1
|
Makino T, Kanada R, Mori T, Miyazono KI, Komori Y, Yanagisawa H, Takada S, Tanokura M, Kikkawa M, Tomishige M. Tension-induced suppression of allosteric conformational changes coordinates kinesin-1 stepping. J Cell Biol 2025; 224:e202501253. [PMID: 40298806 PMCID: PMC12039583 DOI: 10.1083/jcb.202501253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/18/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Kinesin-1 walks along microtubules by alternating ATP hydrolysis and movement of its two motor domains ("head"). The detached head preferentially binds to the forward tubulin-binding site after ATP binds to the microtubule-bound head, but the mechanism preventing premature microtubule binding while the partner head awaits ATP remains unknown. Here, we examined the role of the neck linker, the segment connecting two heads, in this mechanism. Structural analyses of the nucleotide-free head revealed a bulge just ahead of the neck linker's base, creating an asymmetric constraint on its mobility. While the neck linker can stretch freely backward, it must navigate around this bulge to extend forward. We hypothesized that increased neck linker tension suppresses premature binding of the tethered head, which was supported by molecular dynamics simulations and single-molecule fluorescence assays. These findings demonstrate a tension-dependent allosteric mechanism that coordinates the movement of two heads, where neck linker tension modulates the allosteric conformational changes rather than directly affecting the nucleotide state.
Collapse
Affiliation(s)
- Tsukasa Makino
- Department of Applied Physics, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Kanada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Teppei Mori
- Department of Applied Physics, The University of Tokyo, Tokyo, Japan
| | - Ken-ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuta Komori
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michio Tomishige
- Department of Applied Physics, The University of Tokyo, Tokyo, Japan
- Department of Physical Sciences, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| |
Collapse
|
2
|
Peng R, Rochon K, Hutson AN, Stagg SM, Mears JA. The Structure of the Drp1 Lattice on Membrane. J Mol Biol 2025; 437:169125. [PMID: 40185198 DOI: 10.1016/j.jmb.2025.169125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Mitochondrial health relies on the membrane fission mediated by dynamin-related protein 1 (Drp1). Previous structural studies of Drp1 on remodeled membranes were hampered by heterogeneity, leaving a critical gap in the understanding of the mitochondrial fission mechanisms. Here we present a cryo-electron microscopy structure of full-length human Drp1 decorated on membrane tubules. Using the reconstruction of average subtracted tubular regions (RASTR) technique, we report that Drp1 forms a locally ordered lattice along the tubule without global helical symmetry. The filaments in the lattice are similar to dynamin rungs with conserved stalk interactions. Adjacent filaments are connected by GTPase domain interactions in a novel stacked conformation. We identified two states of the Drp1 lattice among the heterogenous dataset representing conformational changes around hinge 1. Additionally, we observed contact between Drp1 and membrane that can be assigned to the variable domain sequence. Together these structures revealed a putative mechanism by which Drp1 constricts mitochondria membranes in a stepwise, "ratchet" manner.
Collapse
Affiliation(s)
- Ruizhi Peng
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Kristy Rochon
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Anelise N Hutson
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Scott M Stagg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA; Department of Biological Sciences, Florida State University, Tallahassee, FL, USA.
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA.
| |
Collapse
|
3
|
An J, Imasaki T, Narita A, Niwa S, Sasaki R, Makino T, Nitta R, Kikkawa M. Dimerization of GAS2 mediates crosslinking of microtubules and F-actin. EMBO J 2025; 44:2997-3024. [PMID: 40169809 DOI: 10.1038/s44318-025-00415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 04/03/2025] Open
Abstract
The spectraplakin family protein GAS2 was originally identified as a growth arrest-specific protein, and recent studies have revealed its involvement in multiple cellular processes. Its dual interaction with actin filaments and microtubules highlights its essential role in cytoskeletal organization, such as cell division, apoptosis, and possibly tumorigenesis. However, the structural basis of cytoskeletal dynamics regulation by GAS2 remains unclear. In this study, we present cryo-electron microscopy structures of the GAS2 type 3 calponin homology domain (CH3) in complex with F-actin at 2.8 Å resolution, thus solving the first type CH3 domain structure bound to F-actin and confirming its actin-binding activity. We also provide the first near-atomic resolution cryo-EM structure of the GAS2-GAR domain bound to microtubules and identify conserved microtubule-binding residues. Our biochemical experiments show that GAS2 promotes microtubule nucleation and polymerization, and that its C-terminal region is essential for dimerization, bundling of both F-actin and microtubules, and microtubule nucleation. As mutations leading to expression of C-terminally truncated GAS2 have been linked to hearing loss, these findings suggest that the disruption of GAS2-dependent cytoskeletal organisation could underlie auditory dysfunction.
Collapse
Affiliation(s)
- Jiancheng An
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihiro Narita
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Shinsuke Niwa
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ryohei Sasaki
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Makino
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Pant S, Dehghani-Ghahnaviyeh S, Trebesch N, Rasouli A, Chen T, Kapoor K, Wen PC, Tajkhorshid E. Dissecting Large-Scale Structural Transitions in Membrane Transporters Using Advanced Simulation Technologies. J Phys Chem B 2025; 129:3703-3719. [PMID: 40100959 DOI: 10.1021/acs.jpcb.5c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Membrane transporters are integral membrane proteins that act as gatekeepers of the cell, controlling fundamental processes such as recruitment of nutrients and expulsion of waste material. At a basic level, transporters operate using the "alternating access model," in which transported substances are accessible from only one side of the membrane at a time. This model usually involves large-scale structural changes in the transporter, which often cannot be captured using unbiased, conventional molecular simulation techniques. In this article, we provide an overview of some of the major simulation techniques that have been applied to characterize the structural dynamics and energetics involved in the transition of membrane transporters between their functional states. After briefly introducing each technique, we discuss some of their advantages and limitations and provide some recent examples of their application to membrane transporters.
Collapse
Affiliation(s)
- Shashank Pant
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Sepehr Dehghani-Ghahnaviyeh
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Noah Trebesch
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Ali Rasouli
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Tianle Chen
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Karan Kapoor
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Po-Chao Wen
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| |
Collapse
|
5
|
Patel AC, Sinha S, Arantes PR, Palermo G. Unveiling Cas8 dynamics and regulation within a transposon-encoded Cascade-TniQ complex. Proc Natl Acad Sci U S A 2025; 122:e2422895122. [PMID: 40172964 PMCID: PMC12002280 DOI: 10.1073/pnas.2422895122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
The Vibrio cholerae Cascade-TniQ complex unveiled a new paradigm in biology, demonstrating that CRISPR-associated proteins can direct DNA transposition. Despite the tremendous potential of "knocking-in" genes at desired sites, the mechanisms underlying DNA binding and transposition remain elusive. In this system, a conformational change of the Cas8 protein is essential for DNA binding, yet how it occurs is unclear. Here, structural modeling and free energy simulations reconstruct the Cas8 helical bundle and reveal an open-closed conformational change that is key for the complex's function. We show that when Cascade-TniQ binds RNA, the Cas8 bundle changes conformation mediated by the interaction with the Cas7.1 protein. This interaction promotes the bundle's transition toward the open state, priming the complex for DNA binding. As the target DNA binds the guide RNA, the opening of the Cas8 bundle becomes more favorable, exposing positively charged residues and facilitating their interaction with DNA, which ultimately leads the DNA-binding process to completion. These outcomes provide a dynamic representation of a critical conformational change in one of the largest CRISPR systems and illustrate its role at critical steps of the Cascade-TniQ biophysical function, advancing our understanding of nucleic acid binding and transposition mechanisms.
Collapse
Affiliation(s)
- Amun C. Patel
- Department of Bioengineering, University of California, Riverside, CA52512
| | - Souvik Sinha
- Department of Bioengineering, University of California, Riverside, CA52512
| | - Pablo R. Arantes
- Department of Bioengineering, University of California, Riverside, CA52512
| | - Giulia Palermo
- Department of Bioengineering, University of California, Riverside, CA52512
- Department of Chemistry, University of California, Riverside, CA52512
| |
Collapse
|
6
|
Dai L, Zeng Q, Zhang T, Zhang Y, Shi Y, Li Y, Xu K, Huang J, Wang Z, Zhou Q, Yan R. Structural basis for the substrate recognition and transport mechanism of the human y +LAT1-4F2hc transporter complex. SCIENCE ADVANCES 2025; 11:eadq0558. [PMID: 40106545 PMCID: PMC11922002 DOI: 10.1126/sciadv.adq0558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Heteromeric amino acid transporters (HATs), including y+LAT1-4F2hc complex, are responsible for transporting amino acids across membranes, and mutations in y+LAT1 cause lysinuric protein intolerance (LPI), a hereditary disorder characterized by defective cationic amino acid transport. The relationship between LPI and specific mutations in y+LAT1 has yet to be fully understood. In this study, we characterized the function of y+LAT1-4F2hc complex in mammalian cells and determined the cryo-EM structures of the human y+LAT1-4F2hc complex in two distinct conformations: the apo state in an inward-open conformation and the native substrate-bound state in an outward-open conformation. Structural analysis suggests that Asp243 in y+LAT1 plays a crucial role in coordination with sodium ion and substrate selectivity. Molecular dynamic (MD) simulations further revealed the different transport mechanism of cationic amino acids and neutral amino acids. These results provide important insights into the mechanisms of the substrate binding and working cycle of HATs.
Collapse
Affiliation(s)
- Lu Dai
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Qian Zeng
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Ting Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yuanyuan Zhang
- Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Yi Shi
- Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Yaning Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kangtai Xu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jing Huang
- Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Zilong Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Qiang Zhou
- Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Renhong Yan
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
7
|
Christoffer C, Kagaya Y, Verburgt J, Terashi G, Shin WH, Jain A, Sarkar D, Aderinwale T, Maddhuri Venkata Subramaniya SR, Wang X, Zhang Z, Zhang Y, Kihara D. Integrative Protein Assembly With LZerD and Deep Learning in CAPRI 47-55. Proteins 2025. [PMID: 40095385 DOI: 10.1002/prot.26818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
We report the performance of the protein complex prediction approaches of our group and their results in CAPRI Rounds 47-55, excluding the joint CASP Rounds 50 and 54, as well as the special COVID-19 Round 51. Our approaches integrated classical pipelines developed in our group as well as more recently developed deep learning pipelines. In the cases of human group prediction, we surveyed the literature to find information to integrate into the modeling, such as assayed interface residues. In addition to any literature information, generated complex models were selected by a rank aggregation of statistical scoring functions, by generative model confidence, or by expert inspection. In these CAPRI rounds, our human group successfully modeled eight interfaces and achieved the top quality level among the submissions for all of them, including two where no other group did. We note that components of our modeling pipelines have become increasingly unified within deep learning approaches. Finally, we discuss several case studies that illustrate successful and unsuccessful modeling using our approaches.
