1
|
Lucet IS, Daly RJ. View from the PEAKs: Insights from structural studies on the PEAK family of pseudokinases. Curr Opin Struct Biol 2024; 89:102932. [PMID: 39321525 DOI: 10.1016/j.sbi.2024.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The PEAK family of pseudokinase scaffolds, comprising PEAK1 (originally termed SgK269), PEAK2 (SgK223, the human orthologue of rat Pragmin) and PEAK3 (C19orf35), have emerged as important regulators and integrators of cellular signaling and also play oncogenic roles in a variety of human cancers. These proteins undergo both homo- and heterotypic association that act to diversify signal output. Recently, structural and functional characterization of PEAK3 and its protein-protein interactions have shed light on PEAK signaling dynamics and the interdependency of PEAK family members, how PEAK dimerization regulates the binding of downstream effectors, and how 14-3-3 binding acts to regulate PEAK3 signal output. These important advances form the basis of this review.
Collapse
Affiliation(s)
- Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Roger J Daly
- Cancer Program, Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
2
|
Roy MJ, Surudoi MG, Kropp A, Hou J, Dai W, Hardy JM, Liang LY, Cotton TR, Lechtenberg BC, Dite TA, Ma X, Daly RJ, Patel O, Lucet IS. Structural mapping of PEAK pseudokinase interactions identifies 14-3-3 as a molecular switch for PEAK3 signaling. Nat Commun 2023; 14:3542. [PMID: 37336884 DOI: 10.1038/s41467-023-38869-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/16/2023] [Indexed: 06/21/2023] Open
Abstract
PEAK pseudokinases regulate cell migration, invasion and proliferation by recruiting key signaling proteins to the cytoskeleton. Despite lacking catalytic activity, alteration in their expression level is associated with several aggressive cancers. Here, we elucidate the molecular details of key PEAK signaling interactions with the adapter proteins CrkII and Grb2 and the scaffold protein 14-3-3. Our findings rationalize why the dimerization of PEAK proteins has a crucial function in signal transduction and provide biophysical and structural data to unravel binding specificity within the PEAK interactome. We identify a conserved high affinity 14-3-3 motif on PEAK3 and demonstrate its role as a molecular switch to regulate CrkII binding and signaling via Grb2. Together, our studies provide a detailed structural snapshot of PEAK interaction networks and further elucidate how PEAK proteins, especially PEAK3, act as dynamic scaffolds that exploit adapter proteins to control signal transduction in cell growth/motility and cancer.
Collapse
Affiliation(s)
- Michael J Roy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Minglyanna G Surudoi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ashleigh Kropp
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jianmei Hou
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Weiwen Dai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Joshua M Hardy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Lung-Yu Liang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Thomas R Cotton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Bernhard C Lechtenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Toby A Dite
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Xiuquan Ma
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Onisha Patel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
3
|
Hou J, Nguyen EV, Surudoi M, Roy MJ, Patel O, Lucet IS, Ma X, Daly RJ. Distinct PEAK3 interactors and outputs expand the signaling potential of the PEAK pseudokinase family. Sci Signal 2022; 15:eabj3554. [PMID: 35192416 DOI: 10.1126/scisignal.abj3554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pseudokinase scaffolds PEAK1 and PEAK2 are implicated in cancer cell migration and metastasis. We characterized the regulation and role of the third family member PEAK3 in cell signaling. Similar to PEAK1 and PEAK2, PEAK3 formed both homotypic and heterotypic complexes. In addition, like PEAK1, it bound to the adaptors Grb2 and CrkII. However, unlike PEAK1 and PEAK2, homodimerized PEAK3 also interacted with the ARF GTPase-activating protein ASAP1, the E3 ubiquitin ligase Cbl, and the kinase PYK2. Dimerization and subsequent phosphorylation on Tyr24, likely by a Src family kinase, were required for the binding of PEAK3 to Grb2 and ASAP1. Interactions with Grb2, CrkII, ASAP1, Cbl, and PYK2 exhibited contrasting dynamics upon cell stimulation with epidermal growth factor (EGF), in part due to PEAK3 dephosphorylation mediated by the phosphatase PTPN12. Overexpressing PEAK3 in mesenchymal-like MDA-MB-231 breast cancer cells enhanced cell elongation in a manner dependent on PEAK3 dimerization, and manipulation of PEAK3 expression demonstrated a positive role for this scaffold in regulating cell migration. Overexpressing PEAK3 in PEAK1/2 double-knockout MCF-10A breast epithelial cells enhanced acinar growth, impaired basement membrane integrity, and promoted invasion in three-dimensional cultures, with the latter two effects dependent on the binding of PEAK3 to Grb2 and ASAP1. PEAK1 and PEAK2 quantitatively and temporally influenced PEAK3 function. These findings characterize PEAK3 as an integral, signal-diversifying member of the PEAK family with scaffolding roles that promote cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Jianmei Hou
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Elizabeth V Nguyen
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Minglyanna Surudoi
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Michael J Roy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Onisha Patel
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Isabelle S Lucet
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Xiuquan Ma
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
4
|
Sequence-Based Prediction of Metamorphic Behavior in Proteins. Biophys J 2020; 119:1380-1390. [PMID: 32937108 PMCID: PMC7567988 DOI: 10.1016/j.bpj.2020.07.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
An increasing number of proteins have been demonstrated in recent years to adopt multiple three-dimensional folds with different functions. These metamorphic proteins are characterized by having two or more folds with significant differences in their secondary structure, in which each fold is stabilized by a distinct local environment. So far, ∼90 metamorphic proteins have been identified in the Protein Databank, but we and others hypothesize that a far greater number of metamorphic proteins remain undiscovered. In this work, we introduce a computational model to predict metamorphic behavior in proteins using only knowledge of the sequence. In this model, secondary structure prediction programs are used to calculate diversity indices, which are measures of uncertainty in predicted secondary structure at each position in the sequence; these are then used to assign protein sequences as likely to be metamorphic versus monomorphic (i.e., having just one fold). We constructed a reference data set to train our classification method, which includes a novel compilation of 136 likely monomorphic proteins and a set of 201 metamorphic protein structures taken from the literature. Our model is able to classify proteins as metamorphic versus monomorphic with a Matthews correlation coefficient of ∼0.36 and true positive/true negative rates of ∼65%/80%, suggesting that it is possible to predict metamorphic behavior in proteins using only sequence information.
