1
|
Subbanna MS, Winters MJ, Örd M, Davey NE, Pryciak PM. A quantitative intracellular peptide-binding assay reveals recognition determinants and context dependence of short linear motifs. J Biol Chem 2025; 301:108225. [PMID: 39864625 PMCID: PMC11879687 DOI: 10.1016/j.jbc.2025.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025] Open
Abstract
Transient protein-protein interactions play key roles in controlling dynamic cellular responses. Many examples involve globular protein domains that bind to peptide sequences known as short linear motifs (SLiMs), which are enriched in intrinsically disordered regions of proteins. Here we describe a novel functional assay for measuring SLiM binding, called systematic intracellular motif-binding analysis (SIMBA). In this method, binding of a foreign globular domain to its cognate SLiM peptide allows yeast cells to proliferate by blocking a growth arrest signal. A high-throughput application of the SIMBA method involving competitive growth and deep sequencing provides rapid quantification of the relative binding strength for thousands of SLiM sequence variants and a comprehensive interrogation of SLiM sequence features that control their recognition and potency. We show that multiple distinct classes of SLiM-binding domains can be analyzed by this method and that the relative binding strength of peptides in vivo correlates with their biochemical affinities measured in vitro. Deep mutational scanning provides high-resolution definitions of motif recognition determinants and reveals how sequence variations at noncore positions can modulate binding strength. Furthermore, mutational scanning of multiple parent peptides that bind human tankyrase ARC or YAP WW domains identifies distinct binding modes and uncovers context effects in which the preferred residues at one position depend on residues elsewhere. The findings establish SIMBA as a fast and incisive approach for interrogating SLiM recognition via massively parallel quantification of protein-peptide binding strength in vivo.
Collapse
Affiliation(s)
- Mythili S Subbanna
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Matthew J Winters
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Mihkel Örd
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK; Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Peter M Pryciak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
2
|
Subbanna MS, Winters MJ, Örd M, Davey NE, Pryciak PM. A quantitative intracellular peptide binding assay reveals recognition determinants and context dependence of short linear motifs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621084. [PMID: 39553988 PMCID: PMC11565833 DOI: 10.1101/2024.10.30.621084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Transient protein-protein interactions play key roles in controlling dynamic cellular responses. Many examples involve globular protein domains that bind to peptide sequences known as Short Linear Motifs (SLiMs), which are enriched in intrinsically disordered regions of proteins. Here we describe a novel functional assay for measuring SLiM binding, called Systematic Intracellular Motif Binding Analysis (SIMBA). In this method, binding of a foreign globular domain to its cognate SLiM peptide allows yeast cells to proliferate by blocking a growth arrest signal. A high-throughput application of the SIMBA method involving competitive growth and deep sequencing provides rapid quantification of the relative binding strength for thousands of SLiM sequence variants, and a comprehensive interrogation of SLiM sequence features that control their recognition and potency. We show that multiple distinct classes of SLiM-binding domains can be analyzed by this method, and that the relative binding strength of peptides in vivo correlates with their biochemical affinities measured in vitro. Deep mutational scanning provides high-resolution definitions of motif recognition determinants and reveals how sequence variations at non-core positions can modulate binding strength. Furthermore, mutational scanning of multiple parent peptides that bind human tankyrase ARC or YAP WW domains identifies distinct binding modes and uncovers context effects in which the preferred residues at one position depend on residues elsewhere. The findings establish SIMBA as a fast and incisive approach for interrogating SLiM recognition via massively parallel quantification of protein-peptide binding strength in vivo.
Collapse
Affiliation(s)
- Mythili S. Subbanna
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Matthew J. Winters
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mihkel Örd
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Norman E. Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Peter M. Pryciak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
3
|
Xie C, Zhong L, Feng H, Wang R, Shi Y, Lv Y, Hu Y, Li J, Xiao D, Liu S, Chen Q, Tao Y. Exosomal miR-17-5p derived from epithelial cells is involved in aberrant epithelium-fibroblast crosstalk and induces the development of oral submucosal fibrosis. Int J Oral Sci 2024; 16:48. [PMID: 38897993 PMCID: PMC11187069 DOI: 10.1038/s41368-024-00302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 06/21/2024] Open
Abstract
Oral submucous fibrosis (OSF) is a chronic and inflammatory mucosal disease caused by betel quid chewing, which belongs to oral potentially malignant disorders. Abnormal fibroblast differentiation leading to disordered collagen metabolism is the core process underlying OSF development. The epithelium, which is the first line of defense against the external environment, can convert external signals into pathological signals and participate in the remodeling of the fibrotic microenvironment. However, the specific mechanisms by which the epithelium drives fibroblast differentiation remain unclear. In this study, we found that Arecoline-exposed epithelium communicated with the fibrotic microenvironment by secreting exosomes. MiR-17-5p was encapsulated in epithelial cell-derived exosomes and absorbed by fibroblasts, where it promoted cell secretion, contraction, migration and fibrogenic marker (α-SMA and collagen type I) expression. The underlying molecular mechanism involved miR-17-5p targeting Smad7 and suppressing the degradation of TGF-β receptor 1 (TGFBR1) through the E3 ubiquitination ligase WWP1, thus facilitating downstream TGF-β pathway signaling. Treatment of fibroblasts with an inhibitor of miR-17-5p reversed the contraction and migration phenotypes induced by epithelial-derived exosomes. Exosomal miR-17-5p was confirmed to function as a key regulator of the phenotypic transformation of fibroblasts. In conclusion, we demonstrated that Arecoline triggers aberrant epithelium-fibroblast crosstalk and identified that epithelial cell-derived miR-17-5p mediates fibroblast differentiation through the classical TGF-β fibrotic pathway, which provided a new perspective and strategy for the diagnosis and treatment of OSF.
Collapse
Affiliation(s)
- Changqing Xie
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Liang Zhong
- Hospital of Stomatology and Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Feng
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Rifu Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yuxin Shi
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yonglin Lv
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yanjia Hu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Desheng Xiao
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qianming Chen
- Hospital of Stomatology and Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, China.
| |
Collapse
|
4
|
Yang Y, Wu M, Pan Y, Hua Y, He X, Li X, Wang J, Gan X. WW domains form a folded type of nuclear localization signal to guide YAP1 nuclear import. J Cell Biol 2024; 223:e202308013. [PMID: 38488622 PMCID: PMC10942854 DOI: 10.1083/jcb.202308013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/31/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
The nuclear translocation of YAP1 is significantly implicated in the proliferation, stemness, and metastasis of cancer cells. Although the molecular basis underlying YAP1 subcellular distribution has been extensively explored, it remains to be elucidated how the nuclear localization signal guides YAP1 to pass through the nuclear pore complex. Here, we define a globular type of nuclear localization signal composed of folded WW domains, named as WW-NLS. It directs YAP1 nuclear import through the heterodimeric nuclear transport receptors KPNA-KPNB1, bypassing the canonical nuclear localization signal that has been well documented in KPNA/KPNB1-mediated nuclear import. Strikingly, competitive interference with the function of the WW-NLS significantly attenuates YAP1 nuclear translocation and damages stemness gene activation and sphere formation in malignant breast cancer cells. Our findings elucidate a novel globular type of nuclear localization signal to facilitate nuclear entry of WW-containing proteins including YAP1.