Collapse
Affiliation(s)
- Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
- Rosen Center for Advanced Computing, Purdue University, West Lafayette, Indiana, USA
| | - Yuki Kagaya
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jacob Verburgt
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Woong-Hee Shin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- College of Medicine, Korea University, Seoul, South Korea
| | - Anika Jain
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tunde Aderinwale
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | | | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Zicong Zhang
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Yuanyuan Zhang
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
8
|
Elad N, Hou Z, Dumoux M, Ramezani A, Perilla JR, Zhang P. In-cell Structure and Variability of Pyrenoid Rubisco. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640608. [PMID: 40060630 PMCID: PMC11888406 DOI: 10.1101/2025.02.27.640608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a key enzyme in the global carbon cycle, catalyzing CO2 fixation during photosynthesis. To overcome Rubisco's inherent catalytic inefficiency, many photosynthetic organisms have evolved CO2-concentrating mechanisms. Central to these mechanisms is the pyrenoid, a protein-dense organelle within the chloroplast of eukaryotic algae, which increases the local concentration of CO2 around Rubisco and thereby enhances its catalytic efficiency. Although the structure of Rubisco has been extensively studied by in vitro methods such as X-ray crystallography and single particle cryo-EM, its native structure within the pyrenoid, its dynamics, and its association with binding partners remain elusive. Here, we investigate the structure of native pyrenoid Rubisco inside the green alga Chlamydomonas reinhardtii by applying cryo-electron tomography (cryo-ET) on cryo-focused ion beam (cryo-FIB) milled cells, followed by subtomogram averaging and 3D classification. Reconstruction at sub-nanometer resolution allowed accurate modeling and determination of a closed (activated) Rubisco conformation. Comparison to other reconstructed subsets revealed local variations at the complex active site and at the large subunit dimers interface, as well as association with binding proteins. The different structural subsets distribute stochastically within the pyrenoid. Taken together, these findings offer a comprehensive description of the structure, dynamics, and functional organization of Rubisco within the pyrenoid, providing valuable insights into its critical role in CO2 fixation.
Collapse
Affiliation(s)
- Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Zhen Hou
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Maud Dumoux
- The Rosalind Franklin Institute, Didcot, OX11 0QX, UK
| | - Alireza Ramezani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
9
|
Peng R, Rochon K, Hutson AN, Stagg SM, Mears JA. The Structure of the Drp1 Lattice on Membrane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.04.588123. [PMID: 38617273 PMCID: PMC11014616 DOI: 10.1101/2024.04.04.588123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Mitochondrial health relies on the membrane fission mediated by dynamin-related protein 1 (Drp1). Previous structural studies of Drp1 on remodeled membranes were hampered by heterogeneity, leaving a critical gap in the understanding of the mitochondrial fission mechanisms. Here we present a cryo-electron microscopy structure of full-length human Drp1 decorated on membrane tubules. Using the reconstruction of average subtracted tubular regions (RASTR) technique, we report that Drp1 forms a locally ordered lattice along the tubule without global helical symmetry. The filaments in the lattice are similar to dynamin rungs with conserved stalk interactions. Adjacent filaments are connected by GTPase domain interactions in a novel stacked conformation. We identified two states of the Drp1 lattice among the heterogenous dataset representing conformational changes around hinge 1. Additionally, we observed contact between Drp1 and membrane that can be assigned to the variable domain sequence. Together these structures revealed a putative mechanism by which Drp1 constricts mitochondria membranes in a stepwise, "ratchet" manner.
Collapse
Affiliation(s)
- Ruizhi Peng
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Kristy Rochon
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Anelise N Hutson
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Scott M Stagg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, USA
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| |
Collapse
|
10
|
Jiang Y, Wang Z, Scheuring S. A structural biology compatible file format for atomic force microscopy. Nat Commun 2025; 16:1671. [PMID: 39955301 PMCID: PMC11829953 DOI: 10.1038/s41467-025-56760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
Cryogenic electron microscopy (cryo-EM), X-ray crystallography, and nuclear magnetic resonance (NMR) contribute structural data that are interchangeable, cross-verifiable, and visualizable on common platforms, making them powerful tools for our understanding of protein structures. Unfortunately, atomic force microscopy (AFM) has so far failed to interface with these structural biology methods, despite the recent development of localization AFM (LAFM) that allows extracting high-resolution structural information from AFM data. Here, we build on LAFM and develop a pipeline that transforms AFM data into 3D-density files (.afm) that are readable by programs commonly used to visualize, analyze, and interpret structural data. We show that 3D-LAFM densities can serve as force fields to steer molecular dynamics flexible fitting (MDFF) to obtain structural models of previously unresolved states based on AFM observations in close-to-native environment. Besides, the .afm format enables direct 3D or 2D visualization and analysis of conventional AFM images. We anticipate that the file format will find wide usage and embed AFM in the repertoire of methods routinely used by the structural biology community, allowing AFM researchers to deposit data in repositories in a format that allows comparison and cross-verification with data from other techniques.
Collapse
Affiliation(s)
- Yining Jiang
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA
| | - Zhaokun Wang
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA.
- Weill Cornell Medicine, Department of Physiology and Biophysics, New York, NY, USA.
| |
Collapse
|
11
|
Yang W, Yi R, Yao J, Gao Y, Li S, Gong Q, Zhang K. Structural insights into dynamics of the BMV TLS aminoacylation. Nat Commun 2025; 16:1276. [PMID: 39900568 PMCID: PMC11791061 DOI: 10.1038/s41467-025-56612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Brome Mosaic Virus (BMV) utilizes a tRNA-like structure (TLS) within its 3' untranslated region to mimic host tRNA functions, aiding aminoacylation and viral replication. This study explores the structural dynamics of BMV TLS interacting with tyrosyl-tRNA synthetase (TyrRS) during aminoacylation. Using cryo-EM, we capture multiple states of the TLS-TyrRS complex, including unbound TLS, pre-1a, post-1a, and catalysis states, with resolutions of 4.6 Å, 3.5 Å, 3.7 Å, and 3.85 Å, respectively. These structural comparisons indicate dynamic changes in both TLS and TyrRS. Upon binding, TLS undergoes dynamic rearrangements, particularly with helices B3 and E pivoting, mediated by the unpaired A36 residue, ensuring effective recognition by TyrRS. The dynamic changes also include a more compact arrangement in the catalytic center of TyrRS and the insertion of 3' CCA end into the enzyme's active site, facilitating two-steps aminoacylation. Enzymatic assays further demonstrated the functional importance of TLS-TyrRS interactions, with mutations in key residues significantly impacting aminoacylation efficiency. Furthermore, Electrophoretic Mobility Shift Assay (EMSA) demonstrated that BMV TLS binds elongation factors EF1α and EF2, suggesting a multifaceted strategy to exploit host translational machinery. These findings not only enhance our knowledge of virus-host interactions but also offer potential targets for antiviral drug development.
Collapse
Affiliation(s)
- Wen Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, The RNA Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ran Yi
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, The RNA Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Jing Yao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Yongxiang Gao
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, The RNA Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shanshan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, The RNA Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China.
| | - Qingguo Gong
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, The RNA Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Kaiming Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, The RNA Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China.
| |
Collapse
|
12
|
Berndsen ZT, Cassidy CK. The structure of apolipoprotein B100 from human low-density lipoprotein. Nature 2025; 638:836-843. [PMID: 39662503 PMCID: PMC11839476 DOI: 10.1038/s41586-024-08467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Low-density lipoprotein (LDL) has a central role in lipid and cholesterol metabolism and is a key agent in the development and progression of atherosclerosis, the leading cause of mortality worldwide1,2. Apolipoprotein B100 (apoB100), one of the largest proteins in the genome, is the primary structural and functional component of LDL, yet its size and complex lipid associations have posed major challenges for structural studies3. Here we present the structure of apoB100 resolved to subnanometre resolution in most regions using an integrative approach of cryo-electron microscopy, AlphaFold24 and molecular-dynamics-based refinement5. The structure consists of a large globular N-terminal domain and an approximately 61-nm-long continuous amphipathic β-sheet that wraps around the LDL particle like a belt. Distributed quasi-symmetrically across the two sides of the β-belt are nine strategically located interstrand inserts that extend across the lipid surface to provide additional structural support through a network of long-range interactions. We further compare our structure to a comprehensive list of more than 200 intramolecular cross-links and find close agreement between the two. These results suggest a mechanism for how the various domains of apoB100 act in concert to maintain LDL shape and cohesion across a range of particle sizes. More generally, they advance our fundamental understanding of LDL synthesis, form and function, and will help to accelerate the design of potential therapeutics.
Collapse
Affiliation(s)
| | - C Keith Cassidy
- Department of Physics, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
13
|
Parves MR, Solares MJ, Dearnaley WJ, Kelly DF. Elucidating structural variability in p53 conformers using combinatorial refinement strategies and molecular dynamics. Cancer Biol Ther 2024; 25:2290732. [PMID: 38073067 PMCID: PMC10732606 DOI: 10.1080/15384047.2023.2290732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Low molecular weight proteins and protein assemblies can now be investigated using cryo-electron microscopy (EM) as a complement to traditional structural biology techniques. It is important, however, to not lose sight of the dynamic information inherent in macromolecules that give rise to their exquisite functionality. As computational methods continue to advance the field of biomedical imaging, so must strategies to resolve the minute details of disease-related entities. Here, we employed combinatorial modeling approaches to assess flexible properties among low molecular weight proteins (~100 kDa or less). Through a blend of rigid body refinement and simulated annealing, we determined new hidden conformations for wild type p53 monomer and dimer forms. Structures for both states converged to yield new conformers, each revealing good stereochemistry and dynamic information about the protein. Based on these insights, we identified fluid parts of p53 that complement the stable central core of the protein responsible for engaging DNA. Molecular dynamics simulations corroborated the modeling results and helped pinpoint the more flexible residues in wild type p53. Overall, the new computational methods may be used to shed light on other small protein features in a vast ensemble of structural data that cannot be easily delineated by other algorithms.