Collapse
|
5
|
Richter K, Rufer AC, Muller M, Burger D, Casagrande F, Grossenbacher T, Huber S, Hug MN, Koldewey P, D'Osualdo A, Schlatter D, Stoll T, Rudolph MG. Small molecule AX-024 reduces T cell proliferation independently of CD3ϵ/Nck1 interaction, which is governed by a domain swap in the Nck1-SH3.1 domain. J Biol Chem 2020; 295:7849-7864. [PMID: 32317279 PMCID: PMC7278359 DOI: 10.1074/jbc.ra120.012788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Activation of the T cell receptor (TCR) results in binding of the adapter protein Nck (noncatalytic region of tyrosine kinase) to the CD3ϵ subunit of the TCR. The interaction was suggested to be important for the amplification of TCR signals and is governed by a proline-rich sequence (PRS) in CD3ϵ that binds to the first Src homology 3 (SH3) domain of Nck (Nck-SH3.1). Inhibition of this protein/protein interaction ameliorated inflammatory symptoms in mouse models of multiple sclerosis, psoriasis, and asthma. A small molecule, AX-024, was reported to inhibit the Nck/CD3ϵ interaction by physically binding to the Nck1-SH3.1 domain, suggesting a route to develop an inhibitor of the Nck1/CD3ϵ interaction for modulating TCR activity in autoimmune and inflammatory diseases. We show here that AX-024 reduces T cell proliferation upon weak TCR stimulation but does not significantly affect phosphorylation of Zap70 (ζ chain of T cell receptor–associated protein kinase 70). We also find that AX-024 is likely not involved in modulating the Nck/TCR interaction but probably has other targets in T cells. An array of biophysical techniques did not detect a direct interaction between AX-024 and Nck-SH3.1 in vitro. Crystal structures of the Nck-SH3.1 domain revealed its binding mode to the PRS in CD3ϵ. The SH3 domain tends to generate homodimers through a domain swap. Domain swaps observed previously in other SH3 domains indicate a general propensity of this protein fold to exchange structural elements. The swapped form of Nck-SH3.1 is unable to bind CD3ϵ, possibly representing an inactive form of Nck in cells.
Collapse
Affiliation(s)
- Kirsten Richter
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Arne C Rufer
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Magali Muller
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Dominique Burger
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Fabio Casagrande
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tabea Grossenbacher
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sylwia Huber
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Melanie N Hug
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philipp Koldewey
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andrea D'Osualdo
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Daniel Schlatter
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Theodor Stoll
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Markus G Rudolph
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
6
|
Guerra MJ, González‐Jamett AM, Báez‐Matus X, Navarro‐Quezada N, Martínez AD, Neely A, Cárdenas AM. The Ca2+channel subunit CaVβ2a‐subunit down‐regulates voltage‐activated ion current densities by disrupting actin‐dependent traffic in chromaffin cells. J Neurochem 2019; 151:703-715. [DOI: 10.1111/jnc.14851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/01/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Affiliation(s)
- María J. Guerra
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia Universidad de Valparaíso Valparaíso Chile
| | - Arlek M. González‐Jamett
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia Universidad de Valparaíso Valparaíso Chile
| | - Ximena Báez‐Matus
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia Universidad de Valparaíso Valparaíso Chile
| | - Nieves Navarro‐Quezada
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia Universidad de Valparaíso Valparaíso Chile
| | - Agustín D. Martínez
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia Universidad de Valparaíso Valparaíso Chile
| | - Alan Neely
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia Universidad de Valparaíso Valparaíso Chile
| | - Ana M. Cárdenas
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia Universidad de Valparaíso Valparaíso Chile
| |
Collapse
|
7
|
PEAK3/C19orf35 pseudokinase, a new NFK3 kinase family member, inhibits CrkII through dimerization. Proc Natl Acad Sci U S A 2019; 116:15495-15504. [PMID: 31311869 DOI: 10.1073/pnas.1906360116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Members of the New Kinase Family 3 (NKF3), PEAK1/SgK269 and Pragmin/SgK223 pseudokinases, have emerged as important regulators of cell motility and cancer progression. Here, we demonstrate that C19orf35 (PEAK3), a newly identified member of the NKF3 family, is a kinase-like protein evolutionarily conserved across mammals and birds and a regulator of cell motility. In contrast to its family members, which promote cell elongation when overexpressed in cells, PEAK3 overexpression does not have an elongating effect on cell shape but instead is associated with loss of actin filaments. Through an unbiased search for PEAK3 binding partners, we identified several regulators of cell motility, including the adaptor protein CrkII. We show that by binding to CrkII, PEAK3 prevents the formation of CrkII-dependent membrane ruffling. This function of PEAK3 is reliant upon its dimerization, which is mediated through a split helical dimerization domain conserved among all NKF3 family members. Disruption of the conserved DFG motif in the PEAK3 pseudokinase domain also interferes with its ability to dimerize and subsequently bind CrkII, suggesting that the conformation of the pseudokinase domain might play an important role in PEAK3 signaling. Hence, our data identify PEAK3 as an NKF3 family member with a unique role in cell motility driven by dimerization of its pseudokinase domain.
Collapse
|
8
|
Kukuk L, Dingley AJ, Granzin J, Nagel-Steger L, Thiagarajan-Rosenkranz P, Ciupka D, Hänel K, Batra-Safferling R, Pacheco V, Stoldt M, Pfeffer K, Beer-Hammer S, Willbold D, Koenig BW. Structure of the SLy1 SAM homodimer reveals a new interface for SAM domain self-association. Sci Rep 2019; 9:54. [PMID: 30631134 PMCID: PMC6328559 DOI: 10.1038/s41598-018-37185-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022] Open
Abstract
Sterile alpha motif (SAM) domains are protein interaction modules that are involved in a diverse range of biological functions such as transcriptional and translational regulation, cellular signalling, and regulation of developmental processes. SH3 domain-containing protein expressed in lymphocytes 1 (SLy1) is involved in immune regulation and contains a SAM domain of unknown function. In this report, the structure of the SLy1 SAM domain was solved and revealed that this SAM domain forms a symmetric homodimer through a novel interface. The interface consists primarily of the two long C-terminal helices, α5 and α5', of the domains packing against each other. The dimerization is characterized by a dissociation constant in the lower micromolar range. A SLy1 SAM domain construct with an extended N-terminus containing five additional amino acids of the SLy1 sequence further increases the stability of the homodimer, making the SLy1 SAM dimer two orders of magnitude more stable than previously studied SAM homodimers, suggesting that the SLy1 SAM dimerization is of functional significance. The SLy1 SAM homodimer contains an exposed mid-loop surface on each monomer, which may provide a scaffold for mediating interactions with other SAM domain-containing proteins via a typical mid-loop-end-helix interface.
