1
|
Ding J, Ju Z, Fu T, Ding L, Yan X, Zhou B, Yu M, Ge C. Structural stability of Calmodulin-target peptide complex at different temperatures based on molecular dynamics simulation. BMC Chem 2025; 19:143. [PMID: 40413538 DOI: 10.1186/s13065-025-01515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 05/14/2025] [Indexed: 05/27/2025] Open
Abstract
Calmodulin (CaM) is a multifunctional protein commonly found in various eukaryotic cells that can bind Ca2+, making it highly valuable for research in agriculture, medicine, the environment, and other fields. Protein functionality is intricately linked to its structure. To understand how varying temperatures affect the structural integrity of CaM protein at the molecular level, the effect of temperature on the structural stability of CaM-peptide complex was investigated based on the molecular dynamics (MD) simulation. Some analyses including the root mean square deviation (RMSD) values, interaction energies, the decomposition of total energy of the system, the binding mechanism for Ca2+, and the secondary structure of CaM-peptide at different temperatures have been made in this work. The RMSD increased from 0.5277 nm (298 K) to 0.6949 nm (400 K), indicating a loss of structural stability. As temperature increases, the interaction energies between CaM-peptide and Ca2+ exhibit a decline, and the number of oxygen atoms in the 4 Å range around the CaM-peptide ion tends to decrease, with the average value of the number of oxygen atoms in the 4 Å range of CaM-peptide decreasing from 7.48039 (298 K) to 6.36614 (400 K) with Coulombic interactions playing a pivotal role in stabilizing Ca2+. This decline in hydrogen bonding is directly linked to a decrease in protein stability at higher temperatures, highlighting the thermal sensitivity of the protein's structural framework. The stable secondary structures, including the α-helix, are disrupted as temperatures increase, leading to the gradual unwinding of the α-helix and a loss of structural integrity. This work explores the molecular-level structural stability of CaM, enhancing our understanding of CaM protein and its potential applications.
Collapse
Affiliation(s)
- Jiayi Ding
- College of Chemical & Material Engineering, Quzhou University, Quzhou, Zhejiang Province, 324000, China
| | - Zhaoyang Ju
- College of Chemical & Material Engineering, Quzhou University, Quzhou, Zhejiang Province, 324000, China.
| | - Tengfei Fu
- College of Chemical & Material Engineering, Quzhou University, Quzhou, Zhejiang Province, 324000, China
| | - Liyong Ding
- College of Chemical & Material Engineering, Quzhou University, Quzhou, Zhejiang Province, 324000, China
| | - Xinyi Yan
- College of Chemical & Material Engineering, Quzhou University, Quzhou, Zhejiang Province, 324000, China
| | - Bing Zhou
- Zhejiang Jusheng Fluorination Chemical Co., Ltd, Quzhou, Zhejiang Province, 324000, China
| | - Mengting Yu
- College of Chemical & Material Engineering, Quzhou University, Quzhou, Zhejiang Province, 324000, China.
| | - Chengsheng Ge
- College of Chemical & Material Engineering, Quzhou University, Quzhou, Zhejiang Province, 324000, China.
| |
Collapse
|
2
|
Kwon TU, Kwon YJ, Park H, Kang YJ, Chun YJ. Dysregulation of STS in keratinocytes promotes calcium signaling and differentiation. Sci Rep 2025; 15:662. [PMID: 40118897 PMCID: PMC11928595 DOI: 10.1038/s41598-024-84701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/26/2024] [Indexed: 03/24/2025] Open
Abstract
Steroid sulfatase (STS) is a key enzyme for the desulfation of steroid sulfates, converting them into their biologically active forms. Notably, X-linked ichthyosis (XLI), a genetic disorder characterized by hyperkeratinization, arises as a direct result of STS deficiency. Keratinocyte differentiation is essential for proper keratinization. In this study, gene ontology analysis from STS-deficient mice revealed enhanced differentiation and upregulation of calcium-related signaling. Calcium plays a key role in regulating keratinocyte differentiation, with STS-deficient cells showing a marked increase in intracellular calcium influx. Additionally, these cells significantly upregulated calcium-sensing receptors (CasR), leading to elevated tyrosine phosphorylation, increased differentiation signaling, and the upregulation of early differentiation markers, including keratin 1 and keratin 10, as seen in HaCaT cells and mouse primary keratinocytes. Furthermore, STS inhibitors enhanced the expression of E-cadherin and terminal differentiation markers such as involucrin and loricrin. Due to increased calcium sensitivity, STS-deficient cells treated with calcium exhibited a significant upregulation of differentiation markers and reduced sensitivity to calcium chelation. Collectively, our findings demonstrate that reduced STS expression and inhibition of its activity enhance calcium responsiveness, induce CasR expression, and amplify calcium signaling, thereby promoting keratinocyte differentiation. These findings offer valuable insights into the mechanisms underlying STS deficiency-induced hyperkeratinization.
Collapse
Affiliation(s)
- Tae-Uk Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyemin Park
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoon-Ji Kang
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
3
|
Xie Y, Wang J, Yang L, Tao J, Xu Y, Hu Y, Zou G, Su Y, Liu M, Sun H, Hao H, Xu X, Zheng Q. Transient Cross-linking Mass Spectrometry: Taking Conformational Snapshots of Proteins. Anal Chem 2025; 97:5488-5497. [PMID: 40035313 PMCID: PMC11923955 DOI: 10.1021/acs.analchem.4c04939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
The dynamic nature of protein conformations is central to their biological functions. Conventional structural biology techniques provide static snapshots, whereas a comprehensive understanding requires an analysis of the dynamic conformations. In this study, we develop a transient cross-linking mass spectrometry method using a photo-cross-linker DCD. This cross-linker can be transiently activated to accomplish cross-linking, and with sample freezing, transient conformations are preserved, allowing temporal control and on-demand cross-linking. Its cross-linking site covers all amino acids, exhibiting diversity and providing rich structural information. Additionally, we develop a data-processing strategy by integrating a DCD-specific reporter ion and a defined ambiguous site annotation criterion, thereby ensuring the confidence in identification and cross-link site annotation. Thus, the developed transient cross-linking mass spectrometry, leveraging the distinctive features of DCD, has enabled us to analyze protein conformations and protein complexes with high resolution, take conformational snapshots, discern the coexistence of conformational intermediates, and decipher conformational fluctuations, shedding light on how proteins conformationally respond to biological signals and engage with interacting partners. Our results highlight DCD's potential for probing protein conformational changes, facilitating the elucidation of their pivotal roles within biological systems.
Collapse
Affiliation(s)
- Yuxin Xie
- Department
of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Jiawen Wang
- Department
of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Lei Yang
- Department
of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Junjun Tao
- Department
of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yuanyuan Xu
- Department
of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yang Hu
- State Key
Laboratory of Natural Medicines, Institute of Innovative Drug Discovery
and Development, Jiangsu Provincial Key Laboratory of Targetome and
Innovative Drugs, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Guiqing Zou
- State Key
Laboratory of Natural Medicines, Institute of Innovative Drug Discovery
and Development, Jiangsu Provincial Key Laboratory of Targetome and
Innovative Drugs, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yu Su
- Department
of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Meijun Liu
- Department
of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Huiyong Sun
- Department
of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Haiping Hao
- State Key
Laboratory of Natural Medicines, Institute of Innovative Drug Discovery
and Development, Jiangsu Provincial Key Laboratory of Targetome and
Innovative Drugs, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xiaowei Xu
- Institute
of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Qiuling Zheng
- Department
of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
4
|
Gupta N, Richards EMB, Morris VS, Morris R, Wadmore K, Held M, McCormick L, Prakash O, Dart C, Helassa N. Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca 2+ channel (Ca v1.2) and reduce Ca 2+-dependent inactivation. Acta Physiol (Oxf) 2025; 241:e14276. [PMID: 39825574 PMCID: PMC11742489 DOI: 10.1111/apha.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 11/19/2024] [Accepted: 01/01/2025] [Indexed: 01/20/2025]
Abstract
AIM Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship. Our study focuses on the L-type calcium channel Cav1.2, a crucial component of the ventricular action potential and excitation-contraction coupling. METHODS We used circular dichroism (CD), 1H-15N HSQC NMR, and trypsin digestion to determine the structural and stability properties of CaM variants. The affinity of CaM for Ca2+ and interaction of Ca2+/CaM with Cav1.2 (IQ and NSCaTE domains) were investigated using intrinsic tyrosine fluorescence and isothermal titration calorimetry (ITC), respectively. The effect of CaM variants of Cav1.2 activity was determined using HEK293-Cav1.2 cells (B'SYS) and whole-cell patch-clamp electrophysiology. RESULTS Using a combination of protein biophysics and structural biology, we show that the disease-associated mutations D131E and Q135P mutations alter apo/CaM structure and stability. In the Ca2+-bound state, D131E and Q135P exhibited reduced Ca2+ binding affinity, significant structural changes, and altered interaction with Cav1.2 domains (increased affinity for Cav1.2-IQ and decreased affinity for Cav1.2-NSCaTE). We show that the mutations dramatically impair Ca2+-dependent inactivation (CDI) of Cav1.2, which would contribute to abnormal Ca2+ influx, leading to disrupted Ca2+ handling, characteristic of cardiac arrhythmia syndromes. CONCLUSIONS These findings provide insights into the molecular mechanisms behind arrhythmia caused by calmodulin mutations, contributing to our understanding of cardiac syndromes at a molecular and cellular level.
Collapse
Affiliation(s)
- Nitika Gupta
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ella M. B. Richards
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Vanessa S. Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Rachael Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Kirsty Wadmore
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Marie Held
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Liam McCormick
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ohm Prakash
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
5
|
Morris VS, Richards EMB, Morris R, Dart C, Helassa N. Structure-Function Diversity of Calcium-Binding Proteins (CaBPs): Key Roles in Cell Signalling and Disease. Cells 2025; 14:152. [PMID: 39936944 PMCID: PMC11816674 DOI: 10.3390/cells14030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Calcium (Ca2+) signalling is a fundamental cellular process, essential for a wide range of physiological functions. It is regulated by various mechanisms, including a diverse family of Ca2+-binding proteins (CaBPs), which are structurally and functionally similar to calmodulin (CaM). The CaBP family consists of six members (CaBP1, CaBP2, CaBP4, CaBP5, CaBP7, and CaBP8), each exhibiting unique localisation, structural features, and functional roles. In this review, we provide a structure-function analysis of the CaBP family, highlighting the key similarities and differences both within the family and in comparison to CaM. It has been shown that CaBP1-5 share similar structural and interaction characteristics, while CaBP7 and CaBP8 form a distinct subfamily with unique properties. This review of current CaBP knowledge highlights the critical gaps in our understanding, as some CaBP members are less well characterised than others. We also examine pathogenic mutations within CaBPs and their functional impact, showing the need for further research to improve treatment options for associated disorders.
Collapse
Affiliation(s)
| | | | | | | | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK; (V.S.M.); (E.M.B.R.); (R.M.); (C.D.)
| |
Collapse
|
6
|
Thapa G, Bhattacharya A, Bhattacharya S. Dynamics of AKAP/Calmodulin complex is largely driven by ionic occupancy state. J Mol Graph Model 2025; 134:108904. [PMID: 39547129 DOI: 10.1016/j.jmgm.2024.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
AKAP79/150 is a scaffold protein found in dendritic spines and other neuronal compartments. It localizes and regulates phosphorylation by protein kinase A and C and is, in turn regulated by Ca2+, mediated by Calmodulin (CaM). Thus, the interaction of AKAP79/150 with CaM is of biological interest. A 2017 study used a peptide cross linking coupled to mass spectrometry (XLMS) to identify the CaM binding site on AKAP79/150 and subsequently solved an X-ray crystallography structure of CaM in complex with a short helical AKAP79/150 peptide. The XRD structure revealed an unusual mixed ionic occupancy state of CaM as bound to the AKAP79/150 peptide. In this molecular dynamics-based study, we have explored the motional modes of the CaM-AKAP helix complex under three ionic occupancy conditions. Our results indicate that the dynamics of this CaM backbone is largely dominated by the ionic occupancy state. We find that binding of the AKAP79/150 peptide to CaM is not preferentially stabilized in energetic terms in the Ca2+ state as compared to apo. However, the Mg2+ state is destabilized energetically as compared to the apo state. In addition, in the Ca2+ state, the AKAP79/150 peptide appears to be preferentially stabilized by additional hydrogen bonds. Our simulations suggest that further structural biology studies should be carried out, with a focus on driving the system equilibrium to full Ca2+ occupancy. NMR studies may be able to capture conformational states which are not seen in crystals.
