1
|
Buechel ER, Dimitrova VS, Karagiaridi A, Kenney LG, Pinkett HW. Structurally diverse C-terminal accessory domains in type I ABC importers reveal distinct regulatory mechanisms. Structure 2025; 33:843-857. [PMID: 40132581 PMCID: PMC12048282 DOI: 10.1016/j.str.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025]
Abstract
ATP-binding cassette (ABC) transporters are critical for cellular processes, facilitating the transport of various substrates across membranes by harnessing ATP hydrolysis. These transporters are divided into importers and exporters, with importers playing key roles in nutrient uptake and bacterial virulence. Despite their therapeutic potential as drug targets, the regulatory mechanisms governing ABC importers remain poorly understood. ABC importers often possess additional cytosolic C-terminal accessory domains fused to nucleotide-binding domains (NBDs). These accessory domains, also referred to as C-terminal regulatory domains (CRDs), modulate transport activity by inhibiting NBD dimerization or ATP hydrolysis in response to environmental cues, thus regulating substrate transport. The diversity in CRD folds, architectures, and regulatory mechanisms adds additional complexity to transporter regulation. This review explores the current understanding of C-terminal accessory domains in type I ABC importers, highlighting their contributions to transporter function.
Collapse
Affiliation(s)
- Evan R Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Valentina S Dimitrova
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Alexandra Karagiaridi
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Lydia G Kenney
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
2
|
Padalko V, Posnik F, Adamczyk M. Mitochondrial Aconitase and Its Contribution to the Pathogenesis of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9950. [PMID: 39337438 PMCID: PMC11431987 DOI: 10.3390/ijms25189950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This survey reviews modern ideas on the structure and functions of mitochondrial and cytosolic aconitase isoenzymes in eukaryotes. Cumulative experimental evidence about mitochondrial aconitases (Aco2) as one of the main targets of reactive oxygen and nitrogen species is generalized. The important role of Aco2 in maintenance of homeostasis of the intracellular iron pool and maintenance of the mitochondrial DNA is discussed. The role of Aco2 in the pathogenesis of some neurodegenerative diseases is highlighted. Inactivation or dysfunction of Aco2 as well as mutations found in the ACO2 gene appear to be significant factors in the development and promotion of various types of neurodegenerative diseases. A restoration of efficient mitochondrial functioning as a source of energy for the cell by targeting Aco2 seems to be one of the promising therapeutic directions to minimize progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Volodymyr Padalko
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- School of Medicine, V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
| | - Filip Posnik
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Malgorzata Adamczyk
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
3
|
Lamačová LJ, Trnka J. Chelating mitochondrial iron and copper: Recipes, pitfalls and promise. Mitochondrion 2024; 78:101903. [PMID: 38777220 DOI: 10.1016/j.mito.2024.101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Iron and copper chelation therapy plays a crucial role in treating conditions associated with metal overload, such as hemochromatosis or Wilson's disease. However, conventional chelators face challenges in reaching the core of iron and copper metabolism - the mitochondria. Mitochondria-targeted chelators can specifically target and remove metal ions from mitochondria, showing promise in treating diseases linked to mitochondrial dysfunction, including neurodegenerative diseases and cancer. Additionally, they serve as specific mitochondrial metal sensors. However, designing these new molecules presents its own set of challenges. Depending on the chelator's intended use to prevent or to promote redox cycling of the metals, the chelating moiety must possess different donor atoms and an optimal value of the electrode potential of the chelator-metal complex. Various targeting moieties can be employed for selective delivery into the mitochondria. This review also provides an overview of the current progress in the design of mitochondria-targeted chelators and their biological activity investigation.
Collapse
Affiliation(s)
- Lucie J Lamačová
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Praha, Czech Republic
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Praha, Czech Republic.
| |
Collapse
|
4
|
Kim HJ, Cho SY, Jung SJ, Cho YJ, Roe JH, Kim KD. Non-Mitochondrial Aconitase-2 Mediates the Transcription of Nuclear-Encoded Electron Transport Chain Genes in Fission Yeast. J Microbiol 2024; 62:639-648. [PMID: 38916790 DOI: 10.1007/s12275-024-00147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/26/2024]
Abstract
Aconitase-2 (Aco2) is present in the mitochondria, cytosol, and nucleus of fission yeast. To explore its function beyond the well-known role in the mitochondrial tricarboxylic acid (TCA) cycle, we conducted genome-wide profiling using the aco2ΔNLS mutant, which lacks a nuclear localization signal (NLS). The RNA sequencing (RNA-seq) data showed a general downregulation of electron transport chain (ETC) genes in the aco2ΔNLS mutant, except for those in the complex II, leading to a growth defect in respiratory-prone media. Complementation analysis with non-catalytic Aco2 [aco2ΔNLS + aco2(3CS)], where three cysteines were substituted with serine, restored normal growth and typical ETC gene expression. This suggests that Aco2's catalytic activity is not essential for its role in ETC gene regulation. Our mRNA decay assay indicated that the decrease in ETC gene expression was due to transcriptional regulation rather than changes in mRNA stability. Additionally, we investigated the Php complex's role in ETC gene regulation and found that ETC genes, except those within complex II, were downregulated in php3Δ and php5Δ strains, similar to the aco2ΔNLS mutant. These findings highlight a novel role for nuclear aconitase in ETC gene regulation and suggest a potential connection between the Php complex and Aco2.
Collapse
Affiliation(s)
- Ho-Jung Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo-Yeon Cho
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo-Jin Jung
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
| | - Yong-Jun Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jung-Hye Roe
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
5
|
Huang XL. Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics. iScience 2024; 27:109555. [PMID: 38638571 PMCID: PMC11024932 DOI: 10.1016/j.isci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This article explores the intricate interplay between inorganic nanoparticles and Earth's biochemical history, with a focus on their electron transfer properties. It reveals how iron oxide and sulfide nanoparticles, as examples of inorganic nanoparticles, exhibit oxidoreductase activity similar to proteins. Termed "life fossil oxidoreductases," these inorganic enzymes influence redox reactions, detoxification processes, and nutrient cycling in early Earth environments. By emphasizing the structural configuration of nanoparticles and their electron conformation, including oxygen defects and metal vacancies, especially electron hopping, the article provides a foundation for understanding inorganic enzyme mechanisms. This approach, rooted in physics, underscores that life's origin and evolution are governed by electron transfer principles within the framework of chemical equilibrium. Today, these nanoparticles serve as vital biocatalysts in natural ecosystems, participating in critical reactions for ecosystem health. The research highlights their enduring impact on Earth's history, shaping ecosystems and interacting with protein metal centers through shared electron transfer dynamics, offering insights into early life processes and adaptations.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-6044, USA
| |
Collapse
|
6
|
Vallières C, Benoit O, Guittet O, Huang ME, Lepoivre M, Golinelli-Cohen MP, Vernis L. Iron-sulfur protein odyssey: exploring their cluster functional versatility and challenging identification. Metallomics 2024; 16:mfae025. [PMID: 38744662 PMCID: PMC11138216 DOI: 10.1093/mtomcs/mfae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Iron-sulfur (Fe-S) clusters are an essential and ubiquitous class of protein-bound prosthetic centers that are involved in a broad range of biological processes (e.g. respiration, photosynthesis, DNA replication and repair and gene regulation) performing a wide range of functions including electron transfer, enzyme catalysis, and sensing. In a general manner, Fe-S clusters can gain or lose electrons through redox reactions, and are highly sensitive to oxidation, notably by small molecules such as oxygen and nitric oxide. The [2Fe-2S] and [4Fe-4S] clusters, the most common Fe-S cofactors, are typically coordinated by four amino acid side chains from the protein, usually cysteine thiolates, but other residues (e.g. histidine, aspartic acid) can also be found. While diversity in cluster coordination ensures the functional variety of the Fe-S clusters, the lack of conserved motifs makes new Fe-S protein identification challenging especially when the Fe-S cluster is also shared between two proteins as observed in several dimeric transcriptional regulators and in the mitoribosome. Thanks to the recent development of in cellulo, in vitro, and in silico approaches, new Fe-S proteins are still regularly identified, highlighting the functional diversity of this class of proteins. In this review, we will present three main functions of the Fe-S clusters and explain the difficulties encountered to identify Fe-S proteins and methods that have been employed to overcome these issues.
