus of young adult (90-days-old) and middle-aged (450-days-old) nulliparous rats, and middle-aged multiparous rats subjected to three pregnancies with and without lactation. Aging decreased the mRNA levels of steroidogenic-related genes, while pregnancy and lactation significantly reduced the effect of aging, maintaining high expression levels of cytochrome P450 side-chain cleavage (P450scc), steroid 5α-reductase-1 (5αR-1), cytochrome P450arom (P450arom) and aldosterone synthase (P450(11β)-2). In addition, pregnancy and lactation diminished the methylation state of the 5αR-1 promoter and increased the transcription of brain-derived neurotrophic factor, synaptophysin and spinophilin. Pregnancy without lactation increased P450scc and 5αR-1 gene expression and decreased the methylation of their promoters. We concluded that the age-related decrease in the mRNA expression of steroidogenic enzymes is differentially attenuated by pregnancy and lactation in the rat hippocampus and that differential methylation mechanisms could be involved.
Collapse
Affiliation(s)
- María F Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Gisela P Lazzarino
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
43
|
Hong J, Chen F, Wang X, Bai Y, Zhou R, Li Y, Chen L. Exposure of preimplantation embryos to low-dose bisphenol A impairs testes development and suppresses histone acetylation of StAR promoter to reduce production of testosterone in mice. Mol Cell Endocrinol 2016; 427:101-11. [PMID: 26975478 DOI: 10.1016/j.mce.2016.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
Previous studies have shown that bisphenol A (BPA) is a potential endocrine disruptor and testicular toxicant. The present study focused on exploring the impact of exposure to low dose of BPA on male reproductive development during the early embryo stage and the underlying mechanisms. BPA (20 μg/kg/day) was orally administered to female mice on days 1-5 of gestation. The male offspring were euthanized at PND10, 20, 24, 35 or PND50. We found that the mice exposed to BPA before implantation (BPA-mice) displayed retardation of testicular development with reduction of testosterone level. The diameter and epithelium height of seminiferous tubules were reduced in BPA-mice at PND35. The numbers of spermatogenic cells at different stages were significantly reduced in BPA-mice at PND50. BPA-mice showed a persistent reduction in serum and testicular testosterone levels starting from PND24, whereas GnRH mRNA was significantly increased at PND35 and PND50. The expressions of testicular StAR and P450scc in BPA-mice also decreased relative to those of the controls at PND35 and PND50. Further analysis found that the levels of histone H3 and H3K14 acetylation (Ac-H3 and H3K14ac) in the promoter of StAR were decreased relative to those of control mice, whereas the level of Ac-H3 in the promoter of P450scc was not significantly different between the groups. These results provide evidence that exposure to BPA in preimplantation embryo retards the development of testes by reducing histone acetylation of the StAR promoter to disrupt the testicular testosterone synthesis.
Collapse
Affiliation(s)
- Juan Hong
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Fang Chen
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiaoli Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yinyang Bai
- Centre for Reproductive Medicine, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214002, China
| | - Rong Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yingchun Li
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
44
|
Martinez-Arguelles DB, Papadopoulos V. Prenatal phthalate exposure: epigenetic changes leading to lifelong impact on steroid formation. Andrology 2016; 4:573-84. [DOI: 10.1111/andr.12175] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/11/2016] [Accepted: 01/28/2016] [Indexed: 01/02/2023]
Affiliation(s)
- D. B. Martinez-Arguelles
- The Research Institute of the McGill University Health Centre; McGill University; Montreal QC Canada
- Department of Medicine; McGill University; Montreal QC Canada
| | - V. Papadopoulos
- The Research Institute of the McGill University Health Centre; McGill University; Montreal QC Canada
- Department of Medicine; McGill University; Montreal QC Canada
- Department of Biochemistry; McGill University; Montreal QC Canada
- Department of Pharmacology & Therapeutics; McGill University; Montreal Quebec Canada
| |
Collapse
|
45
|
Maekawa R, Lee L, Okada M, Asada H, Shinagawa M, Tamura I, Sato S, Tamura H, Sugino N. Changes in gene expression of histone modification enzymes in rat granulosa cells undergoing luteinization during ovulation. J Ovarian Res 2016; 9:15. [PMID: 26979106 PMCID: PMC4793631 DOI: 10.1186/s13048-016-0225-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/09/2016] [Indexed: 12/20/2022] Open
Abstract
Background The ovulatory LH surge rapidly alters the expression of steroidogenesis-related genes such as steroidogenic acute regulatory protein (StAR) in granulosa cells (GCs) undergoing luteinization. We recently reported that histone modifications contribute to these changes. Histone modifications are regulated by a variety of histone modification enzymes. This study investigated the changes in gene expression of histone modification enzymes in rat GCs undergoing luteinization after the induction of ovulation. The extracellular regulated kinase (ERK)-1/2 is a mediator in the intracellular signaling pathway stimulated by the ovulatory LH surge and regulates the expression of a number of genes in GCs. We further investigated whether ERK-1/2 is involved in the regulation of the histone modification at the StAR promoter region in GCs undergoing luteinization. Results GCs were obtained from rats treated with equine chorionic gonadotropin (CG) before (0 h) and after human (h) CG injection. The expressions of 84 genes regulating histone modifications or DNA methylation were measured using a PCR array. Five genes (HDAC4, HDAC10, EZH2, SETDB2, and CIITA) were identified as histone acetylation- or histone methylation-related genes, and were significantly altered after hCG injection. None of the genes were related to DNA methylation. mRNA levels of EZH2, SETDB2, HDAC4, and HDAC10 decreased and CIITA mRNA levels increased 4 or 12 h after hCG injection. GCs isolated after eCG injection were incubated with hCG for 4 h to induce luteinization. StAR mRNA levels were significantly increased by hCG accompanied by the increase in H3K4me3 of the StAR promoter region. StAR mRNA expression was inhibited by the ERK inhibitor with the significant decrease of H3K4me3. These results suggest that hCG increases StAR gene expression through the ERK-1/2-mediated signaling which is also associated with histone modification of the promoter region. Conclusions Gene expressions of histone modification enzymes change in GCs undergoing luteinization after ovulation induction. This change may play important roles in regulating the expression of various genes during the early stage of luteinization, which may be critical for the subsequent corpus luteum formation.