Collapse
Affiliation(s)
- Yilin Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Mengxiao Wu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Yu Pan
- Department of Biochemistry and Molecular Biology, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Yue Hua
- Department of Biochemistry and Molecular Biology, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Xinyu He
- Department of Biochemistry and Molecular Biology, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Xinyang Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Jiyong Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Xiaoqing Gan
- Department of Biochemistry and Molecular Biology, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| |
Collapse
|
5
|
Fronk AD, Manzanares MA, Zheng P, Geier A, Anderson K, Stanton S, Zumrut H, Gera S, Munch R, Frederick V, Dhingra P, Arun G, Akerman M. Development and validation of AI/ML derived splice-switching oligonucleotides. Mol Syst Biol 2024; 20:676-701. [PMID: 38664594 PMCID: PMC11148135 DOI: 10.1038/s44320-024-00034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 06/05/2024] Open
Abstract
Splice-switching oligonucleotides (SSOs) are antisense compounds that act directly on pre-mRNA to modulate alternative splicing (AS). This study demonstrates the value that artificial intelligence/machine learning (AI/ML) provides for the identification of functional, verifiable, and therapeutic SSOs. We trained XGboost tree models using splicing factor (SF) pre-mRNA binding profiles and spliceosome assembly information to identify modulatory SSO binding sites on pre-mRNA. Using Shapley and out-of-bag analyses we also predicted the identity of specific SFs whose binding to pre-mRNA is blocked by SSOs. This step adds considerable transparency to AI/ML-driven drug discovery and informs biological insights useful in further validation steps. We applied this approach to previously established functional SSOs to retrospectively identify the SFs likely to regulate those events. We then took a prospective validation approach using a novel target in triple negative breast cancer (TNBC), NEDD4L exon 13 (NEDD4Le13). Targeting NEDD4Le13 with an AI/ML-designed SSO decreased the proliferative and migratory behavior of TNBC cells via downregulation of the TGFβ pathway. Overall, this study illustrates the ability of AI/ML to extract actionable insights from RNA-seq data.
Collapse
Affiliation(s)
| | | | - Paulina Zheng
- Envisagenics, Inc., Long Island City, NY, 11101, USA
| | - Adam Geier
- Envisagenics, Inc., Long Island City, NY, 11101, USA
| | | | | | - Hasan Zumrut
- Envisagenics, Inc., Long Island City, NY, 11101, USA
| | - Sakshi Gera
- Envisagenics, Inc., Long Island City, NY, 11101, USA
| | - Robin Munch
- Envisagenics, Inc., Long Island City, NY, 11101, USA
| | | | | | - Gayatri Arun
- Envisagenics, Inc., Long Island City, NY, 11101, USA
| | | |
Collapse
|
6
|
Condeminas M, Macias MJ. Overcoming challenges in structural biology with integrative approaches and nanobody-derived technologies. Curr Opin Struct Biol 2024; 84:102764. [PMID: 38215529 DOI: 10.1016/j.sbi.2023.102764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024]
Abstract
A full understanding of protein structure is key to unraveling how these systems work, how mutations affect their function, and discovering new hotspots for drug discovery. Research tackling this field began with the analysis of globular proteins. In recent years, as technology has improved, research efforts have broadened their focus to include the study of multidomain proteins and the analysis of conformational variability, flexibility, and dynamic systems. Here, we have selected five recent examples that integrate complementary structural methods to provide insight into the behavior of modular, flexible, and transient contacts. We also describe the structural application of domains derived from single-chain antibodies, which are instrumental in overcoming the size limitation of cryogenic electron microscopy (cryoEM) studies. As these methods are continuously developed, they will lead to the interrogation of more complex systems, revealing how large signaling and transcriptional machines are assembled in the context of health and disease.
Collapse
Affiliation(s)
- Miriam Condeminas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac 10, Barcelona 08028, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (MELIS-UPF), Carrer del Doctor Aiguader 88, Barcelona 08003, Spain
| | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac 10, Barcelona 08028, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
7
|
Lai X, Lui SKL, Lam HY, Adachi Y, Sim WJ, Vasilevski N, Armstrong NJ, Bridgeman SC, Main NM, Tan TZ, Tirnitz-Parker JEE, Thiery JP, Ebi H, Kumar AP, Eichhorn PJA. SHP2 inhibitors maintain TGFβ signalling through SMURF2 inhibition. NPJ Precis Oncol 2023; 7:136. [PMID: 38102334 PMCID: PMC10724235 DOI: 10.1038/s41698-023-00486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Despite the promising antitumor activity of SHP2 inhibitors in RAS-dependent tumours, overall responses have been limited by their narrow therapeutic window. Like with all MAPK pathway inhibitors, this is likely the result of compensatory pathway activation mechanisms. However, the underlying mechanisms of resistance to SHP2 inhibition remain unknown. The E3 ligase SMURF2 limits TGFβ activity by ubiquitinating and targeting the TGFβ receptor for proteosome degradation. Using a functional RNAi screen targeting all known phosphatases, we identify that the tyrosine phosphatase SHP2 is a critical regulator of TGFβ activity. Specifically, SHP2 dephosphorylates two key residues on SMURF2, resulting in activation of the enzyme. Conversely, SHP2 depletion maintains SMURF2 in an inactive state, resulting in the maintenance of TGFβ activity. Furthermore, we demonstrate that depleting SHP2 has significant implications on TGFβ-mediated migration, senescence, and cell survival. These effects can be overcome through the use of TGFβ-targeted therapies. Consequently, our findings provide a rationale for combining SHP2 and TGFβ inhibitors to enhance tumour responses leading to improved patient outcomes.
Collapse
Affiliation(s)
- Xianning Lai
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Sarah Kit Leng Lui
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Hiu Yan Lam
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Yuta Adachi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan
- Division of Advanced Cancer Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8650, Japan
| | - Wen Jing Sim
- Institute of Molecular and Cell Biology, A*STAR, Singapore, 138672, Singapore
| | - Natali Vasilevski
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Nicola J Armstrong
- School of Electrical Engineering, Computing and Mathematical Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, 6102, Australia
| | - Stephanie Claire Bridgeman
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Nathan Michael Main
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Janina E E Tirnitz-Parker
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Jean Paul Thiery
- Institute of Molecular and Cell Biology, A*STAR, Singapore, 138672, Singapore.
- Guangzhou Laboratory, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong, 510530, China.
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan.
- Division of Advanced Cancer Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8650, Japan.
| | - Alan Prem Kumar
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia.