Collapse
Affiliation(s)
- Gauri Thapa
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | | | - Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
7
|
Sanders JH, Taiwo KM, Adekanye GA, Bali A, Zhang Y, Paulsen CE. Calmodulin binding is required for calcium mediated TRPA1 desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627969. [PMID: 39713425 PMCID: PMC11661184 DOI: 10.1101/2024.12.11.627969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Calcium (Ca2+) ions affect nearly all aspects of biology. Excessive Ca2+ entry is cytotoxic and Ca2+-mobilizing receptors have evolved diverse mechanisms for tight regulation that often include Calmodulin (CaM). TRPA1, an essential Ca2+-permeable ion channel involved in pain signaling and inflammation, exhibits complex Ca2+ regulation with initial channel potentiation followed by rapid desensitization. The molecular mechanisms of TRPA1 Ca2+ regulation and whether CaM plays a role remain elusive. We find that TRPA1 binds CaM best at basal Ca2+ concentration, that they co-localize in resting cells, and that CaM suppresses TRPA1 activity. Combining biochemical, biophysical, modeling, NMR spectroscopy, and functional approaches, we identify an evolutionarily conserved, high-affinity CaM binding element in the distal TRPA1 C-terminus (DCTCaMBE). Genetic or biochemical perturbation of Ca2+/CaM binding to the TRPA1 DCTCaMBE yields hyperactive channels that exhibit drastic slowing of desensitization with no effect on potentiation. Ca2+/CaM TRPA1 regulation does not require the N-lobe, raising the possibility that CaM is not the Ca2+ sensor, per se. Higher extracellular Ca2+ can partially rescue slowed desensitization suggesting Ca2+/CaM binding to the TRPA1 DCTCaMBE primes an intrinsic TRPA1 Ca2+ binding site that, upon binding Ca2+, triggers rapid desensitization. Collectively, our results identify a critical regulatory element in an unstructured TRPA1 region highlighting the importance of these domains, they reveal Ca2+/CaM is an essential TRPA1 auxiliary subunit required for rapid desensitization that establishes proper channel function with implications for all future TRPA1 work, and they uncover a mechanism for receptor regulation by Ca2+/CaM that expands the scope of CaM biology.
Collapse
Affiliation(s)
- Justin H. Sanders
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Kehinde M. Taiwo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Glory A. Adekanye
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Avnika Bali
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Yuekang Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Candice E. Paulsen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Wong BHS, Shim H, Goay SSM, Ong ST, Muhammad Taib NAB, Chai KXY, Lim K, Huang D, Ong CK, Vaiyapuri TS, Cheah YC, Wang Y, Wulff H, Webster RD, Shelat VG, Verma NK. The novel quinoline derivative SKA-346 as a K Ca3.1 channel selective activator. RSC Adv 2024; 14:38364-38377. [PMID: 39635364 PMCID: PMC11615718 DOI: 10.1039/d4ra07330d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024] Open
Abstract
The calcium-activated KCa3.1 channel plays a crucial role in T-cell immune response. Genetic manipulation of T-cells to upregulate the expression of K+ channels has been shown to boost T-cell cytotoxicity in cancer. Here, we aimed to identify and characterize an activator that would augment KCa3.1 currents without affecting other channels. We synthesized five quinoline derivatives and used electrophysiology to screen them on KCa3.1 and a panel of 14 other ion channels. One quinoline derivative, SKA-346, activated KCa3.1 with an EC50 of 1.9 μM and showed selectivity against the other channels. In silico analysis using RosettaLigand and GLIDE demonstrated a well-converged pose of SKA-346 in a binding pocket at the interface between the calmodulin N-lobe and the S45A helix in the S4-S5 linker of the KCa3.1 channel. SKA-346 (30 mg kg-1), tolerated by mice after intra-peritoneal administration, exhibited a peak plasma concentration of 6.29 μg mL-1 (29.2 μM) at 15 min and a circulating half-life (t 1/2) of 2.8 h. SKA-346 could serve as a template for the development of more potent KCa3.1 activators to enhance T-cell cytotoxicity in cancer.
Collapse
Affiliation(s)
- Brandon Han Siang Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
- Interdisciplinary Graduate Programme, NTU Institute for Health Technologies (HealthTech NTU), Nanyang Technological University Singapore Singapore
| | - Heesung Shim
- Physical and Life Sciences, Lawrence Livermore National Laboratory Livermore CA USA
| | - Stephanie Shee Min Goay
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
- LKCMedicine-ICE Collaborative Platform, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
| | - Seow Theng Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
- LKCMedicine-ICE Collaborative Platform, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
| | - Nur Ayuni Binte Muhammad Taib
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore
| | - Kelila Xin Ye Chai
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore
| | - Kerry Lim
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore
| | - Dachuan Huang
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore
- Duke-NUS Medical School Singapore
| | - Choon Kiat Ong
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore
- Duke-NUS Medical School Singapore
| | | | - Yeong Cheng Cheah
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
| | - Heike Wulff
- Department of Pharmacology, University of California Davis CA USA
| | - Richard D Webster
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore Singapore
| | - Vishalkumar G Shelat
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
- Department of General Surgery, Tan Tock Seng Hospital Singapore
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
| |
Collapse
|
9
|
Rossetti M, Stanca S, Panichi LB, Bongioanni P. Brain metabolic profiling of schizophrenia: a path towards a better understanding of the neuropathogenesis of psychosis. Metab Brain Dis 2024; 40:28. [PMID: 39570439 DOI: 10.1007/s11011-024-01447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024]
Abstract
Schizophrenia (SCZ) is a complex psychotic syndrome whose pathogenesis involves countless protagonists, none of which, to date, can fully explain how this disorder develops. In this narrative review, an overview of the biochemical impairment is offered according to several perspectives. Indeed, the metabolic framework behind SCZ dopaminergic hypotheses, glutamate - gamma-amynobutyric acid dysregulation, norepinephrine and serotonin, calcium channel dysfunction is addressed together with the energetic impairment, involving glucose and lipids in SCZ etiopathogenesis, in order to highlight the multilevel pathways affected in this neuropsychiatric disorder. Furthermore, neuroinflammation is analyzed, by virtue of its important role, widely investigated in recent years, in neurodegeneration. Tracing the neurotransmitter activity at the brain level by assessing the metabolic network behind the abovementioned molecules puts into light as unavoidable the need for future studies to adopt an integrate approach to address SCZ pathological and clinical picture. The combination of all these factors, essential in acquiring an overview on the complexity of SCZ pathophysiology represents a crucial step in the development of a more targeted management of SCZ patients.
Collapse
Affiliation(s)
- Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, Pisa, 56126, Italy
- NeuroCare Onlus, Pisa, 56100, Italy
| | - Stefano Stanca
- Department of Humanities, University of Naples Federico II, Via Porta di Massa 1, Naples, 80133, Italy.
| | - Leona Bokulic Panichi
- NeuroCare Onlus, Pisa, 56100, Italy
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56100, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, Pisa, 56100, Italy
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56100, Italy
| |
Collapse
|
10
|
Liu Y, Gao D, He Y, Ma J, Chong SY, Qi X, Ting HJ, Luo Z, Yi Z, Tang J, Chang C, Wang J, Sheng Z, Zheng H, Liu X. Single-point mutated lanmodulin as a high-performance MRI contrast agent for vascular and kidney imaging. Nat Commun 2024; 15:9834. [PMID: 39537629 PMCID: PMC11561317 DOI: 10.1038/s41467-024-54167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Magnetic resonance imaging contrast agents can enhance diagnostic precision but often face limitations such as short imaging windows, low tissue specificity, suboptimal contrast enhancement, or potential toxicity, which affect resolution and long-term monitoring. Here, we present a protein contrast agent based on lanmodulin, engineered with a single-point mutation at position 108 from N to D to yield maximum gadolinium binding sites. After loading with Gd3+ ions, the resulting protein complex, LanND-Gd, exhibits efficient renal clearance, high relaxivity, and prolonged renal retention compared to commercial agents. LanND-Gd enables high-performance visualization of whole-body structures and brain vasculature in male mice at a resolution finer than one hundred micrometers. In male ischemia mouse models, LanND-Gd also improves kidney dysfunction monitoring while minimizing risks of neural toxicity or immunogenic reactions. This protein-based contrast agent offers superior image quality, improved biocompatibility, and extended imaging timeframes, promising significant advancements in magnetic resonance-based diagnostics and patient outcomes.
Collapse
Affiliation(s)
- Yuxia Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Duyang Gao
- Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanyuan He
- School of Physics, Peking University, Beijing, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, China
| | - Jing Ma
- School of Physics, Peking University, Beijing, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, China
| | - Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xinyi Qi
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Jun Ting
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Jingyu Tang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Chao Chang
- School of Physics, Peking University, Beijing, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, China
| | - Jiongwei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Zonghai Sheng
- Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen, China.
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Hairong Zheng
- Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen, China.
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Schwartz PJ, Crotti L, Nyegaard M, Overgaard MT. Role of Calmodulin in Cardiac Disease: Insights on Genotype and Phenotype. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004542. [PMID: 39247953 DOI: 10.1161/circgen.124.004542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Calmodulin, a protein critically important for the regulation of all major cardiac ion channels, is the quintessential cellular calcium sensor and plays a key role in preserving cardiac electrical stability. Its unique importance is highlighted by the presence of 3 genes in 3 different chromosomes encoding for the same protein and by their extreme conservation. Indeed, all 3 calmodulin (CALM) genes are among the most constrained genes in the human genome, that is, the observed variants are much less than expected by chance. Not surprisingly, CALM variants are poorly tolerated and accompany significant clinical phenotypes, of which the most important are those associated with increased risk for life-threatening arrhythmias. Here, we review the current knowledge about calmodulin, its specific physiological, structural, and functional characteristics, and its importance for cardiovascular disease. Given our role in the development of this knowledge, we also share some of our views about currently unanswered questions, including the rational approaches to the clinical management of the affected patients. Specifically, we present some of the most critical information emerging from the International Calmodulinopathy Registry, which we established 10 years ago. Further progress clearly requires deep phenotypic information on as many carriers as possible through international contributions to the registry, in order to expand our knowledge about Calmodulinopathies and guide clinical management.
Collapse
Affiliation(s)
- Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (P.J.S., L.C.)
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (P.J.S., L.C.)
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (L.C.)
| | - Mette Nyegaard
- Department of Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark (M.N.)
- Department of Health Science and Technology (M.N.), Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
12
|
He H, Gao Z, Hu Z, Liang G, Huang Y, Zhou M, Liang R, Zhang K. Identification and Characterization of Extrachromosomal Circular DNA in Slimming Grass Carp. Biomolecules 2024; 14:1045. [PMID: 39334812 PMCID: PMC11430282 DOI: 10.3390/biom14091045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Slimming grass carp is a commercial variety with good body form and meat quality, which is cultured by starving common grass carp in a clean flowing water environment. Compared to common grass carp, slimming grass carp has a far higher economic value. Until now, no molecular study has concentrated on the regulation mechanism of the muscle characteristics of slimming grass carp. This study first reported the gene expression profile of the muscle characteristics of slimming grass carp based on the level of extrachromosomal circular DNAs (eccDNAs). EccDNAs are double-stranded circular DNAs derived from genomic DNAs and play crucial roles in the functional regulation of a wide range of biological processes, none of which have been shown to occur in fish. Here, muscle eccDNAs from slimming grass carp and common grass carp were both generally sequenced, and the information, as well as the expression profile of eccDNAs, were compared and analysed. The findings reveal that 82,238 and 25,857 eccDNAs were detected from slimming grass carp and common grass carp, respectively. The length distribution of eccDNAs was in the range of 1~1000 bp, with two peaks at about 200 bp and 400 bp. When the expression profiles of eccDNAs between slimming grass carp and common grass carp were compared, 3523 up-regulated and 175 down-regulated eccDNAs were found. Enrichment analysis showed that these eccDNA genes were correlated with cellular structure and response, cell immunology, enzyme activity, etc. Certain differentially expressed eccDNAs involved in muscle characteristics were detected, which include myosin heavy chain, myosin light chain, muscle segment homeobox C, calsequestrin, calmodulin, etc., among which the majority of genes were linked to muscle structure and contraction. This indicates that during the process of cultivating from common grass carp to slimming grass carp, the treatment primarily affected muscle structure and contraction, making the meat quality of slimming grass carp different from that of common grass carp. This result provides molecular evidence and new insights by which to elucidate the regulating mechanism of muscle phenotypic characterisation in slimming grass carp and other fish.