Collapse
Affiliation(s)
- Md Rimon Parves
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, USA
- Biochemistry, Microbiology, and Molecular Biology Graduate Program, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Maria J. Solares
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - William J. Dearnaley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
14
|
Coricello A, Nardone AJ, Lupia A, Gratteri C, Vos M, Chaptal V, Alcaro S, Zhu W, Takagi Y, Richards NGJ. 3D variability analysis reveals a hidden conformational change controlling ammonia transport in human asparagine synthetase. Nat Commun 2024; 15:10538. [PMID: 39627226 PMCID: PMC11615228 DOI: 10.1038/s41467-024-54912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Advances in X-ray crystallography and cryogenic electron microscopy (cryo-EM) offer the promise of elucidating functionally relevant conformational changes that are not easily studied by other biophysical methods. Here we show that 3D variability analysis (3DVA) of the cryo-EM map for wild-type (WT) human asparagine synthetase (ASNS) identifies a functional role for the Arg-142 side chain and test this hypothesis experimentally by characterizing the R142I variant in which Arg-142 is replaced by isoleucine. Support for Arg-142 playing a role in the intramolecular translocation of ammonia between the active site of the enzyme is provided by the glutamine-dependent synthetase activity of the R142 variant relative to WT ASNS, and MD simulations provide a possible molecular mechanism for these findings. Combining 3DVA with MD simulations is a generally applicable approach to generate testable hypotheses of how conformational changes in buried side chains might regulate function in enzymes.
Collapse
Affiliation(s)
- Adriana Coricello
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Alanya J Nardone
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Antonio Lupia
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Carmen Gratteri
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Resources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy.
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy.
| | - Wen Zhu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA.
| | - Yuichiro Takagi
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff, UK.
- Foundation for Applied Molecular Evolution, Alachua, FL, USA.
| |
Collapse
|
15
|
Sun H, Xia L, Li J, Zhang Y, Zhang G, Huang P, Wang X, Cui Y, Fang T, Fan P, Zhou Q, Chi X, Yu C. A novel bispecific antibody targeting two overlapping epitopes in RBD improves neutralizing potency and breadth against SARS-CoV-2. Emerg Microbes Infect 2024; 13:2373307. [PMID: 38953857 PMCID: PMC11249148 DOI: 10.1080/22221751.2024.2373307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
SARS-CoV-2 has been evolving into a large number of variants, including the highly pathogenic Delta variant, and the currently prevalent Omicron subvariants with extensive evasion capability, which raises an urgent need to develop new broad-spectrum neutralizing antibodies. Herein, we engineer two IgG-(scFv)2 form bispecific antibodies with overlapping epitopes (bsAb1) or non-overlapping epitopes (bsAb2). Both bsAbs are significantly superior to the parental monoclonal antibodies in terms of their antigen-binding and virus-neutralizing activities against all tested circulating SARS-CoV-2 variants including currently dominant JN.1. The bsAb1 can efficiently neutralize all variants insensitive to parental monoclonal antibodies or the cocktail with IC50 lower than 20 ng/mL, even slightly better than bsAb2. Furthermore, the cryo-EM structures of bsAb1 in complex with the Omicron spike protein revealed that bsAb1 with overlapping epitopes effectively locked the S protein, which accounts for its conserved neutralization against Omicron variants. The bispecific antibody strategy engineered from overlapping epitopes provides a novel solution for dealing with viral immune evasion.
Collapse
MESH Headings
- Antibodies, Bispecific/biosynthesis
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/metabolism
- Antibodies, Bispecific/ultrastructure
- Protein Domains
- Epitopes/metabolism
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- Antibodies, Neutralizing/ultrastructure
- SARS-CoV-2/immunology
- Immune Evasion
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/chemistry
- Antibodies, Viral/metabolism
- Antibodies, Viral/ultrastructure
- Neutralization Tests
- Antigens, Viral/metabolism
- Cryoelectron Microscopy
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- Spike Glycoprotein, Coronavirus/ultrastructure
- Models, Molecular
- Protein Structure, Quaternary
- Mutation
- Humans
Collapse
Affiliation(s)
- Hancong Sun
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Lingyun Xia
- Center for Infectious Disease Research, Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jianhua Li
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Guanying Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ping Huang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Xingxing Wang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yue Cui
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ting Fang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Pengfei Fan
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Qiang Zhou
- Center for Infectious Disease Research, Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiangyang Chi
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Changming Yu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
16
|
Zeng Z, Yang Z, Li C, Liu S, Wei W, Zhou Y, Wang S, Sui M, Li M, Lin S, Cheng Y, Hou P. Advancing Cancer Immunotherapy through Engineering New PD-L1 Degraders: A Comprehensive Study from Small Molecules to PD-L1-Specific Peptide-Drug Conjugates. J Med Chem 2024; 67:19216-19233. [PMID: 39420825 PMCID: PMC11571110 DOI: 10.1021/acs.jmedchem.4c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Despite the considerable achievements of antibodies targeting PD-1/PD-L1 in cancer immunotherapy, limitations in antitumor immune response and pharmacokinetics hinder their clinical adoption. Small molecules toward PD-L1 degradation signifies an innovative avenue to modulate PD-1/PD-L1 axis. Herein, we unveil a comprehensive engineering involving the development of new PD-L1 degraders based on the berberine (BBR) and palmatine (PMT) bioactive frameworks and explore their translational potential for cancer immunotherapy using a peptide-drug conjugate strategy. Chemical modifications at the O-9 position of PMT dramatically enhance the PD-L1 degradation capacity. Further conjugation of PMT degraders with an anti-PD-L1 peptide featuring disulfide linkers enables efficient GSH-specific prodrug activation, yielding synergistic immunotherapeutic benefits through both external PD-L1 blockade and internal PD-L1 degradation mechanisms. This work elucidates the compelling charm of the discovery and application of PD-L1 degraders, offering solutions to the challenges in advancing cancer immunotherapy in widespread clinics.
Collapse
Affiliation(s)
- Zekun Zeng
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Zhiwei Yang
- MOE
Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed
Matter, School of Physics, Xi’an
Jiaotong University, Xi’an 710049, P. R. China
| | - Chenghao Li
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Shujing Liu
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Wei Wei
- Department
of Ultrasound Medicine, The First Affiliated
Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P. R. China
| | - Ye Zhou
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Simeng Wang
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Mengjun Sui
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Mengdan Li
- Department
of Cardiology, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Shumei Lin
- Department
of Infectious Disease Medicine, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Yangyang Cheng
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Peng Hou
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| |
Collapse
|
17
|
Liu J, McRae EKS, Zhang M, Geary C, Andersen ES, Ren G. Non-averaged single-molecule tertiary structures reveal RNA self-folding through individual-particle cryo-electron tomography. Nat Commun 2024; 15:9084. [PMID: 39433544 PMCID: PMC11494099 DOI: 10.1038/s41467-024-52914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Large-scale and continuous conformational changes in the RNA self-folding process present significant challenges for structural studies, often requiring trade-offs between resolution and observational scope. Here, we utilize individual-particle cryo-electron tomography (IPET) to examine the post-transcriptional self-folding process of designed RNA origami 6-helix bundle with a clasp helix (6HBC). By avoiding selection, classification, averaging, or chemical fixation and optimizing cryo-ET data acquisition parameters, we reconstruct 120 three-dimensional (3D) density maps from 120 individual particles at an electron dose of no more than 168 e-Å-2, achieving averaged resolutions ranging from 23 to 35 Å, as estimated by Fourier shell correlation (FSC) at 0.5. Each map allows us to identify distinct RNA helices and determine a unique tertiary structure. Statistical analysis of these 120 structures confirms two reported conformations and reveals a range of kinetically trapped, intermediate, and highly compacted states, demonstrating a maturation folding landscape likely driven by helix-helix compaction interactions.
Collapse
Affiliation(s)
- Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ewan K S McRae
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Cody Geary
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, 69120, Heidelberg, Germany
| | - Ebbe Sloth Andersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
18
|
Yang H, Guo H, Wang A, Cao L, Fan Q, Jiang J, Wang M, Lin L, Ge X, Wang H, Zhang R, Liao M, Yan R, Ju B, Zhang Z. Structural basis for the evolution and antibody evasion of SARS-CoV-2 BA.2.86 and JN.1 subvariants. Nat Commun 2024; 15:7715. [PMID: 39231977 PMCID: PMC11374805 DOI: 10.1038/s41467-024-51973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
The Omicron subvariants of SARS-CoV-2, especially for BA.2.86 and JN.1, have rapidly spread across multiple countries, posing a significant threat in the ongoing COVID-19 pandemic. Distinguished by 34 additional mutations on the Spike (S) protein compared to its BA.2 predecessor, the implications of BA.2.86 and its evolved descendant, JN.1 with additional L455S mutation in receptor-binding domains (RBDs), are of paramount concern. In this work, we systematically examine the neutralization susceptibilities of SARS-CoV-2 Omicron subvariants and reveal the enhanced antibody evasion of BA.2.86 and JN.1. We also determine the cryo-EM structures of the trimeric S proteins from BA.2.86 and JN.1 in complex with the host receptor ACE2, respectively. The mutations within the RBDs of BA.2.86 and JN.1 induce a remodeling of the interaction network between the RBD and ACE2. The L455S mutation of JN.1 further induces a notable shift of the RBD-ACE2 interface, suggesting the notably reduced binding affinity of JN.1 than BA.2.86. An analysis of the broadly neutralizing antibodies possessing core neutralizing epitopes reveals the antibody evasion mechanism underlying the evolution of Omicron BA.2.86 subvariant. In general, we construct a landscape of evolution in virus-receptor of the circulating Omicron subvariants.
Collapse
MESH Headings
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Humans
- Immune Evasion
- COVID-19/immunology
- COVID-19/virology
- Angiotensin-Converting Enzyme 2/metabolism
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Cryoelectron Microscopy
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- Mutation
- Evolution, Molecular
- Protein Binding
- Models, Molecular
Collapse
Affiliation(s)
- Haonan Yang
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Huimin Guo
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Aojie Wang
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Liwei Cao
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| | - Qing Fan
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jie Jiang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Miao Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Lin Lin
- Sustech Core Research Facilities, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xiangyang Ge
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Haiyan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Runze Zhang
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Ming Liao
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou, Guangdong Province, China.
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China.
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| | - Bin Ju
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
- Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
- Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province, China.
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Shenzhen, Guangdong Province, China.
| |
Collapse
|
19
|
Fenn KL, Horne JE, Crossley JA, Böhringer N, Horne RJ, Schäberle TF, Calabrese AN, Radford SE, Ranson NA. Outer membrane protein assembly mediated by BAM-SurA complexes. Nat Commun 2024; 15:7612. [PMID: 39218969 PMCID: PMC11366764 DOI: 10.1038/s41467-024-51358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
The outer membrane is a formidable barrier that protects Gram-negative bacteria against environmental threats. Its integrity requires the correct folding and insertion of outer membrane proteins (OMPs) by the membrane-embedded β-barrel assembly machinery (BAM). Unfolded OMPs are delivered to BAM by the periplasmic chaperone SurA, but how SurA and BAM work together to ensure successful OMP delivery and folding remains unclear. Here, guided by AlphaFold2 models, we use disulphide bond engineering in an attempt to trap SurA in the act of OMP delivery to BAM, and solve cryoEM structures of a series of complexes. The results suggest that SurA binds BAM at its soluble POTRA-1 domain, which may trigger conformational changes in both BAM and SurA that enable transfer of the unfolded OMP to the BAM lateral gate for insertion into the outer membrane. Mutations that disrupt the interaction between BAM and SurA result in outer membrane assembly defects, supporting the key role of SurA in outer membrane biogenesis.