Collapse
Affiliation(s)
- Cindy Vallières
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Orane Benoit
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Olivier Guittet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Meng-Er Huang
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Michel Lepoivre
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Marie-Pierre Golinelli-Cohen
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Laurence Vernis
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| |
Collapse
|
7
|
Huang XL, Harmer JR, Schenk G, Southam G. Inorganic Fe-O and Fe-S oxidoreductases: paradigms for prebiotic chemistry and the evolution of enzymatic activity in biology. Front Chem 2024; 12:1349020. [PMID: 38389729 PMCID: PMC10881703 DOI: 10.3389/fchem.2024.1349020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Oxidoreductases play crucial roles in electron transfer during biological redox reactions. These reactions are not exclusive to protein-based biocatalysts; nano-size (<100 nm), fine-grained inorganic colloids, such as iron oxides and sulfides, also participate. These nanocolloids exhibit intrinsic redox activity and possess direct electron transfer capacities comparable to their biological counterparts. The unique metal ion architecture of these nanocolloids, including electron configurations, coordination environment, electron conductivity, and the ability to promote spontaneous electron hopping, contributes to their transfer capabilities. Nano-size inorganic colloids are believed to be among the earliest 'oxidoreductases' to have 'evolved' on early Earth, playing critical roles in biological systems. Representing a distinct type of biocatalysts alongside metalloproteins, these nanoparticles offer an early alternative to protein-based oxidoreductase activity. While the roles of inorganic nano-sized catalysts in current Earth ecosystems are intuitively significant, they remain poorly understood and underestimated. Their contribution to chemical reactions and biogeochemical cycles likely helped shape and maintain the balance of our planet's ecosystems. However, their potential applications in biomedical, agricultural, and environmental protection sectors have not been fully explored or exploited. This review examines the structure, properties, and mechanisms of such catalysts from a material's evolutionary standpoint, aiming to raise awareness of their potential to provide innovative solutions to some of Earth's sustainability challenges.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- NYS Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Jeffrey R Harmer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gordon Southam
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Ranjan P, Dubey VK. Krebs cycle enzymes for targeted therapeutics and immunotherapy for anti-leishmanial drug development using: Pathways, potential targets, and future perspectives. Life Sci 2022; 322:121314. [PMID: 36566880 DOI: 10.1016/j.lfs.2022.121314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Leishmaniasis is a parasitic and neglected tropical disease which majorly impacts poor and developing nations. One of the significant factors that impacts the severity of the pathological condition includes the socioeconomic background of the affected region. The rise of drug-resistant Leishmania is a serious concern for the effectiveness of the present treatment. As a result, the drug options need to be relooked immediately. Leishmania employs Krebs cycle intermediates for its needs after infection for establishing various defense mechanisms to escape the host immune responses. Nevertheless, a variety of immunological reactions are also seen during infection, which clear the parasites. One of the more promising strategies in this regard would involve combining targeted therapy and immunotherapy. The targeted treatments work by obstructing vital pathways that are required for Leishmania to grow and survive. The mechanism of action of immunotherapy is the control of the host immune response, which entails the blockage of molecular pathways essential for the growth and maintenance of the parasite. The Krebs cycle intermediates have important biochemical roles. Additionally, in macrophages and dendritic cells, they play roles as signalling molecules for controlling inflammatory responses. The review brings together the available literature about the importance of Krebs cycle metabolites as potential treatment targets for leishmaniasis.
Collapse
Affiliation(s)
- Preeti Ranjan
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP 221005, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP 221005, India.
| |
Collapse
|
9
|
De Simone G, di Masi A, Ascenzi P. Strategies of Pathogens to Escape from NO-Based Host Defense. Antioxidants (Basel) 2022; 11:2176. [PMID: 36358549 PMCID: PMC9686644 DOI: 10.3390/antiox11112176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/22/2024] Open
Abstract
Nitric oxide (NO) is an essential signaling molecule present in most living organisms including bacteria, fungi, plants, and animals. NO participates in a wide range of biological processes including vasomotor tone, neurotransmission, and immune response. However, NO is highly reactive and can give rise to reactive nitrogen and oxygen species that, in turn, can modify a broad range of biomolecules. Much evidence supports the critical role of NO in the virulence and replication of viruses, bacteria, protozoan, metazoan, and fungi, thus representing a general mechanism of host defense. However, pathogens have developed different mechanisms to elude the host NO and to protect themselves against oxidative and nitrosative stress. Here, the strategies evolved by viruses, bacteria, protozoan, metazoan, and fungi to escape from the NO-based host defense are overviewed.
Collapse
Affiliation(s)
| | | | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Via della Vasca Navale 79, 00146 Roma, Italy
| |
Collapse
|
10
|
Jaziri E, Louis H, Gharbi C, Unimuke TO, Agwamba EC, Mathias GE, Fugita W, Nasr CB, Khedhiri L. Synthesis, X-ray crystallography, molecular electronic property investigation, and leukopoiesis activity of novel 4,6-dimethyl-1,6-dihydropyridin-2-amino nitrate hybrid material. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Daou Y, Falabrègue M, Pourzand C, Peyssonnaux C, Edeas M. Host and microbiota derived extracellular vesicles: Crucial players in iron homeostasis. Front Med (Lausanne) 2022; 9:985141. [PMID: 36314015 PMCID: PMC9606470 DOI: 10.3389/fmed.2022.985141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Iron is a double-edged sword. It is vital for all that’s living, yet its deficiency or overload can be fatal. In humans, iron homeostasis is tightly regulated at both cellular and systemic levels. Extracellular vesicles (EVs), now known as major players in cellular communication, potentially play an important role in regulating iron metabolism. The gut microbiota was also recently reported to impact the iron metabolism process and indirectly participate in regulating iron homeostasis, yet there is no proof of whether or not microbiota-derived EVs interfere in this relationship. In this review, we discuss the implication of EVs on iron metabolism and homeostasis. We elaborate on the blooming role of gut microbiota in iron homeostasis while focusing on the possible EVs contribution. We conclude that EVs are extensively involved in the complex iron metabolism process; they carry ferritin and express transferrin receptors. Bone marrow-derived EVs even induce hepcidin expression in β-thalassemia. The gut microbiota, in turn, affects iron homeostasis on the level of iron absorption and possibly macrophage iron recycling, with still no proof of the interference of EVs. This review is the first step toward understanding the multiplex iron metabolism process. Targeting extracellular vesicles and gut microbiota-derived extracellular vesicles will be a huge challenge to treat many diseases related to iron metabolism alteration.
Collapse
Affiliation(s)
- Yasmeen Daou
- International Society of Microbiota, Tokyo, Japan
| | - Marion Falabrègue
- INSERM, CNRS, Institut Cochin, Université de Paris, Paris, France,Laboratory of Excellence GR-Ex, Paris, France
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath, Bath, United Kingdom,Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| | - Carole Peyssonnaux
- INSERM, CNRS, Institut Cochin, Université de Paris, Paris, France,Laboratory of Excellence GR-Ex, Paris, France
| | - Marvin Edeas
- INSERM, CNRS, Institut Cochin, Université de Paris, Paris, France,Laboratory of Excellence GR-Ex, Paris, France,*Correspondence: Marvin Edeas,
| |
Collapse
|
12
|
Fukumoto J, Lin M, Banday MM, Patil SS, Krishnamurthy S, Breitzig M, Soundararajan R, Galam L, Narala VR, Johns C, Patel K, Dunning J, Lockey RF, Sharma NS, Kolliputi N. Aberrant Expression of ACO1 in Vasculatures Parallels Progression of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:890380. [PMID: 35910393 PMCID: PMC9335372 DOI: 10.3389/fphar.2022.890380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/04/2022] [Indexed: 11/15/2022] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is characterized by mitochondrial dysfunction. However, details about the non-mitochondrial enzymes that sustain the proliferative nature of IPF are unclear. Aconitases are a family of enzymes that sustain metabolism inside and outside mitochondria. It is hypothesized that aconitase 1 (ACO1) plays an important role in the pathogenesis of IPF given that ACO1 represents an important metabolic hub in the cytoplasm. Objectives: To determine if ACO1 expression in IPF lungs shows specific patterns that may be important in the pathogenesis of IPF. To determine the similarities and differences in ACO1 expression in IPF, bleomycin-treated, and aging lungs. Methods: ACO1 expression in IPF lungs were characterized and compared to non-IPF controls by western blotting, immunostaining, and enzymatic activity assay. ACO1-expressing cell types were identified by multicolor immunostaining. Using similar methods, the expression profiles of ACO1 in IPF lungs versus bleomycin-treated and aged mice were investigated. Measurements and main results: Lower lobes of IPF lungs, unlike non-IPF controls, exhibit significantly high levels of ACO1. Most of the signals colocalize with von Willebrand factor (vWF), a lineage marker for vascular endothelial cells. Bleomycin-treated lungs also show high ACO1 expressions. However, most of the signals colocalize with E-cadherin and/or prosurfactant protein C, representative epithelial cell markers, in remodeled areas. Conclusions: A characteristic ACO1 expression profile observed in IPF vasculatures may be a promising diagnostic target. It also may give clues as to how de novo angiogenesis contributes to the irreversible nature of IPF.
Collapse
Affiliation(s)
- Jutaro Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | - Muling Lin
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | - Mudassir Meraj Banday
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sahebgowda Sidramagowda Patil
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | - Sudarshan Krishnamurthy
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | - Mason Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | - Venkata Ramireddy Narala
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, FL, United States
- Department of Zoology, Yogi Vemana University, Kadapa, India
| | - Colleen Johns
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | - Kapilkumar Patel
- Pulmonary, Critical Care & Sleep Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Advanced Lung Diseases & Lung Transplantation, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - John Dunning
- Division of Cardiothoracic Surgery, Department of Surgery, University of South Florida, Tampa, FL, United States
| | - Richard F. Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | - Nirmal S. Sharma
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Nirmal S. Sharma, ; Narasaiah Kolliputi,
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, FL, United States
- Department of Molecular Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Nirmal S. Sharma, ; Narasaiah Kolliputi,
| |
Collapse
|
13
|
Zhao Q, Ge Z, Fu S, Wan S, Shi J, Wu Y, Zhang Y. DNA methylation plays an important role in iron-overloaded Tibetans. Gene 2022; 97:55-66. [PMID: 35644542 DOI: 10.1266/ggs.21-00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prevalence of iron overload in Tibetans in Tibet is higher than that in Han. DNA methylation (DNAm) is closely related to iron metabolism and iron level. Nevertheless, the epigenetic status of Tibetans with iron overload is unknown, and we therefore aimed to explore whether the phenomenon observed in the Tibetan population is regulated by epigenetics. The results showed that 2.26% of cytosine was methylated in the whole genome, and that the rate of CG cytosine methylation was higher in individuals in the iron overload (TH) group than in those in the iron normal (TL) group. We analyzed differentially methylated genes (DMGs) in whole-genome bisulfite sequencing data from the TH and TL groups of high-altitude Tibetans. Protein-protein interaction and pathway analyses of candidate DMGs related to iron uptake and transport showed that epigenetic changes in 10 candidate genes (ACO1, CYBRD1, FLVCR1, HFE, HMOX2, IREB2, NEDD8, SLC11A2, SLC40A1 and TFRC) are likely to relate to iron overload. This work reveals, for the first time, changes of DNAm in Tibetan people with iron overload, which suggest that DNAm is a mechanism underlying differences in iron content between individuals in the high-altitude Tibetan population. Our findings should contribute to the study of iron metabolism and the overall health status of Tibetans.