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
8
|
Singh S, Machida S, Tulsian NK, Choong YK, Ng J, Shankar S, Liu Y, Chandiramani KV, Shi J, Sivaraman J. Structural Basis for the Enzymatic Activity of the HACE1 HECT-Type E3 Ligase Through N-Terminal Helix Dimerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207672. [PMID: 37537642 PMCID: PMC10520629 DOI: 10.1002/advs.202207672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/15/2023] [Indexed: 08/05/2023]
Abstract
HACE1 is an ankyrin repeat (AKR) containing HECT-type E3 ubiquitin ligase that interacts with and ubiquitinates multiple substrates. While HACE1 is a well-known tumor suppressor, its structure and mode of ubiquitination are not understood. The authors present the cryo-EM structures of human HACE1 along with in vitro functional studies that provide insights into how the enzymatic activity of HACE1 is regulated. HACE1 comprises of an N-terminal AKR domain, a middle (MID) domain, and a C-terminal HECT domain. Its unique G-shaped architecture interacts as a homodimer, with monomers arranged in an antiparallel manner. In this dimeric arrangement, HACE1 ubiquitination activity is hampered, as the N-terminal helix of one monomer restricts access to the C-terminal domain of the other. The in vitro ubiquitination assays, hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis, mutagenesis, and in silico modeling suggest that the HACE1 MID domain plays a crucial role along with the AKRs in RAC1 substrate recognition.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Satoru Machida
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Nikhil Kumar Tulsian
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
- Department of BiochemistryNational University of Singapore28 Medical DriveSingapore117546Singapore
| | - Yeu Khai Choong
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Joel Ng
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Srihari Shankar
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Yaochen Liu
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | | | - Jian Shi
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - J Sivaraman
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| |
Collapse
|
9
|
Bardwell AJ, Paul M, Yoneda KC, Andrade-Ludeña MD, Nguyen OT, Fruman DA, Bardwell L. The WW domain of IQGAP1 binds directly to the p110α catalytic subunit of PI 3-kinase. Biochem J 2023; 480:BCJ20220493. [PMID: 37145016 PMCID: PMC10625650 DOI: 10.1042/bcj20220493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/06/2023]
Abstract
IQGAP1 is a multi-domain cancer-associated protein that serves as a scaffold protein for multiple signaling pathways. Numerous binding partners have been found for the calponin homology, IQ and GAP-related domains in IQGAP1. Identification of a binding partner for its WW domain has proven elusive, however, even though a cell-penetrating peptide derived from this domain has marked anti-tumor activity. Here, using in vitro binding assays with human proteins and co-precipitation from human cells, we show that the WW domain of human IQGAP1 binds directly to the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K). In contrast, the WW domain does not bind to ERK1/2, MEK1/2, or the p85α regulatory subunit of PI3K when p85α is expressed alone. However, the WW domain is able to bind to the p110α/p85α heterodimer when both subunits are co-expressed, as well as to the mutationally activated p110α/p65α heterodimer. We present a model of the structure of the IQGAP1 WW domain, and experimentally identify key residues in the hydrophobic core and beta strands of the WW domain that are required for binding to p110α. These findings contribute to a more precise understanding of IQGAP1-mediated scaffolding, and of how IQGAP1-derived therapeutic peptides might inhibit tumorigenesis.
Collapse
Affiliation(s)
- A. Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | - Madhuri Paul
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, U.S.A
| | - Kiku C. Yoneda
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | | | - Oanh T. Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | - David A. Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, U.S.A
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| |
Collapse
|
10
|
Kliche J, Ivarsson Y. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Biochem J 2022; 479:1-22. [PMID: 34989786 PMCID: PMC8786283 DOI: 10.1042/bcj20200714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Cellular function is based on protein-protein interactions. A large proportion of these interactions involves the binding of short linear motifs (SLiMs) by folded globular domains. These interactions are regulated by post-translational modifications, such as phosphorylation, that create and break motif binding sites or tune the affinity of the interactions. In addition, motif-based interactions are involved in targeting serine/threonine kinases and phosphatases to their substrate and contribute to the specificity of the enzymatic actions regulating which sites are phosphorylated. Here, we review how SLiM-based interactions assist in determining the specificity of serine/threonine kinases and phosphatases, and how phosphorylation, in turn, affects motif-based interactions. We provide examples of SLiM-based interactions that are turned on/off, or are tuned by serine/threonine phosphorylation and exemplify how this affects SLiM-based protein complex formation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| |
Collapse
|
11
|
Chen F, Wang Q, Mu Y, Sun S, Yuan X, Shang P, Ji B. Systematic profiling and identification of the peptide-mediated interactions between human Yes-associated protein and its partners in esophageal cancer. J Mol Recognit 2021; 35:e2947. [PMID: 34964176 DOI: 10.1002/jmr.2947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 11/07/2022]
Abstract
Human Yes-associated protein (YAP) is involved in the Hippo signaling pathway and serves as a coactivator to modulate gene expression, which contains a transactivation domain (TD) responsible for binding to the downstream TEA domain family (TEAD) of transcription factors and two WW1/2 domains that recognize the proline-rich motifs (PRMs) present in a variety of upstream protein partners through peptide-mediated interactions (PMIs). The downstream YAP TD-TEAD interactions are closely associated with gastric cancer, and a number of therapeutic agents have been developed to target the interactions. In contrast, the upstream YAP WW1/2-partner interactions are thought to be involved in esophageal cancer but still remain largely unexplored. Here, we attempted to elucidate the complicated PMIs between the YAP WW1/2 domains and various PRMs of YAP-interacting proteins. A total of 106 peptide segments carrying the class I WW-binding motif [P/L]Px[Y/P] were extracted from 22 partner candidates, which are potential recognition sites of YAP WW1/2 domains. Structural and energetic analyses of the intermolecular interactions between the domains and peptides created a systematic domain-peptide binding profile, from which a number of biologically functional PMIs were identified and then substantiated in vitro using fluorescence spectroscopy assays. It is revealed that: (a) The sequence requirement for the partner recognition site binding to YAP WW1/2 domains is a decapeptide segment that contains a core PRM motif as well as two three-residue extensions from each side of the motif; the core motif and extended sections are responsible for the binding stability and recognition specificity of domain-peptide interaction, respectively. (b) There is an exquisite difference in the recognition specificity of the two domains; the LPxP and PPxP appear to more prefer WW1 than WW2, whereas the WW2 can bind more effectively to LPxY and PPxY than WW1. (c) WW2 generally exhibits a higher affinity to the panel of recognition site candidates than WW1. In addition, a number of partner peptides were found as promising recognition sites of the two domains and/or to have a good selectivity between the two domains. For example, the DVL1 peptide was determined to have moderate affinity to WW2 and strong selectivity for WW2 over WW1. Hydrogen bonds play a central role in selectivity.