Collapse
Affiliation(s)
- Katherine L Fenn
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jim E Horne
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Joel A Crossley
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nils Böhringer
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392, Giessen, Germany
| | - Romany J Horne
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392, Giessen, Germany
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
20
|
Vidal-Calvo EE, Martin-Salazar A, Choudhary S, Dagil R, Raghavan SSR, Duvnjak L, Nordmaj MA, Clausen TM, Skafte A, Oberkofler J, Wang K, Agerbæk MØ, Løppke C, Jørgensen AM, Ropac D, Mujollari J, Willis S, Garcias López A, Miller RL, Karlsson RTG, Goerdeler F, Chen YH, Colaço AR, Wang Y, Lavstsen T, Martowicz A, Nelepcu I, Marzban M, Oo HZ, Ørum-Madsen MS, Wang Y, Nielsen MA, Clausen H, Wierer M, Wolf D, Gögenur I, Theander TG, Al-Nakouzi N, Gustavsson T, Daugaard M, Salanti A. Tumor-agnostic cancer therapy using antibodies targeting oncofetal chondroitin sulfate. Nat Commun 2024; 15:7553. [PMID: 39215044 PMCID: PMC11364678 DOI: 10.1038/s41467-024-51781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Molecular similarities between embryonic and malignant cells can be exploited to target tumors through specific signatures absent in healthy adult tissues. One such embryonic signature tumors express is oncofetal chondroitin sulfate (ofCS), which supports disease progression and dissemination in cancer. Here, we report the identification and characterization of phage display-derived antibody fragments recognizing two distinct ofCS epitopes. These antibody fragments show binding affinity to ofCS in the low nanomolar range across a broad selection of solid tumor types in vitro and in vivo with minimal binding to normal, inflamed, or benign tumor tissues. Anti-ofCS antibody drug conjugates and bispecific immune cell engagers based on these targeting moieties disrupt tumor progression in animal models of human and murine cancers. Thus, anti-ofCS antibody fragments hold promise for the development of broadly effective therapeutic and diagnostic applications targeting human malignancies.
Collapse
Affiliation(s)
- Elena Ethel Vidal-Calvo
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark.
| | - Anne Martin-Salazar
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Robert Dagil
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Sai Sundar Rajan Raghavan
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lara Duvnjak
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Mie Anemone Nordmaj
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Ann Skafte
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Jan Oberkofler
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kaituo Wang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Ø Agerbæk
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VARCT Diagnostics, Copenhagen, Denmark
| | - Caroline Løppke
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Amalie Mundt Jørgensen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VARCT Diagnostics, Copenhagen, Denmark
| | - Daria Ropac
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Joana Mujollari
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Shona Willis
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Agnès Garcias López
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rebecca Louise Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard Torbjörn Gustav Karlsson
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felix Goerdeler
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ana R Colaço
- Proteomics Research Infrastructure, University of Copenhagen, Copenhagen, Denmark
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Thomas Lavstsen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Agnieszka Martowicz
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Irina Nelepcu
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mona Marzban
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Maj Sofie Ørum-Madsen
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
| | - Morten A Nielsen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Wierer
- Proteomics Research Infrastructure, University of Copenhagen, Copenhagen, Denmark
| | - Dominik Wolf
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Køge, Køge, Denmark
| | - Thor G Theander
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Nader Al-Nakouzi
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tobias Gustavsson
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Mads Daugaard
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark.
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada.
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark.
| |
Collapse
|
21
|
Lau CHY, Flood E, Hunter MJ, Williams-Noonan BJ, Corbett KM, Ng CA, Bouwer JC, Stewart AG, Perozo E, Allen TW, Vandenberg JI. Potassium dependent structural changes in the selectivity filter of HERG potassium channels. Nat Commun 2024; 15:7470. [PMID: 39209832 PMCID: PMC11362469 DOI: 10.1038/s41467-024-51208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
The fine tuning of biological electrical signaling is mediated by variations in the rates of opening and closing of gates that control ion flux through different ion channels. Human ether-a-go-go related gene (HERG) potassium channels have uniquely rapid inactivation kinetics which are critical to the role they play in regulating cardiac electrical activity. Here, we exploit the K+ sensitivity of HERG inactivation to determine structures of both a conductive and non-conductive selectivity filter structure of HERG. The conductive state has a canonical cylindrical shaped selectivity filter. The non-conductive state is characterized by flipping of the selectivity filter valine backbone carbonyls to point away from the central axis. The side chain of S620 on the pore helix plays a central role in this process, by coordinating distinct sets of interactions in the conductive, non-conductive, and transition states. Our model represents a distinct mechanism by which ion channels fine tune their activity and could explain the uniquely rapid inactivation kinetics of HERG.
Collapse
Affiliation(s)
- Carus H Y Lau
- Mark Cowley Lidwill Research Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Emelie Flood
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Mark J Hunter
- Mark Cowley Lidwill Research Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | | | - Karen M Corbett
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Chai-Ann Ng
- Mark Cowley Lidwill Research Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - James C Bouwer
- Molecular Horizons and School of Chemistry and Molecular Bioscience, and ARC Centre for Cryoelectron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - Alastair G Stewart
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
- Computational and Structural Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Toby W Allen
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Jamie I Vandenberg
- Mark Cowley Lidwill Research Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Raza S, Sarkar D, Chan LJG, Mae J, Sutter M, Petzold CJ, Kerfeld CA, Ralston CY, Gupta S, Vermaas JV. Comparative Pore Structure and Dynamics for Bacterial Microcompartment Shell Protein Assemblies in Sheets or Shells. ACS OMEGA 2024; 9:35503-35514. [PMID: 39184480 PMCID: PMC11339822 DOI: 10.1021/acsomega.4c02406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024]
Abstract
Bacterial microcompartments (BMCs) are protein-bound organelles found in some bacteria that encapsulate enzymes for enhanced catalytic activity. These compartments spatially sequester enzymes within semipermeable shell proteins, analogous to many membrane-bound organelles. The shell proteins assemble into multimeric tiles; hexamers, trimers, and pentamers, and these tiles self-assemble into larger assemblies with icosahedral symmetry. While icosahedral shells are the predominant form in vivo, the tiles can also form nanoscale cylinders or sheets. The individual multimeric tiles feature central pores that are key to regulating transport across the protein shell. Our primary interest is to quantify pore shape changes in response to alternative component morphologies at the nanoscale. We used molecular modeling tools to develop atomically detailed models for both planar sheets of tiles and curved structures representative of the complete shells found in vivo. Subsequently, these models were animated using classical molecular dynamics simulations. From the resulting trajectories, we analyzed the overall structural stability, water accessibility to individual residues, water residence time, and pore geometry for the hexameric and trimeric protein tiles from the Haliangium ochraceum model BMC shell. These exhaustive analyses suggest no substantial variation in pore structure or solvent accessibility between the flat and curved shell geometries. We additionally compare our analysis to hydroxyl radical footprinting data to serve as a check against our simulation results, highlighting specific residues where water molecules are bound for a long time. Although with little variation in morphology or water interaction, we propose that the planar and capsular morphology can be used interchangeably when studying permeability through BMC pores.
Collapse
Affiliation(s)
- Saad Raza
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Daipayan Sarkar
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Leanne Jade G. Chan
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joshua Mae
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Markus Sutter
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J. Petzold
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Cheryl A. Kerfeld
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Corie Y. Ralston
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Sayan Gupta
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Josh V. Vermaas
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
23
|
Włodarski T, Streit JO, Mitropoulou A, Cabrita LD, Vendruscolo M, Christodoulou J. Bayesian reweighting of biomolecular structural ensembles using heterogeneous cryo-EM maps with the cryoENsemble method. Sci Rep 2024; 14:18149. [PMID: 39103467 PMCID: PMC11300795 DOI: 10.1038/s41598-024-68468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
Cryogenic electron microscopy (cryo-EM) has emerged as a powerful method for the determination of structures of complex biological molecules. The accurate characterisation of the dynamics of such systems, however, remains a challenge. To address this problem, we introduce cryoENsemble, a method that applies Bayesian reweighting to conformational ensembles derived from molecular dynamics simulations to improve their agreement with cryo-EM data, thus enabling the extraction of dynamics information. We illustrate the use of cryoENsemble to determine the dynamics of the ribosome-bound state of the co-translational chaperone trigger factor (TF). We also show that cryoENsemble can assist with the interpretation of low-resolution, noisy or unaccounted regions of cryo-EM maps. Notably, we are able to link an unaccounted part of the cryo-EM map to the presence of another protein (methionine aminopeptidase, or MetAP), rather than to the dynamics of TF, and model its TF-bound state. Based on these results, we anticipate that cryoENsemble will find use for challenging heterogeneous cryo-EM maps for biomolecular systems encompassing dynamic components.
Collapse
Affiliation(s)
- Tomasz Włodarski
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Julian O Streit
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alkistis Mitropoulou
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| |
Collapse
|
24
|
Yen YC, Li Y, Chen CL, Klose T, Watts VJ, Dessauer CW, Tesmer JJG. Structure of adenylyl cyclase 5 in complex with Gβγ offers insights into ADCY5-related dyskinesia. Nat Struct Mol Biol 2024; 31:1189-1197. [PMID: 38589608 PMCID: PMC11329361 DOI: 10.1038/s41594-024-01263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
The nine different membrane-anchored adenylyl cyclase isoforms (AC1-9) in mammals are stimulated by the heterotrimeric G protein, Gαs, but their response to Gβγ regulation is isoform specific. In the present study, we report cryo-electron microscope structures of ligand-free AC5 in complex with Gβγ and a dimeric form of AC5 that could be involved in its regulation. Gβγ binds to a coiled-coil domain that links the AC transmembrane region to its catalytic core as well as to a region (C1b) that is known to be a hub for isoform-specific regulation. We confirmed the Gβγ interaction with both purified proteins and cell-based assays. Gain-of-function mutations in AC5 associated with human familial dyskinesia are located at the interface of AC5 with Gβγ and show reduced conditional activation by Gβγ, emphasizing the importance of the observed interaction for motor function in humans. We propose a molecular mechanism wherein Gβγ either prevents dimerization of AC5 or allosterically modulates the coiled-coil domain, and hence the catalytic core. As our mechanistic understanding of how individual AC isoforms are uniquely regulated is limited, studies such as this may provide new avenues for isoform-specific drug development.