Collapse
Affiliation(s)
- Laura Kukuk
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Andrew J Dingley
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Joachim Granzin
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Luitgard Nagel-Steger
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Pallavi Thiagarajan-Rosenkranz
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Daniel Ciupka
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Karen Hänel
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Renu Batra-Safferling
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Victor Pacheco
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Makromolekulare Chemie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Straße 31, 79104, Freiburg, Germany
| | - Matthias Stoldt
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sandra Beer-Hammer
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, und Interfakultäres Zentrum für Pharmakogenomik und Arzneimittelforschung (ICePhA), Eberhard-Karls-Universität Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| | - Bernd W Koenig
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
9
|
Benz PM, Laban H, Zink J, Günther L, Walter U, Gambaryan S, Dib K. Vasodilator-Stimulated Phosphoprotein (VASP)-dependent and -independent pathways regulate thrombin-induced activation of Rap1b in platelets. Cell Commun Signal 2016; 14:21. [PMID: 27620165 PMCID: PMC5020514 DOI: 10.1186/s12964-016-0144-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/06/2016] [Indexed: 11/13/2022] Open
Abstract
Background Vasodilator-Stimulated Phosphoprotein (VASP) is involved in the inhibition of agonist-induced platelet aggregation by cyclic nucleotides and the adhesion of platelets to the vascular wall. αIIbβ3 is the main integrin responsible for platelet activation and Rap1b plays a key role in integrin signalling. We investigated whether VASP is involved in the regulation of Rap1b in platelets since VASP-null platelets exhibit augmented adhesion to endothelial cells in vivo. Methods Washed platelets from wild type and VASP-deficient mice were stimulated with thrombin, the purinergic receptors agonist ADP, or the thromboxane A2 receptor agonist U46619 and Rap1b activation was measured using the GST-RalGDS-RBD binding assay. Interaction of VASP and Crkl was investigated by co-immunoprecipitation, confocal microscopy, and pull-down assays using Crkl domains expressed as GST-fusion proteins. Results Surprisingly, we found that activation of Rap1b in response to thrombin, ADP, or U46619 was significantly reduced in platelets from VASP-null mice compared to platelets from wild type mice. However, inhibition of thrombin-induced activation of Rap1b by nitric oxide (NO) was similar in platelets from wild type and VASP-null mice indicating that the NO/cGMP/PKG pathway controls inhibition of Rap1b independently from VASP. To understand how VASP regulated Rap1b, we investigated association between VASP and the Crk-like protein (Crkl), an adapter protein which activates the Rap1b guanine nucleotide exchange factor C3G. We demonstrated the formation of a Crkl/VASP complex by showing that: 1) Crkl co-immunoprecipitated VASP from platelet lysates; 2) Crkl and VASP dynamically co-localized at actin-rich protrusions reminiscent of focal adhesions, filopodia, and lamellipodia upon platelet spreading on fibronectin; 3) recombinant VASP bound directly to the N-terminal SH3 domain of Crkl; 4) Protein Kinase A (PKA) -mediated VASP phosphorylation on Ser157 abrogated the binding of Crkl. Conclusions We identified Crkl as a novel protein interacting with VASP in platelets. We propose that the C3G/Crkl/VASP complex plays a role in the regulation of Rap1b and this explains, at least in part, the reduced agonist-induced activation of Rap1b in VASP-null platelets. In addition, the fact that PKA-dependent VASP phosphorylation abrogated its interaction with Crkl may provide, at least in part, a rationale for the PKA-dependent inhibition of Rap1b and platelet aggregation.
Collapse
Affiliation(s)
- Peter M Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Johann Wolfgang Goethe University and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, 60590, Frankfurt, Germany
| | - Hebatullah Laban
- Institute for Vascular Signalling, Centre for Molecular Medicine, Johann Wolfgang Goethe University and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, 60590, Frankfurt, Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine, Johann Wolfgang Goethe University and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, 60590, Frankfurt, Germany
| | - Lea Günther
- Institute for Vascular Signalling, Centre for Molecular Medicine, Johann Wolfgang Goethe University and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, 60590, Frankfurt, Germany
| | - Ulrich Walter
- Centre for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Stepan Gambaryan
- Department of Cytology and Histology, St. Petersburg State University, St. Petersburg, Russia.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Karim Dib
- Centre for Experimental Medicine, Medical Biology Center (MBC) building, Queen's University of Belfast, Third floor, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK.
| |
Collapse
|
10
|
Ylösmäki L, Fagerlund R, Kuisma I, Julkunen I, Saksela K. Nuclear Translocation of Crk Adaptor Proteins by the Influenza A Virus NS1 Protein. Viruses 2016; 8:101. [PMID: 27092521 PMCID: PMC4848595 DOI: 10.3390/v8040101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/18/2022] Open
Abstract
The non-structural protein-1 (NS1) of many influenza A strains, especially those of avian origin, contains an SH3 ligand motif, which binds tightly to the cellular adaptor proteins Crk (Chicken tumor virus number 10 (CT10) regulator of kinase) and Crk-like adapter protein (CrkL). This interaction has been shown to potentiate NS1-induced activation of the phosphatidylinositol 3-kinase (PI3K), but additional effects on the host cell physiology may exist. Here we show that NS1 can induce an efficient translocation of Crk proteins from the cytoplasm into the nucleus, which results in an altered pattern of nuclear protein tyrosine phosphorylation. This was not observed using NS1 proteins deficient in SH3 binding or engineered to be exclusively cytoplasmic, indicating a physical role for NS1 as a carrier in the nuclear translocation of Crk. These data further emphasize the role of Crk proteins as host cell interaction partners of NS1, and highlight the potential for host cell manipulation gained by a viral protein simply via acquiring a short SH3 binding motif.
Collapse
Affiliation(s)
- Leena Ylösmäki
- Department of Virology, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland.
| | - Riku Fagerlund
- Department of Virology, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland.
| | - Inka Kuisma
- Department of Virology, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland.
| | - Ilkka Julkunen
- Department of Virology, University of Turku, 20520 Turku, Finland and Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), 00300 Helsinki, Finland.
| | - Kalle Saksela
- Department of Virology, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland.
| |
Collapse
|
11
|
Crystallographic studies on protein misfolding: Domain swapping and amyloid formation in the SH3 domain. Arch Biochem Biophys 2016; 602:116-126. [PMID: 26924596 DOI: 10.1016/j.abb.2016.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
Abstract
Oligomerization by 3D domain swapping is found in a variety of proteins of diverse size, fold and function. In the early 1960s this phenomenon was postulated for the oligomers of ribonuclease A, but it was not until the 1990s that X-ray diffraction provided the first experimental evidence of this special manner of oligomerization. Nowadays, structural information has allowed the identification of these swapped oligomers in over one hundred proteins. Although the functional relevance of this phenomenon is not clear, this alternative folding of protomers into intertwined oligomers has been related to amyloid formation. Studies on proteins that develop 3D domain swapping might provide some clues on the early stages of amyloid formation. The SH3 domain is a small modular domain that has been used as a model to study the basis of protein folding. Among SH3 domains, the c-Src-SH3 domain emerges as a helpful model to study 3D domain swapping and amyloid formation.