Collapse
Affiliation(s)
- Haobin He
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zihan Gao
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zehua Hu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guanyu Liang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Meng Zhou
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Rishen Liang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Kai Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
13
|
Da'as SI, Thanassoulas A, Calver BL, Saleh A, Abdelrahman D, Hasan W, Safieh-Garabedian B, Kontogianni I, Nasrallah GK, Nounesis G, Lai FA, Nomikos M. Divergent Biochemical Properties and Disparate Impact of Arrhythmogenic Calmodulin Mutations on Zebrafish Cardiac Function. J Cell Biochem 2024; 125:e30619. [PMID: 38946237 DOI: 10.1002/jcb.30619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
Calmodulin (CaM) is a ubiquitous, small cytosolic calcium (Ca2+)-binding sensor that plays a vital role in many cellular processes by binding and regulating the activity of over 300 protein targets. In cardiac muscle, CaM modulates directly or indirectly the activity of several proteins that play a key role in excitation-contraction coupling (ECC), such as ryanodine receptor type 2 (RyR2), l-type Ca2+ (Cav1.2), sodium (NaV1.5) and potassium (KV7.1) channels. Many recent clinical and genetic studies have reported a series of CaM mutations in patients with life-threatening arrhythmogenic syndromes, such as long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). We recently showed that four arrhythmogenic CaM mutations (N98I, D132E, D134H, and Q136P) significantly reduce the binding of CaM to RyR2. Herein, we investigate in vivo functional effects of these CaM mutations on the normal zebrafish embryonic heart function by microinjecting complementary RNA corresponding to CaMN98I, CaMD132E, CaMD134H, and CaMQ136P mutants. Expression of CaMD132E and CaMD134H mutants results in significant reduction of the zebrafish heart rate, mimicking a severe form of human bradycardia, whereas expression of CaMQ136P results in an increased heart rate mimicking human ventricular tachycardia. Moreover, analysis of cardiac ventricular rhythm revealed that the CaMD132E and CaMN98I zebrafish groups display an irregular pattern of heart beating and increased amplitude in comparison to the control groups. Furthermore, circular dichroism spectroscopy experiments using recombinant CaM proteins reveals a decreased structural stability of the four mutants compared to the wild-type CaM protein in the presence of Ca2+. Finally, Ca2+-binding studies indicates that all CaM mutations display reduced CaM Ca2+-binding affinities, with CaMD132E exhibiting the most prominent change. Our data suggest that CaM mutations can trigger different arrhythmogenic phenotypes through multiple and complex molecular mechanisms.
Collapse
Affiliation(s)
- Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Brian L Calver
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Alaaeldin Saleh
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Waseem Hasan
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | - Iris Kontogianni
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
- National Technical University of Athens, Athens, Greece
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biological Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - George Nounesis
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - F Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Roy S, Roy S, Halder S, Jana K, Ukil A. Leishmania exploits host cAMP/EPAC/calcineurin signaling to induce an IL-33-mediated anti-inflammatory environment for the establishment of infection. J Biol Chem 2024; 300:107366. [PMID: 38750790 PMCID: PMC11208913 DOI: 10.1016/j.jbc.2024.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 06/10/2024] Open
Abstract
Host anti-inflammatory responses are critical for the progression of visceral leishmaniasis, and the pleiotropic cytokine interleukin (IL)-33 was found to be upregulated in infection. Here, we documented that IL-33 induction is a consequence of elevated cAMP-mediated exchange protein activated by cAMP (EPAC)/calcineurin-dependent signaling and essential for the sustenance of infection. Leishmania donovani-infected macrophages showed upregulation of IL-33 and its neutralization resulted in decreased parasite survival and increased inflammatory responses. Infection-induced cAMP was involved in IL-33 production and of its downstream effectors PKA and EPAC, only the latter was responsible for elevated IL-33 level. EPAC initiated Rap-dependent phospholipase C activation, which triggered the release of intracellular calcium followed by calcium/calmodulin complex formation. Screening of calmodulin-dependent enzymes affirmed involvement of the phosphatase calcineurin in cAMP/EPAC/calcium/calmodulin signaling-induced IL-33 production and parasite survival. Activated calcineurin ensured nuclear localization of the transcription factors, nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha required for IL-33 transcription, and we further confirmed this by chromatin immunoprecipitation assay. Administering specific inhibitors of nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha in BALB/c mouse model of visceral leishmaniasis decreased liver and spleen parasite burden along with reduction in IL-33 level. Splenocyte supernatants of inhibitor-treated infected mice further documented an increase in tumor necrosis factor alpha and IL-12 level with simultaneous decrease of IL-10, thereby indicating an overall disease-escalating effect of IL-33. Thus, this study demonstrates that cAMP/EPAC/calcineurin signaling is crucial for the activation of IL-33 and in effect creates anti-inflammatory responses, essential for infection.
Collapse
Affiliation(s)
- Souravi Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Shalini Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata, India.
| |
Collapse
|
15
|
Baltasar-Marchueta M, Llona L, M-Alicante S, Barbolla I, Ibarluzea MG, Ramis R, Salomon AM, Fundora B, Araujo A, Muguruza-Montero A, Nuñez E, Pérez-Olea S, Villanueva C, Leonardo A, Arrasate S, Sotomayor N, Villarroel A, Bergara A, Lete E, González-Díaz H. Identification of Riluzole derivatives as novel calmodulin inhibitors with neuroprotective activity by a joint synthesis, biosensor, and computational guided strategy. Biomed Pharmacother 2024; 174:116602. [PMID: 38636396 DOI: 10.1016/j.biopha.2024.116602] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
The development of new molecules for the treatment of calmodulin related cardiovascular or neurodegenerative diseases is an interesting goal. In this work, we introduce a novel strategy with four main steps: (1) chemical synthesis of target molecules, (2) Förster Resonance Energy Transfer (FRET) biosensor development and in vitro biological assay of new derivatives, (3) Cheminformatics models development and in vivo activity prediction, and (4) Docking studies. This strategy is illustrated with a case study. Firstly, a series of 4-substituted Riluzole derivatives 1-3 were synthetized through a strategy that involves the construction of the 4-bromoriluzole framework and its further functionalization via palladium catalysis or organolithium chemistry. Next, a FRET biosensor for monitoring Ca2+-dependent CaM-ligands interactions has been developed and used for the in vitro assay of Riluzole derivatives. In particular, the best inhibition (80%) was observed for 4-methoxyphenylriluzole 2b. Besides, we trained and validated a new Networks Invariant, Information Fusion, Perturbation Theory, and Machine Learning (NIFPTML) model for predicting probability profiles of in vivo biological activity parameters in different regions of the brain. Next, we used this model to predict the in vivo activity of the compounds experimentally studied in vitro. Last, docking study conducted on Riluzole and its derivatives has provided valuable insights into their binding conformations with the target protein, involving calmodulin and the SK4 channel. This new combined strategy may be useful to reduce assay costs (animals, materials, time, and human resources) in the drug discovery process of calmodulin inhibitors.
Collapse
Affiliation(s)
- Maider Baltasar-Marchueta
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Leire Llona
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | | | - Iratxe Barbolla
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Markel Garcia Ibarluzea
- Donostia International Physics Center, Donostia, Spain; Departament of Physics, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Rafael Ramis
- Donostia International Physics Center, Donostia, Spain; Departament of Physics, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Ane Miren Salomon
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Brenda Fundora
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Ariane Araujo
- Biofisika Institute, CSIC-UPV/EHU, Leioa 48940, Spain
| | | | - Eider Nuñez
- Biofisika Institute, CSIC-UPV/EHU, Leioa 48940, Spain
| | - Scarlett Pérez-Olea
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Christian Villanueva
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Aritz Leonardo
- Donostia International Physics Center, Donostia, Spain; Departament of Physics, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Sonia Arrasate
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Nuria Sotomayor
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | | | - Aitor Bergara
- Donostia International Physics Center, Donostia, Spain; Departament of Physics, University of the Basque Country, UPV/EHU, Leioa, Spain.
| | - Esther Lete
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain.
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain; Biofisika Institute, CSIC-UPV/EHU, Leioa 48940, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain.
| |
Collapse
|
16
|
Liu W, Deng W, Hu L, Zou H. Advances in TRPV6 inhibitors for tumors by targeted therapies: Macromolecular proteins, synthetic small molecule compounds, and natural compounds. Eur J Med Chem 2024; 270:116379. [PMID: 38588625 DOI: 10.1016/j.ejmech.2024.116379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
TRPV6, a Ca2+-selective member of the transient receptor potential vanilloid (TRPV) family, plays a key role in extracellular calcium transport, calcium ion reuptake, and maintenance of a local low calcium environment. An increasing number of studies have shown that TRPV6 is involved in the regulation of various diseases. Notably, overexpression of TRPV6 is closely related to the occurrence of various cancers. Research confirmed that knocking down TRPV6 could effectively reduce the proliferation and invasiveness of tumors by mainly mediating the calcium signaling pathway. Hence, TRPV6 has become a promising new drug target for numerous tumor treatments. However, the development of TRPV6 inhibitors is still in the early stage, and the existing TRPV6 inhibitors have poor selectivity and off-target effects. In this review, we focus on summarizing and describing the structure characters, and mechanisms of existing TRPV6 inhibitors to provide new ideas and directions for the development of novel TRPV6 inhibitors.
Collapse
Affiliation(s)
- Weikang Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Wenwen Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Hui Zou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China.
| |
Collapse
|
17
|
Zhang Y, Shaabani S, Vowinkel K, Trombetta-Lima M, Sabogal-Guáqueta AM, Chen T, Hoekstra J, Lembeck J, Schmidt M, Decher N, Dömling A, Dolga AM. Novel SK channel positive modulators prevent ferroptosis and excitotoxicity in neuronal cells. Biomed Pharmacother 2024; 171:116163. [PMID: 38242037 DOI: 10.1016/j.biopha.2024.116163] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Small conductance calcium-activated potassium (SK) channel activity has been proposed to play a role in the pathology of several neurological diseases. Besides regulating plasma membrane excitability, SK channel activation provides neuroprotection against ferroptotic cell death by reducing mitochondrial Ca2+ uptake and reactive oxygen species (ROS). In this study, we employed a multifaceted approach, integrating structure-based and computational techniques, to strategically design and synthesize an innovative class of potent small-molecule SK2 channel modifiers through highly efficient multicomponent reactions (MCRs). The compounds' neuroprotective activity was compared with the well-studied SK positive modulator, CyPPA. Pharmacological SK channel activation by selected compounds confers neuroprotection against ferroptosis at low nanomolar ranges compared to CyPPA, that mediates protection at micromolar concentrations, as shown by an MTT assay, real-time cell impedance measurements and propidium iodide staining (PI). These novel compounds suppress increased mitochondrial ROS and Ca2+ level induced by ferroptosis inducer RSL3. Moreover, axonal degeneration was rescued by these novel SK channel activators in primary mouse neurons and they attenuated glutamate-induced neuronal excitability, as shown via microelectrode array. Meanwhile, functional afterhyperpolarization of the novel SK2 channel modulators was validated by electrophysiological measurements showing more current change induced by the novel modulators than the reference compound, CyPPA. These data support the notion that SK2 channel activation can represent a therapeutic target for brain diseases in which ferroptosis and excitotoxicity contribute to the pathology.
Collapse
Affiliation(s)
- Yuequ Zhang
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Shabnam Shaabani
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Kirsty Vowinkel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technologies and Biopharmacy, Research Institute of Pharmacy, University of Groningen, the Netherlands
| | | | - Tingting Chen
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Jan Hoekstra
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Jan Lembeck
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands.
| |
Collapse
|
18
|
Loh SN, Anthony IR, Gavor E, Lim XS, Kini RM, Mok YK, Sivaraman J. Recognition of Aedes aegypti Mosquito Saliva Protein LTRIN by the Human Receptor LTβR for Controlling the Immune Response. BIOLOGY 2024; 13:42. [PMID: 38248473 PMCID: PMC10813304 DOI: 10.3390/biology13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Salivary proteins from mosquitoes have received significant attention lately due to their potential to develop therapeutic treatments or vaccines for mosquito-borne diseases. Here, we report the characterization of LTRIN (lymphotoxin beta receptor inhibitor), a salivary protein known to enhance the pathogenicity of ZIKV by interrupting the LTβR-initiated NF-κB signaling pathway and, therefore, diminish the immune responses. We demonstrated that the truncated C-terminal LTRIN (ΔLTRIN) is a dimeric protein with a stable alpha helix-dominant secondary structure, which possibly aids in withstanding the temperature fluctuations during blood-feeding events. ΔLTRIN possesses two Ca2+ binding EF-hand domains, with the second EF-hand motif playing a more significant role in interacting with LTβR. Additionally, we mapped the primary binding regions of ΔLTRIN on LTβR using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and identified that 91QEKAHIAEHMDVPIDTSKMSEQELQFHY118 from the N-terminal of ΔLTRIN is the major interacting region. Together, our studies provide insight into the recognition of LTRIN by LTβR. This finding may aid in a future therapeutic and transmission-blocking vaccine development against ZIKV.