Collapse
Affiliation(s)
- Qin Zhao
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital C.T.)
| | - Zhijing Ge
- School of Basic Medical Sciences, Tibet University
| | - Suhong Fu
- Laboratory of Natural Medicine, West China Hospital, West China Medical School, Sichuan University
| | - Sha Wan
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital C.T.)
| | - Jing Shi
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital C.T.)
| | - Yunhong Wu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital C.T.)
| | - Yongqun Zhang
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital C.T.)
| |
Collapse
|
14
|
Araujo J, Ottinger S, Venkat S, Gan Q, Fan C. Studying Acetylation of Aconitase Isozymes by Genetic Code Expansion. Front Chem 2022; 10:862483. [PMID: 35402385 PMCID: PMC8987015 DOI: 10.3389/fchem.2022.862483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Aconitase catalyzes the second reaction of the tricarboxylic acid cycle, the reversible conversion of citrate and isocitrate. Escherichia coli has two isoforms of aconitase, AcnA and AcnB. Acetylomic studies have identified acetylation at multiple lysine sites of both E. coli aconitase isozymes, but the impacts of acetylation on aconitases are unknown. In this study, we applied the genetic code expansion approach to produce 14 site-specifically acetylated aconitase variants. Enzyme assays and kinetic analyses showed that acetylation of AcnA K684 decreased the enzyme activity, while acetylation of AcnB K567 increased the enzyme activity. Further in vitro acetylation and deacetylation assays were performed, which indicated that both aconitase isozymes could be acetylated by acetyl-phosphate chemically, and be deacetylated by the CobB deacetylase at most lysine sites. Through this study, we have demonstrated practical applications of genetic code expansion in acetylation studies.
Collapse
Affiliation(s)
- Jessica Araujo
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Sara Ottinger
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Sumana Venkat
- Children’s Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Chenguang Fan,
| |
Collapse
|
15
|
Perea-García A, Puig S, Peñarrubia L. The role of post-transcriptional modulators of metalloproteins in response to metal deficiencies. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1735-1750. [PMID: 34849747 DOI: 10.1093/jxb/erab521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Copper and iron proteins have a wide range of functions in living organisms. Metal assembly into metalloproteins is a complex process, where mismetalation is detrimental and energy consuming to cells. Under metal deficiency, metal distribution is expected to reach a metalation ranking, prioritizing essential versus dispensable metalloproteins, while avoiding interference with other metals and protecting metal-sensitive processes. In this review, we propose that post-transcriptional modulators of metalloprotein mRNA (ModMeR) are good candidates in metal prioritization under metal-limited conditions. ModMeR target high quota or redundant metalloproteins and, by adjusting their synthesis, ModMeR act as internal metal distribution valves. Inappropriate metalation of ModMeR targets could compete with metal delivery to essential metalloproteins and interfere with metal-sensitive processes, such as chloroplastic photosynthesis and mitochondrial respiration. Regulation of ModMeR targets could increase or decrease the metal flow through interconnected pathways in cellular metal distribution, helping to achieve adequate differential metal requirements. Here, we describe and compare ModMeR that function in response to copper and iron deficiencies. Specifically, we describe copper-miRNAs from Arabidopsis thaliana and diverse iron ModMeR from yeast, mammals, and bacteria under copper and iron deficiencies, as well as the influence of oxidative stress. Putative functions derived from their role as ModMeR are also discussed.
Collapse
Affiliation(s)
- Ana Perea-García
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| |
Collapse
|
16
|
Rethinking IRPs/IRE system in neurodegenerative disorders: Looking beyond iron metabolism. Ageing Res Rev 2022; 73:101511. [PMID: 34767973 DOI: 10.1016/j.arr.2021.101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
Iron regulatory proteins (IRPs) and iron regulatory element (IRE) systems are well known in the progression of neurodegenerative disorders by regulating iron related proteins. IRPs are also regulated by iron homeostasis. However, an increasing number of studies have suggested a close relationship between the IRPs/IRE system and non-iron-related neurodegenerative disorders. In this paper, we reviewed that the IRPs/IRE system is not only controlled by iron ions, but also regulated by such factors as post-translational modification, oxygen, nitric oxide (NO), heme, interleukin-1 (IL-1), and metal ions. In addition, by regulating the transcription of non-iron related proteins, the IRPs/IRE system functioned in oxidative metabolism, cell cycle regulation, abnormal proteins aggregation, and neuroinflammation. Finally, by emphasizing the multiple regulations of IRPs/IRE system and its potential relationship with non-iron metabolic neurodegenerative disorders, we provided new strategies for disease treatment targeting IRPs/IRE system.
Collapse
|
17
|
Chan D, Feng C, England WE, Wyman D, Flynn R, Wang X, Shi Y, Mortazavi A, Spitale R. Diverse functional elements in RNA predicted transcriptome-wide by orthogonal RNA structure probing. Nucleic Acids Res 2021; 49:11868-11882. [PMID: 34634799 PMCID: PMC8599799 DOI: 10.1093/nar/gkab885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
RNA molecules can fold into complex structures and interact with trans-acting factors to control their biology. Recent methods have been focused on developing novel tools to measure RNA structure transcriptome-wide, but their utility to study and predict RNA-protein interactions or RNA processing has been limited thus far. Here, we extend these studies with the first transcriptome-wide mapping method for cataloging RNA solvent accessibility, icLASER. By combining solvent accessibility (icLASER) with RNA flexibility (icSHAPE) data, we efficiently predict RNA-protein interactions transcriptome-wide and catalog RNA polyadenylation sites by RNA structure alone. These studies showcase the power of designing novel chemical approaches to studying RNA biology. Further, our study exemplifies merging complementary methods to measure RNA structure inside cells and its utility for predicting transcriptome-wide interactions that are critical for control of and regulation by RNA structure. We envision such approaches can be applied to studying different cell types or cells under varying conditions, using RNA structure and footprinting to characterize cellular interactions and processing involving RNA.
Collapse
Affiliation(s)
- Dalen Chan
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, CA 92697, USA
| | - Chao Feng
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, CA 92697, USA
| | - Whitney E England
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, CA 92697, USA
| | - Dana Wyman
- Department of Developmental and Cellular Biology, University of California, Irvine. Irvine, CA 92697, USA
| | - Ryan A Flynn
- Stem Cell Program, Boston Children’s Hospital, Boston, MA, USA and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Xiuye Wang
- Department Microbiology and Molecular Genetics, University of California, Irvine. Irvine, CA 92697, USA
| | - Yongsheng Shi
- Department Microbiology and Molecular Genetics, University of California, Irvine. Irvine, CA 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cellular Biology, University of California, Irvine. Irvine, CA 92697, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine. Irvine, CA 92697, USA
| |
Collapse
|
18
|
Cho SY, Jung SJ, Kim KD, Roe JH. Non-mitochondrial aconitase regulates the expression of iron-uptake genes by controlling the RNA turnover process in fission yeast. J Microbiol 2021; 59:1075-1082. [PMID: 34705258 DOI: 10.1007/s12275-021-1438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022]
Abstract
Aconitase, a highly conserved protein across all domains of life, functions in converting citrate to isocitrate in the tricarboxylic acid cycle. Cytosolic aconitase is also known to act as an iron regulatory protein in mammals, binding to the RNA hairpin structures known as iron-responsive elements within the untranslated regions of specific RNAs. Aconitase-2 (Aco2) in fission yeast is a fusion protein consisting of an aconitase and a mitochondrial ribosomal protein, bL21, residing not only in mitochondria but also in cytosol and the nucleus. To investigate the role of Aco2 in the nucleus and cytoplasm of fission yeast, we analyzed the transcriptome of aco2ΔN mutant that is deleted of nuclear localization signal (NLS). RNA sequencing revealed that the aco2ΔN mutation caused increase in mRNAs encoding iron uptake transporters, such as Str1, Str3, and Shu1. The half-lives of mRNAs for these genes were found to be significantly longer in the aco2ΔN mutant than the wild-type strain, suggesting the role of Aco2 in mRNA turnover. The three conserved cysteines required for the catalytic activity of aconitase were not necessary for this role. The UV cross-linking RNA immunoprecipitation analysis revealed that Aco2 directly bound to the mRNAs of iron uptake transporters. Aco2-mediated degradation of iron-uptake mRNAs appears to utilize exoribonuclease pathway that involves Rrp6 as evidenced by genetic interactions. These results reveal a novel role of non-mitochondrial aconitase protein in the mRNA turnover in fission yeast to fine-tune iron homeostasis, independent of regulation by transcriptional repressor Fep1.
Collapse
Affiliation(s)
- Soo-Yeon Cho
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo-Jin Jung
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Jung-Hye Roe
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
19
|
Berry T, Abohamza E, Moustafa AA. Treatment-resistant schizophrenia: focus on the transsulfuration pathway. Rev Neurosci 2021; 31:219-232. [PMID: 31714892 DOI: 10.1515/revneuro-2019-0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
Treatment-resistant schizophrenia (TRS) is a severe form of schizophrenia. The severity of illness is positively related to homocysteine levels, with high homocysteine levels due to the low activity of the transsulfuration pathway, which metabolizes homocysteine in synthesizing L-cysteine. Glutathione levels are low in schizophrenia, which indicates shortages of L-cysteine and low activity of the transsulfuration pathway. Hydrogen sulfide (H2S) levels are low in schizophrenia. H2S is synthesized by cystathionine β-synthase and cystathionine γ-lyase, which are the two enzymes in the transsulfuration pathway. Iron-sulfur proteins obtain sulfur from L-cysteine. The oxidative phosphorylation (OXPHOS) pathway has various iron-sulfur proteins. With low levels of L-cysteine, iron-sulfur cluster formation will be dysregulated leading to deficits in OXPHOS in schizophrenia. Molybdenum cofactor (MoCo) synthesis requires sulfur, which is obtained from L-cysteine. With low levels of MoCo synthesis, molybdenum-dependent sulfite oxidase (SUOX) will not be synthesized at appropriate levels. SUOX detoxifies sulfite from sulfur-containing amino acids. If sulfites are not detoxified, there can be sulfite toxicity. The transsulfuration pathway metabolizes selenomethionine, whereby selenium from selenomethionine can be used for selenoprotein synthesis. The low activity of the transsulfuration pathway decreases selenoprotein synthesis. Glutathione peroxidase (GPX), with various GPXs being selenoprotein, is low in schizophrenia. The dysregulations of selenoproteins would lead to oxidant stress, which would increase the methylation of genes and histones leading to epigenetic changes in TRS. An add-on treatment to mainline antipsychotics is proposed for TRS that targets the dysregulations of the transsulfuration pathway and the dysregulations of other pathways stemming from the transsulfuration pathway being dysregulated.