Collapse
|
12
|
Braiman A, Isakov N. The Role of Crk Adaptor Proteins in T-Cell Adhesion and Migration. Front Immunol 2015; 6:509. [PMID: 26500649 PMCID: PMC4593252 DOI: 10.3389/fimmu.2015.00509] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022] Open
Abstract
Crk adaptor proteins are key players in signal transduction from a variety of cell surface receptors. They are involved in early steps of lymphocyte activation through their SH2-mediated transient interaction with signal transducing effector molecules, such as Cbl, ZAP-70, CasL, and STAT5. In addition, they constitutively associate, via their SH3 domain, with effector molecules, such as C3G, that mediate cell adhesion and regulate lymphocyte extravasation and recruitment to sites of inflammation. Recent studies demonstrated that the conformation and function of CrkII is subjected to a regulation by immunophilins, which also affect CrkII-dependent T-cell adhesion to fibronectin and migration toward chemokines. This article addresses mechanisms that regulate CrkII conformation and function, in general, and emphasizes the role of Crk proteins in receptor-coupled signaling pathways that control T-lymphocyte adhesion and migration to inflammatory sites.
Collapse
Affiliation(s)
- Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben Gurion University of the Negev , Beer Sheva , Israel ; School of Pharmacy, University of Otago , Dunedin , New Zealand
| |
Collapse
|
13
|
Abstract
The hydrodynamic parameters measured in an AUC experiment, s(20,w) and D(t)(20,w)(0), can be used to gain information on the solution structure of (bio)macromolecules and their assemblies. This entails comparing the measured parameters with those that can be computed from usually "dry" structures by "hydrodynamic modeling." In this chapter, we will first briefly put hydrodynamic modeling in perspective and present the basic physics behind it as implemented in the most commonly used methods. The important "hydration" issue is also touched upon, and the distinction between rigid bodies versus those for which flexibility must be considered in the modeling process is then made. The available hydrodynamic modeling/computation programs, HYDROPRO, BEST, SoMo, AtoB, and Zeno, the latter four all implemented within the US-SOMO suite, are described and their performance evaluated. Finally, some literature examples are presented to illustrate the potential applications of hydrodynamics in the expanding field of multiresolution modeling.
Collapse
Affiliation(s)
- Mattia Rocco
- Biopolimeri e Proteomica, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy.
| | - Olwyn Byron
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom.
| |
Collapse
|
14
|
Electrostatic effects in the folding of the SH3 domain of the c-Src tyrosine kinase: pH-dependence in 3D-domain swapping and amyloid formation. PLoS One 2014; 9:e113224. [PMID: 25490095 PMCID: PMC4260792 DOI: 10.1371/journal.pone.0113224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/20/2014] [Indexed: 11/19/2022] Open
Abstract
The SH3 domain of the c-Src tyrosine kinase (c-Src-SH3) aggregates to form intertwined dimers and amyloid fibrils at mild acid pHs. In this work, we show that a single mutation of residue Gln128 of this SH3 domain has a significant effect on: (i) its thermal stability; and (ii) its propensity to form amyloid fibrils. The Gln128Glu mutant forms amyloid fibrils at neutral pH but not at mild acid pH, while Gln128Lys and Gln128Arg mutants do not form these aggregates under any of the conditions assayed. We have also solved the crystallographic structures of the wild-type (WT) and Gln128Glu, Gln128Lys and Gln128Arg mutants from crystals obtained at different pHs. At pH 5.0, crystals belong to the hexagonal space group P6522 and the asymmetric unit is formed by one chain of the protomer of the c-Src-SH3 domain in an open conformation. At pH 7.0, crystals belong to the orthorhombic space group P212121, with two molecules at the asymmetric unit showing the characteristic fold of the SH3 domain. Analysis of these crystallographic structures shows that the residue at position 128 is connected to Glu106 at the diverging β-turn through a cluster of water molecules. Changes in this hydrogen-bond network lead to the displacement of the c-Src-SH3 distal loop, resulting also in conformational changes of Leu100 that might be related to the binding of proline rich motifs. Our findings show that electrostatic interactions and solvation of residues close to the folding nucleation site of the c-Src-SH3 domain might play an important role during the folding reaction and the amyloid fibril formation.
Collapse
|
15
|
Contribution of Crk adaptor proteins to host cell and bacteria interactions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:372901. [PMID: 25506591 PMCID: PMC4260429 DOI: 10.1155/2014/372901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/14/2014] [Indexed: 12/27/2022]
Abstract
The Crk adaptor family of proteins comprises the alternatively spliced CrkI and CrkII isoforms, as well as the paralog Crk-like (CrkL) protein, which is encoded by a different gene. Initially thought to be involved in signaling during apoptosis and cell adhesion, this ubiquitously expressed family of proteins is now known to play essential roles in integrating signals from a wide range of stimuli. In this review, we describe the structure and function of the different Crk proteins. We then focus on the emerging roles of Crk adaptors during Enterobacteriaceae pathogenesis, with special emphasis on the important human pathogens Salmonella, Shigella, Yersinia, and enteropathogenic Escherichia coli. Throughout, we remark on opportunities for future research into this intriguing family of proteins.