Collapse
Affiliation(s)
- Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Yong Li
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Chun-Liang Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Thomas Klose
- Purdue Cryo-EM Facility, Hockmeyer Hall for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
25
|
Chen CL, Syahirah R, Ravala SK, Yen YC, Klose T, Deng Q, Tesmer JJG. Molecular basis for Gβγ-mediated activation of phosphoinositide 3-kinase γ. Nat Struct Mol Biol 2024; 31:1198-1207. [PMID: 38565696 PMCID: PMC11329362 DOI: 10.1038/s41594-024-01265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
The conversion of phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-triphosphate by phosphoinositide 3-kinase γ (PI3Kγ) is critical for neutrophil chemotaxis and cancer metastasis. PI3Kγ is activated by Gβγ heterodimers released from G protein-coupled receptors responding to extracellular signals. Here we determined cryo-electron microscopy structures of Sus scrofa PI3Kγ-human Gβγ complexes in the presence of substrates/analogs, revealing two Gβγ binding sites: one on the p110γ helical domain and another on the p101 C-terminal domain. Comparison with PI3Kγ alone reveals conformational changes in the kinase domain upon Gβγ binding that are similar to Ras·GTP-induced changes. Assays of variants perturbing the Gβγ binding sites and interdomain contacts altered by Gβγ binding suggest that Gβγ recruits the enzyme to membranes and allosterically regulates activity via both sites. Studies of zebrafish neutrophil migration align with these findings, paving the way for in-depth investigation of Gβγ-mediated activation mechanisms in this enzyme family and drug development for PI3Kγ.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Sandeep K Ravala
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Cryo-EM Facility, Purdue University, West Lafayette, IN, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
26
|
Zhao X, Gao Y, Gong Q, Zhang K, Li S. Elucidating the Architectural dynamics of MuB filaments in bacteriophage Mu DNA transposition. Nat Commun 2024; 15:6445. [PMID: 39085263 PMCID: PMC11292022 DOI: 10.1038/s41467-024-50722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
MuB is a non-specific DNA-binding protein and AAA+ ATPase that significantly influences the DNA transposition process of bacteriophage Mu, especially in target DNA selection for transposition. While studies have established the ATP-dependent formation of MuB filament as pivotal to this process, the high-resolution structure of a full-length MuB protomer and the underlying molecular mechanisms governing its oligomerization remain elusive. Here, we use cryo-EM to obtain a 3.4-Å resolution structure of the ATP(+)-DNA(+)-MuB helical filament, which encapsulates the DNA substrate within its axial channel. The structure categorizes MuB within the initiator clade of the AAA+ protein family and precisely locates the ATP and DNA binding sites. Further investigation into the oligomeric states of MuB show the existence of various forms of the filament. These findings lead to a mechanistic model where MuB forms opposite helical filaments along the DNA, exposing potential target sites on the bare DNA and then recruiting MuA, which stimulates MuB's ATPase activity and disrupts the previously formed helical structure. When this happens, MuB generates larger ring structures and dissociates from the DNA.
Collapse
Affiliation(s)
- Xiaolong Zhao
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongxiang Gao
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qingguo Gong
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaiming Zhang
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Shanshan Li
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
27
|
Zhao Z, Tajkhorshid E. GOLEM: Automated and Robust Cryo-EM-Guided Ligand Docking with Explicit Water Molecules. J Chem Inf Model 2024; 64:5680-5690. [PMID: 38990699 PMCID: PMC12016184 DOI: 10.1021/acs.jcim.4c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A detailed understanding of ligand-protein interaction is essential for developing rational drug-design strategies. In recent years, technological advances in cryo-electron microscopy (cryo-EM) brought a new era to the structural determination of biological macromolecules and assemblies at high resolution, marking cryo-EM as a promising tool for studying ligand-protein interactions. However, even in high-resolution cryo-EM results, the densities for the bound small-molecule ligands are often of lower quality due to their relatively dynamic and flexible nature, frustrating their accurate coordinate assignment. To address the challenge of ligand modeling in cryo-EM maps, here we report the development of GOLEM (Genetic Optimization of Ligands in Experimental Maps), an automated and robust ligand docking method that predicts a ligand's pose and conformation in cryo-EM maps. GOLEM employs a Lamarckian genetic algorithm to perform a hybrid global/local search for exploring the ligand's conformational, orientational, and positional space. As an important feature, GOLEM explicitly considers water molecules and places them at optimal positions and orientations. GOLEM takes into account both molecular energetics and the correlation with the cryo-EM maps in its scoring function to optimally place the ligand. We have validated GOLEM against multiple cryo-EM structures with a wide range of map resolutions and ligand types, returning ligand poses in excellent agreement with the densities. As a VMD plugin, GOLEM is free of charge and accessible to the community. With these features, GOLEM will provide a valuable tool for ligand modeling in cryo-EM efforts toward drug discovery.
Collapse
Affiliation(s)
- Zhiyu Zhao
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Dahmani Z, Scott AL, Vénien-Bryan C, Perahia D, Costa MG. MDFF_NM: Improved Molecular Dynamics Flexible Fitting into Cryo-EM Density Maps with a Multireplica Normal Mode-Based Search. J Chem Inf Model 2024; 64:5151-5160. [PMID: 38907694 PMCID: PMC11234365 DOI: 10.1021/acs.jcim.3c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Molecular Dynamics Flexible Fitting (MDFF) is a widely used tool to refine high-resolution structures into cryo-EM density maps. Despite many successful applications, MDFF is still limited by its high computational cost, overfitting, accuracy, and performance issues due to entrapment within wrong local minima. Modern ensemble-based MDFF tools have generated promising results in the past decade. In line with these studies, we present MDFF_NM, a stochastic hybrid flexible fitting algorithm combining Normal Mode Analysis (NMA) and simulation-based flexible fitting. Initial tests reveal that, besides accelerating the fitting process, MDFF_NM increases the diversity of fitting routes leading to the target, uncovering ensembles of conformations in closer agreement with experimental data. The potential integration of MDFF_NM with other existing methods and integrative modeling pipelines is also discussed.
Collapse
Affiliation(s)
- Zakaria
L. Dahmani
- School
of Medicine, Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch I Bldg, 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, United States
- UMR
7590, CNRS, Museum National d’Histoire Naturelle, Institut
de Minéralogie, Physique des Matériaux et Cosmochimie,
IMPMC, Sorbonne Université, 4 place Jussieu, Paris 75005, France
| | - Ana Ligia Scott
- CMCC,
Computational Biophysics and Biology, Universidade Federal do ABC, Avenida dos Estados 5001, São Paulo, Santo André 09210-580, Brazil
- Université
de Strasbourg—IGBMC—Departament de Biologie structurale
integrative, 1 rue Laurent
Fries BP, Illkirch 10142
67404, CEDEX, France
| | - Catherine Vénien-Bryan
- UMR
7590, CNRS, Museum National d’Histoire Naturelle, Institut
de Minéralogie, Physique des Matériaux et Cosmochimie,
IMPMC, Sorbonne Université, 4 place Jussieu, Paris 75005, France
| | - David Perahia
- Laboratoire
de Biologie et Pharmacologie Appliquée, UMR 8113, École
Normale Supérieure Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Mauricio G.S Costa
- UMR
7590, CNRS, Museum National d’Histoire Naturelle, Institut
de Minéralogie, Physique des Matériaux et Cosmochimie,
IMPMC, Sorbonne Université, 4 place Jussieu, Paris 75005, France
- Laboratoire
de Biologie et Pharmacologie Appliquée, UMR 8113, École
Normale Supérieure Paris-Saclay, Gif-sur-Yvette 91190, France
- Programa de Computação Científica,
Vice-Presidência de Educação, Informação
e Comunicação, Fundação Oswaldo Cruz, Av.Brasil 4365, Residência
Oficial, Manguinhos, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
29
|
Thomas GM, Wu Y, Leite W, Pingali SV, Weiss KL, Grant AJ, Diggs MW, Schmidt-Krey I, Gutishvili G, Gumbart JC, Urban VS, Lieberman RL. SANS reveals lipid-dependent oligomerization of an intramembrane aspartyl protease from H. volcanii. Biophys J 2024; 123:1846-1856. [PMID: 38824390 PMCID: PMC11267423 DOI: 10.1016/j.bpj.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/05/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
Reactions that occur within the lipid membrane involve, at minimum, ternary complexes among the enzyme, substrate, and lipid. For many systems, the impact of the lipid in regulating activity or oligomerization state is poorly understood. Here, we used small-angle neutron scattering (SANS) to structurally characterize an intramembrane aspartyl protease (IAP), a class of membrane-bound enzymes that use membrane-embedded aspartate residues to hydrolyze transmembrane segments of biologically relevant substrates. We focused on an IAP ortholog from the halophilic archaeon Haloferax volcanii (HvoIAP). HvoIAP purified in n-dodecyl-β-D-maltoside (DDM) fractionates on size-exclusion chromatography (SEC) as two fractions. We show that, in DDM, the smaller SEC fraction is consistent with a compact HvoIAP monomer. Molecular dynamics flexible fitting conducted on an AlphaFold2-generated monomer produces a model in which loops are compact alongside the membrane-embedded helices. In contrast, SANS data collected on the second SEC fraction indicate an oligomer consistent with an elongated assembly of discrete HvoIAP monomers. Analysis of in-line SEC-SANS data of the HvoIAP oligomer, the first such experiment to be conducted on a membrane protein at Oak Ridge National Lab (ORNL), shows a diversity of elongated and spherical species, including one consistent with the tetrameric assembly reported for the Methanoculleus marisnigri JR1 IAP crystal structure not observed previously in solution. Reconstitution of monomeric HvoIAP into bicelles increases enzyme activity and results in the assembly of HvoIAP into a species with similar dimensions as the ensemble of oligomers isolated from DDM. Our study reveals lipid-mediated HvoIAP self-assembly and demonstrates the utility of in-line SEC-SANS in elucidating oligomerization states of small membrane proteins.
Collapse
Affiliation(s)
- Gwendell M Thomas
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Yuqi Wu
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Wellington Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | | | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Arshay J Grant
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Monneh W Diggs
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Ingeborg Schmidt-Krey
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | - James C Gumbart
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia; School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
30
|
Hoff SE, Thomasen FE, Lindorff-Larsen K, Bonomi M. Accurate model and ensemble refinement using cryo-electron microscopy maps and Bayesian inference. PLoS Comput Biol 2024; 20:e1012180. [PMID: 39008528 PMCID: PMC11271924 DOI: 10.1371/journal.pcbi.1012180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/25/2024] [Accepted: 05/20/2024] [Indexed: 07/17/2024] Open
Abstract
Converting cryo-electron microscopy (cryo-EM) data into high-quality structural models is a challenging problem of outstanding importance. Current refinement methods often generate unbalanced models in which physico-chemical quality is sacrificed for excellent fit to the data. Furthermore, these techniques struggle to represent the conformational heterogeneity averaged out in low-resolution regions of density maps. Here we introduce EMMIVox, a Bayesian inference approach to determine single-structure models as well as structural ensembles from cryo-EM maps. EMMIVox automatically balances experimental information with accurate physico-chemical models of the system and the surrounding environment, including waters, lipids, and ions. Explicit treatment of data correlation and noise as well as inference of accurate B-factors enable determination of structural models and ensembles with both excellent fit to the data and high stereochemical quality, thus outperforming state-of-the-art refinement techniques. EMMIVox represents a flexible approach to determine high-quality structural models that will contribute to advancing our understanding of the molecular mechanisms underlying biological functions.