Collapse
Affiliation(s)
- Fei Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Qifei Wang
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Yushu Mu
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Shibin Sun
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Xulong Yuan
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Pan Shang
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Bo Ji
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
12
|
Predicting PY motif-mediated protein-protein interactions in the Nedd4 family of ubiquitin ligases. PLoS One 2021; 16:e0258315. [PMID: 34637467 PMCID: PMC8509885 DOI: 10.1371/journal.pone.0258315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023] Open
Abstract
The Nedd4 family contains several structurally related but functionally distinct HECT-type ubiquitin ligases. The members of the Nedd4 family are known to recognize substrates through their multiple WW domains, which recognize PY motifs (PPxY, LPxY) or phospho-threonine or phospho-serine residues. To better understand protein interactor recognition mechanisms across the Nedd4 family, we report the development and implementation of a python-based tool, PxYFinder, to identify PY motifs in the primary sequences of previously identified interactors of Nedd4 and related ligases. Using PxYFinder, we find that, on average, half of Nedd4 family interactions are likely PY-motif mediated. Further, we find that PPxY motifs are more prevalent than LPxY motifs and are more likely to occur in proline-rich regions and that PPxY regions are more disordered on average relative to LPxY-containing regions. Informed by consensus sequences for PY motifs across the Nedd4 interactome, we rationally designed a focused peptide library and employed a computational screen, revealing sequence- and biomolecular interaction-dependent determinants of WW-domain/PY-motif interactions. Cumulatively, our efforts provide a new bioinformatic tool and expand our understanding of sequence and structural factors that contribute to PY-motif mediated interactor recognition across the Nedd4 family.
Collapse
|
13
|
Gomes T, Martin-Malpartida P, Ruiz L, Aragón E, Cordeiro TN, Macias MJ. Conformational landscape of multidomain SMAD proteins. Comput Struct Biotechnol J 2021; 19:5210-5224. [PMID: 34630939 PMCID: PMC8479633 DOI: 10.1016/j.csbj.2021.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
SMAD transcription factors, the main effectors of the TGFβ (transforming growth factor β) network, have a mixed architecture of globular domains and flexible linkers. Such a complicated architecture precluded the description of their full-length (FL) structure for many years. In this study, we unravel the structures of SMAD4 and SMAD2 proteins through an integrative approach combining Small-angle X-ray scattering, Nuclear Magnetic Resonance spectroscopy, X-ray, and computational modeling. We show that both proteins populate ensembles of conformations, with the globular domains tethered by disordered and flexible linkers, which defines a new dimension of regulation. The flexibility of the linkers facilitates DNA and protein binding and modulates the protein structure. Yet, SMAD4FL is monomeric, whereas SMAD2FL is in different monomer-dimer-trimer states, driven by interactions of the MH2 domains. Dimers are present regardless of the SMAD2FL activation state and concentration. Finally, we propose that SMAD2FL dimers are key building blocks for the quaternary structures of SMAD complexes.
Collapse
Affiliation(s)
- Tiago Gomes
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Lidia Ruiz
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Eric Aragón
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Tiago N. Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria J. Macias
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
14
|
Qiao J, Wang S, Zhou J, Tan B, Li Z, Zheng E, Cai G, Wu Z, Hong L, Gu T. ITGB6 inhibits the proliferation of porcine skeletal muscle satellite cells. Cell Biol Int 2021; 46:96-105. [PMID: 34519117 DOI: 10.1002/cbin.11702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 01/17/2023]
Abstract
The formation of embryonic muscle fibers determines the amount of postnatal muscles and is regulated by a variety of signaling pathways and transcription factors. Previously, by using chromatin immunoprecipitation-sequencing and RNA-Seq techniques, we identified a large number of genes that are regulated by H3K27me3 in porcine embryonic skeletal muscles. Among these genes, we found that ITGB6 is regulated by H3K27me3. However, its function in muscle development is unknown. In this study, we first verified that ITGB6 was differentially regulated by H3K27me3 and that its expression levels were upregulated in porcine skeletal muscles at embryonic Days 33, 65, and 90. Then, we performed gain- or loss-of-function studies on porcine skeletal muscle satellite cells to study the role of ITGB6 in porcine skeletal muscle development. The proliferation of porcine skeletal muscle satellite cells was studied through real-time polymerase chain reaction, Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining, Western blot, and flow cytometry analyses. We found that the ITGB6 gene was regulated by H3K27me3 during muscle development and had an inhibitory effect on the proliferation of porcine skeletal muscle satellite cells.
Collapse
Affiliation(s)
- Jiaxin Qiao
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shanshan Wang
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian Zhou
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baohua Tan
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangzhou, China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Enqin Zheng
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Zhenfang Wu
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangzhou, China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Linjun Hong
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Gu
- Department of Animal Genetics, Breeding, and Reproduction, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Rheinemann L, Thompson T, Mercenne G, Paine EL, Peterson FC, Volkman BF, Alam SL, Alian A, Sundquist WI. Interactions between AMOT PPxY motifs and NEDD4L WW domains function in HIV-1 release. J Biol Chem 2021; 297:100975. [PMID: 34284061 PMCID: PMC8368996 DOI: 10.1016/j.jbc.2021.100975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022] Open
Abstract
Like most enveloped viruses, HIV must acquire a lipid membrane as it assembles and buds through the plasma membrane of infected cells to spread infection. Several sets of host cell machinery facilitate this process, including proteins of the endosomal sorting complexes required for transport pathway, which mediates the membrane fission reaction required to complete viral budding, as well as angiomotin (AMOT) and NEDD4L, which bind one another and promote virion membrane envelopment. AMOT and NEDD4L interact through the four NEDD4L WW domains and three different AMOT Pro-Pro-x (any amino acid)-Tyr (PPxY) motifs, but these interactions are not yet well defined. Here, we report that individual AMOT PPxY and NEDD4L WW domains interact with the following general affinity hierarchies: AMOT PPxY1>PPxY2>PPxY3 and NEDD4L WW3>WW2>WW1∼WW4. The unusually high-affinity of the AMOT PPxY1–NEDD4L WW3 interaction accounts for most of the AMOT–NEDD4L binding and is critical for stimulating HIV-1 release. Comparative structural, binding, and virological analyses reveal that complementary ionic and hydrophobic contacts on both sides of the WW–PPxY core interaction account for the unusually high affinity of the AMOT PPxY1–NEDD4L WW3 interaction. Taken together, our studies reveal how the first AMOT PPxY1 motif binds the third NEDD4L WW domain to stimulate HIV-1 viral envelopment and promote infectivity.
Collapse
Affiliation(s)
- Lara Rheinemann
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Tuscan Thompson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Gaelle Mercenne
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Elliott L Paine
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Steven L Alam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | - Akram Alian
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| |
Collapse
|
16
|
Expression and function of Smad7 in autoimmune and inflammatory diseases. J Mol Med (Berl) 2021; 99:1209-1220. [PMID: 34059951 PMCID: PMC8367892 DOI: 10.1007/s00109-021-02083-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Transforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.
Collapse
|
17
|
Mathieu NA, Levin RH, Spratt DE. Exploring the Roles of HERC2 and the NEDD4L HECT E3 Ubiquitin Ligase Subfamily in p53 Signaling and the DNA Damage Response. Front Oncol 2021; 11:659049. [PMID: 33869064 PMCID: PMC8044464 DOI: 10.3389/fonc.2021.659049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
Cellular homeostasis is governed by the precise expression of genes that control the translation, localization, and termination of proteins. Oftentimes, environmental and biological factors can introduce mutations into the genetic framework of cells during their growth and division, and these genetic abnormalities can result in malignant transformations caused by protein malfunction. For example, p53 is a prominent tumor suppressor protein that is capable of undergoing more than 300 posttranslational modifications (PTMs) and is involved with controlling apoptotic signaling, transcription, and the DNA damage response (DDR). In this review, we focus on the molecular mechanisms and interactions that occur between p53, the HECT E3 ubiquitin ligases WWP1, SMURF1, HECW1 and HERC2, and other oncogenic proteins in the cell to explore how irregular HECT-p53 interactions can induce tumorigenesis.
