1
|
Xie B, Xu S, Sivasankar S. Outside-in engineering of cadherin endocytosis using a conformation strengthening antibody. Nat Commun 2025; 16:1157. [PMID: 39881179 PMCID: PMC11779849 DOI: 10.1038/s41467-025-56478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
P-cadherin, a crucial cell-cell adhesion protein which is overexpressed in numerous malignant cancers, is a popular target for drug delivery antibodies. However, molecular guidelines for engineering antibodies that can be internalized upon binding to P-cadherin are unknown. Here, we use a combination of biophysical, biochemical, and cell biological methods to demonstrate that trapping the P-cadherin extracellular region in an X-dimer adhesive conformation triggers cadherin endocytosis via an outside-in signaling mechanism. We show that the anti-cancer drug delivery monoclonal antibody CQY684, traps P-cadherin in an X-dimer conformation and strengthens this adhesive structure. Formation of stable X-dimers results in the phosphorylation of p120-catenin, a suppressor of cadherin endocytosis. This triggers the dissociation of p120-catenin from the X-dimer cytoplasmic region, which increases P-cadherin turnover and targets the cadherin-antibody complex to the lysosome. Our results establish an outside-in signaling mechanism that provides fundamental insights into how cells regulate adhesion and that can be exploited by anti-cadherin antibodies for intracellular drug delivery.
Collapse
Affiliation(s)
- Bin Xie
- Biophysics Graduate Group, University of California, Davis, CA, USA
| | - Shipeng Xu
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Sanjeevi Sivasankar
- Biophysics Graduate Group, University of California, Davis, CA, USA.
- Department of Biomedical Engineering, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Tamilselvan E, Sotomayor M. CELSR1, a core planar cell polarity protein, features a weakly adhesive and flexible cadherin ectodomain. Structure 2024; 32:476-491.e5. [PMID: 38307021 DOI: 10.1016/j.str.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/30/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Planar cell polarity (PCP), essential to multicellular developmental processes, arises when cells polarize and align across tissues. Central to PCP is CELSR1, an atypical cadherin featuring a long ectodomain with nine extracellular cadherin (EC) repeats, a membrane adjacent domain (MAD10), and several characteristic adhesion GPCR domains. Cell-based aggregation assays have demonstrated CELSR1's homophilic adhesive nature, but mechanistic details are missing. Here, we investigate the possible adhesive properties and structures of CELSR1 EC repeats. Our bead aggregation assays do not support strong adhesion by EC repeats alone. Consistently, EC1-4 only dimerizes at high concentration in solution. Crystal structures of human CELSR1 EC1-4 and EC4-7 reveal typical folds and a non-canonical linker between EC5 and EC6. Simulations and experiments using EC4-7 indicate flexibility at EC5-6, and solution experiments show EC7-MAD10-mediated dimerization. Our results suggest weak homophilic adhesion by CELSR1 cadherin repeats and provide mechanistic insights into the structural determinants of CELSR1 function.
Collapse
Affiliation(s)
- Elakkiya Tamilselvan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Xie B, Xu S, Schecterson L, Gumbiner BM, Sivasankar S. Strengthening E-cadherin adhesion via antibody-mediated binding stabilization. Structure 2024; 32:217-227.e3. [PMID: 38052206 PMCID: PMC10872345 DOI: 10.1016/j.str.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
E-cadherins (Ecads) are a crucial cell-cell adhesion protein with tumor suppression properties. Ecad adhesion can be enhanced by the monoclonal antibody 66E8, which has potential applications in inhibiting cancer metastasis. However, the biophysical mechanisms underlying 66E8-mediated adhesion strengthening are unknown. Here, we use molecular dynamics simulations, site-directed mutagenesis, and single-molecule atomic force microscopy experiments to demonstrate that 66E8 strengthens Ecad binding by stabilizing the primary Ecad adhesive conformation: the strand-swap dimer. By forming electrostatic interactions with Ecad, 66E8 stabilizes the swapped β-strand and its hydrophobic pocket and impedes Ecad conformational changes, which are necessary for rupture of the strand-swap dimer. Our findings identify fundamental mechanistic principles for strengthening of Ecad binding using monoclonal antibodies.
Collapse
Affiliation(s)
- Bin Xie
- Biophysics Graduate Group, University of California, Davis, Davis, CA, USA
| | - Shipeng Xu
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Leslayann Schecterson
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, USA
| | - Barry M Gumbiner
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, USA
| | - Sanjeevi Sivasankar
- Biophysics Graduate Group, University of California, Davis, Davis, CA, USA; Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
4
|
Mukherjee S, Goswami S, Dash S, Samanta D. Structural basis of molecular recognition among classical cadherins mediating cell adhesion. Biochem Soc Trans 2023; 51:2103-2115. [PMID: 37970977 DOI: 10.1042/bst20230356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Cadherins are type-I membrane glycoproteins that primarily participate in calcium-dependent cell adhesion and homotypic cell sorting in various stages of embryonic development. Besides their crucial role in cellular and physiological processes, increasing studies highlight their involvement in pathophysiological functions ranging from cancer progression and metastasis to being entry receptors for pathogens. Cadherins mediate these cellular processes through homophilic, as well as heterophilic interactions (within and outside the superfamily) by their membrane distal ectodomains. This review provides an in-depth structural perspective of molecular recognition among type-I and type-II classical cadherins. Furthermore, this review offers structural insights into different dimeric assemblies like the 'strand-swap dimer' and 'X-dimer' as well as mechanisms relating these dimer forms like 'two-step adhesion' and 'encounter complex'. Alongside providing structural details, this review connects structural studies to bond mechanics merging crystallographic and single-molecule force spectroscopic findings. Finally, the review discusses the recent discoveries on dimeric intermediates that uncover prospects of further research beyond two-step adhesion.
Collapse
Affiliation(s)
- Sarbartha Mukherjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Saumyadeep Goswami
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sagarika Dash
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
5
|
Shome S, Jia K, Sivasankar S, Jernigan RL. Characterizing interactions in E-cadherin assemblages. Biophys J 2023; 122:3069-3077. [PMID: 37345249 PMCID: PMC10432173 DOI: 10.1016/j.bpj.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/26/2022] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
Cadherin intermolecular interactions are critical for cell-cell adhesion and play essential roles in tissue formation and the maintenance of tissue structures. In this study, we focus on E-cadherin, a classical cadherin that connects epithelial cells, to understand how they interact in cis and trans conformations when attached to the same cell or opposing cells. We employ coevolutionary sequence analysis and molecular dynamics simulations to confirm previously known interaction sites as well as to identify new interaction sites. The sequence coevolutionary results yield a surprising result indicating that there are no strongly favored intermolecular interaction sites, which is unusual and suggests that many interaction sites may be possible, with none being strongly preferred over others. By using molecular dynamics, we test the persistence of these interactions and how they facilitate adhesion. We build several types of cadherin assemblages, with different numbers and combinations of cis and trans interfaces to understand how these conformations act to facilitate adhesion. Our results suggest that, in addition to the established interaction sites on the EC1 and EC2 domains, an additional plausible cis interface at the EC3-EC5 domain exists. Furthermore, we identify specific mutations at cis/trans binding sites that impair adhesion within E-cadherin assemblages.
Collapse
Affiliation(s)
- Sayane Shome
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Kejue Jia
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Robert L Jernigan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa.
| |
Collapse
|
6
|
Sivasankar S, Xie B. Engineering the Interactions of Classical Cadherin Cell-Cell Adhesion Proteins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:343-349. [PMID: 37459190 PMCID: PMC10361579 DOI: 10.4049/jimmunol.2300098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/30/2023] [Indexed: 07/20/2023]
Abstract
Classical cadherins are calcium-dependent cell-cell adhesion proteins that play key roles in the formation and maintenance of tissues. Deficiencies in cadherin adhesion are hallmarks of numerous cancers. In this article, we review recent biophysical studies on the regulation of cadherin structure and adhesion. We begin by reviewing distinct cadherin binding conformations, their biophysical properties, and their response to mechanical stimuli. We then describe biophysical guidelines for engineering Abs that can regulate adhesion by either stabilizing or destabilizing cadherin interactions. Finally, we review molecular mechanisms by which cytoplasmic proteins regulate the conformation of cadherin extracellular regions from the inside out.
Collapse
Affiliation(s)
- Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Biophysics Graduate Group, University of California, Davis, CA 95616
| | - Bin Xie
- Biophysics Graduate Group, University of California, Davis, CA 95616
| |
Collapse
|
7
|
Xie B, Xu S, Schecterson L, Gumbiner BM, Sivasankar S. Strengthening E-cadherin adhesion via antibody mediated binding stabilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547716. [PMID: 37461464 PMCID: PMC10350017 DOI: 10.1101/2023.07.04.547716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
E-cadherins (Ecads) are a crucial cell-cell adhesion protein with tumor suppression properties. Ecad adhesion can be enhanced by the monoclonal antibody 66E8, which has potential applications in inhibiting cancer metastasis. However, the biophysical mechanisms underlying 66E8 mediated adhesion strengthening are unknown. Here, we use molecular dynamics simulations, site directed mutagenesis and single molecule atomic force microscopy experiments to demonstrate that 66E8 strengthens Ecad binding by stabilizing the primary Ecad adhesive conformation: the strand-swap dimer. By forming electrostatic interactions with Ecad, 66E8 stabilizes the swapped β-strand and its hydrophobic pocket and impedes Ecad conformational changes, which are necessary for rupture of the strand-swap dimer. Our findings identify fundamental mechanistic principles for strengthening of Ecad binding using monoclonal antibodies.