Collapse
|
16
|
Cámara-Artigas A, Martínez-Rodríguez S, Ortiz-Salmerón E, Martín-García JM. 3D domain swapping in a chimeric c-Src SH3 domain takes place through two hinge loops. J Struct Biol 2014; 186:195-203. [DOI: 10.1016/j.jsb.2014.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 11/29/2022]
|
17
|
Crk1/2 and CrkL form a hetero-oligomer and functionally complement each other during podocyte morphogenesis. Kidney Int 2014; 85:1382-1394. [PMID: 24499776 PMCID: PMC4040156 DOI: 10.1038/ki.2013.556] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/29/2013] [Accepted: 11/21/2013] [Indexed: 01/19/2023]
Abstract
Activation of the slit diaphragm protein nephrin induces actin cytoskeletal remodeling, resulting in lamellipodia formation in podocytes in vitro in a phosphatidylinositol-3 kinase-, focal adhesion kinase-, Cas-, and Crk1/2-dependent fashion. In mice, podocyte-specific deletion of Crk1/2 prevents or attenuates foot process effacement in two models of podocyte injury. This suggests that cellular mechanisms governing lamellipodial protrusion in vitro are similar to those in vivo during foot process effacement. As Crk1/2-null mice developed and aged normally, we tested whether the Crk1/2 paralog, CrkL, functionally complements Crk1/2 in a podocyte-specific context. Podocyte-specific CrkL-null mice, like podocyte-specific Crk1/2-null mice, developed and aged normally but were protected from protamine sulfate-induced foot process effacement. Simultaneous podocyte-specific deletion of Crk1/2 and CrkL resulted in albuminuria detected by 6 weeks postpartum and associated with altered podocyte process architecture. Nephrin-induced lamellipodia formation in podocytes in vitro was CrkL-dependent. CrkL formed a hetero-oligomer with Crk2 and, like Crk2, was recruited to tyrosine phosphorylated nephrin. Thus, Crk1/2 and CrkL are physically linked, functionally complement each other during podocyte foot process spreading, and together are required for developing typical foot process architecture.
Collapse
|
18
|
The adaptor protein Crk in immune response. Immunol Cell Biol 2013; 92:80-9. [PMID: 24165979 DOI: 10.1038/icb.2013.64] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 09/02/2013] [Accepted: 09/23/2013] [Indexed: 12/17/2022]
Abstract
The adaptor proteins Crk (CT10 (chicken tumor virus number 10) regulator of kinase), including CrkI, CrkII and Crk-like, are important signal molecules that regulate a variety of cellular processes. Considerable progress has been made in understanding the roles of the Crk family proteins in signal transduction, with a focus on cellular transformation and differentiation. However, since Crk was identified in 1988, very few studies have addressed how Crk regulates the immune response. Recent work demonstrates that Crk proteins function as critical signal molecules in regulating immune cell functions. Emerging data on the roles of Crk in activation and inhibitory immunoreceptor signaling suggest that Crk proteins are potential immunotherapeutic targets in cancer and infectious diseases. The aim of this review is to summarize recent key findings regarding the role of Crk in immune responses mediated by T, B and natural killer (NK) cells. In particular, the roles of Crk in NK cell functions are discussed.
Collapse
|
19
|
Adaptor proteins intersectin 1 and 2 bind similar proline-rich ligands but are differentially recognized by SH2 domain-containing proteins. PLoS One 2013; 8:e70546. [PMID: 23936226 PMCID: PMC3723668 DOI: 10.1371/journal.pone.0070546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/20/2013] [Indexed: 12/24/2022] Open
Abstract
Background Scaffolding proteins of the intersectin (ITSN) family, ITSN1 and ITSN2, are crucial for the initiation stage of clathrin-mediated endocytosis. These proteins are closely related but have implications in distinct pathologies. To determine how these proteins could be separated in certain cell pathways we performed a comparative study of ITSNs. Methodology/Principal Findings We have shown that endogenous ITSN1 and ITSN2 colocalize and form a complex in cells. A structural comparison of five SH3 domains, which mediated most ITSNs protein-protein interactions, demonstrated a similarity of their ligand-binding sites. We showed that the SH3 domains of ITSN2 bound well-established interactors of ITSN1 as well as newly identified ITSNs protein partners. A search for a novel interacting interface revealed multiple tyrosines that could be phosphorylated in ITSN2. Phosphorylation of ITSN2 isoforms but not ITSN1 short isoform was observed in various cell lines. EGF stimulation of HeLa cells enhanced tyrosine phosphorylation of ITSN2 isoforms and enabled their recognition by the SH2 domains of the Fyn, Fgr and Abl1 kinases, the regulatory subunit of PI3K, the adaptor proteins Grb2 and Crk, and phospholipase C gamma. The SH2 domains mentioned were unable to bind ITSN1 short isoform. Conclusions/Significance Our results indicate that during evolution of vertebrates ITSN2 acquired a novel protein-interaction interface that allows its specific recognition by the SH2 domains of signaling proteins. We propose that these data could be important to understand the functional diversity of paralogous ITSN proteins.
Collapse
|
20
|
Mitrea DM, Kriwacki RW. Regulated unfolding of proteins in signaling. FEBS Lett 2013; 587:1081-8. [PMID: 23454209 DOI: 10.1016/j.febslet.2013.02.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/27/2022]
Abstract
The transduction of biological signals often involves structural rearrangements of proteins in response to input signals, which leads to functional outputs. This review discusses the role of regulated partial and complete protein unfolding as a mechanism of controlling protein function and the prevalence of this regulatory mechanism in signal transduction pathways. The principles of regulated unfolding, the stimuli that trigger unfolding, and the coupling of unfolding with other well characterized regulatory mechanism are discussed.
Collapse
Affiliation(s)
- Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
21
|
Chemes LB, Glavina J, Alonso LG, Marino-Buslje C, de Prat-Gay G, Sánchez IE. Sequence evolution of the intrinsically disordered and globular domains of a model viral oncoprotein. PLoS One 2012; 7:e47661. [PMID: 23118886 PMCID: PMC3485249 DOI: 10.1371/journal.pone.0047661] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 09/14/2012] [Indexed: 12/11/2022] Open
Abstract
In the present work, we have used the papillomavirus E7 oncoprotein to pursue structure-function and evolutionary studies that take into account intrinsic disorder and the conformational diversity of globular domains. The intrinsically disordered (E7N) and globular (E7C) domains of E7 show similar degrees of conservation and co-evolution. We found that E7N can be described in terms of conserved and coevolving linear motifs separated by variable linkers, while sequence evolution of E7C is compatible with the known homodimeric structure yet suggests other activities for the domain. Within E7N, inter-residue relationships such as residue co-evolution and restricted intermotif distances map functional coupling and co-occurrence of linear motifs that evolve in a coordinate manner. Within E7C, additional cysteine residues proximal to the zinc-binding site may allow redox regulation of E7 function. Moreover, we describe a conserved binding site for disordered domains on the surface of E7C and suggest a putative target linear motif. Both homodimerization and peptide binding activities of E7C are also present in the distantly related host PHD domains, showing that these two proteins share not only structural homology but also functional similarities, and strengthening the view that they evolved from a common ancestor. Finally, we integrate the multiple activities and conformations of E7 into a hierarchy of structure-function relationships.