Collapse
Affiliation(s)
- Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Lifa Lee
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Maki Okada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Hiromi Asada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan.
| |
Collapse
|
46
|
Estrogen receptor beta and ovarian cancer: a key to pathogenesis and response to therapy. Arch Gynecol Obstet 2016; 293:1161-8. [DOI: 10.1007/s00404-016-4027-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023]
|
47
|
Wu DM, He Z, Chen T, Liu Y, Ma LP, Ping J. DNA hypermethylation of acetoacetyl-CoA synthetase contributes to inhibited cholesterol supply and steroidogenesis in fetal rat adrenals under prenatal nicotine exposure. Toxicology 2016; 340:43-52. [PMID: 26776438 DOI: 10.1016/j.tox.2016.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/28/2015] [Accepted: 01/10/2016] [Indexed: 11/16/2022]
Abstract
Prenatal nicotine exposure is a risk factor for intrauterine growth retardation (IUGR). Steroid hormones synthesized from cholesterol in the fetal adrenal play an important role in the fetal development. The aim of this study is to investigate the effects of prenatal nicotine exposure on steroidogenesis in fetal rat adrenals from the perspective of cholesterol supply and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were administered 1.0mg/kg nicotine subcutaneously twice a day from gestational day (GD) 7 to GD17. The results showed that prenatal nicotine exposure increased IUGR rates. Histological changes, decreased steroid hormone concentrations and decreased cholesterol supply were observed in nicotine-treated fetal adrenals. In the gene expression array, the expression of genes regulating ketone metabolic process decreased in nicotine-treated fetal adrenals. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that acetoacetyl-CoA synthetase (AACS), the enzyme utilizing ketones for cholesterol supply, may play an important role in nicotine-induced cholesterol supply deficiency. Moreover, the decreased expression of AACS and increased DNA methylation in the proximal promoter of AACS in the fetal adrenal was verified by real-time reverse-transcription PCR (RT-PCR) and bisulfite sequencing PCR (BSP), respectively. In conclusion, prenatal nicotine exposure can cause DNA hypermethylation of the AACS promoter in the rat fetal adrenal. These changes may result in decreased AACS expression and cholesterol supply, which inhibits steroidogenesis in the fetal adrenal.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Zheng He
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ting Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yang Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Liang-Peng Ma
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
48
|
Frycz BA, Murawa D, Borejsza-Wysocki M, Wichtowski M, Spychała A, Marciniak R, Murawa P, Drews M, Jagodziński PP. Transcript level of AKR1C3 is down-regulated in gastric cancer. Biochem Cell Biol 2015; 94:138-46. [PMID: 27019068 DOI: 10.1139/bcb-2015-0096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Steroid hormones have been shown to play a role in gastric carcinogenesis. Large amounts of steroid hormones are locally produced in the peripheral tissues of both genders. Type 5 of 17β-hydroxysteroid dehydrogenase, encoded by the AKR1C3 gene, plays a pivotal role in both androgen and estrogen metabolism, and its expression was found to be deregulated in different cancers. In this study we measured AKR1C3 transcript and protein levels in nontumoral and primary tumoral gastric tissues, and evaluated their association with some clinicopathological features of gastric cancer (GC). We found decreased levels of AKR1C3 transcript (p < 0.0001) and protein (p = 0.0021) in GC tissues compared with the adjacent, apparently histopathologically normal, mucosa. Lower levels of AKR1C3 transcript were observed in diffuse and intestinal types of GC, whereas AKR1C3 protein levels were decreased in tumors with multisite localization, in diffuse histological type, T3, T4, and G3 grades. We also determined the effect of the histone deacetylase inhibitor sodium butyrate (NaBu) on AKR1C3 expression in EPG 85-257 and HGC-27 GC cell lines. We found that NaBu elevates the levels of both AKR1C3 transcript and protein in the cell lines we investigated. Together, our results suggest that decreased expression of AKR1C3 may be involved in development of GC and can be restored by NaBu.