Collapse
|
8
|
Panayotov IV, Végh AG, Martin M, Vladimirov B, Larroque C, Gergely C, Cuisinier FJG, Estephan E. Improving dental epithelial junction on dental implants with bioengineered peptides. Front Bioeng Biotechnol 2023; 11:1165853. [PMID: 37409165 PMCID: PMC10318435 DOI: 10.3389/fbioe.2023.1165853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction: The functionalization of titanium (Ti) and titanium alloys (Ti6Al4V) implant surfaces via material-specific peptides influence host/biomaterial interaction. The impact of using peptides as molecular linkers between cells and implant material to improve keratinocyte adhesion is reported. Results: The metal binding peptides (MBP-1, MBP-2) SVSVGMKPSPRP and WDPPTLKRPVSP were selected via phage display and combined with laminin-5 or E-cadherin epithelial cell specific peptides (CSP-1, CSP-2) to engineer four metal-cell specific peptides (MCSPs). Single-cell force spectroscopy and cell adhesion experiments were performed to select the most promising candidate. In vivo tests using the dental implant for rats showed that the selected bi functional peptide not only enabled stable cell adhesion on the trans-gingival part of the dental implant but also arrested the unwanted apical migration of epithelial cells. Conclusion: The results demonstrated the outstanding performance of the bioengineered peptide in improving epithelial adhesion to Ti based implants and pointed towards promising new opportunities for applications in clinical practice.
Collapse
Affiliation(s)
- Ivan V. Panayotov
- LBN, University Montpellier, Montpellier, France
- CSERD, CHU Montpellier, Montpellier, France
| | - Attila G. Végh
- Biological Research Centre, Institute of Biophysics, Eötvös Lóránd Research Network (ELKH), Szeged, Hungary
| | - Marta Martin
- L2C, University Montpellier, CNRS, Montpellier, France
| | - Boyan Vladimirov
- Department of Maxillofacial Surgery, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Christian Larroque
- Department of Nephrology, CHU Montpellier, Hôpital Lapeyronie, IRMB, University of Montpellier, INSERM U1183, Montpellier, France
| | | | | | - Elias Estephan
- LBN, University Montpellier, Montpellier, France
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
9
|
Xie B, Maker A, Priest AV, Dranow DM, Phan JN, Edwards TE, Staker BL, Myler PJ, Gumbiner BM, Sivasankar S. Molecular mechanism for strengthening E-cadherin adhesion using a monoclonal antibody. Proc Natl Acad Sci U S A 2022; 119:e2204473119. [PMID: 35921442 PMCID: PMC9371698 DOI: 10.1073/pnas.2204473119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
E-cadherin (Ecad) is an essential cell-cell adhesion protein with tumor suppression properties. The adhesive state of Ecad can be modified by the monoclonal antibody 19A11, which has potential applications in reducing cancer metastasis. Using X-ray crystallography, we determine the structure of 19A11 Fab bound to Ecad and show that the antibody binds to the first extracellular domain of Ecad near its primary adhesive motif: the strand-swap dimer interface. Molecular dynamics simulations and single-molecule atomic force microscopy demonstrate that 19A11 interacts with Ecad in two distinct modes: one that strengthens the strand-swap dimer and one that does not alter adhesion. We show that adhesion is strengthened by the formation of a salt bridge between 19A11 and Ecad, which in turn stabilizes the swapped β-strand and its complementary binding pocket. Our results identify mechanistic principles for engineering antibodies to enhance Ecad adhesion.
Collapse
Affiliation(s)
- Bin Xie
- Biophysics Graduate Group, University of California, Davis, CA, 95616
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - Allison Maker
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, 98101
- Department of Biochemistry, University of Washington, Seattle, WA, 98195
| | - Andrew V. Priest
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - David M. Dranow
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- UCB Pharma, Bainbridge Island, WA, 98110
| | - Jenny N. Phan
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- UCB Pharma, Bainbridge Island, WA, 98110
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- UCB Pharma, Bainbridge Island, WA, 98110
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, 98109
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, 98109
- Department of Pediatrics, University of Washington, Seattle, WA, 98195
| | - Barry M. Gumbiner
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, 98101
- Department of Biochemistry, University of Washington, Seattle, WA, 98195
- Department of Pediatrics, University of Washington, Seattle, WA, 98195
| | - Sanjeevi Sivasankar
- Biophysics Graduate Group, University of California, Davis, CA, 95616
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| |
Collapse
|
10
|
Multiple dimeric structures and strand-swap dimerization of E-cadherin in solution visualized by high-speed atomic force microscopy. Proc Natl Acad Sci U S A 2022; 119:e2208067119. [PMID: 35867820 PMCID: PMC9335211 DOI: 10.1073/pnas.2208067119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Classical cadherins play key roles in cell-cell adhesion. The adhesion process is thought to comprise mainly two steps: X-dimer and strand-swap (SS-) dimer formation of the extracellular domains (ectodomains) of cadherins. The dimerization mechanism of this two-step process has been investigated for type I cadherins, including E-cadherin, of classical cadherins, whereas other binding states also have been proposed, raising the possibility of additional binding processes required for the cadherin dimerization. However, technical limitations in observing single-molecule structures and their dynamics have precluded the investigation of the dynamic binding process of cadherin. Here, we used high-speed atomic force microscopy (HS-AFM) to observe full-length ectodomains of E-cadherin in solution and identified multiple dimeric structures that had not been reported previously. HS-AFM revealed that almost half of the cadherin dimers showed S- (or reverse S-) shaped conformations, which had more dynamic properties than the SS- and X-like dimers. The combined HS-AFM, mutational, and molecular modeling analyses showed that the S-shaped dimer was formed by membrane-distal ectodomains, while the binding interface was different from that of SS- and X-dimers. Furthermore, the formation of the SS-dimer from the S-shaped and X-like dimers was directly visualized, suggesting the processes of SS-dimer formation from S-shaped and X-dimers during cadherin dimerization.
Collapse
|
11
|
Vae Priest A, Koirala R, Sivasankar S. Cadherins can dimerize via asymmetric interactions. FEBS Lett 2022; 596:1639-1646. [PMID: 35532156 PMCID: PMC9829383 DOI: 10.1002/1873-3468.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 01/12/2023]
Abstract
Cadherins are essential cell-cell adhesion proteins that interact in two distinct conformations: X-dimers and strand-swap dimers. Both X-dimers and strand-swap dimers are thought to exclusively rely on symmetric sets of interactions between key amino acids on both cadherin binding partners. Here, we use single-molecule atomic force microscopy and computer simulations to show that symmetry in cadherin binding is dispensable and that cadherins can also interact in a novel conformation that asymmetrically incorporates key elements of both strand-swap dimers and X-dimers. Our results clarify the biophysical rules for cadherin binding and demonstrate that cadherins interact in a more diverse range of conformations than previously understood.
Collapse
|
12
|
Neel BL, Nisler CR, Walujkar S, Araya-Secchi R, Sotomayor M. Elastic versus brittle mechanical responses predicted for dimeric cadherin complexes. Biophys J 2022; 121:1013-1028. [PMID: 35151631 PMCID: PMC8943749 DOI: 10.1016/j.bpj.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/02/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Cadherins are a superfamily of adhesion proteins involved in a variety of biological processes that include the formation of intercellular contacts, the maintenance of tissue integrity, and the development of neuronal circuits. These transmembrane proteins are characterized by ectodomains composed of a variable number of extracellular cadherin (EC) repeats that are similar but not identical in sequence and fold. E-cadherin, along with desmoglein and desmocollin proteins, are three classical-type cadherins that have slightly curved ectodomains and engage in homophilic and heterophilic interactions through an exchange of conserved tryptophan residues in their N-terminal EC1 repeat. In contrast, clustered protocadherins are straighter than classical cadherins and interact through an antiparallel homophilic binding interface that involves overlapped EC1 to EC4 repeats. Here we present molecular dynamics simulations that model the adhesive domains of these cadherins using available crystal structures, with systems encompassing up to 2.8 million atoms. Simulations of complete classical cadherin ectodomain dimers predict a two-phased elastic response to force in which these complexes first softly unbend and then stiffen to unbind without unfolding. Simulated α, β, and γ clustered protocadherin homodimers lack a two-phased elastic response, are brittle and stiffer than classical cadherins and exhibit complex unbinding pathways that in some cases involve transient intermediates. We propose that these distinct mechanical responses are important for function, with classical cadherin ectodomains acting as molecular shock absorbers and with stiffer clustered protocadherin ectodomains facilitating overlap that favors binding specificity over mechanical resilience. Overall, our simulations provide insights into the molecular mechanics of single cadherin dimers relevant in the formation of cellular junctions essential for tissue function.
Collapse
Affiliation(s)
- Brandon L Neel
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio
| | - Collin R Nisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
13
|
Neel BL, Nisler CR, Walujkar S, Araya-Secchi R, Sotomayor M. Collective mechanical responses of cadherin-based adhesive junctions as predicted by simulations. Biophys J 2022; 121:991-1012. [PMID: 35150618 PMCID: PMC8943820 DOI: 10.1016/j.bpj.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/02/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cadherin-based adherens junctions and desmosomes help stabilize cell-cell contacts with additional function in mechano-signaling, while clustered protocadherin junctions are responsible for directing neuronal circuits assembly. Structural models for adherens junctions formed by epithelial cadherin (CDH1) proteins indicate that their long, curved ectodomains arrange to form a periodic, two-dimensional lattice stabilized by tip-to-tip trans interactions (across junction) and lateral cis contacts. Less is known about the exact architecture of desmosomes, but desmoglein (DSG) and desmocollin (DSC) cadherin proteins are also thought to form ordered junctions. In contrast, clustered protocadherin (PCDH)-based cell-cell contacts in neuronal tissues are thought to be responsible for self-recognition and avoidance, and structural models for clustered PCDH junctions show a linear arrangement in which their long and straight ectodomains form antiparallel overlapped trans complexes. Here, we report all-atom molecular dynamics simulations testing the mechanics of minimalistic adhesive junctions formed by CDH1, DSG2 coupled to DSC1, and PCDHγB4, with systems encompassing up to 3.7 million atoms. Simulations generally predict a favored shearing pathway for the adherens junction model and a two-phased elastic response to tensile forces for the adhesive adherens junction and the desmosome models. Complexes within these junctions first unbend at low tensile force and then become stiff to unbind without unfolding. However, cis interactions in both the CDH1 and DSG2-DSC1 systems dictate varied mechanical responses of individual dimers within the junctions. Conversely, the clustered protocadherin PCDHγB4 junction lacks a distinct two-phased elastic response. Instead, applied tensile force strains trans interactions directly, as there is little unbending of monomers within the junction. Transient intermediates, influenced by new cis interactions, are observed after the main rupture event. We suggest that these collective, complex mechanical responses mediated by cis contacts facilitate distinct functions in robust cell-cell adhesion for classical cadherins and in self-avoidance signaling for clustered PCDHs.