Collapse
Affiliation(s)
- Lucía B. Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Juliana Glavina
- Protein Physiology Laboratory, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Leonardo G. Alonso
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Cristina Marino-Buslje
- Structural Bioinformatics Laboratory. Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Gonzalo de Prat-Gay
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Ignacio E. Sánchez
- Protein Physiology Laboratory, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
22
|
Domain organization differences explain Bcr-Abl's preference for CrkL over CrkII. Nat Chem Biol 2012; 8:590-6. [PMID: 22581121 PMCID: PMC3423979 DOI: 10.1038/nchembio.954] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 03/20/2012] [Indexed: 12/12/2022]
Abstract
CrkL is a key signaling protein that mediates the leukemogenic activity of Bcr-Abl. CrkL is thought to adopt a structure that is similar to that of its CrkII homolog. The two proteins share high sequence identity and indistinguishable ligand binding preferences; yet they have distinct physiological roles. Here we show that the structures of CrkL and phosphorylated CrkL are drastically different than the corresponding structures of CrkII. As a result, the binding activities of the SH2 and SH3 domains in the two proteins are regulated in a distinct manner and to a different extent. The different structural architecture of CrkL and CrkII may account for their distinct functional roles. The data show that CrkL forms a constitutive complex with Abl thus explaining the strong preference of Bcr-Abl for CrkL. The results also highlight how the structural organization of the modular domains in adaptor proteins can control signaling outcome.
Collapse
|
23
|
Bavdek A, Kostanjšek R, Antonini V, Lakey JH, Dalla Serra M, Gilbert RJC, Anderluh G. pH dependence of listeriolysin O aggregation and pore-forming ability. FEBS J 2011; 279:126-41. [PMID: 22023160 DOI: 10.1111/j.1742-4658.2011.08405.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Listeriolysin O (LLO) is the major factor implicated in the escape of Listeria monocytogenes from the phagolysosome. It is the only representative of cholesterol-dependent cytolysins that exhibits pH-dependent activity. Despite intense studies of LLO pH-dependence, this feature of the toxin still remains incompletely explained. Here we used fluorescence and CD spectroscopy to show that the structure of LLO is not detectably affected by pH at room temperature. We observed slightly altered haemolytic and permeabilizing activities at different pH values, which we relate to reduced binding of LLO to the lipid membranes. However, alkaline pH and elevated temperatures caused rapid denaturation of LLO. Aggregates of the toxin were able to bind Congo red and Thioflavin T dyes and were visible under transmission electron microscopy as large, amorphous, micrometer-sized assemblies. The aggregates had the biophysical properties of amyloid. Analytical ultracentrifugation indicated dimerization of the protein in acidic conditions, which protects the protein against premature denaturation in the phagolysosome, where toxin activity takes place. We therefore suggest that LLO spontaneously aggregates at the neutral pH found in the host cell cytosol and that this is a major mechanism of LLO inactivation.
Collapse
Affiliation(s)
- Andrej Bavdek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
24
|
Reebye V, Frilling A, Hajitou A, Nicholls JP, Habib NA, Mintz PJ. A perspective on non-catalytic Src homology (SH) adaptor signalling proteins. Cell Signal 2011; 24:388-392. [PMID: 22024281 DOI: 10.1016/j.cellsig.2011.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 10/10/2011] [Indexed: 12/27/2022]
Abstract
Intracellular adaptor signalling proteins are members of a large family of mediators crucial for signal transduction pathways. Structurally, these molecules contain one Src Homology 2 (SH2) domain and one or more Src Homology 3 (SH3) domain(s); with either a catalytic subunit, or with other non-catalytic modular subunits. Cells depend on these regulatory signalling molecules to transmit information to the nucleus from both external and internal cues including growth factors, cytokines and steroids. Although there is a vast library of adaptor signalling proteins expressed ubiquitously in cells, the vital role these SH containing proteins play in regulating cellular signalling lacks the recognition they deserve. Their target selection method via the SH domains is simple yet highly effective. The SH3 domain(s) interact with proteins that contain proline-rich motifs, whereas the SH2 domain only binds to proteins containing phosphotyrosine residues. This unique characteristic physically enables proteins from a diverse range of networks to assemble for amplification of a signalling event. The biological consequence generated from these adaptor signalling proteins in a constantly changing microenvironment have profound regulatory effect on cell fate decision particularly when this is involved in the progression of a diseased state.
Collapse
Affiliation(s)
- Vikash Reebye
- Imperial College London, Faculty of Medicine, Department of Surgery and Cancer, London, W12 0NN, UK
| | - Andrea Frilling
- Imperial College London, Faculty of Medicine, Department of Surgery and Cancer, London, W12 0NN, UK
| | - Amin Hajitou
- Imperial College London, Faculty of Medicine, Division of Experimental Medicine, London, W12 0NN, UK
| | - Joanna P Nicholls
- Imperial College London, Faculty of Medicine, Department of Surgery and Cancer, London, W12 0NN, UK
| | - Nagy A Habib
- Imperial College London, Faculty of Medicine, Department of Surgery and Cancer, London, W12 0NN, UK
| | - Paul J Mintz
- Imperial College London, Faculty of Medicine, Department of Surgery and Cancer, London, W12 0NN, UK.
| |
Collapse
|
25
|
Simister PC, Feller SM. Order and disorder in large multi-site docking proteins of the Gab family--implications for signalling complex formation and inhibitor design strategies. MOLECULAR BIOSYSTEMS 2011; 8:33-46. [PMID: 21935523 DOI: 10.1039/c1mb05272a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Large multi-site docking (LMD) proteins of the Gab, IRS, FRS, DOK and Cas families consist of one or two folded N-terminal domains, followed by a predominantly disordered C-terminal extension. Their primary function is to provide a docking platform for signalling molecules (including PI3K, PLC, Grb2, Crk, RasGAP, SHP2) in intracellular signal transmission from activated cell-surface receptors, to which they become coupled. A detailed analysis of the structural nature and intrinsic disorder propensity of LMD proteins, with Gab proteins as specific examples, is presented. By primary sequence analysis and literature review the varying levels of disorder and hidden order are predicted, revealing properties and a physical architecture that help to explain their biological function and characteristics, common for network hub proteins. The virulence factor, CagA, from Helicobacter pylori is able to mimic Gab function once injected by this human pathogen into stomach epithelial cells. Its predicted differential structure is compared to Gab1 with respect to its functional mimicry. Lastly, we discuss how LMD proteins, in particular Gab1 and Gab2, and their protein partners, such as SH2 and SH3 domain-containing adaptors like Grb2, might qualify for future anti-cancer strategies in developing protein-protein interaction (PPI) inhibitors towards binary interactors consisting of an intrinsically disordered epitope and a structured domain surface.