Collapse
Affiliation(s)
- Nicholas A Mathieu
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| | - Rafael H Levin
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| |
Collapse
|
18
|
Bacon K, Blain A, Bowen J, Burroughs M, McArthur N, Menegatti S, Rao BM. Quantitative Yeast-Yeast Two Hybrid for the Discovery and Binding Affinity Estimation of Protein-Protein Interactions. ACS Synth Biol 2021; 10:505-514. [PMID: 33587591 DOI: 10.1021/acssynbio.0c00472] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Quantifying the binding affinity of protein-protein interactions is important for elucidating connections within biochemical signaling pathways, as well as characterization of binding proteins isolated from combinatorial libraries. We describe a quantitative yeast-yeast two-hybrid (qYY2H) system that not only enables the discovery of specific protein-protein interactions but also efficient, quantitative estimation of their binding affinities (KD). In qYY2H, the bait and prey proteins are expressed as yeast cell surface fusions using yeast surface display. We developed a semiempirical framework for estimating the KD of monovalent bait-prey interactions, using measurements of bait-prey yeast-yeast binding, which is mediated by multivalent interactions between yeast-displayed bait and prey. Using qYY2H, we identified interaction partners of SMAD3 and the tandem WW domains of YAP from a cDNA library and characterized their binding affinities. Finally, we showed that qYY2H could also quantitatively evaluate binding interactions mediated by post-translational modifications on the bait protein.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Abigail Blain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - John Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Matthew Burroughs
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nikki McArthur
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Golden LEAF Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Balaji M. Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Golden LEAF Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
19
|
Bowen J, Schneible J, Bacon K, Labar C, Menegatti S, Rao BM. Screening of Yeast Display Libraries of Enzymatically Treated Peptides to Discover Macrocyclic Peptide Ligands. Int J Mol Sci 2021; 22:ijms22041634. [PMID: 33562883 PMCID: PMC7915732 DOI: 10.3390/ijms22041634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
We present the construction and screening of yeast display libraries of post-translationally modified peptides wherein site-selective enzymatic treatment of linear peptides is achieved using bacterial transglutaminase. To this end, we developed two alternative routes, namely (i) yeast display of linear peptides followed by treatment with recombinant transglutaminase in solution; or (ii) intracellular co-expression of linear peptides and transglutaminase to achieve peptide modification in the endoplasmic reticulum prior to yeast surface display. The efficiency of peptide modification was evaluated via orthogonal detection of epitope tags integrated in the yeast-displayed peptides by flow cytometry, and via comparative cleavage of putative cyclic vs. linear peptides by tobacco etch virus (TEV) protease. Subsequently, yeast display libraries of transglutaminase-treated peptides were screened to isolate binders to the N-terminal region of the Yes-Associated Protein (YAP) and its WW domains using magnetic selection and fluorescence activated cell sorting (FACS). The identified peptide cyclo[E-LYLAYPAH-K] featured a KD of 1.75 μM for YAP and 0.68 μM for the WW domains of YAP as well as high binding selectivity against albumin and lysozyme. These results demonstrate the usefulness of enzyme-mediated cyclization in screening combinatorial libraries to identify cyclic peptide binders.
Collapse
Affiliation(s)
- John Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; (J.B.); (J.S.); (K.B.)
| | - John Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; (J.B.); (J.S.); (K.B.)
| | - Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; (J.B.); (J.S.); (K.B.)
| | - Collin Labar
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA;
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; (J.B.); (J.S.); (K.B.)
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
- Correspondence: (S.M.); (B.M.R.)
| | - Balaji M. Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; (J.B.); (J.S.); (K.B.)
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
- Correspondence: (S.M.); (B.M.R.)
| |
Collapse
|
20
|
Ruiz L, Kaczmarska Z, Gomes T, Aragon E, Torner C, Freier R, Baginski B, Martin-Malpartida P, de Martin Garrido N, Marquez JA, Cordeiro TN, Pluta R, Macias MJ. Unveiling the dimer/monomer propensities of Smad MH1-DNA complexes. Comput Struct Biotechnol J 2021; 19:632-646. [PMID: 33510867 PMCID: PMC7810915 DOI: 10.1016/j.csbj.2020.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
MH1 domains of BMP-activated Smads populate a dimer-monomer equilibrium. Swapping loop1 between BMP- and TGFβ Smads turns dimers into monomers and vice versa. BMP-responsive genomic regions have a lower average count of motifs than TGFβ ones.
Smad transcription factors are the main downstream effectors of the Transforming growth factor β superfamily (TGFβ) signalling network. The DNA complexes determined here by X-ray crystallography for the Bone Morphogenetic Proteins (BMP) activated Smad5 and Smad8 proteins reveal that all MH1 domains bind [GGC(GC)|(CG)] motifs similarly, although TGFβ-activated Smad2/3 and Smad4 MH1 domains bind as monomers whereas Smad1/5/8 form helix-swapped dimers. Dimers and monomers are also present in solution, as revealed by NMR. To decipher the characteristics that defined these dimers, we designed chimeric MH1 domains and characterized them using X-ray crystallography. We found that swapping the loop1 between TGFβ- and BMP- activated MH1 domains switches the dimer/monomer propensities. When we scanned the distribution of Smad-bound motifs in ChIP-Seq peaks (Chromatin immunoprecipitation followed by high-throughput sequencing) in Smad-responsive genes, we observed specific site clustering and spacing depending on whether the peaks correspond to BMP- or TGFβ-responsive genes. We also identified significant correlations between site distribution and monomer or dimer propensities. We propose that the MH1 monomer or dimer propensity of Smads contributes to the distinct motif selection genome-wide and together with the MH2 domain association, help define the composition of R-Smad/Smad4 trimeric complexes.