Collapse
Affiliation(s)
- Thomas Berry
- School of Social Sciences and Psychology, Western Sydney University, Sydney 2751, New South Wales, Australia
| | - Eid Abohamza
- Department of Social Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, Western Sydney University, Sydney 2751, New South Wales, Australia.,Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney 2751, New South Wales, Australia
| |
Collapse
|
20
|
Hognon C, Bignon E, Harle G, Touche N, Grandemange S, Monari A. The Iron Maiden. Cytosolic Aconitase/IRP1 Conformational Transition in the Regulation of Ferritin Translation and Iron Hemostasis. Biomolecules 2021; 11:biom11091329. [PMID: 34572542 PMCID: PMC8469783 DOI: 10.3390/biom11091329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023] Open
Abstract
Maintaining iron homeostasis is fundamental for almost all living beings, and its deregulation correlates with severe and debilitating pathologies. The process is made more complicated by the omnipresence of iron and by its role as a fundamental component of a number of crucial metallo proteins. The response to modifications in the amount of the free-iron pool is performed via the inhibition of ferritin translation by sequestering consensus messenger RNA (mRNA) sequences. In turn, this is regulated by the iron-sensitive conformational equilibrium between cytosolic aconitase and IRP1, mediated by the presence of an iron-sulfur cluster. In this contribution, we analyze by full-atom molecular dynamics simulation, the factors leading to both the interaction with mRNA and the conformational transition. Furthermore, the role of the iron-sulfur cluster in driving the conformational transition is assessed by obtaining the related free energy profile via enhanced sampling molecular dynamics simulations.
Collapse
Affiliation(s)
- Cécilia Hognon
- Université de Lorraine and CNRS, UMR 7019 LPCT, F-54000 Nancy, France; (C.H.); (E.B.)
| | - Emmanuelle Bignon
- Université de Lorraine and CNRS, UMR 7019 LPCT, F-54000 Nancy, France; (C.H.); (E.B.)
| | - Guillaume Harle
- Université de Lorraine and CNRS, UMR 7039 CRAN, F-54000 Nancy, France; (G.H.); (N.T.)
| | - Nadège Touche
- Université de Lorraine and CNRS, UMR 7039 CRAN, F-54000 Nancy, France; (G.H.); (N.T.)
| | - Stéphanie Grandemange
- Université de Lorraine and CNRS, UMR 7039 CRAN, F-54000 Nancy, France; (G.H.); (N.T.)
- Correspondence: (S.G.); (A.M.)
| | - Antonio Monari
- Université de Lorraine and CNRS, UMR 7019 LPCT, F-54000 Nancy, France; (C.H.); (E.B.)
- Université de Paris and CNRS, ITODYS, F-75006 Paris, France
- Correspondence: (S.G.); (A.M.)
| |
Collapse
|
21
|
Crystal structures of aconitase X enzymes from bacteria and archaea provide insights into the molecular evolution of the aconitase superfamily. Commun Biol 2021; 4:687. [PMID: 34099860 PMCID: PMC8184944 DOI: 10.1038/s42003-021-02147-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Aconitase superfamily members catalyze the homologous isomerization of specific substrates by sequential dehydration and hydration and contain a [4Fe-4S] cluster. However, monomeric and heterodimeric types of function unknown aconitase X (AcnX) have recently been characterized as a cis-3-hydroxy-L-proline dehydratase (AcnXType-I) and mevalonate 5-phosphate dehydratase (AcnXType-II), respectively. We herein elucidated the crystal structures of AcnXType-I from Agrobacterium tumefaciens (AtAcnX) and AcnXType-II from Thermococcus kodakarensis (TkAcnX) without a ligand and in complex with substrates. AtAcnX and TkAcnX contained the [2Fe-2S] and [3Fe-4S] clusters, respectively, conforming to UV and EPR spectroscopy analyses. The binding sites of the [Fe-S] cluster and substrate were clearlydifferent from those that were completely conserved in other aconitase enzymes; however, theoverall structural frameworks and locations of active sites were partially similar to each other.These results provide novel insights into the evolutionary scenario of the aconitase superfamilybased on the recruitment hypothesis. Seiya Watanabe et al. report the crystal structures of two distinct members of the Aconitase X subfamily, which contain [Fe-S] clusters different from other aconitases. This study provides insight into the molecular evolution of the aconitase superfamily.
Collapse
|
22
|
Kelly B, Carrizo GE, Edwards-Hicks J, Sanin DE, Stanczak MA, Priesnitz C, Flachsmann LJ, Curtis JD, Mittler G, Musa Y, Becker T, Buescher JM, Pearce EL. Sulfur sequestration promotes multicellularity during nutrient limitation. Nature 2021; 591:471-476. [PMID: 33627869 PMCID: PMC7969356 DOI: 10.1038/s41586-021-03270-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The behaviour of Dictyostelium discoideum depends on nutrients1. When sufficient food is present these amoebae exist in a unicellular state, but upon starvation they aggregate into a multicellular organism2,3. This biology makes D. discoideum an ideal model for investigating how fundamental metabolism commands cell differentiation and function. Here we show that reactive oxygen species-generated as a consequence of nutrient limitation-lead to the sequestration of cysteine in the antioxidant glutathione. This sequestration limits the use of the sulfur atom of cysteine in processes that contribute to mitochondrial metabolism and cellular proliferation, such as protein translation and the activity of enzymes that contain an iron-sulfur cluster. The regulated sequestration of sulfur maintains D. discoideum in a nonproliferating state that paves the way for multicellular development. This mechanism of signalling through reactive oxygen species highlights oxygen and sulfur as simple signalling molecules that dictate cell fate in an early eukaryote, with implications for responses to nutrient fluctuations in multicellular eukaryotes.
Collapse
Affiliation(s)
- Beth Kelly
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gustavo E. Carrizo
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Joy Edwards-Hicks
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - David E. Sanin
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Michal A. Stanczak
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Chantal Priesnitz
- grid.5963.9Institute of Biochemistry and Molecular Biology, ZMBZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany ,grid.5963.9Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lea J. Flachsmann
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Jonathan D. Curtis
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gerhard Mittler
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Yaarub Musa
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Becker
- grid.10388.320000 0001 2240 3300Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Joerg M. Buescher
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Erika L. Pearce
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany ,grid.21107.350000 0001 2171 9311Present Address: The Bloomberg–Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
23
|
Senoura T, Kobayashi T, An G, Nakanishi H, Nishizawa NK. Defects in the rice aconitase-encoding OsACO1 gene alter iron homeostasis. PLANT MOLECULAR BIOLOGY 2020; 104:629-645. [PMID: 32909184 DOI: 10.1007/s11103-020-01065-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/30/2020] [Indexed: 05/16/2023]
Abstract
Rice aconitase gene OsACO1 is involved in the iron deficiency-signaling pathway for the expression of iron deficiency-inducible genes, either thorough enzyme activity or possible specific RNA binding for post-transcriptional regulation. Iron (Fe) is an essential element for virtually all living organisms. When plants are deficient in Fe, Fe acquisition systems are activated to maintain Fe homeostasis, and this regulation is mainly executed at the gene transcription level. Many molecules responsible for Fe uptake, translocation, and storage in plants have been identified and characterized. However, how plants sense Fe status within cells and then induce a transcriptional response is still unclear. In the present study, we found that knockdown of the OsACO1 gene, which encodes an aconitase in rice, leads to the down-regulation of selected Fe deficiency-inducible genes involved in Fe uptake and translocation in roots, and a decrease in Fe concentration in leaves, even when grown under Fe-sufficient conditions. OsACO1 knockdown plants showed a delayed transcriptional response to Fe deficiency compared to wild-type plants. In contrast, overexpression of OsACO1 resulted in the opposite effects. These results suggest that OsACO1 is situated upstream of the Fe deficiency-signaling pathway. Furthermore, we found that the OsACO1 protein potentially has RNA-binding activity. In vitro screening of RNA interactions with OsACO1 revealed that RNA potentially forms a unique stem-loop structure that interacts with OsACO1 via a conserved GGUGG motif within the loop structure. These results suggest that OsACO1 regulate Fe deficiency response either thorough enzyme activity catalyzing isomerization of citrate, or specific RNA binding for post-transcriptional regulation.