Collapse
Affiliation(s)
- Su Ning Loh
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - Ian Russell Anthony
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - Edem Gavor
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - Xin Shan Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - R. Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Yu Keung Mok
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - J. Sivaraman
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| |
Collapse
|
19
|
Mackiewicz J, Lisek M, Boczek T. Targeting CaN/NFAT in Alzheimer's brain degeneration. Front Immunol 2023; 14:1281882. [PMID: 38077352 PMCID: PMC10701682 DOI: 10.3389/fimmu.2023.1281882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca2+-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Collapse
Affiliation(s)
| | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
20
|
Thanassoulas A, Theodoridou M, Barrak L, Riguene E, Alyaarabi T, Elrayess MA, Lai FA, Nomikos M. Arrhythmia-Associated Calmodulin E105A Mutation Alters the Binding Affinity of CaM to a Ryanodine Receptor 2 CaM-Binding Pocket. Int J Mol Sci 2023; 24:15630. [PMID: 37958614 PMCID: PMC10649572 DOI: 10.3390/ijms242115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Calmodulin (CaM) is a small, multifunctional calcium (Ca2+)-binding sensor that binds and regulates the open probability of cardiac ryanodine receptor 2 (RyR2) at both low and high cytosolic Ca2+ concentrations. Recent isothermal titration calorimetry (ITC) studies of a number of peptides that correspond to different regions of human RyR2 showed that two regions of human RyR2 (3584-3602aa and 4255-4271aa) bind with high affinity to CaM, suggesting that these two regions might contribute to a putative RyR2 intra-subunit CaM-binding pocket. Moreover, a previously characterized de novo long QT syndrome (LQTS)-associated missense CaM mutation (E105A) which was identified in a 6-year-old boy, who experienced an aborted first episode of cardiac arrest revealed that this mutation dysregulates normal cardiac function in zebrafish by a complex mechanism that involves alterations in both CaM-Ca2+ and CaM-RyR2 interactions. Herein, to gain further insight into how the CaM E105A mutation leads to severe cardiac arrhythmia, we generated large quantities of recombinant CaMWT and CaME105A proteins. We then performed ITC experiments to investigate and compare the interactions of CaMWT and CaME105A mutant protein with two synthetic peptides that correspond to the two aforementioned human RyR2 regions, which we have proposed to contribute to the RyR2 CaM-binding pocket. Our data reveal that the E105A mutation has a significant negative effect on the interaction of CaM with both RyR2 regions in the presence and absence of Ca2+, highlighting the potential contribution of these two human RyR2 regions to an RyR2 CaM-binding pocket, which may be essential for physiological CaM/RyR2 association and thus channel regulation.
Collapse
Affiliation(s)
- Angelos Thanassoulas
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Maria Theodoridou
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Laila Barrak
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Emna Riguene
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Tamader Alyaarabi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Mohamed A. Elrayess
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - F. Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| |
Collapse
|
21
|
Denesyuk AI, Permyakov SE, Permyakov EA, Johnson MS, Denessiouk K, Uversky VN. Canonical structural-binding modes in the calmodulin-target protein complexes. J Biomol Struct Dyn 2023; 41:7582-7594. [PMID: 36106955 DOI: 10.1080/07391102.2022.2123391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Intracellular calcium sensor protein calmodulin (CaM) belongs to the large EF-hand protein superfamily. CaM shows a unique and not fully understood ability to bind to multiple targets, allows them to participate in a variety of regulatory processes. The protein has two approximately symmetrical globular domains (the N- and C-lobes). Analysis of the CaM-binding sites of target proteins showed that they have two hydrophobic 'anchor' amino acids separated by 10 to 17 residues. Consequently, several CaM-binding motifs: {1-10}, {1-11}, {1-13}, {1-14}, {1-16}, {1-17}, differing by the distance between the two anchor residues along the amino acid sequence, have been identified. Despite extensive structural information on the role of target-protein amino acid residues in the formation of complexes with CaM, much less is known about the role of amino acids from CaM contributing to these interactions. In this work, a quantitative analysis of the contact surfaces of CaM and target proteins has been carried out for 35 representative three-dimensional structures. It has been shown that, in addition to the two hydrophobic terminal residues of the target fragment, the interaction also involves residues that are 4 residues earlier in the sequence (binding mode {1-5}). It has also been found that the N- and C-lobes of CaM bind the {1-5} motif located at the ends of the target in a structurally identical manner. Methionine residues at positions 51 (corresponding to 124 in the C-lobe), 71 (144), and 72 (145) of the CaM amino acid sequence are key hydrophobic residues for this interaction. They are located at the N- and C-boundaries of the even EF-hand motifs. The hydrophobic core of CaM ('Ф-quatrefoil') consists of 10 amino acids in the N-lobe (and in the C-lobe): Phe16 (Phe89), Phe19 (Phe92), Ile27 (Ile100), Thr29 (Ala102), Leu32 (Leu105), Ile52 (Ile125), Val55 (Ala128), Ile63 (Val136), Phe65 (Tyr138), and Phe68 (Phe141) and do not intersect with the target-binding methionine residues. CaM belongs to the 'dynamic' group of EF-hand proteins, in which calcium and protein ligand binding causes only global conformational changes but does not alter the conservative 'black' and 'grey' clusters described in our earlier works (PLoS One. 2014; 9(10):e109287). The membership of CaM in the 'dynamic' group is determined by the triggering and protective methionine layer: Met51 (Met124), Met71 (Met144) and Met72 (Met145). HIGHLIGHTSInterchain interactions in the unique 35 CaM complex structures were analyzed.Methionine amino acids of the N- and C-lobes of CaM form triggering and protective layers.Interactions of the target terminal residues with these methionine layers are structurally identical.CaM belonging to the 'dynamic' group is determined by the triggering and protective methionine layer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alexander I Denesyuk
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Sergei E Permyakov
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
| | - Eugene A Permyakov
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
22
|
McCormick L, Wadmore K, Milburn A, Gupta N, Morris R, Held M, Prakash O, Carr J, Barrett‐Jolley R, Dart C, Helassa N. Long QT syndrome-associated calmodulin variants disrupt the activity of the slowly activating delayed rectifier potassium channel. J Physiol 2023; 601:3739-3764. [PMID: 37428651 PMCID: PMC10952621 DOI: 10.1113/jp284994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023] Open
Abstract
Calmodulin (CaM) is a highly conserved mediator of calcium (Ca2+ )-dependent signalling and modulates various cardiac ion channels. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS). LQTS patients display prolonged ventricular recovery times (QT interval), increasing their risk of incurring life-threatening arrhythmic events. Loss-of-function mutations to Kv7.1 (which drives the slow delayed rectifier potassium current, IKs, a key ventricular repolarising current) are the largest contributor to congenital LQTS (>50% of cases). CaM modulates Kv7.1 to produce a Ca2+ -sensitive IKs, but little is known about the consequences of LQTS-associated CaM mutations on Kv7.1 function. Here, we present novel data characterising the biophysical and modulatory properties of three LQTS-associated CaM variants (D95V, N97I and D131H). We showed that mutations induced structural alterations in CaM and reduced affinity for Kv7.1, when compared with wild-type (WT). Using HEK293T cells expressing Kv7.1 channel subunits (KCNQ1/KCNE1) and patch-clamp electrophysiology, we demonstrated that LQTS-associated CaM variants reduced current density at systolic Ca2+ concentrations (1 μm), revealing a direct QT-prolonging modulatory effect. Our data highlight for the first time that LQTS-associated perturbations to CaM's structure impede complex formation with Kv7.1 and subsequently result in reduced IKs. This provides a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype. KEY POINTS: Calmodulin (CaM) is a ubiquitous, highly conserved calcium (Ca2+ ) sensor playing a key role in cardiac muscle contraction. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS), a life-threatening cardiac arrhythmia syndrome. LQTS-associated CaM variants (D95V, N97I and D131H) induced structural alterations, altered binding to Kv7.1 and reduced IKs. Our data provide a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype.
Collapse
Affiliation(s)
- Liam McCormick
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory HubSaint Mary's HospitalManchesterUK
| | - Kirsty Wadmore
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Amy Milburn
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nitika Gupta
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Rachael Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Marie Held
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ohm Prakash
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Joseph Carr
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Richard Barrett‐Jolley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
23
|
Dewey JA, Delalande C, Azizi SA, Lu V, Antonopoulos D, Babnigg G. Molecular Glue Discovery: Current and Future Approaches. J Med Chem 2023; 66:9278-9296. [PMID: 37437222 PMCID: PMC10805529 DOI: 10.1021/acs.jmedchem.3c00449] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The intracellular interactions of biomolecules can be maneuvered to redirect signaling, reprogram the cell cycle, or decrease infectivity using only a few dozen atoms. Such "molecular glues," which can drive both novel and known interactions between protein partners, represent an enticing therapeutic strategy. Here, we review the methods and approaches that have led to the identification of small-molecule molecular glues. We first classify current FDA-approved molecular glues to facilitate the selection of discovery methods. We then survey two broad discovery method strategies, where we highlight the importance of factors such as experimental conditions, software packages, and genetic tools for success. We hope that this curation of methodologies for directed discovery will inspire diverse research efforts targeting a multitude of human diseases.
Collapse
Affiliation(s)
- Jeffrey A Dewey
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Clémence Delalande
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Saara-Anne Azizi
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Vivian Lu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Dionysios Antonopoulos
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gyorgy Babnigg
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
24
|
Li T, Ci Liu T, Liu N, Zhang M. Changes in urinary exosomal protein CALM1 may serve as an early noninvasive biomarker for diagnosing diabetic kidney disease. Clin Chim Acta 2023; 547:117466. [PMID: 37406751 DOI: 10.1016/j.cca.2023.117466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The risk of the development and progression of diabetic kidney disease (DKD) was increased by abnormal calcium release. However, it is still unknown whether calcium signal pathway-related proteins are changed in urinary exosomes. This study aims to explore the changes in urinary exosomal proteins, which may provide novel biomarkers for diagnosing DKD. METHODS Urinary exosomes were isolated from 132 participants by size exclusion chromatography method and 72 participants were tested by LC-MS/MS (Discovery phase). Correlation and multivariate logistics analysis were applied to evaluate selected urinary proteins. Western blot and ELISA were used to validate the selected protein (Validation phase: n = 60). The diagnostic performance of the selected biomarker was evaluated by receiver operating characteristic curve analyses between the discovery and validation phases. RESULTS Sixteen calcium signal pathway-related proteins were identified, however, only Calmodulin-1(CALM1) was continuously increased. Different expression of CALM1 was found in patients with different level of estimated glomerular filtration rate (eGFR) in two cohorts. The level of CALM1 was correlated with eGFR and serum creatinine levels in two cohorts. Multivariate analysis revealed that serum albumin (ALB) levels and CALM1 were independent risk factors for DKD. A diagnostic model based on CALM1 and serum ALB levels that could significantly distinguish DKD was established and validated. CONCLUSIONS Significant changes in calcium signal pathway-related urinary exosomal proteins were observed. The CALM1 may serve as an early noninvasive biomarker for diagnosing DKD.