Collapse
Affiliation(s)
- Brandon L Neel
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio
| | - Collin R Nisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Facultad de Ingenieria y Tecnologia, Universidad San Sebastian, Santiago, Chile
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
14
|
Fuchs M, Kugelmann D, Schlegel N, Vielmuth F, Waschke J. Desmoglein 2 can undergo Ca2+-dependent interactions with both desmosomal and classical cadherins including E-cadherin and N-cadherin. Biophys J 2022; 121:1322-1335. [PMID: 35183520 PMCID: PMC9034291 DOI: 10.1016/j.bpj.2022.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Desmoglein (Dsg) 2 is a ubiquitously expressed desmosomal cadherin. Particularly, it is present in all cell types forming desmosomes, including epithelial cells and cardiac myocytes and is upregulated in the autoimmune skin disease pemphigus. Thus, we here characterized the binding properties of Dsg2 in more detail using atomic force microscopy (AFM). Dsg2 exhibits homophilic interactions and also heterophilic interactions with the desmosomal cadherin desmocollin (Dsc) 2, and further with the classical cadherins E-cadherin (E-Cad) and N-cadherin (N-Cad), which may be relevant for cross talk between desmosomes and adherens junctions in epithelia and cardiac myocytes. We found that all homo- and heterophilic interactions were Ca2+-dependent. All binding forces observed are in the same force range, i.e., 30 to 40 pN, except for the Dsg2/E-Cad unbinding force, which with 45 pN is significantly higher. To further characterize the nature of the interactions, we used tryptophan, a critical amino acid required for trans-interaction, and a tandem peptide (TP) designed to cross-link Dsg isoforms. TP was sufficient to prevent the tryptophan-induced loss of Dsg2 interaction with the desmosomal cadherins Dsg2 and Dsc2; however, not with the classical cadherins E-Cad and N-Cad, indicating that the interaction modes of Dsg2 with desmosomal and classical cadherins differ. TP rescued the tryptophan-induced loss of Dsg2 binding on living enterocytes, suggesting that interaction with desmosomal cadherins may be more relevant. In summary, the data suggest that the ubiquitous desmosomal cadherin Dsg2 enables the cross talk with adherens junctions by interacting with multiple binding partners with implications for proper adhesive function in healthy and diseased states.
Collapse
|
15
|
Aladin DMK, Chu YS, Shen S, Robinson RC, Dufour S, Viasnoff V, Borghi N, Thiery JP. Extracellular domains of E-cadherin determine key mechanical phenotypes of an epithelium through cell- and non-cell-autonomous outside-in signaling. PLoS One 2021; 16:e0260593. [PMID: 34937057 PMCID: PMC8694416 DOI: 10.1371/journal.pone.0260593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/14/2021] [Indexed: 11/18/2022] Open
Abstract
Cadherins control intercellular adhesion in most metazoans. In vertebrates, intercellular adhesion differs considerably between cadherins of type-I and type-II, predominantly due to their different extracellular regions. Yet, intercellular adhesion critically depends on actomyosin contractility, in which the role of the cadherin extracellular region is unclear. Here, we dissect the roles of the Extracellular Cadherin (EC) Ig-like domains by expressing chimeric E-cadherin with E-cadherin and cadherin-7 Ig-like domains in cells naturally devoid of cadherins. Using cell-cell separation, cortical tension measurement, tissue stretching and migration assays, we show that distinct EC repeats in the extracellular region of cadherins differentially modulate epithelial sheet integrity, cell-cell separation forces, and cell cortical tension with the Cdc42 pathway, which further differentially regulate epithelial tensile strength, ductility, and ultimately collective migration. Interestingly, dissipative processes rather than static adhesion energy mostly dominate cell-cell separation forces. We provide a framework for the emergence of epithelial phenotypes from cell mechanical properties dependent on EC outside-in signaling.
Collapse
Affiliation(s)
- Darwesh Mohideen Kaderbatcha Aladin
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- BioSyM Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Yeh Shiu Chu
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Shuo Shen
- Sinopharm, Zhengdian, Jiangxia District, Wuhan, Hubei, China
| | | | - Sylvie Dufour
- IMRB, Université Paris Est Créteil, INSERM, Créteil, France
- * E-mail: (NB); (VV); (SD); (JPT)
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- UMI 3639 CNRS, Singapore
- * E-mail: (NB); (VV); (SD); (JPT)
| | - Nicolas Borghi
- Institut Jacques Monod, Université de Paris, CNRS, Paris, France
- * E-mail: (NB); (VV); (SD); (JPT)
| | - Jean Paul Thiery
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Guangzhou Laboratory, International Bioisland, Guangzhou, Haizhu District, China
- * E-mail: (NB); (VV); (SD); (JPT)
| |
Collapse
|
16
|
Koirala R, Priest AV, Yen CF, Cheah JS, Pannekoek WJ, Gloerich M, Yamada S, Sivasankar S. Inside-out regulation of E-cadherin conformation and adhesion. Proc Natl Acad Sci U S A 2021; 118:e2104090118. [PMID: 34301871 PMCID: PMC8325368 DOI: 10.1073/pnas.2104090118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cadherin cell-cell adhesion proteins play key roles in tissue morphogenesis and wound healing. Cadherin ectodomains bind in two conformations, X-dimers and strand-swap dimers, with different adhesive properties. However, the mechanisms by which cells regulate ectodomain conformation are unknown. Cadherin intracellular regions associate with several actin-binding proteins including vinculin, which are believed to tune cell-cell adhesion by remodeling the actin cytoskeleton. Here, we show at the single-molecule level, that vinculin association with the cadherin cytoplasmic region allosterically converts weak X-dimers into strong strand-swap dimers and that this process is mediated by myosin II-dependent changes in cytoskeletal tension. We also show that in epithelial cells, ∼70% of apical cadherins exist as strand-swap dimers while the remaining form X-dimers, providing two cadherin pools with different adhesive properties. Our results demonstrate the inside-out regulation of cadherin conformation and establish a mechanistic role for vinculin in this process.
Collapse
Affiliation(s)
- Ramesh Koirala
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Andrew Vae Priest
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Chi-Fu Yen
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Joleen S Cheah
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Willem-Jan Pannekoek
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616;
| |
Collapse
|
17
|
Koss H, Honig B, Shapiro L, Palmer AG. Dimerization of Cadherin-11 involves multi-site coupled unfolding and strand swapping. Structure 2021; 29:1105-1115.e6. [PMID: 34166612 DOI: 10.1016/j.str.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/01/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Cadherin extracellular domain 1 (EC1) mediates homophilic dimerization in adherens junctions. Conserved Trp2 and Trp4 residues in type II cadherins anchor the EC1 A strand intermolecularly in strand-swapped dimers. Herein, NMR spectroscopy is used to elucidate the roles of Trp2 and Trp4 in Cadherin-11 dimerization. The monomeric state, with the A strand and Trp side chains packed intramolecularly, is in equilibrium with sparsely populated partially and fully A-strand-exposed states, in which Trp2 (and Trp4, respectively) side-chain packing is disrupted. Exchange kinetics between the major state and the partially (fully) A-strand-exposed state is slow-intermediate (intermediate-fast). A separate very fast process exchanges ordered and random-coil BC-loop conformations with populations dependent on A-strand exposure and dimerization status. In addition, very slow processes connect the folded A-strand-exposed conformation to partially unfolded states, which may represent additional domain-swapping intermediates. The dimerization mechanism of type II cadherins is revealed as coupled folding and strand swapping.
Collapse
Affiliation(s)
- Hans Koss
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA; Zuckerman Institute, Columbia University, 3227 Broadway, New York, NY 10027, USA; Department of Systems Biology, Columbia University Irving Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA; Zuckerman Institute, Columbia University, 3227 Broadway, New York, NY 10027, USA
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
18
|
Thompson CJ, Vu VH, Leckband DE, Schwartz DK. Cadherin cis and trans interactions are mutually cooperative. Proc Natl Acad Sci U S A 2021; 118:e2019845118. [PMID: 33658369 PMCID: PMC7958404 DOI: 10.1073/pnas.2019845118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cadherin transmembrane proteins are responsible for intercellular adhesion in all biological tissues and modulate tissue morphogenesis, cell motility, force transduction, and macromolecular transport. The protein-mediated adhesions consist of adhesive trans interactions and lateral cis interactions. Although theory suggests cooperativity between cis and trans bonds, direct experimental evidence of such cooperativity has not been demonstrated. Here, the use of superresolution microscopy, in conjunction with intermolecular single-molecule Förster resonance energy transfer, demonstrated the mutual cooperativity of cis and trans interactions. Results further demonstrate the consequent assembly of large intermembrane junctions, using a biomimetic lipid bilayer cell adhesion model. Notably, the presence of cis interactions resulted in a nearly 30-fold increase in trans-binding lifetimes between epithelial-cadherin extracellular domains. In turn, the presence of trans interactions increased the lifetime of cis bonds. Importantly, comparison of trans-binding lifetimes of small and large cadherin clusters suggests that this cooperativity is primarily due to allostery. The direct quantitative demonstration of strong mutual cooperativity between cis and trans interactions at intermembrane adhesions provides insights into the long-standing controversy of how weak cis and trans interactions act in concert to create strong macroscopic cell adhesions.