Collapse
Affiliation(s)
- Samuel E. Hoff
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France
| | - F. Emil Thomasen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Massimiliano Bonomi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France
| |
Collapse
|
31
|
Shen Y, Li Y, Yan R. Structural basis for the inhibition mechanism of the DNA polymerase holoenzyme from mpox virus. Structure 2024; 32:654-661.e3. [PMID: 38579705 DOI: 10.1016/j.str.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
There are three key components at the core of the mpox virus (MPXV) DNA polymerase holoenzyme: DNA polymerase F8, processivity factors A22, and the Uracil-DNA glycosylase E4. The holoenzyme is recognized as a vital antiviral target because MPXV replicates in the cytoplasm of host cells. Nucleotide analogs such as cidofovir and cytarabine (Ara-C) have shown potential in curbing MPXV replication and they also display promise against other poxviruses. However, the mechanism behind their inhibitory effects remains unclear. Here, we present the cryo-EM structure of the DNA polymerase holoenzyme F8/A22/E4 bound with its competitive inhibitor Ara-C-derived cytarabine triphosphate (Ara-CTP) at an overall resolution of 3.0 Å and reveal its inhibition mechanism. Ara-CTP functions as a direct chain terminator in proximity to the deoxycytidine triphosphate (dCTP)-binding site. The extra hydrogen bond formed with Asn665 makes it more potent in binding than dCTP. Asn665 is conserved among eukaryotic B-family polymerases.
Collapse
Affiliation(s)
- Yaping Shen
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yaning Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China.
| |
Collapse
|
32
|
Xin W, Huang B, Chi X, Liu Y, Xu M, Zhang Y, Li X, Su Q, Zhou Q. Structures of human γδ T cell receptor-CD3 complex. Nature 2024; 630:222-229. [PMID: 38657677 PMCID: PMC11153141 DOI: 10.1038/s41586-024-07439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Gamma delta (γδ) T cells, a unique T cell subgroup, are crucial in various immune responses and immunopathology1-3. The γδ T cell receptor (TCR), which is generated by γδ T cells, recognizes a diverse range of antigens independently of the major histocompatibility complex2. The γδ TCR associates with CD3 subunits, initiating T cell activation and holding great potential in immunotherapy4. Here we report the structures of two prototypical human Vγ9Vδ2 and Vγ5Vδ1 TCR-CD3 complexes5,6, revealing two distinct assembly mechanisms that depend on Vγ usage. The Vγ9Vδ2 TCR-CD3 complex is monomeric, with considerable conformational flexibility in the TCRγ-TCRδ extracellular domain and connecting peptides. The length of the connecting peptides regulates the ligand association and T cell activation. A cholesterol-like molecule wedges into the transmembrane region, exerting an inhibitory role in TCR signalling. The Vγ5Vδ1 TCR-CD3 complex displays a dimeric architecture, whereby two protomers nestle back to back through the Vγ5 domains of the TCR extracellular domains. Our biochemical and biophysical assays further corroborate the dimeric structure. Importantly, the dimeric form of the Vγ5Vδ1 TCR is essential for T cell activation. These findings reveal organizing principles of the γδ TCR-CD3 complex, providing insights into the unique properties of γδ TCR and facilitating immunotherapeutic interventions.
Collapse
MESH Headings
- Humans
- CD3 Complex/chemistry
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD3 Complex/ultrastructure
- Cholesterol/metabolism
- Cholesterol/chemistry
- Cryoelectron Microscopy
- Ligands
- Lymphocyte Activation/immunology
- Models, Molecular
- Protein Domains
- Protein Multimerization
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/ultrastructure
- T-Lymphocytes/chemistry
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Signal Transduction
- Cell Membrane/chemistry
- Cell Membrane/metabolism
Collapse
Affiliation(s)
- Weizhi Xin
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bangdong Huang
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Ximin Chi
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Science, Xiamen University, Xiamen, China
| | - Yuehua Liu
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Mengjiao Xu
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuanyuan Zhang
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xu Li
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Qiang Su
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Qiang Zhou
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
33
|
Bock LV, Igaev M, Grubmüller H. Single-particle Cryo-EM and molecular dynamics simulations: A perfect match. Curr Opin Struct Biol 2024; 86:102825. [PMID: 38723560 DOI: 10.1016/j.sbi.2024.102825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/19/2024]
Abstract
Knowledge of the structure and dynamics of biomolecules is key to understanding the mechanisms underlying their biological functions. Single-particle cryo-electron microscopy (cryo-EM) is a powerful structural biology technique to characterize complex biomolecular systems. Here, we review recent advances of how Molecular Dynamics (MD) simulations are being used to increase and enhance the information extracted from cryo-EM experiments. We will particularly focus on the physics underlying these experiments, how MD facilitates structure refinement, in particular for heterogeneous and non-isotropic resolution, and how thermodynamic and kinetic information can be extracted from cryo-EM data.
Collapse
Affiliation(s)
- Lars V Bock
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, 37077, Germany. https://twitter.com/Pogoscience
| | - Maxim Igaev
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, 37077, Germany. https://twitter.com/maxotubule
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, 37077, Germany.
| |
Collapse
|
34
|
Eibauer M, Weber MS, Kronenberg-Tenga R, Beales CT, Boujemaa-Paterski R, Turgay Y, Sivagurunathan S, Kraxner J, Köster S, Goldman RD, Medalia O. Vimentin filaments integrate low-complexity domains in a complex helical structure. Nat Struct Mol Biol 2024; 31:939-949. [PMID: 38632361 PMCID: PMC11189308 DOI: 10.1038/s41594-024-01261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
Intermediate filaments (IFs) are integral components of the cytoskeleton. They provide cells with tissue-specific mechanical properties and are involved in numerous cellular processes. Due to their intricate architecture, a 3D structure of IFs has remained elusive. Here we use cryo-focused ion-beam milling, cryo-electron microscopy and tomography to obtain a 3D structure of vimentin IFs (VIFs). VIFs assemble into a modular, intertwined and flexible helical structure of 40 α-helices in cross-section, organized into five protofibrils. Surprisingly, the intrinsically disordered head domains form a fiber in the lumen of VIFs, while the intrinsically disordered tails form lateral connections between the protofibrils. Our findings demonstrate how protein domains of low sequence complexity can complement well-folded protein domains to construct a biopolymer with striking mechanical strength and stretchability.
Collapse
Affiliation(s)
- Matthias Eibauer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Miriam S Weber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Charlie T Beales
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Yagmur Turgay
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Suganya Sivagurunathan
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julia Kraxner
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
- MDC Berlin-Buch, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Robert D Goldman
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
35
|
Kadlof M, Banecki K, Chiliński M, Plewczynski D. Chromatin image-driven modelling. Methods 2024; 226:54-60. [PMID: 38636797 DOI: 10.1016/j.ymeth.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
The challenge of modelling the spatial conformation of chromatin remains an open problem. While multiple data-driven approaches have been proposed, each has limitations. This work introduces two image-driven modelling methods based on the Molecular Dynamics Flexible Fitting (MDFF) approach: the force method and the correlational method. Both methods have already been used successfully in protein modelling. We propose a novel way to employ them for building chromatin models directly from 3D images. This approach is termed image-driven modelling. Additionally, we introduce the initial structure generator, a tool designed to generate optimal starting structures for the proposed algorithms. The methods are versatile and can be applied to various data types, with minor modifications to accommodate new generation imaging techniques.
Collapse
Affiliation(s)
- Michał Kadlof
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
| | - Krzysztof Banecki
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland; Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Mateusz Chiliński
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland; Centre of New Technologies, University of Warsaw, Warsaw, Poland; Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland; Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
36
|
Fan P, Sun M, Zhang X, Zhang H, Liu Y, Yao Y, Li M, Fang T, Sun B, Chen Z, Chi X, Chen L, Peng C, Chen Z, Zhang G, Ren Y, Liu Z, Li Y, Li J, Li E, Guan W, Li S, Gong R, Zhang K, Yu C, Chiu S. A potent Henipavirus cross-neutralizing antibody reveals a dynamic fusion-triggering pattern of the G-tetramer. Nat Commun 2024; 15:4330. [PMID: 38773072 PMCID: PMC11109247 DOI: 10.1038/s41467-024-48601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
The Hendra and Nipah viruses (HNVs) are highly pathogenic pathogens without approved interventions for human use. In addition, the interaction pattern between the attachment (G) and fusion (F) glycoproteins required for virus entry remains unclear. Here, we isolate a panel of Macaca-derived G-specific antibodies that cross-neutralize HNVs via multiple mechanisms. The most potent antibody, 1E5, confers adequate protection against the Nipah virus challenge in female hamsters. Crystallography demonstrates that 1E5 has a highly similar binding pattern to the receptor. In cryo-electron microscopy studies, the tendency of 1E5 to bind to the upper or lower heads results in two distinct quaternary structures of G. Furthermore, we identify the extended outer loop β1S2-β1S3 of G and two pockets on the apical region of fusion (F) glycoprotein as the essential sites for G-F interactions. This work highlights promising drug candidates against HNVs and contributes deeper insights into the viruses.