Collapse
Affiliation(s)
- Lidia Ruiz
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Zuzanna Kaczmarska
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France.,International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, Warsaw 02-109, Poland
| | - Tiago Gomes
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Eric Aragon
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Carles Torner
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Regina Freier
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Blazej Baginski
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Natàlia de Martin Garrido
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - José A Marquez
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Radoslaw Pluta
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Maria J Macias
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain.,ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
21
|
Long non-coding RNA ARHGAP5-AS1 inhibits migration of breast cancer cell via stabilizing SMAD7 protein. Breast Cancer Res Treat 2021; 189:607-619. [PMID: 34370213 PMCID: PMC8505316 DOI: 10.1007/s10549-021-06286-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/02/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Tumor metastasis is the main cause of death from breast cancer patients and cell migration plays a critical role in cancer metastasis. Recent studies have shown long non-coding RNAs (lncRNAs) play an essential role in the initiation and progression of cancer. In the present study, the role of an LncRNA, Rho GTPase Activating Protein 5- Antisense 1 (ARHGAP5-AS1) in breast cancer was investigated. METHODS RNA sequencing was performed to find out dysregulated LncRNAs in MDA-MB-231-LM2 cells. Transwell migration assays and F-actin staining were utilized to estimate cell migration ability. RNA pulldown assays and RNA immunoprecipitation were used to prove the interaction between ARHGAP5-AS1 and SMAD7. Western blot and immunofluorescence imaging were used to examine the protein levels. Dual luciferase reporter assays were performed to evaluate the activation of TGF-β signaling. RESULTS We analyzed the RNA-seq data of MDA-MB-231 and its highly metastatic derivative MDA-MB-231-LM2 cell lines (referred to as LM2) and identified a novel lncRNA (NR_027263) named as ARHGAP5-AS1, which expression was significantly downregulated in LM2 cells. Further functional investigation showed ARHGAP5-AS1 could inhibit cell migration via suppression of stress fibers in breast cancer cell lines. Afterwards, SMAD7 was further identified to interact with ARHGAP5-AS1 by its PY motif and thus its ubiquitination and degradation was blocked due to reduced interaction with E3 ligase SMURF1 and SMURF2. Moreover, ARHGAP5-AS1 could inhibit TGF-β signaling pathway due to its inhibitory role on SMAD7. CONCLUSION ARHGAP5-AS1 inhibits breast cancer cell migration via stabilization of SMAD7 protein and could serve as a novel biomarker and a potential target for breast cancer in the future.
Collapse
|
22
|
Bacon K, Bowen J, Reese H, Rao BM, Menegatti S. Use of Target-Displaying Magnetized Yeast in Screening mRNA-Display Peptide Libraries to Identify Ligands. ACS COMBINATORIAL SCIENCE 2020; 22:738-744. [PMID: 33089990 DOI: 10.1021/acscombsci.0c00171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work presents the first use of yeast-displayed protein targets for screening mRNA-display libraries of cyclic and linear peptides. The WW domains of Yes-Associated Protein 1 (WW-YAP) and mitochondrial import receptor subunit TOM22 were adopted as protein targets. Yeast cells displaying WW-YAP or TOM22 were magnetized with iron oxide nanoparticles to enable the isolation of target-binding mRNA-peptide fusions. Equilibrium adsorption studies were conducted to estimate the binding affinity (KD) of select WW-YAP-binding peptides: KD values of 37 and 4 μM were obtained for cyclo[M-AFRLC-K] and its linear cognate, and 40 and 3 μM for cyclo[M-LDFVNHRSRG-K] and its linear cognate, respectively. TOM22-binding peptide cyclo[M-PELNRAI-K] was conjugated to magnetic beads and incubated with yeast cells expressing TOM22 and luciferase. A luciferase-based assay showed a 4.5-fold higher binding of TOM22+ yeast compared to control cells. This work demonstrates that integrating mRNA- and yeast-display accelerates the discovery of peptide ligands.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Room 2-009, Raleigh, North Carolina 27606, United States
| | - John Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Room 2-009, Raleigh, North Carolina 27606, United States
| | - Hannah Reese
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Room 2-009, Raleigh, North Carolina 27606, United States
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Room 2-009, Raleigh, North Carolina 27606, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Drive, Raleigh, North Carolina 27606, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Room 2-009, Raleigh, North Carolina 27606, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Drive, Raleigh, North Carolina 27606, United States
| |
Collapse
|
23
|
Murayama K, Kato-Murayama M, Itoh Y, Miyazono K, Miyazawa K, Shirouzu M. Structural basis for inhibitory effects of Smad7 on TGF-β family signaling. J Struct Biol 2020; 212:107661. [PMID: 33166654 DOI: 10.1016/j.jsb.2020.107661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 01/10/2023]
Abstract
Smad6 and Smad7 are classified as inhibitory Smads (I-Smads). They are crucial in the fine-tuning of signals by cytokines of the transforming growth factor-β (TGF-β) family. They are negative feedback regulators and principally target the activated type I receptors as well as the activated Smad complexes, but with distinct specificities. Smad7 inhibits Smad signaling from all seven type I receptors of the TGF-β family, whereas Smad6 preferentially inhibits Smad signaling from the bone morphogenetic protein (BMP) type I receptors, BMPR1A and BMPR1B. The target specificities are attributed to the C-terminal MH2 domain. Notably, Smad7 utilizes two alternative molecular surfaces for its inhibitory function against type I receptors. One is a basic groove composed of the first α-helix and the L3 loop, a structure that is shared with Smad6 and receptor-regulated Smads (R-Smads). The other is a three-finger-like structure (consisting of residues 331-361, 379-387, and the L3 loop) that is unique to Smad7. The underlying structural basis remains to be elucidated in detail. Here, we report the crystal structure of the MH2 domain of mouse Smad7 at 1.9 Å resolution. The three-finger-like structure is stabilized by a network of hydrogen bonds between residues 331-361 and 379-387, thus forming a molecular surface unique to Smad7. Furthermore, we discuss how Smad7 antagonizes the activated Smad complexes composed of R-Smad and Smad4, a common partner Smad.
Collapse
Affiliation(s)
- Kazutaka Murayama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryomachi, Aoba, Sendai 980-8575, Japan
| | - Miyuki Kato-Murayama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
24
|
de Ceuninck van Capelle C, Spit M, Ten Dijke P. Current perspectives on inhibitory SMAD7 in health and disease. Crit Rev Biochem Mol Biol 2020; 55:691-715. [PMID: 33081543 DOI: 10.1080/10409238.2020.1828260] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transforming growth factor β (TGF-β) family members play an extensive role in cellular communication that orchestrates both early development and adult tissue homeostasis. Aberrant TGF-β family signaling is associated with a pathological outcome in numerous diseases, and in-depth understanding of molecular and cellular processes could result in therapeutic benefit for patients. Canonical TGF-β signaling is mediated by receptor-regulated SMADs (R-SMADs), a single co-mediator SMAD (Co-SMAD), and inhibitory SMADs (I-SMADs). SMAD7, one of the I-SMADs, is an essential negative regulator of the pleiotropic TGF-β and bone morphogenetic protein (BMP) signaling pathways. In a negative feedback loop, SMAD7 inhibits TGF-β signaling by providing competition for TGF-β type-1 receptor (TβRI), blocking phosphorylation and activation of SMAD2. Moreover, SMAD7 recruits E3 ubiquitin SMURF ligases to the type I receptor to promote ubiquitin-mediated proteasomal degradation. In addition to its role in TGF-β and BMP signaling, SMAD7 is regulated by and implicated in a variety of other signaling pathways and functions as a mediator of crosstalk. This review is focused on SMAD7, its function in TGF-β and BMP signaling, and its role as a downstream integrator and crosstalk mediator. This crucial signaling molecule is tightly regulated by various mechanisms. We provide an overview of the ways by which SMAD7 is regulated, including noncoding RNAs (ncRNAs) and post-translational modifications (PTMs). Finally, we discuss its role in diseases, such as cancer, fibrosis, and inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
| | - Maureen Spit
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
25
|
OTUD4 enhances TGFβ signalling through regulation of the TGFβ receptor complex. Sci Rep 2020; 10:15725. [PMID: 32973272 PMCID: PMC7519109 DOI: 10.1038/s41598-020-72791-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/02/2020] [Indexed: 11/18/2022] Open
Abstract
Systematic control of the transforming growth factor-β (TGFβ) pathway is essential to keep the amplitude and the intensity of downstream signalling at appropriate levels. Ubiquitination plays a crucial role in the general regulation of this pathway. Here we identify the deubiquitinating enzyme OTUD4 as a transcriptional target of the TGFβ pathway that functions through a positive feedback loop to enhance overall TGFβ activity. Interestingly we demonstrate that OTUD4 functions through both catalytically dependent and independent mechanisms to regulate TGFβ activity. Specifically, we find that OTUD4 enhances TGFβ signalling by promoting the membrane presence of TGFβ receptor I. Furthermore, we demonstrate that OTUD4 inactivates the TGFβ negative regulator SMURF2 suggesting that OTUD4 regulates multiple nodes of the TGFβ pathway to enhance TGFβ activity.