Collapse
Affiliation(s)
- Tao Li
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing 100038, China
| | - Tian Ci Liu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing 100038, China
| | - Na Liu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing 100038, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing 100038, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
25
|
Orfali R, AlFaiz A, Rahman MA, Lau L, Nam YW, Zhang M. K Ca2 and K Ca3.1 Channels in the Airways: A New Therapeutic Target. Biomedicines 2023; 11:1780. [PMID: 37509419 PMCID: PMC10376499 DOI: 10.3390/biomedicines11071780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
K+ channels are involved in many critical functions in lung physiology. Recently, the family of Ca2+-activated K+ channels (KCa) has received more attention, and a massive amount of effort has been devoted to developing selective medications targeting these channels. Within the family of KCa channels, three small-conductance Ca2+-activated K+ (KCa2) channel subtypes, together with the intermediate-conductance KCa3.1 channel, are voltage-independent K+ channels, and they mediate Ca2+-induced membrane hyperpolarization. Many KCa2 channel members are involved in crucial roles in physiological and pathological systems throughout the body. In this article, different subtypes of KCa2 and KCa3.1 channels and their functions in respiratory diseases are discussed. Additionally, the pharmacology of the KCa2 and KCa3.1 channels and the link between these channels and respiratory ciliary regulations will be explained in more detail. In the future, specific modulators for small or intermediate Ca2+-activated K+ channels may offer a unique therapeutic opportunity to treat muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
- Biomedical Research Administration, Research Centre, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia
| | - Ali AlFaiz
- Biomedical Research Administration, Research Centre, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia
| | - Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Liz Lau
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
26
|
Daronnat L, Holfeltz V, Boubals N, Dumas T, Guilbaud P, Martinez DM, Moisy P, Sauge-Merle S, Lemaire D, Solari PL, Berthon L, Berthomieu C. Investigation of the Plutonium(IV) Interactions with Two Variants of the EF-Hand Ca-Binding Site I of Calmodulin. Inorg Chem 2023; 62:8334-8346. [PMID: 37184364 DOI: 10.1021/acs.inorgchem.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Due to its presence in the nuclear industry and its strong radiotoxicity, plutonium is an actinide of major interest in the event of internal contamination. To improve the understanding of its mechanisms of transport and accumulation in the body, the complexation of Pu(IV) to the most common protein calcium-binding motif found in cells, the EF-hand motif of calmodulin, was investigated. Visible and X-ray absorption spectroscopies (XAS) in solution made it possible to investigate the speciation of plutonium at physiological pH (pH 7.4) and pH 6 in two variants of the calmodulin Ca-binding site I and using Pu(IV) in different media: carbonate, chloride, or nitrate solutions. Three different species of Pu were identified in the samples, with formation of 1:1 Pu(IV):calmodulin peptide complexes, Pu(IV) reduction, and formation of peptide-mediated Pu(IV) hexanuclear cluster.
Collapse
Affiliation(s)
- Loïc Daronnat
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Vanessa Holfeltz
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Nathalie Boubals
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Thomas Dumas
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Philippe Guilbaud
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | | | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Sandrine Sauge-Merle
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, Saint Paul-Lez-Durance 13108, France
| | - David Lemaire
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, Saint Paul-Lez-Durance 13108, France
| | - Pier Lorenzo Solari
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint Aubin 91190, France
| | - Laurence Berthon
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Catherine Berthomieu
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, Saint Paul-Lez-Durance 13108, France
| |
Collapse
|
27
|
Xie Y, Zhang Y, Wang Y, Feng Y. Mechanism and Modulation of SidE Family Proteins in the Pathogenesis of Legionella pneumophila. Pathogens 2023; 12:pathogens12040629. [PMID: 37111515 PMCID: PMC10143409 DOI: 10.3390/pathogens12040629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Legionella pneumophila is the causative agent of Legionnaires' disease, causing fever and lung infection, with a death rate up to 15% in severe cases. In the process of infection, Legionella pneumophila secretes over 330 effectors into host cell via the Dot/Icm type IV secretion system to modulate multiple host cellular physiological processes, thereby changing the environment of the host cell and promoting the growth and propagation of the bacterium. Among these effector proteins, SidE family proteins from Legionella pneumophila catalyze a non-canonical ubiquitination reaction, which combines mono-ADP-ribosylation and phosphodiesterase activities together to attach ubiquitin onto substrates. Meanwhile, the activity of SidE family proteins is also under multiple modulations by other effectors. Herein we summarize the key insights into recent studies in this area, emphasizing the tight link between the modular structure of SidE family proteins and the pathogen virulence as well as the fundamental mechanism and modulation network for further extensive research.
Collapse
Affiliation(s)
- Yongchao Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271002, China
| | - Yi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271002, China
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
28
|
Guo R, Cui M, Li X, Wu M, Xu F, Zhang Y, Wang C, Feng P, Wang J, Huo S, Luo Z, Xing R, Gu J, Shi X, Liu Y, Wang L. Design, synthesis and biological evaluation of pyrrolopyrimidine derivatives as novel and selective positive modulator of the small conductance Ca 2+-activated K + channels. Eur J Med Chem 2023; 254:115353. [PMID: 37068385 DOI: 10.1016/j.ejmech.2023.115353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023]
Abstract
The type 2 small conductance Ca2+-activated K+ channels (SK2) have been considered as one of the most promising therapeutic targets for spinocerebellar ataxias type 2 (SCA2) by playing a critical role in the control of normal purkinje cells (PCs) pacemaking. Herein, a novel series of pyrrolopyrimidine derivatives were designed and synthesized from the lead compound NS13001 as subtype-selective modulators of SK channels. Among them, the halogen-substituted compound 12b (EC50 = 0.34 ± 0.044 μM) was identified with a ∼5.4-fold higher potency on potentiating SK2-a channels at submicromolar concentrations as compared to NS13001 (EC50 = 1.83 ± 0.50 μM). Furthermore, compound 12b exhibited selectivity on SK2-a/SK3 subtype by displaying 93.33 ± 3.26% efficacies on SK2-a channels, and 84.54% ± 7.49% on SK3 channels. In addition, compound 12b demonstrated the potential to cross the blood-brain barrier (BBB) with suitable pharmacokinetic properties and low cytotoxicity. Molecular docking study also unveiled the binding interactions of compound 12b with SK2-CaM protein complex. Overall, the novel pyrrolopyrimidines provide an insightful guidance for future structural optimization of SK channel agonists.
Collapse
Affiliation(s)
- Ran Guo
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Miao Cui
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiaojing Li
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mengqi Wu
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Fei Xu
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yining Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Chun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Penglei Feng
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jianchao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Sijia Huo
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zijun Luo
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ruijuan Xing
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jianmin Gu
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiaowei Shi
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China.
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, Shijiazhuang, 050017, PR China.
| |
Collapse
|
29
|
Halling DB, Philpo AE, Aldrich RW. Calcium dependence of both lobes of calmodulin is involved in binding to a cytoplasmic domain of SK channels. eLife 2022; 11:e81303. [PMID: 36583726 PMCID: PMC9803350 DOI: 10.7554/elife.81303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
KCa2.1-3 Ca2+-activated K+-channels (SK) require calmodulin to gate in response to cellular Ca2+. A model for SK gating proposes that the N-terminal domain (N-lobe) of calmodulin is required for activation, but an immobile C-terminal domain (C-lobe) has constitutive, Ca2+-independent binding. Although structures support a domain-driven hypothesis of SK gate activation by calmodulin, only a partial understanding is possible without measuring both channel activity and protein binding. We measured SK2 (KCa2.2) activity using inside-out patch recordings. Currents from calmodulin-disrupted SK2 channels can be restored with exogenously applied calmodulin. We find that SK2 activity only approaches full activation with full-length calmodulin with both an N- and a C-lobe. We measured calmodulin binding to a C-terminal SK peptide (SKp) using both composition-gradient multi-angle light-scattering and tryptophan emission spectra. Isolated lobes bind to SKp with high affinity, but isolated lobes do not rescue SK2 activity. Consistent with earlier models, N-lobe binding to SKp is stronger in Ca2+, and C-lobe-binding affinity is strong independent of Ca2+. However, a native tryptophan in SKp is sensitive to Ca2+ binding to both the N- and C-lobes of calmodulin at Ca2+ concentrations that activate SK2, demonstrating that the C-lobe interaction with SKp changes with Ca2+. Our peptide-binding data and electrophysiology show that SK gating models need deeper scrutiny. We suggest that the Ca2+-dependent associations of both lobes of calmodulin to SKp are crucial events during gating. Additional investigations are necessary to complete a mechanistic gating model consistent with binding, physiology, and structure.
Collapse
Affiliation(s)
- David B Halling
- Department of Neuroscience, The University of Texas at AustinAustinUnited States
| | - Ashley E Philpo
- Department of Neuroscience, The University of Texas at AustinAustinUnited States
| | - Richard W Aldrich
- Department of Neuroscience, The University of Texas at AustinAustinUnited States
| |
Collapse
|
30
|
Ramis R, Ballesteros ÓR, Muguruza-Montero A, M-Alicante S, Núñez E, Villarroel Á, Leonardo A, Bergara A. Molecular dynamics simulations of the calmodulin-induced α-helix in the SK2 calcium-gated potassium ion channel. J Biol Chem 2022; 299:102850. [PMID: 36587765 PMCID: PMC9874072 DOI: 10.1016/j.jbc.2022.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
The family of small-conductance Ca2+-activated potassium ion channels (SK channels) is composed of four members (SK1, SK2, SK3, and SK4) involved in neuron-firing regulation. The gating of these channels depends on the intracellular Ca2+ concentration, and their sensitivity to this ion is provided by calmodulin (CaM). This protein binds to a specific region in SK channels known as the calmodulin-binding domain (CaMBD), an event which is essential for their gating. While CaMBDs are typically disordered in the absence of CaM, the SK2 channel subtype displays a small prefolded α-helical region in its CaMBD even if CaM is not present. This small helix is known to turn into a full α-helix upon CaM binding, although the molecular-level details for this conversion are not fully understood yet. In this work, we offer new insights on this physiologically relevant process by means of enhanced sampling, atomistic Hamiltonian replica exchange molecular dynamics simulations, providing a more detailed understanding of CaM binding to this target. Our results show that CaM is necessary for inducing a full α-helix along the SK2 CaMBD through hydrophobic interactions with V426 and L427. However, it is also necessary that W431 does not compete for these interactions; the role of the small prefolded α-helix in the SK2 CaMBD would be to stabilize W431 so that this is the case. In conclusion, our findings provide further insight into a key interaction between CaM and SK channels that is important for channel sensitivity to Ca2+.
Collapse
Affiliation(s)
- Rafael Ramis
- Donostia International Physics Center, Donostia, Spain; Departamento de Física, Universidad del País Vasco, UPV/EHU, Leioa, Spain.
| | - Óscar R. Ballesteros
- Departamento de Física, Universidad del País Vasco, UPV/EHU, Leioa, Spain,Centro de Física de Materiales CFM, CSIC-UPV/EHU, Donostia, Spain
| | | | - Sara M-Alicante
- Departamento de Física, Universidad del País Vasco, UPV/EHU, Leioa, Spain,Instituto Biofisika, CSIC-UPV/EHU, Leioa, Spain
| | - Eider Núñez
- Departamento de Física, Universidad del País Vasco, UPV/EHU, Leioa, Spain,Instituto Biofisika, CSIC-UPV/EHU, Leioa, Spain
| | | | - Aritz Leonardo
- Donostia International Physics Center, Donostia, Spain,Departamento de Física, Universidad del País Vasco, UPV/EHU, Leioa, Spain
| | - Aitor Bergara
- Donostia International Physics Center, Donostia, Spain,Departamento de Física, Universidad del País Vasco, UPV/EHU, Leioa, Spain,Centro de Física de Materiales CFM, CSIC-UPV/EHU, Donostia, Spain
| |
Collapse
|
31
|
Harris AF, Lacombe J, Sanchez-Ballester NM, Victor S, Curran KAJ, Nordquist AR, Thomas B, Gu J, Veuthey JL, Soulairol I, Zenhausern F. Decellularized Spinach Biomaterials Support Physiologically Relevant Mechanical Cyclic Strain and Prompt a Stretch-Induced Cellular Response. ACS APPLIED BIO MATERIALS 2022; 5:5682-5692. [PMID: 36368008 DOI: 10.1021/acsabm.2c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recently, decellularized plant biomaterials have been explored for their use as tissue engineered substitutes. Herein, we expanded upon the investigation of the mechanical properties of these materials to explore their elasticity as many anatomical areas of the body require biomechanical dynamism. We first constructed a device to secure the scaffold and induce a strain within the physiological range of the normal human adult lung during breathing (12-20 movements/min; 10-20% elongation). Results showed that decellularized spinach leaves can support cyclic strain for 24 h and displayed heterogeneous local strain values (7.76-15.88%) as well as a Poisson's ratio (0.12) similar to that of mammalian lungs (10.67-19.67%; 0.01), as opposed to an incompressible homogeneous standard polymer (such as PDMS (10.85-12.71%; 0.4)). Imaging and mechanical testing showed that the vegetal scaffold exhibited strain hardening but maintained its structural architecture and water retention capacity, suggesting an unaltered porosity. Interestingly, we also showed that cells seeded on the scaffold can also sense the mechanical strain as demonstrated by a nuclear reorientation perpendicular to strain direction (63.3° compared to 41.2° for nonstretched cells), a nuclear location of YAP and increased expression of YAP target genes, a high cytoplasmic calcium level, and an elevated expression level of collagen genes (COL1A1, COL3A1, COL4A1, and COL6A) with an increased collagen secretion at the protein level. Taken together, these data demonstrated that decellularized plant leaf tissues have an inherent elastic property similar to that found in the mammalian system to which cells can sense and respond.