Collapse
Affiliation(s)
- Connor J Thompson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
| | - Vinh H Vu
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Deborah E Leckband
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309;
| |
Collapse
|
19
|
Shibata-Seki T, Nagaoka M, Goto M, Kobatake E, Akaike T. Direct visualization of the extracellular binding structure of E-cadherins in liquid. Sci Rep 2020; 10:17044. [PMID: 33046720 PMCID: PMC7552386 DOI: 10.1038/s41598-020-72517-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
E-cadherin is a key Ca-dependent cell adhesion molecule, which is expressed on many cell surfaces and involved in cell morphogenesis, embryonic development, EMT, etc. The fusion protein E-cad-Fc consists of the extracellular domain of E-cadherin and the IgG Fc domain. On plates coated with this chimeric protein, ES/iPS cells are cultivated particularly well and induced to differentiate. The cells adhere to the plate via E-cad-Fc in the presence of Ca2+ and detach by a chelating agent. For the purpose of clarifying the structures of E-cad-Fc in the presence and absence of Ca2+, we analyzed the molecular structure of E-cad-Fc by AFM in liquid. Our AFM observations revealed a rod-like structure of the entire extracellular domain of E-cad-Fc in the presence of Ca2+ as well as trans-binding of E-cad-Fc with adjacent molecules, which may be the first, direct confirmation of trans-dimerization of E-cadherin. The observed structures were in good agreement with an X-ray crystallographic model. Furthermore, we succeeded in visualizing the changes in the rod-like structure of the EC domains with and without calcium. The biomatrix surface plays an important role in cell culture, so the analysis of its structure and function may help promote cell engineering based on cell recognition.
Collapse
Affiliation(s)
- Teiko Shibata-Seki
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16 Kasuga, 3-chome, Tsukuba, Ibaraki, 305-0821, Japan
| | - Masato Nagaoka
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16 Kasuga, 3-chome, Tsukuba, Ibaraki, 305-0821, Japan
| | - Mitsuaki Goto
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16 Kasuga, 3-chome, Tsukuba, Ibaraki, 305-0821, Japan.
| | - Eiry Kobatake
- School of Life Science and Technology, Tokyo Institute of Technology, G1-13, 4259, Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Toshihiro Akaike
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16 Kasuga, 3-chome, Tsukuba, Ibaraki, 305-0821, Japan
| |
Collapse
|
20
|
Priest AV, Koirala R, Sivasankar S. Single-molecule studies of classical and desmosomal cadherin adhesion. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 12:43-50. [PMID: 31742239 DOI: 10.1016/j.cobme.2019.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Classical cadherin and desmosomal cadherin cell-cell adhesion proteins play essential roles in tissue morphogenesis and in maintaining tissue integrity. Deficiencies in cadherin adhesion are hallmarks of diseases like cancers, skin diseases and cardiomyopathies. Structural studies and single molecule biophysical measurements have revealed critical similarities and surprising differences between these key adhesion proteins. This review summarizes our current understanding of the biophysics of classical and desmosomal cadherin adhesion and the molecular basis for their cross-talk. We focus on recent single molecule measurements, highlight key insights into the adhesion of cadherin extracellular regions and their relation to associated diseases, and identify major open questions in this exciting area of research.
Collapse
Affiliation(s)
- Andrew Vae Priest
- Department of Biomedical Engineering, University of California, Davis, CA 95616.,Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Ramesh Koirala
- Department of Biomedical Engineering, University of California, Davis, CA 95616.,Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| |
Collapse
|
21
|
Singaraju GS, Sagar A, Kumar A, Samuel JS, Hazra JP, Sannigrahi MK, Yennamalli RM, Ashish , Rakshit S. Structural basis of the strong cell-cell junction formed by cadherin-23. FEBS J 2019; 287:2328-2347. [PMID: 31729176 PMCID: PMC7317872 DOI: 10.1111/febs.15141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/13/2019] [Accepted: 11/13/2019] [Indexed: 12/03/2022]
Abstract
Cadherin-23, a giant atypical cadherin, forms homophilic interactions at the cell-cell junction of epithelial cells and heterophilic interactions with protocadherin-15 at the tip-links of neuroepithelial cells. While the molecular structure of the heterodimer is solved, the homodimer structure is yet to be resolved. The homodimers play an essential role in cell-cell adhesion as the downregulation of cadherin-23 in cancers loosen the intercellular junction resulting in faster-migration of cancer cells and a significant drop in patient survival. In vitro studies have measured a stronger aggregation-propensity of cadherin-23 compared to typical E-cadherin. Here, we deciphered the unique trans-homodimer structure of cadherin-23 in solution, and show that it consists of two electrostatic-based interfaces extended up to two terminal domains. The interface is robust, with a low off-rate of ~8x10-4 s-1 that supports its strong aggregation-propensity. We identified a point-mutation, E78K, that disrupts this binding. Interestingly, a mutation at the interface was reported in skin cancer. Overall, the structural basis of the strong cadherin-23 adhesion may have far-reaching applications in the fields of mechanobiology and cancer.
Collapse
Affiliation(s)
- Gayathri S. Singaraju
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Amin Sagar
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Anuj Kumar
- Department of Physical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Jesse S. Samuel
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Jagadish P. Hazra
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Malay K. Sannigrahi
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
| | - Ragothaman M. Yennamalli
- Department of Biotechnology and BioinformaticsJaypee University of Information TechnologyWaknaghatIndia
| | - Ashish
- Institute of Microbial Technology (CSIR)ChandigarhIndia
| | - Sabyasachi Rakshit
- Department of Chemical SciencesIndian Institute of Science Education and Research MohaliPunjabIndia
- Centre for Protein Science Design and EngineeringIndian Institute of Science Education and Research MohaliPunjabIndia
| |
Collapse
|
22
|
Modak D, Sotomayor M. Identification of an adhesive interface for the non-clustered δ1 protocadherin-1 involved in respiratory diseases. Commun Biol 2019; 2:354. [PMID: 31583286 PMCID: PMC6769022 DOI: 10.1038/s42003-019-0586-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/21/2019] [Indexed: 12/29/2022] Open
Abstract
Cadherins form a large family of calcium-dependent adhesive proteins involved in morphogenesis, cell differentiation, and neuronal connectivity. Non-clustered δ1 protocadherins form a cadherin subgroup of proteins with seven extracellular cadherin (EC) repeats and cytoplasmic domains distinct from those of classical cadherins. Non-clustered δ1 protocadherins mediate homophilic adhesion and have been implicated in various diseases including asthma, autism, and cancer. Here we present X-ray crystal structures of human Protocadherin-1 (PCDH1), a δ1-protocadherin member essential for New World Hantavirus infection that is typically expressed in the brain, airway epithelium, skin keratinocytes, and lungs. The structures suggest a binding mode that involves antiparallel overlap of repeats EC1 to EC4. Mutagenesis combined with binding assays and biochemical experiments validated this mode of adhesion. Overall, these results reveal the molecular mechanism underlying adhesiveness of PCDH1 and δ1-protocadherins, also shedding light on PCDH1's role in maintaining airway epithelial integrity, the loss of which causes respiratory diseases.
Collapse
Affiliation(s)
- Debadrita Modak
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W 12th Avenue, Columbus, OH 43210 USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W 12th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
23
|
Lo W, Zhu B, Sabesan A, Wu HH, Powers A, Sorber RA, Ravichandran S, Chen I, McDuffie LA, Quadri HS, Beane JD, Calzone K, Miettinen MM, Hewitt SM, Koh C, Heller T, Wacholder S, Rudloff U. Associations of CDH1 germline variant location and cancer phenotype in families with hereditary diffuse gastric cancer (HDGC). J Med Genet 2019; 56:370-379. [PMID: 30745422 PMCID: PMC6716162 DOI: 10.1136/jmedgenet-2018-105361] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 12/11/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Hereditary diffuse gastric cancer (HDGC) is a cancer syndrome associated with variants in E-cadherin (CDH1), diffuse gastric cancer and lobular breast cancer. There is considerable heterogeneity in its clinical manifestations. This study aimed to determine associations between CDH1 germline variant status and clinical phenotypes of HDGC. METHODS One hundred and fifty-two HDGC families, including six previously unreported families, were identified. CDH1 gene-specific guidelines released by the Clinical Genome Resource (ClinGen) CDH1 Variant Curation Expert Panel were applied for pathogenicity classification of truncating, missense and splice site CDH1 germline variants. We evaluated ORs between location of truncating variants of CDH1 and incidence of colorectal cancer, breast cancer and cancer at young age (gastric cancer at <40 or breast cancer <50 years of age). RESULTS Frequency of truncating germline CDH1 variants varied across functional domains of the E-cadherin receptor gene and was highest in linker (0.05785 counts/base pair; p=0.0111) and PRE regions (0.10000; p=0.0059). Families with truncating CDH1 germline variants located in the PRE-PRO region were six times more likely to have family members affected by colorectal cancer (OR 6.20, 95% CI 1.79 to 21.48; p=0.004) compared with germline variants in other regions. Variants in the intracellular E-cadherin region were protective for cancer at young age (OR 0.2, 95% CI 0.06 to 0.64; p=0.0071) and in the linker regions for breast cancer (OR 0.35, 95% CI 0.12 to 0.99; p=0.0493). Different CDH1 genotypes were associated with different intracellular signalling activation levels including different p-ERK, p-mTOR and β-catenin levels in early submucosal T1a lesions of HDGC families with different CDH1 variants. CONCLUSION Type and location of CDH1 germline variants may help to identify families at increased risk for concomitant cancers that might benefit from individualised surveillance and intervention strategies.