Collapse
Affiliation(s)
- Takeshi Senoura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Hiromi Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| |
Collapse
|
24
|
Pérez-Luz S, Loria F, Katsu-Jiménez Y, Oberdoerfer D, Yang OL, Lim F, Muñoz-Blanco JL, Díaz-Nido J. Altered Secretome and ROS Production in Olfactory Mucosa Stem Cells Derived from Friedreich's Ataxia Patients. Int J Mol Sci 2020; 21:ijms21186662. [PMID: 32933002 PMCID: PMC7555998 DOI: 10.3390/ijms21186662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Friedreich’s ataxia is the most common hereditary ataxia for which there is no cure or approved treatment at present. However, therapeutic developments based on the understanding of pathological mechanisms underlying the disease have advanced considerably, with the implementation of cellular models that mimic the disease playing a crucial role. Human olfactory ecto-mesenchymal stem cells represent a novel model that could prove useful due to their accessibility and neurogenic capacity. Here, we isolated and cultured these stem cells from Friedreich´s ataxia patients and healthy donors, characterizing their phenotype and describing disease-specific features such as reduced cell viability, impaired aconitase activity, increased ROS production and the release of cytokines involved in neuroinflammation. Importantly, we observed a positive effect on patient-derived cells, when frataxin levels were restored, confirming the utility of this in vitro model to study the disease. This model will improve our understanding of Friedreich´s ataxia pathogenesis and will help in developing rationally designed therapeutic strategies.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
- Molecular Genetics Unit, Institute of Rare Diseases Research, Institute of Health Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km 2,200, 28220 Madrid, Spain
| | - Frida Loria
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Calle Budapest 1, 28922 Madrid, Spain
- Correspondence: ; Tel.: +34-911-964-594
| | - Yurika Katsu-Jiménez
- Karolinska Institutet, Department of Microbiology Tumor and Cell Biology, Solnaväjen 1, 171 77 Stockholm, Sweden;
| | - Daniel Oberdoerfer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| | - Oscar-Li Yang
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| | - Filip Lim
- Department of Molecular Biology, Autonomous University of Madrid, Francisco Tomás y Valiente 7, 28049 Madrid, Spain;
| | - José Luis Muñoz-Blanco
- Department of Neurology, Hospital Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| |
Collapse
|
25
|
Silva Balbin Villaverde AI, Ogle RA, Lewis P, Carbone V, Velkov T, Netherton JK, Baker MA. Sialylation of Asparagine 612 Inhibits Aconitase Activity during Mouse Sperm Capacitation; a Possible Mechanism for the Switch from Oxidative Phosphorylation to Glycolysis. Mol Cell Proteomics 2020; 19:1860-1875. [PMID: 32839225 DOI: 10.1074/mcp.ra120.002109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/22/2020] [Indexed: 11/06/2022] Open
Abstract
After ejaculation, mammalian spermatozoa must undergo a process known as capacitation in order to successfully fertilize the oocyte. Several post-translational modifications occur during capacitation, including sialylation, which despite being limited to a few proteins, seems to be essential for proper sperm-oocyte interaction. Regardless of its importance, to date, no single study has ever identified nor quantified which glycoproteins bearing terminal sialic acid (Sia) are altered during capacitation. Here we characterize sialylation during mouse sperm capacitation. Using tandem MS coupled with liquid chromatography (LC-MS/MS), we found 142 nonreductant peptides, with 9 of them showing potential modifications on their sialylated oligosaccharides during capacitation. As such, N-linked sialoglycopeptides from C4b-binding protein, endothelial lipase (EL), serine proteases 39 and 52, testis-expressed protein 101 and zonadhesin were reduced following capacitation. In contrast, mitochondrial aconitate hydratase (aconitase; ACO2), a TCA cycle enzyme, was the only protein to show an increase in Sia content during capacitation. Interestingly, although the loss of Sia within EL (N62) was accompanied by a reduction in its phospholipase A1 activity, a decrease in the activity of ACO2 (i.e. stereospecific isomerization of citrate to isocitrate) occurred when sialylation increased (N612). The latter was confirmed by N612D recombinant protein tagged with both His and GFP. The replacement of Sia for the negatively charged Aspartic acid in the N612D mutant caused complete loss of aconitase activity compared with the WT. Computer modeling show that N612 sits atop the catalytic site of ACO2. The introduction of Sia causes a large conformational change in the alpha helix, essentially, distorting the active site, leading to complete loss of function. These findings suggest that the switch from oxidative phosphorylation, over to glycolysis that occurs during capacitation may come about through sialylation of ACO2.
Collapse
Affiliation(s)
- Ana Izabel Silva Balbin Villaverde
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Rachel A Ogle
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Peter Lewis
- Centre for Chemical Biology and Clinical Pharmacology, Department of Biology, School of Environmental & Life Sciences, The University of Newcastle, Callaghan, Australia
| | - Vincenzo Carbone
- AgResearchGrasslands Research Centre, Palmerston North, New Zealand
| | - Tony Velkov
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, NSW, Australia
| | - Jacob K Netherton
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Mark A Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
26
|
Liu H, Jeffery CJ. Moonlighting Proteins in the Fuzzy Logic of Cellular Metabolism. Molecules 2020; 25:molecules25153440. [PMID: 32751110 PMCID: PMC7435893 DOI: 10.3390/molecules25153440] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
The numerous interconnected biochemical pathways that make up the metabolism of a living cell comprise a fuzzy logic system because of its high level of complexity and our inability to fully understand, predict, and model the many activities, how they interact, and their regulation. Each cell contains thousands of proteins with changing levels of expression, levels of activity, and patterns of interactions. Adding more layers of complexity is the number of proteins that have multiple functions. Moonlighting proteins include a wide variety of proteins where two or more functions are performed by one polypeptide chain. In this article, we discuss examples of proteins with variable functions that contribute to the fuzziness of cellular metabolism.
Collapse
Affiliation(s)
- Haipeng Liu
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA;
| | - Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
- Correspondence: ; Tel.: +1-312-996-3168
| |
Collapse
|
27
|
Basics and principles of cellular and systemic iron homeostasis. Mol Aspects Med 2020; 75:100866. [PMID: 32564977 DOI: 10.1016/j.mam.2020.100866] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Iron is a constituent of many metalloproteins involved in vital metabolic functions. While adequate iron supply is critical for health, accumulation of excess iron promotes oxidative stress and causes tissue injury and disease. Therefore, iron homeostasis needs to be tightly controlled. Mammals have developed elegant homeostatic mechanisms at the cellular and systemic level, which serve to satisfy metabolic needs for iron and to minimize the risks posed by iron's toxicity. Cellular iron metabolism is post-transcriptionally controlled by iron regulatory proteins, IRP1 and IRP2, while systemic iron balance is regulated by the iron hormone hepcidin. This review summarizes basic principles of mammalian iron homeostasis at the cellular and systemic level. Particular attention is given on pathways for hepcidin regulation and on crosstalk between cellular and systemic homeostatic mechanisms.
Collapse
|
28
|
Oskarsson GR, Oddsson A, Magnusson MK, Kristjansson RP, Halldorsson GH, Ferkingstad E, Zink F, Helgadottir A, Ivarsdottir EV, Arnadottir GA, Jensson BO, Katrinardottir H, Sveinbjornsson G, Kristinsdottir AM, Lee AL, Saemundsdottir J, Stefansdottir L, Sigurdsson JK, Davidsson OB, Benonisdottir S, Jonasdottir A, Jonasdottir A, Jonsson S, Gudmundsson RL, Asselbergs FW, Tragante V, Gunnarsson B, Masson G, Thorleifsson G, Rafnar T, Holm H, Olafsson I, Onundarson PT, Gudbjartsson DF, Norddahl GL, Thorsteinsdottir U, Sulem P, Stefansson K. Predicted loss and gain of function mutations in ACO1 are associated with erythropoiesis. Commun Biol 2020; 3:189. [PMID: 32327693 PMCID: PMC7181819 DOI: 10.1038/s42003-020-0921-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 03/24/2020] [Indexed: 12/28/2022] Open
Abstract
Hemoglobin is the essential oxygen-carrying molecule in humans and is regulated by cellular iron and oxygen sensing mechanisms. To search for novel variants associated with hemoglobin concentration, we performed genome-wide association studies of hemoglobin concentration using a combined set of 684,122 individuals from Iceland and the UK. Notably, we found seven novel variants, six rare coding and one common, at the ACO1 locus associating with either decreased or increased hemoglobin concentration. Of these variants, the missense Cys506Ser and the stop-gained Lys334Ter mutations are specific to eight and ten generation pedigrees, respectively, and have the two largest effects in the study (EffectCys506Ser = -1.61 SD, CI95 = [-1.98, -1.35]; EffectLys334Ter = 0.63 SD, CI95 = [0.36, 0.91]). We also find Cys506Ser to associate with increased risk of persistent anemia (OR = 17.1, P = 2 × 10-14). The strong bidirectional effects seen in this study implicate ACO1, a known iron sensing molecule, as a major homeostatic regulator of hemoglobin concentration.