Collapse
Affiliation(s)
- Ashlee F Harris
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, Arizona85004, United States
| | - Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, Arizona85004, United States.,Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St., Phoenix, Arizona85004, United States
| | - Noelia M Sanchez-Ballester
- ICGM, CNRS, ENSCM, University Montpellier, 34000Montpellier, France.,Department of Pharmacy, Nîmes University Hospital, 30900Nîmes, France
| | - Shaun Victor
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, Arizona85004, United States
| | - Killian A J Curran
- School of Pharmaceutical Sciences, University of Geneva, Quai Ernest-Ansermet, 1211 Genève 4, Geneva, Switzerland
| | - Alan R Nordquist
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, Arizona85004, United States
| | - Baiju Thomas
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, Arizona85004, United States
| | - Jian Gu
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, Arizona85004, United States.,Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St., Phoenix, Arizona85004, United States
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, Quai Ernest-Ansermet, 1211 Genève 4, Geneva, Switzerland
| | - Ian Soulairol
- ICGM, CNRS, ENSCM, University Montpellier, 34000Montpellier, France.,Department of Pharmacy, Nîmes University Hospital, 30900Nîmes, France
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, Arizona85004, United States.,Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St., Phoenix, Arizona85004, United States.,School of Pharmaceutical Sciences, University of Geneva, Quai Ernest-Ansermet, 1211 Genève 4, Geneva, Switzerland.,Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, Arizona85721, United States
| |
Collapse
|
32
|
Ma M, Liu S, Wang Z, Shao R, Ye J, Yan W, Lv H, Hasi A, Che G. Genome-Wide Identification of the SUN Gene Family in Melon ( Cucumis melo) and Functional Characterization of Two CmSUN Genes in Regulating Fruit Shape Variation. Int J Mol Sci 2022; 23:16047. [PMID: 36555689 PMCID: PMC9785357 DOI: 10.3390/ijms232416047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Melon (Cucumis melo) is an important economic crop cultivated worldwide. A unique SUN gene family plays a crucial role in regulating plant growth and fruit development, but many SUN family genes and their function have not been well-characterized in melon. In the present study, we performed genome-wide identification and bioinformatics analysis and identified 24 CmSUN family genes that contain integrated and conserved IQ67 domain in the melon genome. Transcriptome data analysis and qRT-PCR results showed that most CmSUNs are specifically enriched in melon reproductive organs, such as young flowers and ovaries. Through genetic transformation in melons, we found that overexpression of CmSUN23-24 and CmSUN25-26-27c led to an increased fruit shape index, suggesting that they act as essential regulators in melon fruit shape variation. Subcellular localization revealed that the CmSUN23-24 protein is located in the cytoplasmic membrane. A direct interaction between CmSUN23-24 and a Calmodulin protein CmCaM5 was found by yeast two-hybrid assay, which indicated their participation in the calcium signal transduction pathway in regulating plant growth. These findings revealed the molecular characteristics, expression profile, and functional pattern of the CmSUN genes, and may provide the theoretical basis for the genetic improvement of melon fruit breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Agula Hasi
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Gen Che
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
33
|
Labat-de-Hoz L, Comas L, Rubio-Ramos A, Casares-Arias J, Fernández-Martín L, Pantoja-Uceda D, Martín MT, Kremer L, Jiménez MA, Correas I, Alonso MA. Structure and function of the N-terminal extension of the formin INF2. Cell Mol Life Sci 2022; 79:571. [PMID: 36306014 PMCID: PMC9616786 DOI: 10.1007/s00018-022-04581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
In INF2—a formin linked to inherited renal and neurological disease in humans—the DID is preceded by a short N-terminal extension of unknown structure and function. INF2 activation is achieved by Ca2+-dependent association of calmodulin (CaM). Here, we show that the N-terminal extension of INF2 is organized into two α-helices, the first of which is necessary to maintain the perinuclear F-actin ring and normal cytosolic F-actin content. Biochemical assays indicated that this helix interacts directly with CaM and contains the sole CaM-binding site (CaMBS) detected in INF2. The residues W11, L14 and L18 of INF2, arranged as a 1-4-8 motif, were identified as the most important residues for the binding, W11 being the most critical of the three. This motif is conserved in vertebrate INF2 and in the human population. NMR and biochemical analyses revealed that CaM interacts directly through its C-terminal lobe with the INF2 CaMBS. Unlike control cells, INF2 KO cells lacked the perinuclear F-actin ring, had little cytosolic F-actin content, did not respond to increased Ca2+ concentrations by making more F-actin, and maintained the transcriptional cofactor MRTF predominantly in the cytoplasm. Whereas expression of intact INF2 restored all these defects, INF2 with inactivated CaMBS did not. Our study reveals the structure of the N-terminal extension, its interaction with Ca2+/CaM, and its function in INF2 activation.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Comas
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Armando Rubio-Ramos
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Javier Casares-Arias
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Fernández-Martín
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David Pantoja-Uceda
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - M Teresa Martín
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - Leonor Kremer
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - M Angeles Jiménez
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Department of Molecular Biology, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
34
|
Sun B, Kekenes-Huskey PM. Calmodulin's Interdomain Linker Is Optimized for Dynamics Signal Transmission and Calcium Binding. J Chem Inf Model 2022; 62:4210-4221. [PMID: 35994621 DOI: 10.1021/acs.jcim.2c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linkers are ubiquitous in multidomain proteins. These linkers are integral to protein functions, and accumulating evidence suggests that the linkers' versatile roles are encoded in their sequences. However, a molecular picture of how amino acid differences in the linker influence protein function is still lacking. By using extensive Gaussian-accelerated MD coupled with dynamic network analysis, we reveal the molecular bases underlying the linker's role in Calmodulin (CaM), a highly conserved Ca2+-signaling hub in eukaryotes. Three CaM constructs comprising a wild-type linker, a flexible linker (four glycines at position D78-S81), and a rigid linker (four prolines at position D78-S81) were simulated. We show that the flexible linker resembles the wild type in allowing CaM to sample a large ensemble of conformations while the rigid linker confines the sampling. Our simulations recapture experimental observations that target binding enhances the Ca2+ affinity to CaM's EF-hand sites at the N-domain. However, only the wild-type linker can both correctly capture the Ca2+ binding order and maintain the α-helical structure of the domain. The other two constructs either bind Ca2+ in an incorrect order or exhibit unfolding of an N-domain helix. We demonstrate that the wild-type linker achieves these outcomes by transmitting interdomain dynamics efficiently. This was evidenced by stronger (anti)correlations among the linker residues, decoupling of the hydrogen bonds between A1-A15 and V35-E45, and structuring of the N-domain for Ca2+ binding. This decoupling was not evident for the other two constructs. Lastly, we show that the wild-type linker's optimal transmission stems from its thermodynamically favorable strain and solvation relative to the other two constructs. Our results show how the linker sequence tunes CaM function, suggesting possible mechanisms for changes in linker properties such as mutations or post-translational modifications to modulate protein/substrate binding.
Collapse
Affiliation(s)
- Bin Sun
- Department of Pharmacology, Harbin Medical University, Harbin 150081, China
| | - Peter M Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois 60153, United States
| |
Collapse
|
35
|
Fang Y, Li Q, Li X, Luo GH, Kuang SJ, Luo XS, Li QQ, Yang H, Liu Y, Deng CY, Xue YM, Wu SL, Rao F. Piezo1 Participated in Decreased L-Type Calcium Current Induced by High Hydrostatic Pressure via. CaM/Src/Pitx2 Activation in Atrial Myocytes. Front Cardiovasc Med 2022; 9:842885. [PMID: 35252406 PMCID: PMC8891577 DOI: 10.3389/fcvm.2022.842885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023] Open
Abstract
Hypertension is a major cardiovascular risk factor for atrial fibrillation (AF) worldwide. However, the role of mechanical stress caused by hypertension on downregulating the L-type calcium current (ICa,L), which is vital for AF occurrence, remains unclear. Therefore, the aim of the present study was to investigate the role of Piezo1, a mechanically activated ion channel, in the decrease of ICa,L in response to high hydrostatic pressure (HHP, one of the principal mechanical stresses) at 40 mmHg, and to elucidate the underlying pathways. Experiments were conducted using left atrial appendages from patients with AF, spontaneously hypertensive rats (SHRs) treated with valsartan (Val) at 30 mg/kg/day and atrium-derived HL-1 cells exposed to HHP. The protein expression levels of Piezo1, Calmodulin (CaM), and Src increased, while that of the L-type calcium channel a1c subunit protein (Cav1.2) decreased in the left atrial tissue of AF patients and SHRs. SHRs were more vulnerable to AF, with decreased ICa,L and shortened action potential duration, which were ameliorated by Val treatment. Validation of these results in HL-1 cells in the context of HHP also demonstrated that Piezo1 is required for the decrease of ICa,L by regulating Ca2+ transient and activating CaM/Src pathway to increase the expression of paired like homeodomain-2 (Pitx2) in atrial myocytes. Together, these data demonstrate that HHP stimulation increases AF susceptibility through Piezo1 activation, which is required for the decrease of ICa,Lvia. the CaM/Src/Pitx2 pathway in atrial myocytes.
Collapse
Affiliation(s)
- Yuan Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qian Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guan-Hao Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Su-Juan Kuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-Shan Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiao-Qiao Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yang Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun-Yu Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Mei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yu-Mei Xue
| | - Shu-Lin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shu-Lin Wu
| | - Fang Rao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Fang Rao
| |
Collapse
|
36
|
Konietzny A, Grendel J, Kadek A, Bucher M, Han Y, Hertrich N, Dekkers DHW, Demmers JAA, Grünewald K, Uetrecht C, Mikhaylova M. Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines. EMBO J 2022; 41:e106523. [PMID: 34935159 PMCID: PMC8844991 DOI: 10.15252/embj.2020106523] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
Abstract
Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca2+ ) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin-based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca2+ sensor caldendrin, a brain-specific homolog of the well-known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V-dependent pathway. We propose that caldendrin transforms myosin into a stationary F-actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines.
Collapse
Affiliation(s)
- Anja Konietzny
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jasper Grendel
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Alan Kadek
- Leibniz Institute for Experimental Virology (HPI)HamburgGermany
- European XFEL GmbHSchenefeldGermany
| | - Michael Bucher
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Yuhao Han
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
| | - Nathalie Hertrich
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | | | - Kay Grünewald
- Leibniz Institute for Experimental Virology (HPI)HamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Department of ChemistryUniversity of HamburgHamburgGermany
| | - Charlotte Uetrecht
- Leibniz Institute for Experimental Virology (HPI)HamburgGermany
- European XFEL GmbHSchenefeldGermany
- Centre for Structural Systems BiologyHamburgGermany
| | - Marina Mikhaylova
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
37
|
Nam YW, Cui M, Salem El-Sayed N, Orfali R, Nguyen M, Yang G, Rahman MA, Lee J, Zhang M. Subtype-selective positive modulation of K Ca 2 channels depends on the HA/HB helices. Br J Pharmacol 2022; 179:460-472. [PMID: 34458981 PMCID: PMC8799485 DOI: 10.1111/bph.15676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE In the activated state of small-conductance Ca2+ -activated potassium (KCa 2) channels, calmodulin interacts with the HA/HB helices and the S4-S5 linker. CyPPA potentiates KCa 2.2a and KCa 2.3 channel activity but not the KCa 2.1 and KCa 3.1 subtypes. EXPERIMENTAL APPROACH Site-directed mutagenesis, patch-clamp recordings and in silico modelling were utilised to explore the structural determinants for the subtype-selective modulation of KCa 2 channels by CyPPA. KEY RESULTS Mutating residues in the HA (V420) and HB (K467) helices of KCa 2.2a channels to their equivalent residues in KCa 3.1 channels diminished the potency of CyPPA. CyPPA elicited prominent responses on mutant KCa 3.1 channels with an arginine residue in the HB helix substituted for its equivalent lysine residue in the KCa 2.2a channels (R355K). KCa 2.1 channels harbouring a three-amino-acid insertion upstream of the cognate R438 residues in the HB helix showed no response to CyPPA, whereas the deletion mutant (KCa 2.1_ΔA434/Q435/K436) became sensitive to CyPPA. In molecular dynamics simulations, CyPPA docked between calmodulin C-lobe and the HA/HB helices widens the cytoplasmic gate of KCa 2.2a channels. CONCLUSION AND IMPLICATIONS Selectivity of CyPPA among KCa 2 and KCa 3.1 channel subtypes relies on the HA/HB helices.