Collapse
Grants
- the Defense Industrial Technology Development Program, Grant No. JCKY2020802B001
- the Ministry of Science and Technology of China,Grant No. 2022YFC2303700; the Fundamental Research Funds for the Central Universities, Grant No. WK9100000032
- Hubei Jiangxia Laboratory, Grant No. JXBS002
- the Ministry of Science and Technology of China,Grant No. 2022YFC2303700, Grant No. 2022YFA1302700; the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB0490000; the Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Grant No. QYPY20220019; the Fundamental Research Funds for the Central Universities, Grant No. WK9100000044
- the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No. XDB0490000
Collapse
Affiliation(s)
- Pengfei Fan
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China.
| | - Mengmeng Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Huajun Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yujiao Liu
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yanfeng Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ming Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ting Fang
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Bingjie Sun
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Zhengshan Chen
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Xiangyang Chi
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Li Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Guanying Zhang
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yi Ren
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Zixuan Liu
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Jianmin Li
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wuxiang Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Gong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Changming Yu
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
| |
Collapse
|
37
|
Frain KM, Dedic E, Nel L, Bohush A, Olesen E, Thaysen K, Wüstner D, Stokes DL, Pedersen BP. Conformational changes in the Niemann-Pick type C1 protein NCR1 drive sterol translocation. Proc Natl Acad Sci U S A 2024; 121:e2315575121. [PMID: 38568972 PMCID: PMC11009665 DOI: 10.1073/pnas.2315575121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
The membrane protein Niemann-Pick type C1 (NPC1, named NCR1 in yeast) is central to sterol homeostasis in eukaryotes. Saccharomyces cerevisiae NCR1 is localized to the vacuolar membrane, where it is suggested to carry sterols across the protective glycocalyx and deposit them into the vacuolar membrane. However, documentation of a vacuolar glycocalyx in fungi is lacking, and the mechanism for sterol translocation has remained unclear. Here, we provide evidence supporting the presence of a glycocalyx in isolated S. cerevisiae vacuoles and report four cryo-EM structures of NCR1 in two distinct conformations, named tense and relaxed. These two conformations illustrate the movement of sterols through a tunnel formed by the luminal domains, thus bypassing the barrier presented by the glycocalyx. Based on these structures and on comparison with other members of the Resistance-Nodulation-Division (RND) superfamily, we propose a transport model that links changes in the luminal domains with a cycle of protonation and deprotonation within the transmembrane region of the protein. Our model suggests that NPC proteins work by a generalized RND mechanism where the proton motive force drives conformational changes in the transmembrane domains that are allosterically coupled to luminal/extracellular domains to promote sterol transport.
Collapse
Affiliation(s)
- Kelly M. Frain
- Department of Molecular Biology and Genetics, Aarhus University, AarhusC 8000, Denmark
| | - Emil Dedic
- Department of Molecular Biology and Genetics, Aarhus University, AarhusC 8000, Denmark
| | - Lynette Nel
- Department of Molecular Biology and Genetics, Aarhus University, AarhusC 8000, Denmark
| | - Anastasiia Bohush
- Department of Molecular Biology and Genetics, Aarhus University, AarhusC 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus Institute of Advanced Studies, Aarhus University, AarhusC 8000, Denmark
| | - Esben Olesen
- Department of Molecular Biology and Genetics, Aarhus University, AarhusC 8000, Denmark
| | - Katja Thaysen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, OdenseM 5230, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, OdenseM 5230, Denmark
| | - David L. Stokes
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016
| | | |
Collapse
|
38
|
Li Y, Guo Y, Bröer A, Dai L, Brӧer S, Yan R. Cryo-EM structure of the human Asc-1 transporter complex. Nat Commun 2024; 15:3036. [PMID: 38589439 PMCID: PMC11001984 DOI: 10.1038/s41467-024-47468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
The Alanine-Serine-Cysteine transporter 1 (Asc-1 or SLC7A10) forms a crucial heterodimeric transporter complex with 4F2hc (SLC3A2) through a covalent disulfide bridge. This complex enables the sodium-independent transport of small neutral amino acids, including L-Alanine (L-Ala), Glycine (Gly), and D-Serine (D-Ser), within the central nervous system (CNS). D-Ser and Gly are two key endogenous glutamate co-agonists that activate N-methyl-d-aspartate (NMDA) receptors by binding to the allosteric site. Mice deficient in Asc-1 display severe symptoms such as tremors, ataxia, and seizures, leading to early postnatal death. Despite its physiological importance, the functional mechanism of the Asc-1-4F2hc complex has remained elusive. Here, we present cryo-electron microscopy (cryo-EM) structures of the human Asc-1-4F2hc complex in its apo state, D-Ser bound state, and L-Ala bound state, resolved at 3.6 Å, 3.5 Å, and 3.4 Å, respectively. Through detailed structural analysis and transport assays, we uncover a comprehensive alternating access mechanism that underlies conformational changes in the complex. In summary, our findings reveal the architecture of the Asc-1 and 4F2hc complex and provide valuable insights into substrate recognition and the functional cycle of this essential transporter complex.
Collapse
Affiliation(s)
- Yaning Li
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yingying Guo
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Lu Dai
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| |
Collapse
|
39
|
Chen L, Sun M, Zhang H, Zhang X, Yao Y, Li M, Li K, Fan P, Zhang H, Qin Y, Zhang Z, Li E, Chen Z, Guan W, Li S, Yu C, Zhang K, Gong R, Chiu S. Potent human neutralizing antibodies against Nipah virus derived from two ancestral antibody heavy chains. Nat Commun 2024; 15:2987. [PMID: 38582870 PMCID: PMC10998907 DOI: 10.1038/s41467-024-47213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/18/2024] [Indexed: 04/08/2024] Open
Abstract
Nipah virus (NiV) is a World Health Organization priority pathogen and there are currently no approved drugs for clinical immunotherapy. Through the use of a naïve human phage-displayed Fab library, two neutralizing antibodies (NiV41 and NiV42) targeting the NiV receptor binding protein (RBP) were identified. Following affinity maturation, antibodies derived from NiV41 display cross-reactivity against both NiV and Hendra virus (HeV), whereas the antibody based on NiV42 is only specific to NiV. Results of immunogenetic analysis reveal a correlation between the maturation of antibodies and their antiviral activity. In vivo testing of NiV41 and its mature form (41-6) show protective efficacy against a lethal NiV challenge in hamsters. Furthermore, a 2.88 Å Cryo-EM structure of the tetrameric RBP and antibody complex demonstrates that 41-6 blocks the receptor binding interface. These findings can be beneficial for the development of antiviral drugs and the design of vaccines with broad spectrum against henipaviruses.
Collapse
Affiliation(s)
- Li Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Huajun Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xinghai Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yanfeng Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ming Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kangyin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Fan
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Haiwei Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ye Qin
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Zhen Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wuxiang Guan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Changming Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China.
| |
Collapse
|
40
|
Landeck JT, Pajak J, Norman EK, Sedivy EL, Kelch BA. Differences between bacteria and eukaryotes in clamp loader mechanism, a conserved process underlying DNA replication. J Biol Chem 2024; 300:107166. [PMID: 38490435 PMCID: PMC11044049 DOI: 10.1016/j.jbc.2024.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader replication factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the Escherichia coli clamp loader at high resolution using cryo-electron microscopy. We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how the clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.
Collapse
Affiliation(s)
- Jacob T Landeck
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Joshua Pajak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Emily K Norman
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Emma L Sedivy
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Brian A Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
41
|
Raza S, Sarkar D, Chan LJG, Mae J, Sutter M, Petzold CJ, Kerfeld CA, Ralston CY, Gupta S, Vermaas JV. Comparative Pore Structure and Dynamics for Bacterial Microcompartment Shell Protein Assemblies in Sheets or Shells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584231. [PMID: 38559214 PMCID: PMC10980050 DOI: 10.1101/2024.03.12.584231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bacterial microcompartments (BMCs) are protein-bound organelles found in some bacteria which encapsulate enzymes for enhanced catalytic activity. These compartments spatially sequester enzymes within semi-permeable shell proteins, analogous to many membrane-bound organelles. The shell proteins assemble into multimeric tiles; hexamers, trimers, and pentamers, and these tiles self-assemble into larger assemblies with icosahedral symmetry. While icosahedral shells are the predominant form in vivo, the tiles can also form nanoscale cylinders or sheets. The individual multimeric tiles feature central pores that are key to regulating transport across the protein shell. Our primary interest is to quantify pore shape changes in response to alternative component morphologies at the nanoscale. We use molecular modeling tools to develop atomically detailed models for both planar sheets of tiles and curved structures representative of the complete shells found in vivo. Subsequently, these models were animated using classical molecular dynamics simulations. From the resulting trajectories, we analyzed overall structural stability, water accessibility to individual residues, water residence time, and pore geometry for the hexameric and trimeric protein tiles from the Haliangium ochraceum model BMC shell. These exhaustive analyses suggest no substantial variation in pore structure or solvent accessibility between the flat and curved shell geometries. We additionally compare our analysis to hydroxyl radical footprinting data to serve as a check against our simulation results, highlighting specific residues where water molecules are bound for a long time. Although with little variation in morphology or water interaction, we propose that the planar and capsular morphology can be used interchangeably when studying permeability through BMC pores.
Collapse
Affiliation(s)
- Saad Raza
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
| | - Daipayan Sarkar
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
| | - Leanne Jade G Chan
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Current address: Calico Life Sciences LLC, South San Francisco, CA 94080
| | - Joshua Mae
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
- Department Of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
- Department Of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824
| |
Collapse
|
42
|
Belviso BD, Shen Y, Carrozzini B, Morishita M, di Luccio E, Caliandro R. Structural insights into the C-terminus of the histone-lysine N-methyltransferase NSD3 by small-angle X-ray scattering. Front Mol Biosci 2024; 11:1191246. [PMID: 38516186 PMCID: PMC10955146 DOI: 10.3389/fmolb.2024.1191246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
NSD3 is a member of six H3K36-specific histone lysine methyltransferases in metazoans. Its overexpression or mutation is implicated in developmental defects and oncogenesis. Aside from the well-characterized catalytic SET domain, NSD3 has multiple clinically relevant potential chromatin-binding motifs, such as the proline-tryptophan-tryptophan-proline (PWWP), the plant homeodomain (PHD), and the adjacent Cys-His-rich domain located at the C-terminus. The crystal structure of the individual domains is available, and this structural knowledge has allowed the designing of potential inhibitors, but the intrinsic flexibility of larger constructs has hindered the characterization of mutual domain conformations. Here, we report the first structural characterization of the NSD3 C-terminal region comprising the PWWP2, SET, and PHD4 domains, which has been achieved at a low resolution in solution by small-angle X-ray scattering (SAXS) data on two multiple-domain NSD3 constructs complemented with size-exclusion chromatography and advanced computational modeling. Structural models predicted by machine learning have been validated in direct space, by comparison with the SAXS-derived molecular envelope, and in reciprocal space, by reproducing the experimental SAXS profile. Selected models have been refined by SAXS-restrained molecular dynamics. This study shows how SAXS data can be used with advanced computational modeling techniques to achieve a detailed structural characterization and sheds light on how NSD3 domains are interconnected in the C-terminus.