Collapse
Affiliation(s)
- Gudjon R Oskarsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Magnus K Magnusson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | | | | | | | - Amy L Lee
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | | | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Vinicius Tragante
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Pall T Onundarson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
29
|
Wang H, Shi H, Rajan M, Canarie ER, Hong S, Simoneschi D, Pagano M, Bush MF, Stoll S, Leibold EA, Zheng N. FBXL5 Regulates IRP2 Stability in Iron Homeostasis via an Oxygen-Responsive [2Fe2S] Cluster. Mol Cell 2020; 78:31-41.e5. [PMID: 32126207 DOI: 10.1016/j.molcel.2020.02.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/30/2019] [Accepted: 02/11/2020] [Indexed: 12/21/2022]
Abstract
Cellular iron homeostasis is dominated by FBXL5-mediated degradation of iron regulatory protein 2 (IRP2), which is dependent on both iron and oxygen. However, how the physical interaction between FBXL5 and IRP2 is regulated remains elusive. Here, we show that the C-terminal substrate-binding domain of FBXL5 harbors a [2Fe2S] cluster in the oxidized state. A cryoelectron microscopy (cryo-EM) structure of the IRP2-FBXL5-SKP1 complex reveals that the cluster organizes the FBXL5 C-terminal loop responsible for recruiting IRP2. Interestingly, IRP2 binding to FBXL5 hinges on the oxidized state of the [2Fe2S] cluster maintained by ambient oxygen, which could explain hypoxia-induced IRP2 stabilization. Steric incompatibility also allows FBXL5 to physically dislodge IRP2 from iron-responsive element RNA to facilitate its turnover. Taken together, our studies have identified an iron-sulfur cluster within FBXL5, which promotes IRP2 polyubiquitination and degradation in response to both iron and oxygen concentrations.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Hui Shi
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Malini Rajan
- Division of Hematology and Hematologic Malignancies and Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Seoyeon Hong
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; NYU Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; NYU Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth A Leibold
- Division of Hematology and Hematologic Malignancies and Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
30
|
Castro L, Tórtora V, Mansilla S, Radi R. Aconitases: Non-redox Iron-Sulfur Proteins Sensitive to Reactive Species. Acc Chem Res 2019; 52:2609-2619. [PMID: 31287291 DOI: 10.1021/acs.accounts.9b00150] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mammalian aconitases (mitochondrial and cytosolic isoenzymes) are unique iron-sulfur cluster-containing proteins in which the metallic center participates in the catalysis of a non-redox reaction. Within the cubane iron-sulfur cluster of aconitases only three of the four iron ions have cysteine thiolate ligands; the fourth iron ion (Feα) is solvent exposed within the active-site pocket and bound to oxygen atoms from either water or substrates to be dehydrated. The catalyzed reaction is the reversible isomerization of citrate to isocitrate with an intermediate metabolite, cis-aconitate. The cytosolic isoform of aconitase is a moonlighting enzyme; when intracellular iron is scarce, the complete disassembly of the iron-sulfur cluster occurs and apo-aconitase acquires the function of an iron responsive protein and regulates the translation of proteins involved in iron metabolism. In the late 1980s and during the 1990s, cumulative experimental evidence pointed out that aconitases are main targets of reactive oxygen and nitrogen species such as superoxide radical (O2•-), hydrogen peroxide (H2O2), nitric oxide (•NO), and peroxynitrite (ONOO-). These intermediates are capable of oxidizing the cluster, which leads to iron release and consequent loss of the catalytic activity of aconitase. As the reaction of the Fe-S cluster with O2•- is fast (∼107 M-1 s-1), quite specific, and reversible in vivo, quantification of active aconitase has been used to evaluate O2•- formation in cells. While •NO is modestly reactive with aconitase, its reaction with O2•- yields ONOO-, a strong oxidant that readily leads to the disruption of the Fe-S cluster. In the case of cytosolic aconitase, it has been seen that H2O2 and •NO promote activation of iron responsive protein activity in cells. Proteomic advances in the 2000s confirmed that aconitases are main targets of reactive species in cellular models and in vivo, and other post-translational oxidative modifications such as protein nitration and carbonylation have been detected. Herein, we (1) outline the particular structural features of aconitase that make these proteins specific targets of reactive species, (2) characterize the reactions of O2•-, H2O2, •NO, and ONOO- and related species with aconitases, (3) discuss how different oxidative post-translational modifications of aconitase impact the different functions of aconitases, and (4) argue how these proteins might function as redox sensors within different cellular compartments, regulating citrate concentration and efflux from mitochondria, iron availability in the cytosol, and cellular oxidant production.
Collapse
Affiliation(s)
- Laura Castro
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
- Departamento de Educación Médica, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800, Montevideo, Uruguay
| | - Santiago Mansilla
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
| |
Collapse
|
31
|
Pellicer Martinez MT, Crack JC, Stewart MYY, Bradley JM, Svistunenko DA, Johnston AWB, Cheesman MR, Todd JD, Le Brun NE. Mechanisms of iron- and O 2-sensing by the [4Fe-4S] cluster of the global iron regulator RirA. eLife 2019; 8:e47804. [PMID: 31526471 PMCID: PMC6748827 DOI: 10.7554/elife.47804] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023] Open
Abstract
RirA is a global regulator of iron homeostasis in Rhizobium and related α-proteobacteria. In its [4Fe-4S] cluster-bound form it represses iron uptake by binding to IRO Box sequences upstream of RirA-regulated genes. Under low iron and/or aerobic conditions, [4Fe-4S] RirA undergoes cluster conversion/degradation to apo-RirA, which can no longer bind IRO Box sequences. Here, we apply time-resolved mass spectrometry and electron paramagnetic resonance spectroscopy to determine how the RirA cluster senses iron and O2. The data indicate that the key iron-sensing step is the O2-independent, reversible dissociation of Fe2+ from [4Fe-4S]2+ to form [3Fe-4S]0. The dissociation constant for this process was determined as Kd = ~3 µM, which is consistent with the sensing of 'free' iron in the cytoplasm. O2-sensing occurs through enhanced cluster degradation under aerobic conditions, via O2-mediated oxidation of the [3Fe-4S]0 intermediate to form [3Fe-4S]1+. This work provides a detailed mechanistic/functional view of an iron-responsive regulator.
Collapse
Affiliation(s)
- Ma Teresa Pellicer Martinez
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Melissa YY Stewart
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | | | - Andrew WB Johnston
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Myles R Cheesman
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Jonathan D Todd
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| |
Collapse
|
32
|
Nishitani Y, Okutani H, Takeda Y, Uchida T, Iwai K, Ishimori K. Specific heme binding to heme regulatory motifs in iron regulatory proteins and its functional significance. J Inorg Biochem 2019; 198:110726. [PMID: 31220756 DOI: 10.1016/j.jinorgbio.2019.110726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
Abstract
Iron regulatory proteins (IRPs) control iron metabolism in mammalian cells by binding to the iron-responsive element (IRE) in the target mRNA. Heme regulatory motifs (HRMs) are conserved in the two IRP homologues IRP1 and IRP2 that specifically bind to two and three heme equivalents, respectively; however, only the heme binding to the iron-dependent degradation (IDD) domain of IRP2 causes heme-mediated oxidation, which does not occur in IRP1. Therefore, the functional significance of conserved HRMs outside the IDD domain is yet unclear. In this study, spectroscopic heme titration with IRP mutants confirmed heme binding to each HRM in IRPs, and the effect of heme binding to HRMs on IRE binding was examined. Native polyacrylamide gel electrophoresis analysis revealed that heme binding to HRMs near the IRE binding site inhibits complex formation between IRPs and IRE without oxidative modification, indicating that the function of HRMs varies outside and within the IDD domain. However, the formation of a typical reactive oxygen species (ROS), hydrogen peroxide, was spectroscopically detected in both heme-bound IRPs. Comparing the heme environmental structures surrounding HRMs, the flexible conformation and many amino acid residues sensitive to ROS of the IDD domain were suggested to promote specific oxidation by the generated hydrogen peroxide. Thus, heme binding to HRM near the IRE binding site sterically interferes with IRE binding, while HRM in the IDD domain facilitates specific heme-mediated oxidation of the protein moiety and the protein degradation via the ubiquitin-proteasome system, resulting in the inhibition of IRE binding.
Collapse
Affiliation(s)
- Yudai Nishitani
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Hirotaka Okutani
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yukiko Takeda
- Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8561, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuhiro Iwai
- Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8561, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
33
|
Yang L, Li X, Wu Y, Zhang J, Li W, Wang Q. Iron regulatory protein is involved in the immune defense of the Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2019; 89:632-640. [PMID: 30995542 DOI: 10.1016/j.fsi.2019.04.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Iron homeostasis is vital to organismal health; it is maintained by the iron regulatory protein (IRP)-iron-responsive element (IRE) signaling pathway. In the Chinese mitten crab Eriocheir sinensis, EsFer-1 and EsFer-2 reportedly have a putative IRE, but an IRP has not yet been identified. In this study, we successfully amplified the full-length cDNA of EsIRP using gene cloning and rapid amplification of cDNA ends techniques. The length of this cDNA was 4474 bp, and it included a 2682-bp open reading frame encoding 893 amino acids. Using quantitative real-time PCR, mRNA transcripts of EsIRP were detected in various tissues. The highest and lowest expression level was detected in the muscle and gills, respectively. In response to Staphylococcus aureus and Vibrio parahaemolyticus challenge, the transcription level of EsIRP was downregulated and that of EsFer-1 and EsFer-2 was upregulated in hemocytes. EsIRP knockdown resulted in increased expression of both EsFer-1 and EsFer-2. After EsFer-1 and EsFer-2 knockdown, the bacterial clearance ability of E. sinensis against S. aureus and V. parahaemolyticus was impaired. In conclusion, our results suggest that the IRP-IRE signaling pathway plays an important role in the innate immune system response in E. sinensis.
Collapse
Affiliation(s)
- Lei Yang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuejie Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yaomeng Wu
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiashun Zhang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
34
|
Rouault TA. The indispensable role of mammalian iron sulfur proteins in function and regulation of multiple diverse metabolic pathways. Biometals 2019; 32:343-353. [PMID: 30923992 PMCID: PMC6584224 DOI: 10.1007/s10534-019-00191-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
In recent years, iron sulfur (Fe–S) proteins have been identified as key players in mammalian metabolism, ranging from long-known roles in the respiratory complexes and the citric acid cycle, to more recently recognized roles in RNA and DNA metabolism. Fe–S cofactors have often been missed because of their intrinsic lability and oxygen sensitivity. More Fe–S proteins have now been identified owing to detection of their direct interactions with components of the Fe–S biogenesis machinery, and through use of informatics to detect a motif that binds the co-chaperone responsible for transferring nascent Fe–S clusters to domains of recipient proteins. Dissection of the molecular steps involved in Fe–S transfer to Fe–S proteins has revealed that direct and shielded transfer occurs through highly conserved pathways that operate in parallel in the mitochondrial matrix and in the cytosolic/nuclear compartments of eukaryotic cells. Because Fe–S clusters have the unusual ability to accept or donate single electrons in chemical reactions, their presence renders complex chemical reactions possible. In addition, Fe–S clusters may function as sensors that interconnect activity of metabolic pathways with cellular redox status. Presence in pathways that control growth and division may enable cells to regulate their growth according to sufficiency of energy stores represented by redox capacity, and oxidation of such proteins could diminish anabolic activities to give cells an opportunity to restore energy supplies. This review will discuss mechanisms of Fe–S biogenesis and delivery, and methods that will likely reveal important roles of Fe–S proteins in proteins not yet recognized as Fe–S proteins.