Collapse
Affiliation(s)
- Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, Massachusetts, 02115, USA
| | - Naglaa Salem El-Sayed
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Misa Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Grace Yang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Judy Lee
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| |
Collapse
|
38
|
Yao M, Fu L, Liu X, Zheng D. In-Silico Multi-Omics Analysis of the Functional Significance of Calmodulin 1 in Multiple Cancers. Front Genet 2022; 12:793508. [PMID: 35096010 PMCID: PMC8790318 DOI: 10.3389/fgene.2021.793508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/23/2021] [Indexed: 01/14/2023] Open
Abstract
Aberrant activation of calmodulin 1 (CALM1) has been reported in human cancers. However, comprehensive understanding of the role of CALM1 in most cancer types has remained unclear. We systematically analyzed the expression landscape, DNA methylation, gene alteration, immune infiltration, clinical relevance, and molecular pathway of CALM1 in multiple cancers using various online tools, including The Cancer Genome Atlas, cBioPortal and the Human Protein Atlas databases. Kaplan–Meier and receiver operating characteristic (ROC) curves were plotted to explore the prognostic and diagnostic potential of CALM1 expression. Multivariate analyses were used to evaluate whether the CALM1 expression could be an independent risk factor. A nomogram predicting the overall survival (OS) of patients was developed, evaluated, and compared with the traditional Tumor-Node-Metastasis (TNM) model using decision curve analysis. R language was employed as the main tool for analysis and visualization. Results revealed CALM1 to be highly expressed in most cancers, its expression being regulated by DNA methylation in multiple cancers. CALM1 had a low mutation frequency (within 3%) and was associated with immune infiltration. We observed a substantial positive correlation between CALM1 expression and macrophage and neutrophil infiltration levels in multiple cancers. Different mutational forms of CALM1 hampered immune cell infiltration. Additionally, CALM1 expression had high diagnostic and prognostic potential. Multivariate analyses revealed CALM1 expression to be an independent risk factor for OS. Therefore, our newly developed nomogram had a higher clinical value than the TNM model. The concordance index, calibration curve, and time-dependent ROC curves of the nomogram exhibited excellent performance in terms of predicting the survival rate of patients. Moreover, elevated CALM1 expression contributes to the activation of cancer-related pathways, such as the WNT and MAPK pathways. Overall, our findings improved our understanding of the function of CALM1 in human cancers.
Collapse
Affiliation(s)
- Maolin Yao
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lanyi Fu
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xuedong Liu
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Dong Zheng
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
39
|
Prakash O, Held M, McCormick LF, Gupta N, Lian LY, Antonyuk S, Haynes LP, Thomas NL, Helassa N. CPVT-associated calmodulin variants N53I and A102V dysregulate Ca2+ signalling via different mechanisms. J Cell Sci 2022; 135:274029. [PMID: 34888671 PMCID: PMC8917356 DOI: 10.1242/jcs.258796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited condition that can cause fatal cardiac arrhythmia. Human mutations in the Ca2+ sensor calmodulin (CaM) have been associated with CPVT susceptibility, suggesting that CaM dysfunction is a key driver of the disease. However, the detailed molecular mechanism remains unclear. Focusing on the interaction with the cardiac ryanodine receptor (RyR2), we determined the effect of CPVT-associated variants N53I and A102V on the structural characteristics of CaM and on Ca2+ fluxes in live cells. We provide novel data showing that interaction of both Ca2+/CaM-N53I and Ca2+/CaM-A102V with the RyR2 binding domain is decreased. Ca2+/CaM-RyR23583-3603 high-resolution crystal structures highlight subtle conformational changes for the N53I variant, with A102V being similar to wild type (WT). We show that co-expression of CaM-N53I or CaM-A102V with RyR2 in HEK293 cells significantly increased the duration of Ca2+ events; CaM-A102V exhibited a lower frequency of Ca2+ oscillations. In addition, we show that CaMKIIδ (also known as CAMK2D) phosphorylation activity is increased for A102V, compared to CaM-WT. This paper provides novel insight into the molecular mechanisms of CPVT-associated CaM variants and will facilitate the development of strategies for future therapies.
Collapse
Affiliation(s)
- Ohm Prakash
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Marie Held
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Liam F. McCormick
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Nitika Gupta
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Lu-Yun Lian
- Nuclear Magnetic Resonance Centre for Structural Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Svetlana Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Lee P. Haynes
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - N. Lowri Thomas
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, Redwood Building, CF10 3NB, UK
| | - Nordine Helassa
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK,Author for correspondence ()
| |
Collapse
|
40
|
García-Escobar A, Vera-Vera S, Jurado-Román A, Jiménez-Valero S, Galeote G, Moreno R. Calcium Signaling Pathway Is Involved in the Shedding of ACE2 Catalytic Ectodomain: New Insights for Clinical and Therapeutic Applications of ACE2 for COVID-19. Biomolecules 2022; 12:biom12010076. [PMID: 35053224 PMCID: PMC8774087 DOI: 10.3390/biom12010076] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) is a type I integral membrane that exists in two forms: the first is a transmembrane protein; the second is a soluble catalytic ectodomain of ACE2. The catalytic ectodomain of ACE2 undergoes shedding by a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), in which calmodulin mediates the calcium signaling pathway that is involved in ACE2 release, resulting in a soluble catalytic ectodomain of ACE2 that can be measured as soluble ACE2 plasma activity. The shedding of the ACE2 catalytic ectodomain plays a role in cardiac remodeling and endothelial dysfunction and is a predictor of all-cause mortality, including cardiovascular mortality. Moreover, considerable evidence supports that the ACE2 catalytic ectodomain is an essential entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Additionally, endotoxins and the pro-inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor-alpha (TNFα) all enhanced soluble catalytic ectodomain ACE2 shedding from the airway epithelia, suggesting that the shedding of ACE2 may represent a mechanism by which viral entry and infection may be controlled such as some types of betacoronavirus. In this regard, ACE2 plays an important role in inflammation and thrombotic response, and its down-regulation may aggravate COVID-19 via the renin-angiotensin system, including by promoting pathological changes in lung injury. Soluble forms of ACE2 have recently been shown to inhibit SARS-CoV-2 infection. Furthermore, given that vitamin D enhanced the shedding of ACE2, some studies reported that vitamin D treatment is associated with prognosis improvement in COVID-19. This is an updated review on the evidence, clinical, and therapeutic applications of ACE2 for COVID-19.
Collapse
Affiliation(s)
- Artemio García-Escobar
- Cardiology Department, Interventional Cardiology Section, University Hospital La Paz, 28046 Madrid, Spain; (S.V.-V.); (A.J.-R.); (S.J.-V.); (G.G.); (R.M.)
- Instituto de Investigación Hospital La Paz (IDIPAZ), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-917-27-70-00
| | - Silvio Vera-Vera
- Cardiology Department, Interventional Cardiology Section, University Hospital La Paz, 28046 Madrid, Spain; (S.V.-V.); (A.J.-R.); (S.J.-V.); (G.G.); (R.M.)
- Instituto de Investigación Hospital La Paz (IDIPAZ), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alfonso Jurado-Román
- Cardiology Department, Interventional Cardiology Section, University Hospital La Paz, 28046 Madrid, Spain; (S.V.-V.); (A.J.-R.); (S.J.-V.); (G.G.); (R.M.)
- Instituto de Investigación Hospital La Paz (IDIPAZ), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Santiago Jiménez-Valero
- Cardiology Department, Interventional Cardiology Section, University Hospital La Paz, 28046 Madrid, Spain; (S.V.-V.); (A.J.-R.); (S.J.-V.); (G.G.); (R.M.)
- Instituto de Investigación Hospital La Paz (IDIPAZ), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Guillermo Galeote
- Cardiology Department, Interventional Cardiology Section, University Hospital La Paz, 28046 Madrid, Spain; (S.V.-V.); (A.J.-R.); (S.J.-V.); (G.G.); (R.M.)
- Instituto de Investigación Hospital La Paz (IDIPAZ), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Raúl Moreno
- Cardiology Department, Interventional Cardiology Section, University Hospital La Paz, 28046 Madrid, Spain; (S.V.-V.); (A.J.-R.); (S.J.-V.); (G.G.); (R.M.)
- Instituto de Investigación Hospital La Paz (IDIPAZ), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
41
|
Yang CF, Tsai WC. Calmodulin: The switch button of calcium signaling. Tzu Chi Med J 2022; 34:15-22. [PMID: 35233351 PMCID: PMC8830543 DOI: 10.4103/tcmj.tcmj_285_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/17/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
Calmodulin (CaM), a calcium sensor, decodes the critical calcium-dependent signals and converts them into the driving force to control various important cellular functions, such as ion transport. This small protein has a short central linker to connect two globular lobes and each unit is composed of a pair of homologous domains (HD) which are responsible for calcium binding. The conformation of each HD is sensitive to the levels of the intracellular Ca2+ concentrations while the flexible structure of the central domain enables its interactions with hundreds of cellular proteins. Apart from calcium binding, posttranslational modifications (PTMs) also contribute to the modulations of CaM functions by affecting its protein-protein interaction networks and hence drawing out the various downstream signaling cascades. In this mini-review, we first aim to elucidate the structural features of CaM and then overview the recent studies on the engagements of calcium binding and PTMs in Ca2+/CaM-mediated conformational alterations and signaling events. The mechanistic understanding of CaM working models is expected to be a key to decipher the precise role of CaM in cardiac physiology and disease pathology.
Collapse
|
42
|
Xi Y, Wen X, Zhang Y, Jiao L, Bai S, Shi S, Chang G, Wu R, Sun F, Hao J, Li H. DR1 Activation Inhibits the Proliferation of Vascular Smooth Muscle Cells through Increasing Endogenous H 2S in Diabetes. Aging Dis 2022; 13:910-926. [PMID: 35656112 PMCID: PMC9116912 DOI: 10.14336/ad.2021.1104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022] Open
Abstract
Tissue ischemia and hypoxia caused by the abnormal proliferation of smooth muscle cells (SMCs) in the diabetic state is an important pathological basis for diabetic microangiopathy. Studies in recent years have shown that the chronic complications of diabetes are related to the decrease of endogenous hydrogen sulfide (H2S) in diabetic patients, and it has been proven that H2S can inhibit the proliferation of vascular SMCs (VSMCs). Our study showed that the endogenous H2S content and the expression of cystathionine gamma-lyase (CSE), which is the key enzyme of H2S production, were decreased in arterial SMCs of diabetic mice. The expression of PCNA and Cyclin D1 was increased, and the expression of p21 was decreased in the diabetic state. After administration of dopamine 1-like receptors (DR1) agonist SKF38393 and exogenous H2S donor NaHS, the expression of CSE was increased and the change in proliferation-related proteins caused by diabetes was reversed. It was further verified by cell experiments that SKF38393 activated calmodulin (CaM) by increasing the intracellular calcium ([Ca2+]i) concentration, which activated the CSE/H2S pathway, enhancing the H2S content in vivo. We also found that SKF38393 and NaHS inhibited insulin-like growth factor-1 (IGF-1)/IGF-1R and heparin-binding EGF-like growth factor (HB-EGF)/EGFR, as well as their downstream PI3K/Akt, JAK2/STAT3 and ERK1/2 pathways. Taken together, our results suggest that DR1 activation up-regulates the CSE/H2S system by increasing Ca2+-CaM binding, which inhibits the IGF-1/IGF-1R and HB-EGF/EGFR pathways, thereby decreasing their downstream PI3K/Akt, JAK2/STAT3 and ERK1/2 pathways to achieve the effect of inhibiting HG-induced VSMCs proliferation.
Collapse
Affiliation(s)
- Yuxin Xi
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xin Wen
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yuanzhou Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijie Jiao
- School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Shuzhi Bai
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Sa Shi
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Guiquan Chang
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Ren Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Fengqi Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jinghui Hao
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
- School of Medicine, Xiamen University, Xiamen, Fujian, China.