Collapse
Affiliation(s)
- Winifred Lo
- Thoracic and Surgical Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Bin Zhu
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Arvind Sabesan
- Thoracic and Surgical Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Ho-Hsiang Wu
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Astin Powers
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Rebecca A Sorber
- Thoracic and Surgical Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
- Department of Surgery, indiana University School of Medicine, indianapolis, indiana, USA
| | - Sarangan Ravichandran
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ina Chen
- Thoracic and Surgical Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lucas A McDuffie
- Thoracic and Surgical Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
- Department of Surgery, indiana University School of Medicine, indianapolis, indiana, USA
| | - Humair S Quadri
- Thoracic and Surgical Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
- Department of Surgery, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Joal D Beane
- Thoracic and Surgical Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
- Department of Surgery, indiana University School of Medicine, indianapolis, indiana, USA
| | - Kathleen Calzone
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Markku M Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, National Cancer Institute, Bethesda, Maryland, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Sholom Wacholder
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Udo Rudloff
- Thoracic and Surgical Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
- Rare Tumor initiative, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Tiwari P, Mrigwani A, Kaur H, Kaila P, Kumar R, Guptasarma P. Structural-Mechanical and Biochemical Functions of Classical Cadherins at Cellular Junctions: A Review and Some Hypotheses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1112:107-138. [DOI: 10.1007/978-981-13-3065-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
De-la-Torre P, Choudhary D, Araya-Secchi R, Narui Y, Sotomayor M. A Mechanically Weak Extracellular Membrane-Adjacent Domain Induces Dimerization of Protocadherin-15. Biophys J 2018; 115:2368-2385. [PMID: 30527337 PMCID: PMC6302040 DOI: 10.1016/j.bpj.2018.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022] Open
Abstract
The cadherin superfamily of proteins is defined by the presence of extracellular cadherin (EC) "repeats" that engage in protein-protein interactions to mediate cell-cell adhesion, cell signaling, and mechanotransduction. The extracellular domains of nonclassical cadherins often have a large number of EC repeats along with other subdomains of various folds. Protocadherin-15 (PCDH15), a protein component of the inner-ear tip link filament essential for mechanotransduction, has 11 EC repeats and a membrane adjacent domain (MAD12) of atypical fold. Here we report the crystal structure of a pig PCDH15 fragment including EC10, EC11, and MAD12 in a parallel dimeric arrangement. MAD12 has a unique molecular architecture and folds as a ferredoxin-like domain similar to that found in the nucleoporin protein Nup54. Analytical ultracentrifugation experiments along with size-exclusion chromatography coupled to multiangle laser light scattering and small-angle x-ray scattering corroborate the crystallographic dimer and show that MAD12 induces parallel dimerization of PCDH15 near its membrane insertion point. In addition, steered molecular dynamics simulations suggest that MAD12 is mechanically weak and may unfold before tip-link rupture. Sequence analyses and structural modeling predict the existence of similar domains in cadherin-23, protocadherin-24, and the "giant" FAT and CELSR cadherins, indicating that some of them may also exhibit MAD-induced parallel dimerization.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Deepanshu Choudhary
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Structural Biophysics, Section for Neutron and X-ray Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
26
|
Davila S, Liu P, Smith A, Marshall AG, Pedigo S. Spontaneous Calcium-Independent Dimerization of the Isolated First Domain of Neural Cadherin. Biochemistry 2018; 57:6404-6415. [PMID: 30387993 DOI: 10.1021/acs.biochem.8b00733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cadherins are calcium-dependent, transmembrane adhesion molecules that assemble through direct noncovalent association of their N-terminal extracellular modular domains. As the transmembrane component of adherens junctions, they indirectly link adherent cells' actin cytoskeletons. Here, we investigate the most distal extracellular domain of neural cadherin (N-cadherin), a protein required at excitatory synapses, the site of long-term potentiation. This domain is the site of the adhesive interface, and it forms a dimer spontaneously without binding calcium, a surprising finding given that calcium binding is required for proper physiological function. A critical tryptophan at position 2, W2, provides a spectroscopic probe for the "closed" monomer and strand-swapped dimer. Spectroscopic studies show that W2 remains docked in the two forms but has a different apparent interaction with the hydrophobic pocket. Size-exclusion chromatography was used to measure the levels of the monomer and dimer over time to study the kinetics and equilibria of the unexpected spontaneous dimer formation ( Kd = 130 μM; τ = 2 days at 4 °C). Our results support the idea that NCAD1 is missing critical contacts that facilitate the rapid exchange of the βA-strand. Furthermore, the monomer and dimer have equivalent and exceptionally high intrinsic stability for a 99-residue Ig-like domain with no internal disulfides ( Tm = 77 °C; Δ H = 85 kcal/mol). Ultimately, a complete analysis of synapse dynamics requires characterization of the kinetics and equilibria of N-cadherin. The studies reported here take a reductionist approach to understanding the essential biophysics of an atypical Ig-like domain that is the site of the adhesive interface of N-cadherin.
Collapse
Affiliation(s)
- Samantha Davila
- Department of Chemistry and Biochemistry , University of Mississippi , University , Mississippi 38677 , United States
| | - Peilu Liu
- Department of Chemistry & Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States.,Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Alexis Smith
- Department of Chemistry and Biochemistry , University of Mississippi , University , Mississippi 38677 , United States
| | - Alan G Marshall
- Department of Chemistry & Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States.,Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Susan Pedigo
- Department of Chemistry and Biochemistry , University of Mississippi , University , Mississippi 38677 , United States
| |
Collapse
|
27
|
Shafraz O, Rübsam M, Stahley SN, Caldara AL, Kowalczyk AP, Niessen CM, Sivasankar S. E-cadherin binds to desmoglein to facilitate desmosome assembly. eLife 2018; 7:37629. [PMID: 29999492 PMCID: PMC6066328 DOI: 10.7554/elife.37629] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/10/2018] [Indexed: 02/04/2023] Open
Abstract
Desmosomes are adhesive junctions composed of two desmosomal cadherins: desmocollin (Dsc) and desmoglein (Dsg). Previous studies demonstrate that E-cadherin (Ecad), an adhesive protein that interacts in both trans (between opposing cells) and cis (on the same cell surface) conformations, facilitates desmosome assembly via an unknown mechanism. Here we use structure-function analysis to resolve the mechanistic roles of Ecad in desmosome formation. Using AFM force measurements, we demonstrate that Ecad interacts with isoform 2 of Dsg via a conserved Leu-175 on the Ecad cis binding interface. Super-resolution imaging reveals that Ecad is enriched in nascent desmosomes, supporting a role for Ecad in early desmosome assembly. Finally, confocal imaging demonstrates that desmosome assembly is initiated at sites of Ecad mediated adhesion, and that Ecad-L175 is required for efficient Dsg2 and desmoplakin recruitment to intercellular contacts. We propose that Ecad trans interactions at nascent cell-cell contacts initiate the recruitment of Dsg through direct cis interactions with Ecad which facilitates desmosome assembly.
Collapse
Affiliation(s)
- Omer Shafraz
- Department of Physics and Astronomy, Iowa State University, Ames, United States
| | - Matthias Rübsam
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sara N Stahley
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Amber L Caldara
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Carien M Niessen
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sanjeevi Sivasankar
- Department of Physics and Astronomy, Iowa State University, Ames, United States
| |
Collapse
|
28
|
Schumann-Gillett A, Mark AE, Deplazes E, O'Mara ML. A potential new, stable state of the E-cadherin strand-swapped dimer in solution. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017. [PMID: 28620741 DOI: 10.1007/s00249-017-1229-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
E-cadherin is a transmembrane glycoprotein that facilitates inter-cellular adhesion in the epithelium. The ectodomain of the native structure is comprised of five repeated immunoglobulin-like domains. All E-cadherin crystal structures show the protein in one of three alternative conformations: a monomer, a strand-swapped trans homodimer and the so-called X-dimer, which is proposed to be a kinetic intermediate to forming the strand-swapped trans homodimer. However, previous studies have indicated that even once the trans strand-swapped dimer is formed, the complex is highly dynamic and the E-cadherin monomers may reorient relative to each other. Here, molecular dynamics simulations have been used to investigate the stability and conformational flexibility of the human E-cadherin trans strand-swapped dimer. In four independent, 100 ns simulations, the dimer moved away from the starting structure and converged to a previously unreported structure, which we call the Y-dimer. The Y-dimer was present for over 90% of the combined simulation time, suggesting that it represents a stable conformation of the E-cadherin dimer in solution. The Y-dimer conformation is stabilised by interactions present in both the trans strand-swapped dimer and X-dimer crystal structures, as well as additional interactions not found in any E-cadherin dimer crystal structures. The Y-dimer represents a previously unreported, stable conformation of the human E-cadherin trans strand-swapped dimer and suggests that the available crystal structures do not fully capture the conformations that the human E-cadherin trans homodimer adopts in solution.
Collapse
Affiliation(s)
- Alexandra Schumann-Gillett
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD, 4072, Australia
- Research School of Chemistry (RSC), The Australian National University, Canberra, ACT, 2061, Australia
| | - Alan E Mark
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD, 4072, Australia
- The Institute for Molecular Biosciences (IMB), University of Queensland, Brisbane, QLD, 4072, Australia
| | - Evelyne Deplazes
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD, 4072, Australia.
- Research School of Chemistry (RSC), The Australian National University, Canberra, ACT, 2061, Australia.
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia.
| | - Megan L O'Mara
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD, 4072, Australia. megan.o'
- Research School of Chemistry (RSC), The Australian National University, Canberra, ACT, 2061, Australia. megan.o'
| |
Collapse
|
29
|
Priest AV, Shafraz O, Sivasankar S. Biophysical basis of cadherin mediated cell-cell adhesion. Exp Cell Res 2017; 358:10-13. [PMID: 28300566 DOI: 10.1016/j.yexcr.2017.03.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/09/2017] [Indexed: 10/20/2022]
Abstract
Classical cadherin transmembrane cell-cell adhesion proteins play essential roles in tissue morphogenesis and in mediating tissue integrity. Cadherin ectodomains from opposing cells interact to form load-bearing trans dimers that mechanically couple cells. Cell-cell adhesion is believed to be strengthened by cis clustering of cadherins on the same cell surface. This review summarizes biophysical studies of the structure, interaction kinetics and biomechanics of classical cadherin ectodomains. We first discuss the structure and equilibrium binding kinetics of classical cadherin trans and cis dimers. We then discuss how mechanical stimuli alters the kinetics of cadherin interaction and tunes adhesion. Finally, we highlight open questions on the role of mechanical forces in influencing cadherin structure, function and organization on the cell surface.
Collapse
Affiliation(s)
- Andrew Vae Priest
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Omer Shafraz
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Sanjeevi Sivasankar
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
30
|
Biswas KH, Zaidel-Bar R. Early events in the assembly of E-cadherin adhesions. Exp Cell Res 2017; 358:14-19. [PMID: 28237244 DOI: 10.1016/j.yexcr.2017.02.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/20/2017] [Indexed: 12/30/2022]
Abstract
E-cadherin is a calcium dependent cell adhesion molecule that is key to the organization of cells in the epithelial tissue. It is a multidomain, trans-membrane protein in which the extracellular domain forms the homotypic, adhesive interaction while the intracellular domain interacts with the actin cytoskeleton through the catenin family of adaptor proteins. A number of recent studies have provided novel insights into the mechanism of adhesion formation by this class of adhesion proteins. Here, we describe an updated view of the process of E-cadherin adhesion formation with an emphasis on the role of molecular mobility, clustering, and active cellular processes.