Collapse
|
26
|
Liu M, Yan M, Lv H, Wang B, Lv X, Zhang H, Xiang S, Du J, Liu T, Tian Y, Zhang X, Zhou F, Cheng T, Zhu Y, Jiang H, Cao Y, Ai D. Macrophage K63-Linked Ubiquitination of YAP Promotes Its Nuclear Localization and Exacerbates Atherosclerosis. Cell Rep 2020; 32:107990. [PMID: 32755583 DOI: 10.1016/j.celrep.2020.107990] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/23/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
The Hippo/Yes-associated protein (YAP) pathway has pivotal roles in innate immune responses against pathogens in macrophages. However, the role of YAP in macrophages during atherosclerosis and its mechanism of YAP activation remain unknown. Here, we find that YAP overexpression in myeloid cells aggravates atherosclerotic lesion size and infiltration of macrophages, whereas YAP deficiency reduces atherosclerotic plaque. Tumor necrosis factor receptor-associated factor 6 (TRAF6), a downstream effector of interleukin-1β (IL-1β), triggers YAP ubiquitination at K252, which interrupts the interaction between YAP and angiomotin and results in enhanced YAP nuclear translocation. The recombinant IL-1 receptor antagonist anakinra reduces atherosclerotic lesion formation, which is abrogated by YAP overexpression. YAP level is increased in human and mouse atherosclerotic vessels, and plasma IL-1β level in patients with STEMI is correlated with YAP protein level in peripheral blood mononuclear cells. These findings elucidate a mechanism of YAP activation, which might be a therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Mingming Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Meng Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Huizhen Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Biqing Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Xue Lv
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hang Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Song Xiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yikui Tian
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Xu Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Fangfang Zhou
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yi Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden.
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
27
|
Huang S, Hsu L, Chang N. Functional role of WW domain-containing proteins in tumor biology and diseases: Insight into the role in ubiquitin-proteasome system. FASEB Bioadv 2020; 2:234-253. [PMID: 32259050 PMCID: PMC7133736 DOI: 10.1096/fba.2019-00060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/23/2019] [Accepted: 01/31/2020] [Indexed: 01/10/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) governs the protein degradation process and balances proteostasis and cellular homeostasis. It is a well-controlled mechanism, in which removal of the damaged or excessive proteins is essential in driving signal pathways for cell survival or death. Accumulation of damaged proteins and failure in removal may contribute to disease initiation such as in cancers and neurodegenerative diseases. In this notion, specific protein-protein interaction is essential for the recognition of targeted proteins in UPS. WW domain plays an indispensable role in the protein-protein interactions during signaling. Among the 51 WW domain-containing proteins in the human proteomics, near one-quarter of them are involved in the UPS, suggesting that WW domains are crucial modules for driving the protein-protein binding and subsequent ubiquitination and degradation. In this review, we detail a broad spectrum of WW domains in protein-protein recognition, signal transduction, and relevance to diseases. New perspectives in dissecting the molecular interactions are provided.
Collapse
Affiliation(s)
- Shenq‐Shyang Huang
- Graduate Program of Biotechnology in MedicineInstitute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchuTaiwan, ROC
| | - Li‐Jin Hsu
- Department of Medical Laboratory Science and BiotechnologyNational Cheng Kung University College of MedicineTainanTaiwan, ROC
| | - Nan‐Shan Chang
- Institute of Molecular MedicineNational Cheng Kung University College of MedicineTainanTaiwan, ROC
- Department of NeurochemistryNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNYUSA
- Graduate Institute of Biomedical SciencesCollege of MedicineChina Medical UniversityTaichungTaiwan, ROC
| |
Collapse
|
28
|
The long-noncoding RNA MALAT1 regulates TGF-β/Smad signaling through formation of a lncRNA-protein complex with Smads, SETD2 and PPM1A in hepatic cells. PLoS One 2020; 15:e0228160. [PMID: 31995604 PMCID: PMC6988980 DOI: 10.1371/journal.pone.0228160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated the implication of long noncoding RNAs (lncRNAs) in a variety of physiological and pathological processes. However, the majority of lncRNAs are functionally unknown. The current study describes that the lncRNA MALAT1 regulates TGF-β/Smad signaling pathway through formation of a lncRNA-protein complex containing Smads, SETD2 and PPM1A. Our data show that this lncRNA-proteins complex facilitates the dephosphorylation of pSmad2/3 by providing the interaction niche for pSmad2/3 and their specific phosphatase PPM1A, thus terminating TGF-β/Smad signaling in hepatic cells. Based on these mechanistic studies, we performed further experiments to determine whether depletion of MALAT1 would augment cellular TGF-β/Smad signaling. We observed that MALAT1 depletion enhanced TGF-β/Smad signaling response, as reflect by amplification of Smad-mediated differentiation of induced pluripotent stem (iPS) cells to hepatocytes. Our experimental results demonstrate an important role of MALAT1 for regulation of TGF-β/Smad signaling in hepatic cells. Given the diverse functions of TGF-β/Smad pathway in various physiological and pathogenic processes, our results described in the current study will have broad implications for further understanding the role of MALAT1 in TGF-β/Smad pathway in human biology and disease.