Collapse
Affiliation(s)
- Bartosz Adam Frycz
- a Department of Biochemistry and Molecular Biology, University of Medical Sciences, Poznań, Poland
| | - Dawid Murawa
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland.,c Regional Specialist Hospital, Research and Development Centre, Wrocław, Poland
| | - Maciej Borejsza-Wysocki
- d Department of General, Endocrinological Surgery and Gastroenterological Oncology, University of Medical Sciences, Poznań, Poland
| | - Mateusz Wichtowski
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland
| | - Arkadiusz Spychała
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland
| | - Ryszard Marciniak
- d Department of General, Endocrinological Surgery and Gastroenterological Oncology, University of Medical Sciences, Poznań, Poland
| | - Paweł Murawa
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland
| | - Michał Drews
- d Department of General, Endocrinological Surgery and Gastroenterological Oncology, University of Medical Sciences, Poznań, Poland
| | - Paweł Piotr Jagodziński
- a Department of Biochemistry and Molecular Biology, University of Medical Sciences, Poznań, Poland
| |
Collapse
|
49
|
Li H, Zhang C, Ni F, Guo S, Wang W, Liu J, Lu X, Huang H, Zhang W. Gestational N-hexane inhalation alters the expression of genes related to ovarian hormone production and DNA methylation states in adult female F1 rat offspring. Toxicol Lett 2015; 239:141-51. [PMID: 26410608 DOI: 10.1016/j.toxlet.2015.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/27/2015] [Accepted: 09/23/2015] [Indexed: 11/15/2022]
Abstract
Research has revealed that n-hexane can disrupt adult female endocrine functions; however, few reports have focused on endocrine changes in adult F1 females after maternal exposure during gestation. In this study, female Wistar rats inhaled 100, 500, 2500, or 12,500 ppm n-hexane for 4 h daily during their initial 20 gestational days. The F1 female offspring exhibited abnormal oestrus cycles. Compared with the controls, the in vitro-cultured ovarian granulosa cells of the 12,500 ppm group showed significantly reduced in vitro progesterone and oestradiol secretion. Elevated progesterone secretion was observed in the 500 ppm group, and decreased and significantly upregulated mRNA expression of the Star, Cyp11a1, Cyp17a1, and Hsd3b genes was observed in the 12,500 ppm and 500 ppm groups, respectively. The protein expression levels were consistent with the mRNA expression levels. Methylation screening of the promoter regions of these genes was performed using MeDIP-chip and confirmed by methylation-sensitive high-resolution melting (MS-HRM), and the observed methylation state changes of the promoter regions were correlated with the gene expression levels. The results suggest that the hormone levels in the female offspring after gestational n-hexane inhalation correspond to the expression levels and DNA methylation states of the hormone production genes.
Collapse
Affiliation(s)
- Hong Li
- Department of Pharmaceuticals, Fujian Health College, Fuzhou 350101, China
| | - Chenyun Zhang
- Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350004, China
| | - Feng Ni
- Department of Pharmaceuticals, Fujian Health College, Fuzhou 350101, China
| | - Suhua Guo
- Department of Pharmaceuticals, Fujian Health College, Fuzhou 350101, China
| | - Wenxiang Wang
- Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350004, China
| | - Jing Liu
- Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350004, China
| | - Xiaoli Lu
- Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350004, China
| | - Huiling Huang
- Union Hospital of Fujian Medical University, Fuzhou 350000, China.
| | - Wenchang Zhang
- Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
50
|
Rossetti MF, Varayoud J, Moreno-Piovano GS, Luque EH, Ramos JG. Environmental enrichment attenuates the age-related decline in the mRNA expression of steroidogenic enzymes and reduces the methylation state of the steroid 5α-reductase type 1 gene in the rat hippocampus. Mol Cell Endocrinol 2015; 412:330-8. [PMID: 26021641 DOI: 10.1016/j.mce.2015.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 12/16/2022]
Abstract
We analyzed the effects of aging and environmental enrichment on the mRNA expression and DNA methylation state of steroidogenic enzymes in the hippocampus. The effects of aging were evaluated by comparing young adult (90-day-old) and middle-aged (450-day-old) female Wistar rats. To elucidate the effects of environmental enrichment, a subgroup of middle-aged rats exposed to sensory and social stimulation for 105 days was compared to rats housed under standard laboratory conditions. Aging decreased the transcription of neurosteroidogenic-related genes and increased the promoter methylation state of cytochrome P450 side chain cleavage, 3α-hydroxysteroid dehydrogenase (3α-HSD) and 5α-reductase-1. Exposure of middle-aged rats to environmental enrichment increased mRNA levels of 5α-reductase-1, 3α-HSD and cytochrome P450 17α-hydroxylase/c17,20-lyase and decreased the methylation state of the 5α-reductase-1 gene. Thus, sensory and social stimulation attenuate the age-related decline in the mRNA expression of hippocampal steroidogenic enzymes. Epigenetic mechanisms associated with differential promoter methylation could be involved.
Collapse
Affiliation(s)
- María F Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Guillermo S Moreno-Piovano
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|