Collapse
Affiliation(s)
- Kabir H Biswas
- Mechanobiology Institute, National University of Singapore, Singapore.
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore.
| |
Collapse
|
31
|
Zou T, Mao X, Yin J, Li X, Chen J, Zhu T, Li Q, Zhou H, Liu Z. Emerging roles of RAC1 in treating lung cancer patients. Clin Genet 2016; 91:520-528. [PMID: 27790713 DOI: 10.1111/cge.12908] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022]
Abstract
The Ras-related C3 botulinum toxin substrate 1 (RAC1), a member of the Rho family of small guanosine triphosphatases, is critical for many cellular activities, such as phagocytosis, adhesion, migration, motility, cell proliferation, and axonal growth. In addition, RAC1 plays an important role in cancer angiogenesis, invasion, and migration, and it has been reported to be related to most cancers, such as breast cancer, gastric cancer, testicular germ cell cancer, and lung cancer. Recently, the therapeutic target of RAC1 in cancer has been investigated. In addition, some investigations have shown that inhibition of RAC1 can reverse drug-resistance in non-small cell lung cancer. In this review, we summarize the recent advances in understanding the role of RAC1 in lung cancer and the underlying mechanisms and discuss its value in clinical therapy.
Collapse
Affiliation(s)
- T Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - X Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - J Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - X Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - J Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - T Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Q Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - H Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Z Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| |
Collapse
|
32
|
Cooper SR, Jontes JD, Sotomayor M. Structural determinants of adhesion by Protocadherin-19 and implications for its role in epilepsy. eLife 2016; 5. [PMID: 27787195 PMCID: PMC5115871 DOI: 10.7554/elife.18529] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/25/2016] [Indexed: 01/27/2023] Open
Abstract
Non-clustered δ-protocadherins are homophilic cell adhesion molecules essential for the development of the vertebrate nervous system, as several are closely linked to neurodevelopmental disorders. Mutations in protocadherin-19 (PCDH19) result in a female-limited, infant-onset form of epilepsy (PCDH19-FE). Over 100 mutations in PCDH19 have been identified in patients with PCDH19-FE, about half of which are missense mutations in the adhesive extracellular domain. Neither the mechanism of homophilic adhesion by PCDH19, nor the biochemical effects of missense mutations are understood. Here we present a crystallographic structure of the minimal adhesive fragment of the zebrafish Pcdh19 extracellular domain. This structure reveals the adhesive interface for Pcdh19, which is broadly relevant to both non-clustered δ and clustered protocadherin subfamilies. In addition, we show that several PCDH19-FE missense mutations localize to the adhesive interface and abolish Pcdh19 adhesion in in vitro assays, thus revealing the biochemical basis of their pathogenic effects during brain development. DOI:http://dx.doi.org/10.7554/eLife.18529.001 As the brain develops, its basic building blocks – cells called neurons – need to form the correct connections with one another in order to give rise to neural circuits. A mistake that leads to the formation of incorrect connections can result in a number of disorders or brain abnormalities. Proteins called cadherins that are present on the surface of neurons enable them to stick to their correct partners like Velcro. One of these proteins is called Protocadherin-19. However, it was not fully understood how this protein forms an adhesive bond with other Protocadherin-19 molecules, or how some of the proteins within the cadherin family are able to distinguish between one another. Cooper et al. used X-ray crystallography to visualize the molecular structure of Protocadherin-19 taken from zebrafish in order to better understand the adhesive bond that these proteins form with each other. In addition, the new structure showed the sites of the mutations that cause a form of epilepsy in infant females. From this, Cooper et al. could predict how the mutations would disrupt Protocadherin-19’s shape and function. The structures revealed that Protocadherin-19 molecules from adjacent cells engage in a “forearm handshake” to form the bond that connects neurons. Some of the mutations that cause epilepsy occur in the region responsible for this Protocadherin-19 forearm handshake. Laboratory experiments confirmed that these mutations impair the formation of the adhesive bond, revealing the molecular basis for some of the mutations that underlie Protocadherin-19-female-limited epilepsy. Other cadherin molecules may interact via a similar forearm handshake; this could be investigated in future experiments. It also remains to be discovered how brain wiring depends on Protocadherin-19 adhesion in animal development, and how altering these proteins can rewire developing brain circuits. DOI:http://dx.doi.org/10.7554/eLife.18529.002
Collapse
Affiliation(s)
- Sharon R Cooper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, United States.,Department of Neuroscience, The Ohio State University, Columbus, United States
| | - James D Jontes
- Department of Neuroscience, The Ohio State University, Columbus, United States
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, United States
| |
Collapse
|
33
|
Pontani LL, Jorjadze I, Brujic J. Cis and Trans Cooperativity of E-Cadherin Mediates Adhesion in Biomimetic Lipid Droplets. Biophys J 2016; 110:391-399. [PMID: 26789762 DOI: 10.1016/j.bpj.2015.11.3514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/30/2015] [Accepted: 11/25/2015] [Indexed: 11/29/2022] Open
Abstract
The regulation of cell-cell adhesion is important in cell motility, tissue growth, and for the mechanical integrity of tissues. Although the role of active cytoskeleton dynamics in regulating cadherin interactions is crucial in vivo, here we present a biomimetic emulsion system to characterize the passive E-cadherin-mediated adhesion between droplets. The visualization of a three-dimensional assembly of lipid droplets, functionalized with extracellular E-cadherin domains, reveals a hierarchy of homophilic interactions. First, the high interfacial tension of droplets facilitates trans cadherin-cadherin adhesion, which is strong enough to stabilize looser than random close packing configurations. Second, fluorescence enhancement shows that adding clustering agents, such as calcium or chelating ligands, favor the lateral cis adhesion of the already bound cadherin pairs over the clustering of monomer cadherin on the surface. Finally, above a threshold cadherin and calcium concentration, the cis and trans protein interactions become strong enough to trigger and promote droplet fusion. While E-cadherin is not known to participate in cellular fusion, this mechanism is general because replacing calcium with cholesterol to cluster the cadherin-carrying lipids also promotes fusion. These results suggest that passive clustering, via calcium-induced dimerization or membrane ordering, may contribute to the reinforcement of cell-cell contacts. Alternatively, a molecular switch for fusion offers a route to mixing droplet contents and controlling their size in situ.
Collapse
Affiliation(s)
- Lea-Laetitia Pontani
- Department of Physics and Center for Soft Matter Research, New York University, New York, New York; Institut des NanoSciences de Paris, UMR 7588, Centre National de la Recherche Scientifique-University Pierre et Marie Curie, University of Paris 6, Paris, France.
| | - Ivane Jorjadze
- Department of Physics and Center for Soft Matter Research, New York University, New York, New York
| | - Jasna Brujic
- Department of Physics and Center for Soft Matter Research, New York University, New York, New York.
| |
Collapse
|
34
|
Manibog K, Sankar K, Kim SA, Zhang Y, Jernigan RL, Sivasankar S. Molecular determinants of cadherin ideal bond formation: Conformation-dependent unbinding on a multidimensional landscape. Proc Natl Acad Sci U S A 2016; 113:E5711-20. [PMID: 27621473 PMCID: PMC5047164 DOI: 10.1073/pnas.1604012113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Classical cadherin cell-cell adhesion proteins are essential for the formation and maintenance of tissue structures; their primary function is to physically couple neighboring cells and withstand mechanical force. Cadherins from opposing cells bind in two distinct trans conformations: strand-swap dimers and X-dimers. As cadherins convert between these conformations, they form ideal bonds (i.e., adhesive interactions that are insensitive to force). However, the biophysical mechanism for ideal bond formation is unknown. Here, we integrate single-molecule force measurements with coarse-grained and atomistic simulations to resolve the mechanistic basis for cadherin ideal bond formation. Using simulations, we predict the energy landscape for cadherin adhesion, the transition pathways for interconversion between X-dimers and strand-swap dimers, and the cadherin structures that form ideal bonds. Based on these predictions, we engineer cadherin mutants that promote or inhibit ideal bond formation and measure their force-dependent kinetics using single-molecule force-clamp measurements with an atomic force microscope. Our data establish that cadherins adopt an intermediate conformation as they shuttle between X-dimers and strand-swap dimers; pulling on this conformation induces a torsional motion perpendicular to the pulling direction that unbinds the proteins and forms force-independent ideal bonds. Torsional motion is blocked when cadherins associate laterally in a cis orientation, suggesting that ideal bonds may play a role in mechanically regulating cadherin clustering on cell surfaces.
Collapse
Affiliation(s)
- Kristine Manibog
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011; Ames Laboratory, US Department of Energy, Ames, IA 50011
| | - Kannan Sankar
- Bioinformatics and Computational Biology Interdepartmental Program, Iowa State University, Ames, IA 50011; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Sun-Ae Kim
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011; Ames Laboratory, US Department of Energy, Ames, IA 50011
| | - Yunxiang Zhang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| | - Robert L Jernigan
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011; Bioinformatics and Computational Biology Interdepartmental Program, Iowa State University, Ames, IA 50011; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011; L. H. Baker Center for Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011
| | - Sanjeevi Sivasankar
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011; Ames Laboratory, US Department of Energy, Ames, IA 50011;
| |
Collapse
|
35
|
Kudo S, Caaveiro J, Tsumoto K. Adhesive Dimerization of Human P-Cadherin Catalyzed by a Chaperone-like Mechanism. Structure 2016; 24:1523-36. [DOI: 10.1016/j.str.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 01/17/2023]
|
36
|
Adherens Junctions Revisualized: Organizing Cadherins as Nanoassemblies. Dev Cell 2015; 35:12-20. [DOI: 10.1016/j.devcel.2015.09.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/27/2015] [Accepted: 09/17/2015] [Indexed: 01/31/2023]
|
37
|
Doro F, Saladino G, Belvisi L, Civera M, Gervasio FL. New Insights into the Molecular Mechanism of E-Cadherin-Mediated Cell Adhesion by Free Energy Calculations. J Chem Theory Comput 2015; 11:1354-9. [PMID: 26574347 DOI: 10.1021/ct5010164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Three-dimensional domain swapping is an important mode of protein association leading to the formation of stable dimers. Monomers associating via this mechanism mutually exchange a domain to form a homodimer. Classical cadherins, an increasingly important target for anticancer therapy, use domain swapping to mediate cell adhesion. However, despite its importance, the molecular mechanism of domain swapping is still debated. Here, we study the conformational changes that lead to activation and dimerization via domain swapping of E-cadherin. Using state-of-the-art enhanced sampling atomistic simulations, we reconstruct its conformational free energy landscape, obtaining the free energy profile connecting the inactive and active form. Our simulations predict that the E-cadherin monomer populates the open and closed forms almost equally, which is in agreement with the proposed "selected fit" mechanism in which monomers in an active conformational state bind to form a homodimer, analogous to the conformational selection mechanism often observed in ligand-target binding. Moreover, we find that the open state population is increased in the presence of calcium ions at the extracellular boundary, suggesting their possible role as allosteric activators of the conformational change.