Collapse
Affiliation(s)
- Philip C Simister
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
26
|
Miranda-Laferte E, Gonzalez-Gutierrez G, Schmidt S, Zeug A, Ponimaskin EG, Neely A, Hidalgo P. Homodimerization of the Src homology 3 domain of the calcium channel β-subunit drives dynamin-dependent endocytosis. J Biol Chem 2011; 286:22203-10. [PMID: 21502319 DOI: 10.1074/jbc.m110.201871] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Voltage-dependent calcium channels constitute the main entry pathway for calcium into excitable cells. They are heteromultimers formed by an α(1) pore-forming subunit (Ca(V)α(1)) and accessory subunits. To achieve a precise coordination of calcium signals, the expression and activity of these channels is tightly controlled. The accessory β-subunit (Ca(V)β), a membrane associated guanylate kinase containing one guanylate kinase (β-GK) and one Src homology 3 (β-SH3) domain, has antagonistic effects on calcium currents by regulating different aspects of channel function. Although β-GK binds to a conserved site within the α(1)-pore-forming subunit and facilitates channel opening, β-SH3 binds to dynamin and promotes endocytosis. Here, we investigated the molecular switch underlying the functional duality of this modular protein. We show that β-SH3 homodimerizes through a single disulfide bond. Substitution of the only cysteine residue abolishes dimerization and impairs internalization of L-type Ca(V)1.2 channels expressed in Xenopus oocytes while preserving dynamin binding. Covalent linkage of the β-SH3 dimerization-deficient mutant yields a concatamer that binds to dynamin and restores endocytosis. Moreover, using FRET analysis, we show in living cells that Ca(V)β form oligomers and that this interaction is reduced by Ca(V)α(1). Association of Ca(V)β with a polypeptide encoding the binding motif in Ca(V)α(1) inhibited endocytosis. Together, these findings reveal that β-SH3 dimerization is crucial for endocytosis and suggest that channel activation and internalization are two mutually exclusive functions of Ca(V)β. We propose that a change in the oligomeric state of Ca(V)β is the functional switch between channel activator and channel internalizer.
Collapse
Affiliation(s)
- Erick Miranda-Laferte
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Simister PC, Schaper F, O'Reilly N, McGowan S, Feller SM. Self-organization and regulation of intrinsically disordered proteins with folded N-termini. PLoS Biol 2011; 9:e1000591. [PMID: 21347241 PMCID: PMC3039663 DOI: 10.1371/journal.pbio.1000591] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
How do mostly disordered proteins coordinate the specific assembly of very large signal transduction protein complexes? A newly emerging hypothesis may provide some clues towards a molecular mechanism.
Collapse
Affiliation(s)
- Philip C. Simister
- Cell Signalling Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Fred Schaper
- Department of Systems Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Nicola O'Reilly
- Peptide Synthesis Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Simon McGowan
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Stephan M. Feller
- Cell Signalling Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Antoku S, Mayer BJ. Distinct roles for Crk adaptor isoforms in actin reorganization induced by extracellular signals. J Cell Sci 2009; 122:4228-38. [PMID: 19861495 DOI: 10.1242/jcs.054627] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Crk family adaptors, consisting of Src homology 2 (SH2) and SH3 protein-binding domains, mediate assembly of protein complexes in signaling. CrkI, an alternately spliced form of Crk, lacks the regulatory phosphorylation site and C-terminal SH3 domain present in CrkII and CrkL. We used gene silencing combined with mutational analysis to probe the role of Crk adaptors in platelet-derived growth-factor receptor beta (PDGFbetaR) signaling. We demonstrate that Crk adaptors are required for formation of focal adhesions, and for PDGF-stimulated remodeling of the actin cytoskeleton and cell migration. Crk-dependent signaling is crucial during the early stages of PDGFbetaR activation, whereas its termination by Abl family tyrosine kinases is important for turnover of focal adhesions and progression of dorsal-membrane ruffles. CrkII and CrkL preferentially activate the small GTPase Rac1, whereas variants lacking a functional C-terminal SH3 domain, including CrkI, preferentially activate Rap1. Thus, differences in the activity of Crk isoforms, including their effectors and their ability to be downregulated by phosphorylation, are important for coordinating dynamic changes in the actin cytoskeleton in response to extracellular signals.
Collapse
Affiliation(s)
- Susumu Antoku
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| | | |
Collapse
|
29
|
Birge RB, Kalodimos C, Inagaki F, Tanaka S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun Signal 2009; 7:13. [PMID: 19426560 PMCID: PMC2689226 DOI: 10.1186/1478-811x-7-13] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/10/2009] [Indexed: 01/24/2023] Open
Abstract
The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses.
Collapse
Affiliation(s)
- Raymond B Birge
- Department of Biochemistry & Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Ave, Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
30
|
Structural and functional basis of a role for CRKL in a fibroblast growth factor 8-induced feed-forward loop. Mol Cell Biol 2009; 29:3076-87. [PMID: 19307307 DOI: 10.1128/mcb.01686-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The adapter protein CRKL is required for the normal development of multiple tissues that rely on fibroblast growth factor 8 (FGF8). The precise role of CRKL in receptor signaling has been unclear, however. To address this issue, we first modeled the three-dimensional structure of CRKL by molecular dynamics. By taking advantage of structural simulations, we performed in silico analysis of the interactions of the autophosphorylation sites of FGR receptor 1 (FGFR1) with the SH2 domain of CRKL or a highly related protein, CRK. As predicted by simulations, we confirm the specific physical interaction of phosphorylated Y463 (pY463) in FGFR1 with the CRKL SH2 domain at an affinity approximately 30-fold stronger than that of CRK. We also provide evidence that interactions outside of the core YXXP motif have a significant impact on physical association, which is consistent with predictions from molecular-dynamics simulations. Furthermore, we identify CRKL as an essential component of an FGF8-induced feed-forward loop permissive for efficient activation of the mitogen-activated protein kinase Erk1/2, as well as FGF8-induced anchorage-independent cell growth, using Crkl-deficient cells or a pY463 synthetic peptide. Although many cells generally require cell-matrix adhesion, our results demonstrate that CRKL permits cells to bypass the strict need for adhesion in response to FGF8 through direct interaction with receptor.