Collapse
|
35
|
Iwai K. Regulation of cellular iron metabolism: Iron-dependent degradation of IRP by SCF FBXL5 ubiquitin ligase. Free Radic Biol Med 2019; 133:64-68. [PMID: 30218771 DOI: 10.1016/j.freeradbiomed.2018.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/30/2022]
Abstract
Because of essentiality and toxicity of iron in our body, iron metabolism is tightly regulated in cells. In mammalian cells, iron regulatory protein 1 and 2 (IRP1 and IRP2) are the central regulators of cellular iron metabolism. IRPs regulate iron metabolism by interacting with the RNA stem-loop structures, iron-responsive elements (IREs), found on the transcripts encoding proteins involved in iron metabolism only in iron depleted condition. It is also well-known that the ubiquitin system plays central roles in cellular iron regulation because both IRPs having the IRE binding activity are recognized and ubiquitinated by the SCFFBXL5 ubiquitin ligase in condition of iron-replete. FBXL5, which is a substrate recognition subunit of SCFFBXL5, senses iron availability via its hemerythrin-like domain. In this small article, current understanding of the roles of SCFFBXL5-mediated degradation of IRPs played in cellular iron metabolism is discussed.
Collapse
Affiliation(s)
- Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
36
|
Nonato MC, de Pádua RA, David JS, Reis RA, Tomaleri GP, D'Muniz Pereira H, Calil FA. Structural basis for the design of selective inhibitors for Schistosoma mansoni dihydroorotate dehydrogenase. Biochimie 2019; 158:180-190. [DOI: 10.1016/j.biochi.2019.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/10/2019] [Indexed: 10/27/2022]
|
37
|
GAPDH as a model non-canonical AU-rich RNA binding protein. Semin Cell Dev Biol 2019; 86:162-173. [DOI: 10.1016/j.semcdb.2018.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
|
38
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
39
|
Pourcelot E, Lénon M, Charbonnier P, Louis F, Mossuz P, Moulis JM. The iron regulatory proteins are defective in repressing translation via exogenous 5' iron responsive elements despite their relative abundance in leukemic cellular models. Metallomics 2018; 10:639-649. [PMID: 29652073 DOI: 10.1039/c8mt00006a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In animal cells the specific translational control of proteins contributing to iron homeostasis is mediated by the interaction between the Iron Regulatory Proteins (IRP1 and IRP2) and the Iron Responsive Elements (IRE) located in the untranslated regions (UTR) of regulated messengers, such as those encoding ferritin or the transferrin receptor. The absolute concentrations of the components of this regulatory system in hematopoietic cells and the ability of the endogenous IRP to regulate exogenous IRE have been measured. The IRP concentration is in the low μM (10-6 M) range, whereas the most abundant IRE-containing messenger RNA (mRNA), i.e. those of the ferritin subunits, do not exceed 100 nM (10-7 M). Most other IRP mRNA targets are around or below 1 nM. The distribution of the mRNA belonging to the cellular iron network is similar in human leukemic cell lines and in normal cord blood progenitors, with differences among the cellular models only associated with their different propensities to synthesize hemoglobin. Thus, the IRP regulator is in large excess over its presently identified regulated mRNA targets. Yet, despite this excess, endogenous IRP poorly represses translation of transfected luciferase cDNA engineered with a series of IRE sequences in the 5' UTR. The cellular concentrations of the central hubs of the mammalian translational iron network will have to be included in the description of the proliferative phenotype of leukemic cells and in assessing any therapeutic action targeting iron provision.
Collapse
Affiliation(s)
- Emmanuel Pourcelot
- Univ. Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR BEeSy, 38000 Grenoble, France
| | | | | | | | | | | |
Collapse
|
40
|
Pang Y, Gupta G, Yang C, Wang H, Huynh TT, Abdullaev Z, Pack SD, Percy MJ, Lappin TRJ, Zhuang Z, Pacak K. A novel splicing site IRP1 somatic mutation in a patient with pheochromocytoma and JAK2 V617F positive polycythemia vera: a case report. BMC Cancer 2018. [PMID: 29534684 PMCID: PMC5850917 DOI: 10.1186/s12885-018-4127-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The role of the hypoxia signaling pathway in the pathogenesis of pheochromocytoma/paraganglioma (PPGL)-polycythemia syndrome has been elucidated. Novel somatic mutations in hypoxia-inducible factor type 2A (HIF2A) and germline mutations in prolyl hydroxylase type 1 and type 2 (PHD1 and PHD2) have been identified to cause upregulation of the hypoxia signaling pathway and its target genes including erythropoietin (EPO) and its receptor (EPOR). However, in a minority of patients presenting with this syndrome, the genetics and molecular pathogenesis remain unexplained. The aim of the present study was to uncover novel genetic causes of PPGL-polycythemia syndrome. Case presentation A female presented with a history of JAK2V617F positive PV, diagnosed in 2007, and right adrenal pheochromocytoma diagnosed and resected in 2011. Her polycythemia symptoms and hematocrit levels continued to worsen from 2007 to 2011, with an increased frequency of phlebotomies. Postoperatively, until early 2013, her hematocrit levels remained normalized. Following this, the hematocrit levels ranged between 46.4 and 48.9% [35–45%]. Tumor tissue from the patient was further tested for mutations in genes related to upregulation of the hypoxia signaling pathway including iron regulatory protein 1 (IRP1), which is a known regulator of HIF-2α mRNA translation. Functional studies were performed to investigate the consequences of these mutations, especially their effect on the HIF signaling pathway and EPO. Indel mutations (c.267-1_267delGGinsTA) were discovered at the exon 3 splicing site of IRP1. Minigene construct and splicing site analysis showed that the mutation led to a new splicing site and a frameshift mutation of IRP1, which caused a truncated protein. Fluorescence in situ hybridization analysis demonstrated heterozygous IRP1 deletions in tumor cells. Immunohistochemistry results confirmed the truncated IRP1 and overexpressed HIF-2α, EPO and EPOR in tumor cells. Conclusions This is the first report which provides direct molecular genetic evidence of association between a somatic IRP1 loss-of-function mutation and PHEO and secondary polycythemia. In patients diagnosed with PHEO/PGL and polycythemia with negative genetic testing for mutations in HIF2A, PHD1/2, and VHL, IRP1 should be considered as a candidate gene.
Collapse
Affiliation(s)
- Ying Pang
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Garima Gupta
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Thanh-Truc Huynh
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ziedulla Abdullaev
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Svetlana D Pack
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Melanie J Percy
- Department of Haematology, Belfast City Hospital, Belfast, Northern Ireland, BT9 7AB, UK
| | - Terence R J Lappin
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland, BT9 7AB, UK
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
41
|
Cardenas-Rodriguez M, Chatzi A, Tokatlidis K. Iron-sulfur clusters: from metals through mitochondria biogenesis to disease. J Biol Inorg Chem 2018; 23:509-520. [PMID: 29511832 PMCID: PMC6006200 DOI: 10.1007/s00775-018-1548-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/22/2018] [Indexed: 01/12/2023]
Abstract
Iron–sulfur clusters are ubiquitous inorganic co-factors that contribute to a wide range of cell pathways including the maintenance of DNA integrity, regulation of gene expression and protein translation, energy production, and antiviral response. Specifically, the iron–sulfur cluster biogenesis pathways include several proteins dedicated to the maturation of apoproteins in different cell compartments. Given the complexity of the biogenesis process itself, the iron–sulfur research area constitutes a very challenging and interesting field with still many unaddressed questions. Mutations or malfunctions affecting the iron–sulfur biogenesis machinery have been linked with an increasing amount of disorders such as Friedreich’s ataxia and various cardiomyopathies. This review aims to recap the recent discoveries both in the yeast and human iron–sulfur cluster arena, covering recent discoveries from chemistry to disease.
Collapse
Affiliation(s)
- Mauricio Cardenas-Rodriguez
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Afroditi Chatzi
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kostas Tokatlidis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
42
|
Ogura M, Endo R, Ishikawa H, Takeda Y, Uchida T, Iwai K, Kobayashi K, Ishimori K. Redox-dependent axial ligand replacement and its functional significance in heme-bound iron regulatory proteins. J Inorg Biochem 2018; 182:238-248. [PMID: 29449016 DOI: 10.1016/j.jinorgbio.2018.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022]
Abstract
Iron regulatory proteins (IRPs), regulators of iron metabolism in mammalian cells, control the translation of proteins involved in iron uptake, storage and utilization by binding to specific iron-responsive element (IRE) sequences of mRNAs. Two homologs of IRPs (IRP1 and IRP2) have a typical heme regulatory motif (HRM), a consensus sequence found in "heme-regulated proteins". However, specific heme binding to HRM has been reported only for IRP2, which is essential for oxidative modification and loss of binding to target mRNAs. In this paper, we confirmed that IRP1 also specifically binds two molar equivalents of heme, and found that the absorption and resonance Raman spectra of heme-bound IRP1 were quite similar to those of heme-bound IRP2. This shows that the heme environmental structures in IRP1 are close to those of proteins using heme as a regulatory molecule. Pulse radiolysis experiments, however, clearly revealed an axial ligand exchange from Cys to His immediately after the reduction of the heme iron to form a 5-coordinate His-ligated heme in heme-bound IRP2, whereas the 5-coordinate His-ligated heme was not observed after the reduction of heme-bound IRP1. Considering that the oxidative modification is only observed in heme-bound IRP2, but not IRP1, probably owing to the structural flexibility of IRP2, we propose that the transient 5-coordinate His-ligated heme is a prerequisite for oxidative modification of heme-bound IRP2, which functionally differentiates heme binding of IRP2 from that of IRP1.