Collapse
Affiliation(s)
- Fabio Doro
- Department of Chemistry, University of Milan , Via Camillo Golgi 19, Milan I-20133, Italy
| | - Giorgio Saladino
- Department of Chemistry and Institute of Structural and Molecular Biology, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Laura Belvisi
- Department of Chemistry, University of Milan , Via Camillo Golgi 19, Milan I-20133, Italy
| | - Monica Civera
- Department of Chemistry, University of Milan , Via Camillo Golgi 19, Milan I-20133, Italy
| | - Francesco L Gervasio
- Department of Chemistry and Institute of Structural and Molecular Biology, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
38
|
Vunnam N, Hammer NI, Pedigo S. Basic residue at position 14 is not required for fast assembly and disassembly kinetics in neural cadherin. Biochemistry 2015; 54:836-43. [PMID: 25517179 DOI: 10.1021/bi5010415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In spite of their structural similarities, epithelial (E-) and neural (N-) cadherin are expressed at different types of synapses and differ significantly in their dimerization kinetics. Recent studies proposed a transient intermediate in E-cadherin as the key requirement for rapid disassembly kinetics of the adhesive dimer. This E-cadherin intermediate comprises four intermolecular ionic and H-bonding interactions between adhesive partners. These interactions are not preserved in N-cadherin except for a basic residue at the 14th position, which could stabilize the intermediate through either H-bonding or ionic interactions with the partner protomer. To investigate the origin of the rapid dimerization kinetics of N-cadherin in the presence of calcium, studies reported here systematically test the role of ionic and H-bonding interactions in dimerization kinetics using R14S, R14A, and R14E mutants of N-cadherin. Analytical size-exclusion chromatographic and bead aggregation studies showed two primary results. First, N-cadherin/R14S and N-cadherin/R14A mutants showed fast assembly and disassembly kinetics in the calcium-saturated state similar to that of wild-type N-cadherin. These results indicate that the fast disassembly of the calcium-saturated dimer of N-cadherin does not require a basic residue at the 14th position. Second, the dimerization kinetics of N-cadherin/R14E were slow in the calcium-saturated state, indicating that negative charge destabilizes the intermediate state. Taken together, these results indicate that the basic residue at the 14th position does not promote rapid dimerization kinetics but that an acidic amino acid in that position significantly impairs dimerization kinetics.
Collapse
Affiliation(s)
- Nagamani Vunnam
- Department of Chemistry and Biochemistry, University of Mississippi , University, Mississippi 38677, United States
| | | | | |
Collapse
|
39
|
Ortiz-Medina H, Emond MR, Jontes JD. Zebrafish calsyntenins mediate homophilic adhesion through their amino-terminal cadherin repeats. Neuroscience 2014; 286:87-96. [PMID: 25463516 DOI: 10.1016/j.neuroscience.2014.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/07/2014] [Accepted: 11/18/2014] [Indexed: 11/20/2022]
Abstract
The calsyntenins are atypical members of the cadherin superfamily that have been implicated in learning in Caenorhabditis elegans and memory formation in humans. As members of the cadherin superfamily, they could mediate cell-cell adhesion, although their adhesive properties have not been investigated. As an initial step in characterizing the calsyntenins, we have cloned clstn1, clstn2 and clstn3 from the zebrafish and determined their expression in the developing zebrafish nervous system. The three genes each have broad, yet distinct, expression patterns in the zebrafish brain. Each of the ectodomains mediates homophilic interactions through two, amino-terminal cadherin repeats. In bead sorting assays, the calsyntenin ectodomains do not exhibit homophilic preferences. These data support the idea that calsyntenins could either act as adhesion molecules or as diffusible, homophilic or heterophilic ligands in the vertebrate nervous system.
Collapse
Affiliation(s)
- H Ortiz-Medina
- Department of Neuroscience, Ohio State University Medical Center, United States
| | - M R Emond
- Department of Neuroscience, Ohio State University Medical Center, United States
| | - J D Jontes
- Department of Neuroscience, Ohio State University Medical Center, United States.
| |
Collapse
|
40
|
Moritsugu K, Terada T, Kidera A. Energy landscape of all-atom protein-protein interactions revealed by multiscale enhanced sampling. PLoS Comput Biol 2014; 10:e1003901. [PMID: 25340714 PMCID: PMC4207830 DOI: 10.1371/journal.pcbi.1003901] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/22/2014] [Indexed: 11/18/2022] Open
Abstract
Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES) simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape. Dynamic nature of the protein-protein interactions is an important element of cellular processes such as metabolic reactions and signal transduction, but its atomistic details are still unclear. Computational survey using molecular dynamics simulation is a straightforward method to elucidate these atomistic protein-protein interaction processes. However, a sufficient configurational sampling of the large system containing the atomistic protein complex model and explicit solvent remains a great challenge due to the long timescale involved. Here, we demonstrate that the multiscale enhanced sampling (MSES) successfully captured the atomistic details of the association/dissociation processes of a barnase-barstar complex covering the sampled space from the native complex structure to fully non-native configurations. The landscape derived from the simulation indicates that the association process is funnel-like downhill, analogously to the funnel landscape of fast-folding proteins. The funnel was found to be originated from near-native orientations guided by the shape complementarity between barnase and barstar, accelerating the formation of native inter-molecular interactions to complete the final complex structure.
Collapse
Affiliation(s)
- Kei Moritsugu
- Computational Science Research Program, RIKEN, Hirosawa, Wako, Saitama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
- * E-mail:
| | - Tohru Terada
- Computational Science Research Program, RIKEN, Hirosawa, Wako, Saitama, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Akinori Kidera
- Computational Science Research Program, RIKEN, Hirosawa, Wako, Saitama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| |
Collapse
|
41
|
Emond MR, Jontes JD. Bead aggregation assays for the characterization of putative cell adhesion molecules. J Vis Exp 2014:e51762. [PMID: 25350770 DOI: 10.3791/51762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cell-cell adhesion is fundamental to multicellular life and is mediated by a diverse array of cell surface proteins. However, the adhesive interactions for many of these proteins are poorly understood. Here we present a simple, rapid method for characterizing the adhesive properties of putative homophilic cell adhesion molecules. Cultured HEK293 cells are transfected with DNA plasmid encoding a secreted, epitope-tagged ectodomain of a cell surface protein. Using functionalized beads specific for the epitope tag, the soluble, secreted fusion protein is captured from the culture medium. The coated beads can then be used directly in bead aggregation assays or in fluorescent bead sorting assays to test for homophilic adhesion. If desired, mutagenesis can then be used to elucidate the specific amino acids or domains required for adhesion. This assay requires only small amounts of expressed protein, does not require the production of stable cell lines, and can be accomplished in 4 days.
Collapse
|
42
|
Kinz-Thompson CD, Gonzalez RL. smFRET studies of the 'encounter' complexes and subsequent intermediate states that regulate the selectivity of ligand binding. FEBS Lett 2014; 588:3526-38. [PMID: 25066296 PMCID: PMC4779314 DOI: 10.1016/j.febslet.2014.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
Abstract
The selectivity with which a biomolecule can bind its cognate ligand when confronted by the vast array of structurally similar, competing ligands that are present in the cell underlies the fidelity of some of the most fundamental processes in biology. Because they collectively comprise one of only a few methods that can sensitively detect the 'encounter' complexes and subsequent intermediate states that regulate the selectivity of ligand binding, single-molecule fluorescence, and particularly single-molecule fluorescence resonance energy transfer (smFRET), approaches have revolutionized studies of ligand-binding reactions. Here, we describe a widely used smFRET strategy that enables investigations of a large variety of ligand-binding reactions, and discuss two such reactions, aminoacyl-tRNA selection during translation elongation and splice site selection during spliceosome assembly, that highlight both the successes and challenges of smFRET studies of ligand-binding reactions. We conclude by reviewing a number of emerging experimental and computational approaches that are expanding the capabilities of smFRET approaches for studies of ligand-binding reactions and that promise to reveal the mechanisms that control the selectivity of ligand binding with unprecedented resolution.
Collapse
Affiliation(s)
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
43
|
Rakshit S, Sivasankar S. Biomechanics of cell adhesion: how force regulates the lifetime of adhesive bonds at the single molecule level. Phys Chem Chem Phys 2014; 16:2211-23. [PMID: 24419646 DOI: 10.1039/c3cp53963f] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell adhesion proteins play critical roles in positioning cells during development, segregating cells into distinct tissue compartments and in maintaining tissue integrity. The principle function of these proteins is to bind cells together and resist mechanical force. Adhesive proteins also enable migrating cells to adhere and roll on surfaces even in the presence of shear forces exerted by fluid flow. Recently, several experimental and theoretical studies have provided quantitative insights into the physical mechanisms by which adhesion proteins modulate their unbinding kinetics in response to tensile force. This perspective reviews these biophysical investigations. We focus on single molecule studies of cadherins, selectins, integrins, the von Willebrand factor and FimH adhesion proteins; the effect of mechanical force on the lifetime of these interactions has been extensively characterized. We review both theoretical models and experimental investigations and discuss future directions in this exciting area of research.