Collapse
Affiliation(s)
| | - Yunpeng Shen
- Department of Biotechnology, School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | | | - Masayo Morishita
- Department of Genetic Engineering, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Eric di Luccio
- Department of Genetic Engineering, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | | |
Collapse
|
43
|
Chmielewski D, Su GC, Kaelber JT, Pintilie GD, Chen M, Jin J, Auguste AJ, Chiu W. Cryogenic electron microscopy and tomography reveal imperfect icosahedral symmetry in alphaviruses. PNAS NEXUS 2024; 3:pgae102. [PMID: 38525304 PMCID: PMC10959069 DOI: 10.1093/pnasnexus/pgae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
Alphaviruses are spherical, enveloped RNA viruses with two-layered icosahedral architecture. The structures of many alphaviruses have been studied using cryogenic electron microscopy (cryo-EM) reconstructions, which impose icosahedral symmetry on the viral particles. Using cryogenic electron tomography (cryo-ET), we revealed a polarized symmetry defect in the icosahedral lattice of Chikungunya virus (CHIKV) in situ, similar to the late budding particles, suggesting the inherent imperfect symmetry originates from the final pinch-off of assembled virions. We further demonstrated this imperfect symmetry is also present in in vitro purified CHIKV and Mayaro virus, another arthritogenic alphavirus. We employed a subparticle-based single-particle analysis protocol to circumvent the icosahedral imperfection and boosted the resolution of the structure of the CHIKV to ∼3 Å resolution, which revealed detailed molecular interactions between glycoprotein E1-E2 heterodimers in the transmembrane region and multiple lipid-like pocket factors located in a highly conserved hydrophobic pocket. This complementary use of in situ cryo-ET and single-particle cryo-EM approaches provides a more precise structural description of near-icosahedral viruses and valuable insights to guide the development of structure-based antiviral therapies against alphaviruses.
Collapse
Affiliation(s)
- David Chmielewski
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Guan-Chin Su
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Jason T Kaelber
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Grigore D Pintilie
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Jing Jin
- Vitalant Research Institute, San Francisco, CA 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Albert J Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Wah Chiu
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
44
|
Rochon K, Bauer BL, Roethler NA, Buckley Y, Su CC, Huang W, Ramachandran R, Stoll MSK, Yu EW, Taylor DJ, Mears JA. Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1. Nat Commun 2024; 15:1328. [PMID: 38351080 PMCID: PMC10864337 DOI: 10.1038/s41467-024-45524-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Mitochondrial fission is a critical cellular event to maintain organelle function. This multistep process is initiated by the enhanced recruitment and oligomerization of dynamin-related protein 1 (Drp1) at the surface of mitochondria. As such, Drp1 is essential for inducing mitochondrial division in mammalian cells, and homologous proteins are found in all eukaryotes. As a member of the dynamin superfamily of proteins (DSPs), controlled Drp1 self-assembly into large helical polymers stimulates its GTPase activity to promote membrane constriction. Still, little is known about the mechanisms that regulate correct spatial and temporal assembly of the fission machinery. Here we present a cryo-EM structure of a full-length Drp1 dimer in an auto-inhibited state. This dimer reveals two key conformational rearrangements that must be unlocked through intramolecular rearrangements to achieve the assembly-competent state observed in previous structures. This structural insight provides understanding into the mechanism for regulated self-assembly of the mitochondrial fission machinery.
Collapse
Affiliation(s)
- Kristy Rochon
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Brianna L Bauer
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Nathaniel A Roethler
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Yuli Buckley
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rajesh Ramachandran
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Maria S K Stoll
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
45
|
Beck M, Covino R, Hänelt I, Müller-McNicoll M. Understanding the cell: Future views of structural biology. Cell 2024; 187:545-562. [PMID: 38306981 DOI: 10.1016/j.cell.2023.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 02/04/2024]
Abstract
Determining the structure and mechanisms of all individual functional modules of cells at high molecular detail has often been seen as equal to understanding how cells work. Recent technical advances have led to a flush of high-resolution structures of various macromolecular machines, but despite this wealth of detailed information, our understanding of cellular function remains incomplete. Here, we discuss present-day limitations of structural biology and highlight novel technologies that may enable us to analyze molecular functions directly inside cells. We predict that the progression toward structural cell biology will involve a shift toward conceptualizing a 4D virtual reality of cells using digital twins. These will capture cellular segments in a highly enriched molecular detail, include dynamic changes, and facilitate simulations of molecular processes, leading to novel and experimentally testable predictions. Transferring biological questions into algorithms that learn from the existing wealth of data and explore novel solutions may ultimately unveil how cells work.
Collapse
Affiliation(s)
- Martin Beck
- Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Goethe University Frankfurt, Frankfurt, Germany.
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
| | - Inga Hänelt
- Goethe University Frankfurt, Frankfurt, Germany.
| | | |
Collapse
|
46
|
Zhang Z, Cai Y, Zhang B, Zheng W, Freddolino L, Zhang G, Zhou X. DEMO-EM2: assembling protein complex structures from cryo-EM maps through intertwined chain and domain fitting. Brief Bioinform 2024; 25:bbae113. [PMID: 38517699 PMCID: PMC10959074 DOI: 10.1093/bib/bbae113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/24/2024] Open
Abstract
The breakthrough in cryo-electron microscopy (cryo-EM) technology has led to an increasing number of density maps of biological macromolecules. However, constructing accurate protein complex atomic structures from cryo-EM maps remains a challenge. In this study, we extend our previously developed DEMO-EM to present DEMO-EM2, an automated method for constructing protein complex models from cryo-EM maps through an iterative assembly procedure intertwining chain- and domain-level matching and fitting for predicted chain models. The method was carefully evaluated on 27 cryo-electron tomography (cryo-ET) maps and 16 single-particle EM maps, where DEMO-EM2 models achieved an average TM-score of 0.92, outperforming those of state-of-the-art methods. The results demonstrate an efficient method that enables the rapid and reliable solution of challenging cryo-EM structure modeling problems.
Collapse
Affiliation(s)
- Ziying Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yaxian Cai
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Biao Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lydia Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiaogen Zhou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
47
|
Cuervo A, Losana P, Carrascosa JL. Observation of Bacteriophage Ultrastructure by Cryo-Electron Microscopy. Methods Mol Biol 2024; 2734:13-25. [PMID: 38066360 DOI: 10.1007/978-1-0716-3523-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Transmission electron microscopy (TEM) is an ideal method to observe and determine the structure of bacteriophages. From early studies by negative staining to the present atomic structure models derived from cryo-TEM, bacteriophage detection, classification, and structure determination have been mostly done by electron microscopy. Although embedding in metal salts has been a routine method for virus observation for many years, the preservation of bacteriophages in a thin layer of fast frozen buffer has proven to be the most convenient preparation method for obtaining images using cryo-electron microscopy (cryo-EM). In this technique, frozen samples are observed at liquid nitrogen temperature, and the images are acquired using different recording media. The incorporation of direct electron detectors has been a fundamental step in achieving atomic resolution images of a number of viruses. These projection images can be numerically combined using different approaches to render a three-dimensional model of the virus. For those viral components exhibiting any symmetry, averaging can nowadays achieve atomic structures in most cases. Image processing methods have also evolved to improve the resolution in asymmetric viral components or regions showing different types of symmetries (symmetry mismatch).
Collapse
Affiliation(s)
- Ana Cuervo
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| | - Patricia Losana
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
48
|
Fan C, Flood E, Sukomon N, Agarwal S, Allen TW, Nimigean CM. Calcium-gated potassium channel blockade via membrane-facing fenestrations. Nat Chem Biol 2024; 20:52-61. [PMID: 37653172 PMCID: PMC10847966 DOI: 10.1038/s41589-023-01406-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Quaternary ammonium blockers were previously shown to bind in the pore to block both open and closed conformations of large-conductance calcium-activated potassium (BK and MthK) channels. Because blocker entry was assumed through the intracellular entryway (bundle crossing), closed-pore access suggested that the gate was not at the bundle crossing. Structures of closed MthK, a Methanobacterium thermoautotrophicum homolog of BK channels, revealed a tightly constricted intracellular gate, leading us to investigate the membrane-facing fenestrations as alternative pathways for blocker access directly from the membrane. Atomistic free energy simulations showed that intracellular blockers indeed access the pore through the fenestrations, and a mutant channel with narrower fenestrations displayed no closed-state TPeA block at concentrations that blocked the wild-type channel. Apo BK channels display similar fenestrations, suggesting that blockers may use them as access paths into closed channels. Thus, membrane fenestrations represent a non-canonical pathway for selective targeting of specific channel conformations, opening novel ways to selectively drug BK channels.
Collapse
Affiliation(s)
- Chen Fan
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria, Australia
- Schrödinger, Inc., New York, NY, USA
| | - Nattakan Sukomon
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Shubhangi Agarwal
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Toby W Allen
- School of Science, RMIT University, Melbourne, Victoria, Australia.
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
49
|
Landeck JT, Pajak J, Norman EK, Sedivy EL, Kelch BA. Differences in clamp loader mechanism between bacteria and eukaryotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569468. [PMID: 38076975 PMCID: PMC10705477 DOI: 10.1101/2023.11.30.569468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp, and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader Replication Factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the E. coli clamp loader at high resolution using cryo-electron microscopy (cryo-EM). We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.
Collapse
Affiliation(s)
- Jacob T. Landeck
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Joshua Pajak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Emily K. Norman
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Emma L. Sedivy
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Brian A. Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| |
Collapse
|
50
|
Ansell TB, Song W, Coupland CE, Carrique L, Corey RA, Duncan AL, Cassidy CK, Geurts MMG, Rasmussen T, Ward AB, Siebold C, Stansfeld PJ, Sansom MSP. LipIDens: simulation assisted interpretation of lipid densities in cryo-EM structures of membrane proteins. Nat Commun 2023; 14:7774. [PMID: 38012131 PMCID: PMC10682427 DOI: 10.1038/s41467-023-43392-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) enables the determination of membrane protein structures in native-like environments. Characterising how membrane proteins interact with the surrounding membrane lipid environment is assisted by resolution of lipid-like densities visible in cryo-EM maps. Nevertheless, establishing the molecular identity of putative lipid and/or detergent densities remains challenging. Here we present LipIDens, a pipeline for molecular dynamics (MD) simulation-assisted interpretation of lipid and lipid-like densities in cryo-EM structures. The pipeline integrates the implementation and analysis of multi-scale MD simulations for identification, ranking and refinement of lipid binding poses which superpose onto cryo-EM map densities. Thus, LipIDens enables direct integration of experimental and computational structural approaches to facilitate the interpretation of lipid-like cryo-EM densities and to reveal the molecular identities of protein-lipid interactions within a bilayer environment. We demonstrate this by application of our open-source LipIDens code to ten diverse membrane protein structures which exhibit lipid-like densities.
Collapse
Affiliation(s)
- T Bertie Ansell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Wanling Song
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK
| | - Claire E Coupland
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Loic Carrique
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Chemistry, Aarhus University, Lagelsandsgade 140, 8000, Aarhus C, Denmark
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Maxwell M G Geurts
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Tim Rasmussen
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, Haus D15, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Phillip J Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|