Collapse
Affiliation(s)
- Mariko Ogura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Ryosuke Endo
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Haruto Ishikawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Yukiko Takeda
- Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8561, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuhiro Iwai
- Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8561, Japan
| | - Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
43
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out a wide range of functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters towards small/redox active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial re-programming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances. Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high resolution structural data. Though this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry , University of East Anglia , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry , University plain , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| |
Collapse
|
44
|
Rouault TA, Maio N. Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways. J Biol Chem 2017; 292:12744-12753. [PMID: 28615439 PMCID: PMC5546015 DOI: 10.1074/jbc.r117.789537] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fe-S cofactors are composed of iron and inorganic sulfur in various stoichiometries. A complex assembly pathway conducts their initial synthesis and subsequent binding to recipient proteins. In this minireview, we discuss how discovery of the role of the mammalian cytosolic aconitase, known as iron regulatory protein 1 (IRP1), led to the characterization of the function of its Fe-S cluster in sensing and regulating cellular iron homeostasis. Moreover, we present an overview of recent studies that have provided insights into the mechanism of Fe-S cluster transfer to recipient Fe-S proteins.
Collapse
Affiliation(s)
- Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892.
| | - Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
45
|
Functional characterization of aconitase X as a cis-3-hydroxy-L-proline dehydratase. Sci Rep 2016; 6:38720. [PMID: 27929065 PMCID: PMC5144071 DOI: 10.1038/srep38720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/11/2016] [Indexed: 01/30/2023] Open
Abstract
In the aconitase superfamily, which includes the archetypical aconitase, homoaconitase, and isopropylmalate isomerase, only aconitase X is not functionally annotated. The corresponding gene (LhpI) was often located within the bacterial gene cluster involved in L-hydroxyproline metabolism. Screening of a library of (hydroxy)proline analogues revealed that this protein catalyzes the dehydration of cis-3-hydroxy-L-proline to Δ1-pyrroline-2-carboxylate. Furthermore, electron paramagnetic resonance and site-directed mutagenic analyses suggests the presence of a mononuclear Fe(III) center, which may be coordinated with one glutamate and two cysteine residues. These properties were significantly different from those of other aconitase members, which catalyze the isomerization of α- to β-hydroxy acids, and have a [4Fe-4S] cluster-binding site composed of three cysteine residues. Bacteria with the LhpI gene could degrade cis-3-hydroxy-L-proline as the sole carbon source, and LhpI transcription was up-regulated not only by cis-3-hydroxy-L-proline, but also by several isomeric 3- and 4-hydroxyprolines.
Collapse
|
46
|
DeBlasio SL, Chavez JD, Alexander MM, Ramsey J, Eng JK, Mahoney J, Gray SM, Bruce JE, Cilia M. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology. J Virol 2016; 90:1973-87. [PMID: 26656710 PMCID: PMC4733995 DOI: 10.1128/jvi.01706-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection-hallmarks of host-pathogen interactions-were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. IMPORTANCE The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction reporter (PIR) technology to illustrate how viruses exploit host proteins during plant infection. PIR technology enabled our team to precisely describe the sites of functional virus-virus, virus-host, and host-host protein interactions using a mass spectrometry analysis that takes just a few hours. Applications of PIR technology in host-pathogen interactions will enable researchers studying recalcitrant pathogens, such as animal pathogens where host proteins are incorporated directly into the infectious agents, to investigate how proteins interact during infection and transmission as well as develop new tools for interdiction and therapy.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA USDA-Agricultural Research Service, Ithaca, New York, USA
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Mariko M Alexander
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - John Ramsey
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | - Jimmy K Eng
- University of Washington Proteomics Resources, Seattle, Washington, USA
| | - Jaclyn Mahoney
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | - Stewart M Gray
- USDA-Agricultural Research Service, Ithaca, New York, USA Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michelle Cilia
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA USDA-Agricultural Research Service, Ithaca, New York, USA Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
47
|
Hypoxia and metabolic adaptation of cancer cells. Oncogenesis 2016; 5:e190. [PMID: 26807645 PMCID: PMC4728679 DOI: 10.1038/oncsis.2015.50] [Citation(s) in RCA: 513] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/13/2022] Open
Abstract
Low oxygen tension (hypoxia) is a pervasive physiological and pathophysiological stimulus that metazoan organisms have contended with since they evolved from their single-celled ancestors. The effect of hypoxia on a tissue can be either positive or negative, depending on the severity, duration and context. Over the long-term, hypoxia is not usually consistent with normal function and so multicellular organisms have had to evolve both systemic and cellular responses to hypoxia. Our reliance on oxygen for efficient adenosine triphosphate (ATP) generation has meant that the cellular metabolic network is particularly sensitive to alterations in oxygen tension. Metabolic changes in response to hypoxia are elicited through both direct mechanisms, such as the reduction in ATP generation by oxidative phosphorylation or inhibition of fatty-acid desaturation, and indirect mechanisms including changes in isozyme expression through hypoxia-responsive transcription factor activity. Significant regions of cancers often grow in hypoxic conditions owing to the lack of a functional vasculature. As hypoxic tumour areas contain some of the most malignant cells, it is important that we understand the role metabolism has in keeping these cells alive. This review will outline our current understanding of many of the hypoxia-induced changes in cancer cell metabolism, how they are affected by other genetic defects often present in cancers, and how these metabolic alterations support the malignant hypoxic phenotype.
Collapse
|
48
|
Figueroa-Angulo EE, Calla-Choque JS, Mancilla-Olea MI, Arroyo R. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins. Biomolecules 2015; 5:3354-95. [PMID: 26703754 PMCID: PMC4693282 DOI: 10.3390/biom5043354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/07/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023] Open
Abstract
Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.
Collapse
Affiliation(s)
- Elisa E Figueroa-Angulo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Jaeson S Calla-Choque
- Laboratorio de Inmunopatología en Neurocisticercosis, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Urb. Ingeniería, S.M.P., Lima 15102, Peru.
| | - Maria Inocente Mancilla-Olea
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| |
Collapse
|
49
|
Bar-Yaacov D, Hadjivasiliou Z, Levin L, Barshad G, Zarivach R, Bouskila A, Mishmar D. Mitochondrial Involvement in Vertebrate Speciation? The Case of Mito-nuclear Genetic Divergence in Chameleons. Genome Biol Evol 2015; 7:3322-36. [PMID: 26590214 PMCID: PMC4700957 DOI: 10.1093/gbe/evv226] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Compatibility between the nuclear (nDNA) and mitochondrial (mtDNA) genomes is important for organismal health. However, its significance for major evolutionary processes such as speciation is unclear, especially in vertebrates. We previously identified a sharp mtDNA-specific sequence divergence between morphologically indistinguishable chameleon populations (Chamaeleo chamaeleon recticrista) across an ancient Israeli marine barrier (Jezreel Valley). Because mtDNA introgression and gender-based dispersal were ruled out, we hypothesized that mtDNA spatial division was maintained by mito-nuclear functional compensation. Here, we studied RNA-seq generated from each of ten chameleons representing the north and south populations and identified candidate nonsynonymous substitutions (NSSs) matching the mtDNA spatial distribution. The most prominent NSS occurred in 14 nDNA-encoded mitochondrial proteins. Increased chameleon sample size (N = 70) confirmed the geographic differentiation in POLRMT, NDUFA5, ACO1, LYRM4, MARS2, and ACAD9. Structural and functionality evaluation of these NSSs revealed high functionality. Mathematical modeling suggested that this mito-nuclear spatial divergence is consistent with hybrid breakdown. We conclude that our presented evidence and mathematical model underline mito-nuclear interactions as a likely role player in incipient speciation in vertebrates.
Collapse
Affiliation(s)
- Dan Bar-Yaacov
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Zena Hadjivasiliou
- Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, UCL, London, United Kingdom Department of Genetics, Evolution and Environment, UCL, London, United Kingdom
| | - Liron Levin
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Gilad Barshad
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Amos Bouskila
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
50
|
Abstract
Cellular iron homeostasis is regulated by post-transcriptional feedback mechanisms, which control the expression of proteins involved in iron uptake, release and storage. Two cytoplasmic proteins with mRNA-binding properties, iron regulatory proteins 1 and 2 (IRP1 and IRP2) play a central role in this regulation. Foremost, IRPs regulate ferritin H and ferritin L translation and thus iron storage, as well as transferrin receptor 1 (TfR1) mRNA stability, thereby adjusting receptor expression and iron uptake via receptor-mediated endocytosis of iron-loaded transferrin. In addition splice variants of iron transporters for import and export at the plasma-membrane, divalent metal transporter 1 (DMT1) and ferroportin are regulated by IRPs. These mechanisms have probably evolved to maintain the cytoplasmic labile iron pool (LIP) at an appropriate level. In certain tissues, the regulation exerted by IRPs influences iron homeostasis and utilization of the entire organism. In intestine, the control of ferritin expression limits intestinal iron absorption and, thus, whole body iron levels. In bone marrow, erythroid heme biosynthesis is coordinated with iron availability through IRP-mediated translational control of erythroid 5-aminolevulinate synthase mRNA. Moreover, the translational control of HIF2α mRNA in kidney by IRP1 coordinates erythropoietin synthesis with iron and oxygen supply. Besides IRPs, body iron absorption is negatively regulated by hepcidin. This peptide hormone, synthesized and secreted by the liver in response to high serum iron, downregulates ferroportin at the protein level and thereby limits iron absorption from the diet. Hepcidin will not be discussed in further detail here.
Collapse
Affiliation(s)
- Lukas C Kühn
- Ecole Polytechnique Fédérale de Lausanne (EPFL), ISREC - Swiss Institute for Experimental Cancer Research, EPFL_SV_ISREC, Room SV2516, Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|