Collapse
Affiliation(s)
- Sabyasachi Rakshit
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
44
|
Resolving the molecular mechanism of cadherin catch bond formation. Nat Commun 2014; 5:3941. [PMID: 24887573 DOI: 10.1038/ncomms4941] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/23/2014] [Indexed: 11/09/2022] Open
Abstract
Classical cadherin Ca(2+)-dependent cell-cell adhesion proteins play key roles in embryogenesis and in maintaining tissue integrity. Cadherins mediate robust adhesion by binding in multiple conformations. One of these adhesive states, called an X-dimer, forms catch bonds that strengthen and become longer lived in the presence of mechanical force. Here we use single-molecule force-clamp spectroscopy with an atomic force microscope along with molecular dynamics and steered molecular dynamics simulations to resolve the molecular mechanisms underlying catch bond formation and the role of Ca(2+) ions in this process. Our data suggest that tensile force bends the cadherin extracellular region such that they form long-lived, force-induced hydrogen bonds that lock X-dimers into tighter contact. When Ca(2+) concentration is decreased, fewer de novo hydrogen bonds are formed and catch bond formation is eliminated.
Collapse
|
45
|
Sotomayor M, Gaudet R, Corey DP. Sorting out a promiscuous superfamily: towards cadherin connectomics. Trends Cell Biol 2014; 24:524-36. [PMID: 24794279 DOI: 10.1016/j.tcb.2014.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 12/21/2022]
Abstract
Members of the cadherin superfamily of proteins are involved in diverse biological processes such as morphogenesis, sound transduction, and neuronal connectivity. Key to cadherin function is their extracellular domain containing cadherin repeats, which can mediate interactions involved in adhesion and cell signaling. Recent cellular, biochemical, and structural studies have revealed that physical interaction among cadherins is more complex than originally thought. Here we review work on new cadherin complexes and discuss how the classification of the mammalian family can be used to search for additional cadherin-interacting partners. We also highlight some of the challenges in cadherin research; namely, the characterization of a cadherin connectome in biochemical and structural terms, as well as the elucidation of molecular mechanisms underlying the functional diversity of nonclassical cadherins in vivo.
Collapse
Affiliation(s)
- Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH 43210, USA.
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - David P Corey
- Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Kudo S, Caaveiro JMM, Goda S, Nagatoishi S, Ishii K, Matsuura T, Sudou Y, Kodama T, Hamakubo T, Tsumoto K. Identification and characterization of the X-dimer of human P-cadherin: implications for homophilic cell adhesion. Biochemistry 2014; 53:1742-52. [PMID: 24559158 DOI: 10.1021/bi401341g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell adhesion mediated by cadherins depends critically on the homophilic trans-dimerization of cadherin monomers from apposing cells, generating the so-called strand-swap dimer (ss-dimer). Recent evidence indicates that the ss-dimer is preceded by an intermediate species known as the X-dimer. Until now, the stabilized form of the X-dimer had only been observed in E-cadherin among the classical type I cadherins. Herein, we report the isolation and characterization of the analogous X-dimer of human P-cadherin. Small-angle X-ray scattering (SAXS) and site-directed mutagenesis data indicates that the overall architecture of the X-dimer of human P-cadherin is similar to that of E-cadherin. The X-dimerization is triggered by Ca(2+) and governed by specific protein-protein interactions. The attachment of three molecules of Ca(2+) with high affinity (Kd = 9 μM) stabilizes the monomeric conformation of P-cadherin (ΔTm = 17 °C). The Ca(2+)-stabilized monomer subsequently dimerizes in the X-configuration by establishing protein-protein interactions that require the first two extracellular domains of the cadherin. The homophilic X-dimerization is very specific, as the presence of the highly homologous E-cadherin does not interfere with the self-recognition of P-cadherin. These data suggest that the X-dimer could play a key role in the specific cell-cell adhesion mediated by human P-cadherin.
Collapse
Affiliation(s)
- Shota Kudo
- Department of Chemistry & Biotechnology, The University of Tokyo , Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lowndes M, Rakshit S, Shafraz O, Borghi N, Harmon RM, Green KJ, Sivasankar S, Nelson WJ. Different roles of cadherins in the assembly and structural integrity of the desmosome complex. J Cell Sci 2014; 127:2339-50. [PMID: 24610950 DOI: 10.1242/jcs.146316] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adhesion between cells is established by the formation of specialized intercellular junctional complexes, such as desmosomes. Desmosomes contain isoforms of two members of the cadherin superfamily of cell adhesion proteins, desmocollins (Dsc) and desmogleins (Dsg), but their combinatorial roles in desmosome assembly are not understood. To uncouple desmosome assembly from other cell-cell adhesion complexes, we used micro-patterned substrates of Dsc2aFc and/or Dsg2Fc and collagen IV; we show that Dsc2aFc, but not Dsg2Fc, was necessary and sufficient to recruit desmosome-specific desmoplakin into desmosome puncta and produce strong adhesive binding. Single-molecule force spectroscopy showed that monomeric Dsc2a, but not Dsg2, formed Ca(2+)-dependent homophilic bonds, and that Dsg2 formed Ca(2+)-independent heterophilic bonds with Dsc2a. A W2A mutation in Dsc2a inhibited Ca(2+)-dependent homophilic binding, similar to classical cadherins, and Dsc2aW2A, but not Dsg2W2A, was excluded from desmosomes in MDCK cells. These results indicate that Dsc2a, but not Dsg2, is required for desmosome assembly through homophilic Ca(2+)- and W2-dependent binding, and that Dsg2 might be involved later in regulating a switch to Ca(2+)-independent adhesion in mature desmosomes.
Collapse
Affiliation(s)
- Molly Lowndes
- Cancer Biology Program, Stanford University, Stanford, CA 94305, USA
| | - Sabyasachi Rakshit
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA Ames Laboratory, United States Department of Energy, Ames, IA 50011, USA
| | - Omer Shafraz
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA Ames Laboratory, United States Department of Energy, Ames, IA 50011, USA
| | - Nicolas Borghi
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, and Université Paris-Diderot, 75013 Paris, France
| | - Robert M Harmon
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sanjeevi Sivasankar
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA Ames Laboratory, United States Department of Energy, Ames, IA 50011, USA
| | - W James Nelson
- Cancer Biology Program, Stanford University, Stanford, CA 94305, USA Department of Biology, Stanford University, Stanford, CA 94305, USA Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
48
|
Bunse S, Garg S, Junek S, Vogel D, Ansari N, Stelzer EHK, Schuman E. Role of N-cadherin cis and trans interfaces in the dynamics of adherens junctions in living cells. PLoS One 2013; 8:e81517. [PMID: 24312555 PMCID: PMC3847041 DOI: 10.1371/journal.pone.0081517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/11/2013] [Indexed: 12/03/2022] Open
Abstract
Cadherins, Ca2+-dependent adhesion molecules, are crucial for cell-cell junctions and remodeling. Cadherins form inter-junctional lattices by the formation of both cis and trans dimers. Here, we directly visualize and quantify the spatiotemporal dynamics of wild-type and dimer mutant N-cadherin interactions using time-lapse imaging of junction assembly, disassembly and a FRET reporter to assess Ca2+-dependent interactions. A trans dimer mutant (W2A) and a cis mutant (V81D/V174D) exhibited an increased Ca2+-sensitivity for the disassembly of trans dimers compared to the WT, while another mutant (R14E) was insensitive to Ca2+-chelation. Time-lapse imaging of junction assembly and disassembly, monitored in 2D and 3D (using cellular spheroids), revealed kinetic differences in the different mutants as well as different behaviors in the 2D and 3D environment. Taken together, these data provide new insights into the role that the cis and trans dimers play in the dynamic interactions of cadherins.
Collapse
Affiliation(s)
- Stefanie Bunse
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Sakshi Garg
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Stephan Junek
- Department of Neural Systems, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Dirk Vogel
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität, Frankfurt am Main, Frankfurt am Main, Germany
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität, Frankfurt am Main, Frankfurt am Main, Germany
| | - Erin Schuman
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
49
|
Mechanism of E-cadherin dimerization probed by NMR relaxation dispersion. Proc Natl Acad Sci U S A 2013; 110:16462-7. [PMID: 24067646 DOI: 10.1073/pnas.1314303110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epithelial cadherin (E-cadherin), a member of the classical cadherin family, mediates calcium-dependent homophilic cell-cell adhesion. Crystal structures of classical cadherins reveal an adhesive dimer interface featuring reciprocal exchange of N-terminal β-strands between two protomers. Previous work has identified a putative intermediate (called the "X-dimer") in the dimerization pathway of wild-type E-cadherin EC1-EC2 domains, based on crystal structures of mutants not capable of strand swapping and on deceleration of binding kinetics by mutations at the X-dimer interface. In the present work, NMR relaxation dispersion spectroscopy is used to directly observe and characterize intermediate states without the need to disrupt the strand-swapped binding interface by mutagenesis. The results indicate that E-cadherin forms strand-swapped dimers predominantly by a mechanism in which formation of a weak and short-lived X-dimer-like state precedes the conformational changes required for formation of the mature strand-swapped dimeric structure. Disruption of this intermediate state through mutation reduces both association and dissociation rates by factors of ~10(4), while minimally perturbing affinity. The X-dimer interface lowers the energy barrier associated with strand swapping and enables E-cadherins to form strand-swapped dimers at a rate consistent with residence times in adherens junctions.
Collapse
|
50
|
Sivasankar S. Tuning the kinetics of cadherin adhesion. J Invest Dermatol 2013; 133:2318-2323. [PMID: 23812234 PMCID: PMC3773255 DOI: 10.1038/jid.2013.229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 12/17/2022]
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion proteins that maintain the structural integrity of the epidermis; their principle function is to resist mechanical force. This review summarizes the biophysical mechanisms by which classical cadherins tune adhesion and withstand mechanical stress. We first relate the structure of classical cadherins to their equilibrium binding properties. We then review the role of mechanical perturbations in tuning the kinetics of cadherin adhesion. In particular, we highlight recent studies that show that cadherins form three types of adhesive bonds: catch bonds, which become longer lived and lock in the presence of tensile force; slip bonds, which become shorter lived when pulled; and ideal bonds, which are insensitive to tugging.
Collapse
Affiliation(s)
- Sanjeevi Sivasankar
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA; Ames Laboratory, United States Department of Energy, Ames, Iowa, USA.
| |
Collapse
|