Collapse
|
31
|
Mintz PJ, Cardó-Vila M, Ozawa MG, Hajitou A, Rangel R, Guzman-Rojas L, Christianson DR, Arap MA, Giordano RJ, Souza GR, Easley J, Salameh A, Oliviero S, Brentani RR, Koivunen E, Arap W, Pasqualini R. An unrecognized extracellular function for an intracellular adapter protein released from the cytoplasm into the tumor microenvironment. Proc Natl Acad Sci U S A 2009; 106:2182-7. [PMID: 19168626 PMCID: PMC2630201 DOI: 10.1073/pnas.0807543105] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Indexed: 11/18/2022] Open
Abstract
Mammalian cell membranes provide an interface between the intracellular and extracellular compartments. It is currently thought that cytoplasmic signaling adapter proteins play no functional role within the extracellular tumor environment. Here, by selecting combinatorial random peptide libraries in tumor-bearing mice, we uncovered a direct, specific, and functional interaction between CRKL, an adapter protein [with Src homology 2 (SH2)- and SH3-containing domains], and the plexin-semaphorin-integrin domain of beta(1) integrin in the extracellular milieu. Through assays in vitro, in cellulo, and in vivo, we show that this unconventional and as yet unrecognized protein-protein interaction between a regulatory integrin domain (rather than a ligand-binding one) and an intracellular adapter (acting outside of the cells) triggers an alternative integrin-mediated cascade for cell growth and survival. Based on these data, here we propose that a secreted form of the SH3/SH2 adaptor protein CRKL may act as a growth-promoting factor driving tumorigenesis and may lead to the development of cancer therapeutics targeting secreted CRKL.
Collapse
Affiliation(s)
- Paul J. Mintz
- The David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Marina Cardó-Vila
- The David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Michael G. Ozawa
- The David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Amin Hajitou
- The David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Roberto Rangel
- The David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Liliana Guzman-Rojas
- The David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Dawn R. Christianson
- The David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Marco A. Arap
- The David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Ricardo J. Giordano
- The David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Glauco R. Souza
- The David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Jeffrey Easley
- The David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Ahmad Salameh
- The David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- Department of Molecular Biology, University of Siena, Siena 53100, Italy; and
| | - Salvatore Oliviero
- Department of Molecular Biology, University of Siena, Siena 53100, Italy; and
| | - Ricardo R. Brentani
- Office of the President, A. C. Camargo Hospital, São Paulo, SP 01509, Brazil
| | - Erkki Koivunen
- The David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Wadih Arap
- The David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Renata Pasqualini
- The David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
32
|
Li W, Yu S, Liu T, Kim JH, Blank V, Li H, Kong ANT. Heterodimerization with small Maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:1847-56. [PMID: 18585411 PMCID: PMC2570698 DOI: 10.1016/j.bbamcr.2008.05.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 05/14/2008] [Accepted: 05/16/2008] [Indexed: 12/30/2022]
Abstract
Nrf2 is the key transcription factor regulating the antioxidant response. When exposed to oxidative stress, Nrf2 translocates to cell nucleus and forms heterodimer with small Maf proteins (sMaf). Nrf2/sMaf heterodimer binds specifically to a cis-acting enhancer called antioxidant response element and initiates transcription of a battery of antioxidant and detoxification genes. Nrf2 possesses a NESzip motif (nuclear export signal co-localized with the leucine zipper (ZIP) domain). Heterodimerization with MafG via ZIP-ZIP binding enhanced Nrf2 nuclear retention, which could be abrogated by the deletion of the ZIP domain or site-directed mutations targeting at the ZIP domain. In addition, dimerization with MafG precluded Nrf2zip/CRM1 binding, suggesting that Nrf2/MafG heterodimerization may simultaneously mask the NESzip motif. MafG-mediated nuclear retention may enable Nrf2 proteins to evade cytosolic proteasomal degradation and consequently stabilize Nrf2 signaling. For the first time, we show that under the physiological condition, the NESzip motif can be switched-off by heterodimerization.
Collapse
Affiliation(s)
- Wenge Li
- Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854
| | - Siwang Yu
- Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854
| | - Tong Liu
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103
| | - Jung-Hwan Kim
- Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854
| | - Volker Blank
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Hong Li
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103
| | - A.-N. Tony Kong
- Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854
| |
Collapse
|
33
|
Wang L, Gilbert RJC, Atilano ML, Filipe SR, Gay NJ, Ligoxygakis P. Peptidoglycan recognition protein-SD provides versatility of receptor formation in Drosophila immunity. Proc Natl Acad Sci U S A 2008; 105:11881-6. [PMID: 18697931 PMCID: PMC2575254 DOI: 10.1073/pnas.0710092105] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Indexed: 12/11/2022] Open
Abstract
In Drosophila, the enzymatic activity of the glucan binding protein GNBP1 is needed to present Gram-positive peptidoglycan (PG) to peptidoglycan recognition protein SA (PGRP-SA). However, an additional PGRP (PGRP-SD) has been proposed to play a partially redundant role with GNBP1 and PGRP-SA. To reconcile the genetic results with events at the molecular level, we investigated how PGRP-SD participates in the sensing of Gram-positive bacteria. PGRP-SD enhanced the binding of GNBP1 to Gram-positive PG. PGRP-SD interacted with GNBP1 and enhanced the interaction between GNBP1 and PGRP-SA. A complex containing all three proteins could be detected in native gels in the presence of PG. In solution, addition of a highly purified PG fragment induced the occurrence not only of the ternary complex but also of dimeric subcomplexes. These results indicate that the interplay between the binding affinities of different PGRPs provides sufficient flexibility for the recognition of the highly diverse Gram-positive PG.
Collapse
Affiliation(s)
- Lihui Wang
- *Genetics Unit, Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Robert J. C. Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Magda L. Atilano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal; and
| | - Sergio R. Filipe
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal; and
| | - Nicholas J. Gay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Petros Ligoxygakis
- *Genetics Unit, Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
34
|
Isakov N. A new twist to adaptor proteins contributes to regulation of lymphocyte cell signaling. Trends Immunol 2008; 29:388-96. [PMID: 18599349 DOI: 10.1016/j.it.2008.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 04/10/2008] [Accepted: 04/23/2008] [Indexed: 01/23/2023]
Abstract
Cell growth and differentiation are highly controlled processes mediated by effector molecules, which are regulated by posttranslational chemical modifications. Adaptor molecules are critical players in these mechanisms because of their ability to simultaneously interact with multiple effector molecules and orchestrate the assembly of signaling complexes downstream of activated surface receptors. One family of adaptor molecules includes the CrkII/CrkL proteins that are also involved in the regulation of lymphocyte function. Although Crk proteins are amenable to regulation by protein tyrosine kinases, recent data suggest that peptidyl-prolyl cis-trans isomerases (PPIases) can alter their conformation and hence their ability to associate with binding partners. This emerging new function of PPIases is the subject of the current review.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
35
|
Okhrimenko O, Jelesarov I. A survey of the year 2006 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:1-19. [DOI: 10.1002/jmr.859] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
|