- Correspondence should be addressed to: Dr. Hongzhu Li, School of Medicine, Xiamen University, Xiamen, Fujian, China. .
| |
Collapse
|
43
|
Wen X, Xi Y, Zhang Y, Jiao L, Shi S, Bai S, Sun F, Chang G, Wu R, Hao J, Li H. DR1 activation promotes vascular smooth muscle cell apoptosis via up-regulation of CSE/H 2 S pathway in diabetic mice. FASEB J 2021; 36:e22070. [PMID: 34859931 DOI: 10.1096/fj.202101455r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
The important role of hydrogen sulfide (H2 S) as a novel gasotransmitter in inhibiting proliferation and promoting apoptosis of vascular smooth muscle cells (VSMCs) has been widely recognized. The dopamine D1 receptor (DR1), a G protein coupled receptor, inhibits atherosclerosis by suppressing VSMC proliferation. However, whether DR1 contributes to VSMC apoptosis via the induction of endogenous H2 S in diabetic mice is unclear. Here, we found that hyperglycemia decreased the expressions of DR1 and cystathionine-γ-lyase (CSE, a key enzyme for endogenous H2 S production) and reduced endogenous H2 S generation in mouse arteries and cultured VSMCs. DR1 agonist SKF38393 increased DR1 and CSE expressions and stimulated endogenous H2 S generation. Sodium hydrosulfide (NaHS, a H2 S donor) increased CSE expressions and H2 S generation but had no effect on DR1 expression. In addition, high glucose (HG) increased VSMC apoptosis, up-regulated IGF-1-IGF-1R and HB-EGF-EGFR, and stimulated ERK1/2 and PI3K-Akt pathways. Overexpression of DR1, the addition of SKF38393 or supply of NaHS further promoted VSMC apoptosis and down-regulated the above pathways. Knock out of CSE or the addition of the CSE inhibitor poly propylene glycol diminished the effect of SKF38393. Moreover, calmodulin (CaM) interacted with CSE in VSMCs; HG increased intracellular Ca2+ concentration and induced CaM expression, further strengthened the interaction of CaM with CSE in VSMCs, which were further enhanced by SKF38393. CaM inhibitor W-7, inositol 1,4,5-trisphosphate (IP3 ) inhibitor 2-APB, or ryanodine receptor inhibitor tetracaine abolished the stimulatory effect of SKF38393 on CaM expression and intracellular Ca2+ concentration. Taken together, these results suggest that DR1 up-regulates CSE/H2 S signaling by inducing the Ca2+ -CaM pathway followed by down-regulations of IGF-1-IGF-1R and HB-EGF-EGFR and their downstream ERK1/2 and PI3K-Akt, finally promoting the apoptosis of VSMCs in diabetic mice.
Collapse
Affiliation(s)
- Xin Wen
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yuxin Xi
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yuanzhou Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijie Jiao
- School of Medicine, Xiamen University, Xiamen, China
| | - Sa Shi
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shuzhi Bai
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Fengqi Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Guiquan Chang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ren Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jinghui Hao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China.,School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
44
|
Yaduvanshi S, Ero R, Kumar V. The mechanism of complex formation between calmodulin and voltage gated calcium channels revealed by molecular dynamics. PLoS One 2021; 16:e0258112. [PMID: 34610038 PMCID: PMC8491939 DOI: 10.1371/journal.pone.0258112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/18/2021] [Indexed: 11/18/2022] Open
Abstract
Calmodulin, a ubiquitous eukaryotic calcium sensor responsible for the regulation of many fundamental cellular processes, is a highly flexible protein and exhibits an unusually wide range of conformations. Furthermore, CaM is known to interact with more than 300 cellular targets. Molecular dynamics (MD) simulation trajectories suggest that EF-hand loops show different magnitudes of flexibility. Therefore, the four EF-hand motifs have different affinities for Ca2+ ions, which enables CaM to function on wide range of Ca2+ ion concentrations. EF-hand loops are 2-3 times more flexible in apo CaM whereas least flexible in Ca2+/CaM-IQ motif complexes. We report a unique intermediate conformation of Ca2+/CaM while transitioning from extended to compact form. We also report the complex formation process between Ca2+/CaM and IQ CaM-binding motifs. Our results showed how IQ motif recognise its binding site on the CaM and how CaM transforms from extended to compact form upon binding to IQ motif.
Collapse
Affiliation(s)
- Shivani Yaduvanshi
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Noida, Noida, Uttar Pradesh, India
| | - Rya Ero
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Veerendra Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Noida, Noida, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
45
|
Study on a Plasmonic Tilted Fiber Grating-Based Biosensor for Calmodulin Detection. BIOSENSORS-BASEL 2021; 11:bios11060195. [PMID: 34198490 PMCID: PMC8231783 DOI: 10.3390/bios11060195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Tilted fiber Bragg grating, which has the advantages of both fiber Bragg grating and long-period fiber grating, has been widely studied for sensing in many fields, especially in the field of biochemistry. Calmodulin, which has a wide distribution in eukaryotes, can regulate several enzymes such as adenylate cyclase and guanylate cyclase and mediates several cellular processes such as cell proliferation and cyclic nucleotide metabolism. The abnormal levels of calmodulin in the body will result in serious effects from metabolism to nerve growth and memory. Therefore, it is important to measure the calmodulin concentration in the body. In this work, we propose and experimentally demonstrate a plasmonic tilted fiber Bragg grating-based biosensor for calmodulin detection. The biosensor was made using an 18° tilted fiber Bragg grating with a 50 nm-thick gold nanofilm coating the surface of the fiber, and transient receptor potential channels were bonded onto the surface of the gold nanofilm to serve as bio-detectors for calmodulin detection. Experimental results showed that the limit of detection using our biosensor was 0.44 nM. Furthermore, we also demonstrated that the interaction between calmodulin and transient receptor potential channels was quite weak without calcium in the solution, which agrees with the biology. Our proposed biosensor has a simple structure, is easy to manufacture, and is of small size, making it a good choice for real-time, label-free, and microliter-volume biomolecule detection.
Collapse
|
46
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
47
|
Sprenger J, Trifan A, Patel N, Vanderbeck A, Bredfelt J, Tajkhorshid E, Rowlett R, Lo Leggio L, Åkerfeldt KS, Linse S. Calmodulin complexes with brain and muscle creatine kinase peptides. Curr Res Struct Biol 2021; 3:121-132. [PMID: 34235492 PMCID: PMC8244255 DOI: 10.1016/j.crstbi.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 01/18/2023] Open
Abstract
Calmodulin (CaM) is a ubiquitous Ca2+ sensing protein that binds to and modulates numerous target proteins and enzymes during cellular signaling processes. A large number of CaM-target complexes have been identified and structurally characterized, revealing a wide diversity of CaM-binding modes. A newly identified target is creatine kinase (CK), a central enzyme in cellular energy homeostasis. This study reports two high-resolution X-ray structures, determined to 1.24 Å and 1.43 Å resolution, of calmodulin in complex with peptides from human brain and muscle CK, respectively. Both complexes adopt a rare extended binding mode with an observed stoichiometry of 1:2 CaM:peptide, confirmed by isothermal titration calorimetry, suggesting that each CaM domain independently binds one CK peptide in a Ca2+-depended manner. While the overall binding mode is similar between the structures with muscle or brain-type CK peptides, the most significant difference is the opposite binding orientation of the peptides in the N-terminal domain. This may extrapolate into distinct binding modes and regulation of the full-length CK isoforms. The structural insights gained in this study strengthen the link between cellular energy homeostasis and Ca2+-mediated cell signaling and may shed light on ways by which cells can 'fine tune' their energy levels to match the spatial and temporal demands.
Collapse
Key Words
- ADP, Adenosine diphosphate
- ATP, Adenosine triphosphate
- CK, Creatine kinase
- CKB, Creatine kinase, brain-type
- CKM, Creatine kinase, muscle-type
- Ca2+, Calcium ion (divalent)
- CaM, Calmodulin
- Calcium signaling
- Calmodulin X-ray structure
- Cellular energy metabolism
- Cr, Creatine
- CrP, Creatine phosphate
- Enzyme regulation
- Fmoc, Fluorenylmethoxycarbonyl
- ITC, Isothermal titration calorimetry
- Isothermal titration calorimetry
- MR, Molecular replacement
- PDB, Protein data bank
Collapse
Affiliation(s)
- Janina Sprenger
- Department of Biochemistry and Structural Biology, Chemical Center, PO Box 124, SE-221 00, Lund, Sweden
- Chemistry Department, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Anda Trifan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 405 N Matthews, Urbana, IL, 61801, USA
| | - Neal Patel
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA, 19041, USA
| | - Ashley Vanderbeck
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA, 19041, USA
| | - Jenny Bredfelt
- Department of Biochemistry and Structural Biology, Chemical Center, PO Box 124, SE-221 00, Lund, Sweden
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 405 N Matthews, Urbana, IL, 61801, USA
| | - Roger Rowlett
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Leila Lo Leggio
- Chemistry Department, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Karin S. Åkerfeldt
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA, 19041, USA
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Chemical Center, PO Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
48
|
Sun B, Kekenes-Huskey PM. Assessing the Role of Calmodulin's Linker Flexibility in Target Binding. Int J Mol Sci 2021; 22:ijms22094990. [PMID: 34066691 PMCID: PMC8125811 DOI: 10.3390/ijms22094990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Calmodulin (CaM) is a highly-expressed Ca2+ binding protein known to bind hundreds of protein targets. Its binding selectivity to many of these targets is partially attributed to the protein’s flexible alpha helical linker that connects its N- and C-domains. It is not well established how its linker mediates CaM’s binding to regulatory targets yet. Insights into this would be invaluable to understanding its regulation of diverse cellular signaling pathways. Therefore, we utilized Martini coarse-grained (CG) molecular dynamics simulations to probe CaM/target assembly for a model system: CaM binding to the calcineurin (CaN) regulatory domain. The simulations were conducted assuming a ‘wild-type’ calmodulin with normal flexibility of its linker, as well as a labile, highly-flexible linker variant to emulate structural changes that could be induced, for instance, by post-translational modifications. For the wild-type model, 98% of the 600 simulations across three ionic strengths adopted a bound complex within 2 μs of simulation time; of these, 1.7% sampled the fully-bound state observed in the experimentally-determined crystallographic structure. By calculating the mean-first-passage-time for these simulations, we estimated the association rate to be ka= 8.7 × 108 M−1 s−1, which is similar to the diffusion-limited, experimentally-determined rate of 2.2 × 108 M−1 s−1. Furthermore, our simulations recapitulated its well-known inverse relationship between the association rate and the solution ionic strength. In contrast, although over 97% of the labile linker simulations formed tightly-bound complexes, only 0.3% achieved the fully-bound configuration. This effect appears to stem from a difference in the ensembles of extended and collapsed states which are controlled by the linker flexibility. Therefore, our simulations suggest that variations in the CaM linker’s propensity for alpha helical secondary structure can modulate the kinetics of target binding.
Collapse
|
49
|
Calmodulin and Its Binding Proteins in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22063016. [PMID: 33809535 PMCID: PMC8001340 DOI: 10.3390/ijms22063016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that manifests with rest tremor, muscle rigidity and movement disturbances. At the microscopic level it is characterized by formation of specific intraneuronal inclusions, called Lewy bodies (LBs), and by a progressive loss of dopaminergic neurons in the striatum and substantia nigra. All living cells, among them neurons, rely on Ca2+ as a universal carrier of extracellular and intracellular signals that can initiate and control various cellular processes. Disturbances in Ca2+ homeostasis and dysfunction of Ca2+ signaling pathways may have serious consequences on cells and even result in cell death. Dopaminergic neurons are particularly sensitive to any changes in intracellular Ca2+ level. The best known and studied Ca2+ sensor in eukaryotic cells is calmodulin. Calmodulin binds Ca2+ with high affinity and regulates the activity of a plethora of proteins. In the brain, calmodulin and its binding proteins play a crucial role in regulation of the activity of synaptic proteins and in the maintenance of neuronal plasticity. Thus, any changes in activity of these proteins might be linked to the development and progression of neurodegenerative disorders including PD. This review aims to summarize published results regarding the role of calmodulin and its binding proteins in pathology and pathogenesis of PD.
Collapse
|
50
|
Edington SC, Liu S, Baiz CR. Infrared spectroscopy probes ion binding geometries. Methods Enzymol 2021; 651:157-191. [PMID: 33888203 DOI: 10.1016/bs.mie.2020.12.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Infrared (IR) spectroscopy is a well-established technique for probing the structure, behavior, and surroundings of molecules in their native environments. Its characteristics-most specifically high structural sensitivity, ready applicability to aqueous samples, and broad availability-make it a valuable enzymological technique, particularly for the interrogation of ion binding sites. While IR spectroscopy of the "garden variety" (steady state at room temperature with wild-type proteins) is versatile and powerful in its own right, the combination of IR spectroscopy with specialized experimental schemes for leveraging ultrafast time resolution, protein labeling, and other enhancements further extends this utility. This book chapter provides the fundamental physical background and literature context essential for harnessing IR spectroscopy in the general context of enzymology with specific focus on interrogation of ion binding. Studies of lanthanide ions binding to calmodulin are highlighted as illustrative examples of this process. Appropriate sample preparation, data collection, and spectral interpretation are discussed from a detail-oriented and practical perspective with the goal of facilitating the reader's rapid progression from reading words in a book to collecting and analyzing their own data in the lab.
Collapse
Affiliation(s)
- Sean C Edington
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Stephanie Liu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, United States
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|