Collapse
|
29
|
Han Z, Dash S, Sagum CA, Ruthel G, Jaladanki CK, Berry CT, Schwoerer MP, Harty NM, Freedman BD, Bedford MT, Fan H, Sidhu SS, Sudol M, Shtanko O, Harty RN. Modular mimicry and engagement of the Hippo pathway by Marburg virus VP40: Implications for filovirus biology and budding. PLoS Pathog 2020; 16:e1008231. [PMID: 31905227 PMCID: PMC6977764 DOI: 10.1371/journal.ppat.1008231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/23/2020] [Accepted: 11/21/2019] [Indexed: 01/16/2023] Open
Abstract
Ebola (EBOV) and Marburg (MARV) are members of the Filoviridae family, which continue to emerge and cause sporadic outbreaks of hemorrhagic fever with high mortality rates. Filoviruses utilize their VP40 matrix protein to drive virion assembly and budding, in part, by recruitment of specific WW-domain-bearing host proteins via its conserved PPxY Late (L) domain motif. Here, we screened an array of 115 mammalian, bacterially expressed and purified WW-domains using a PPxY-containing peptide from MARV VP40 (mVP40) to identify novel host interactors. Using this unbiased approach, we identified Yes Associated Protein (YAP) and Transcriptional co-Activator with PDZ-binding motif (TAZ) as novel mVP40 PPxY interactors. YAP and TAZ function as downstream transcriptional effectors of the Hippo signaling pathway that regulates cell proliferation, migration and apoptosis. We demonstrate that ectopic expression of YAP or TAZ along with mVP40 leads to significant inhibition of budding of mVP40 VLPs in a WW-domain/PPxY dependent manner. Moreover, YAP colocalized with mVP40 in the cytoplasm, and inhibition of mVP40 VLP budding was more pronounced when YAP was localized predominantly in the cytoplasm rather than in the nucleus. A key regulator of YAP nuclear/cytoplasmic localization and function is angiomotin (Amot); a multi-PPxY containing protein that strongly interacts with YAP WW-domains. Interestingly, we found that expression of PPxY-containing Amot rescued mVP40 VLP egress from either YAP- or TAZ-mediated inhibition in a PPxY-dependent manner. Importantly, using a stable Amot-knockdown cell line, we found that expression of Amot was critical for efficient egress of mVP40 VLPs as well as egress and spread of authentic MARV in infected cell cultures. In sum, we identified novel negative (YAP/TAZ) and positive (Amot) regulators of MARV VP40-mediated egress, that likely function in part, via competition between host and viral PPxY motifs binding to modular host WW-domains. These findings not only impact our mechanistic understanding of virus budding and spread, but also may impact the development of new antiviral strategies. By screening an array of 115 mammalian WW-domains with the PPxY motif from MARV VP40 (mVP40), we identified YAP1 and TAZ, transcriptional effectors of the Hippo pathway, as mVP40 interactors, and demonstrated that ectopically expressed YAP1 or TAZ inhibited budding of mVP40 virus-like particles (VLPs) in a WW-domain/PPxY dependent manner. Angiomotin (Amot), a multi-PPxY containing regulator of YAP1 nuclear/cytoplasmic localization and function, rescued mVP40 VLP egress from either YAP1- or TAZ-mediated inhibition in a PPxY-dependent manner. Indeed, endogenous Amot expression was critical for egress of mVP40 VLPs and authentic MARV. In sum, we have revealed a link between the Hippo pathway and filovirus egress by identifying negative (YAP/TAZ) and positive (Amot) regulators of MARV VP40-mediated egress.
Collapse
Affiliation(s)
- Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shantoshini Dash
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cari A. Sagum
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chaitanya K. Jaladanki
- Department of Physiology and Mechanobiology Institute at National University of Singapore, Institute for Molecular and Cell Biology, IMCB, and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Corbett T. Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael P. Schwoerer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nina M. Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bruce D. Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America
| | - Hao Fan
- Department of Physiology and Mechanobiology Institute at National University of Singapore, Institute for Molecular and Cell Biology, IMCB, and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sachdev S. Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marius Sudol
- Department of Physiology and Mechanobiology Institute at National University of Singapore, Institute for Molecular and Cell Biology, IMCB, and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Olena Shtanko
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Ronald N. Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
30
|
Vargas RE, Duong VT, Han H, Ta AP, Chen Y, Zhao S, Yang B, Seo G, Chuc K, Oh S, El Ali A, Razorenova OV, Chen J, Luo R, Li X, Wang W. Elucidation of WW domain ligand binding specificities in the Hippo pathway reveals STXBP4 as YAP inhibitor. EMBO J 2020; 39:e102406. [PMID: 31782549 PMCID: PMC6939200 DOI: 10.15252/embj.2019102406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
The Hippo pathway, which plays a critical role in organ size control and cancer, features numerous WW domain-based protein-protein interactions. However, ~100 WW domains and 2,000 PY motif-containing peptide ligands are found in the human proteome, raising a "WW-PY" binding specificity issue in the Hippo pathway. In this study, we have established the WW domain binding specificity for Hippo pathway components and uncovered a unique amino acid sequence required for it. By using this criterion, we have identified a WW domain-containing protein, STXBP4, as a negative regulator of YAP. Mechanistically, STXBP4 assembles a protein complex comprising α-catenin and a group of Hippo PY motif-containing components/regulators to inhibit YAP, a process that is regulated by actin cytoskeleton tension. Interestingly, STXBP4 is a potential tumor suppressor for human kidney cancer, whose downregulation is correlated with YAP activation in clear cell renal cell carcinoma. Taken together, our study not only elucidates the WW domain binding specificity for the Hippo pathway, but also reveals STXBP4 as a player in actin cytoskeleton tension-mediated Hippo pathway regulation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Hippo Signaling Pathway
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Prognosis
- Protein Binding
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Survival Rate
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
- Vesicular Transport Proteins/genetics
- Vesicular Transport Proteins/metabolism
- WW Domains
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Rebecca E Vargas
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Vy Thuy Duong
- Department of ChemistryUniversity of California, IrvineIrvineCAUSA
| | - Han Han
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Albert Paul Ta
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Yuxuan Chen
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Shiji Zhao
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Bing Yang
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Gayoung Seo
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Kimberly Chuc
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Sunwoo Oh
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Amal El Ali
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCAUSA
| | - Olga V Razorenova
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCAUSA
| | - Junjie Chen
- Department of Experimental Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Ray Luo
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCAUSA
- Department of Chemical and Biomolecular EngineeringUniversity of California, IrvineIrvineCAUSA
- Department of Materials Science and EngineeringUniversity of California, IrvineIrvineCAUSA
- Department of Biomedical EngineeringUniversity of California, IrvineIrvineCAUSA
| | - Xu Li
- School of Life SciencesWestlake UniversityHangzhouZhejiangChina
| | - Wenqi Wang
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| |
Collapse
|
31
|
van Soldt BJ, Cardoso WV. Hippo-Yap/Taz signaling: Complex network interactions and impact in epithelial cell behavior. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e371. [PMID: 31828974 DOI: 10.1002/wdev.371] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
The Hippo pathway has emerged as a crucial integrator of signals in biological events from development to adulthood and in diseases. Although extensively studied in Drosophila and in cell cultures, major gaps of knowledge still remain on how this pathway functions in mammalian systems. The pathway consists of a growing number of components, including core kinases and adaptor proteins, which control the subcellular localization of the transcriptional co-activators Yap and Taz through phosphorylation of serines at key sites. When localized to the nucleus, Yap/Taz interact with TEAD transcription factors to induce transcriptional programs of proliferation, stemness, and growth. In the cytoplasm, Yap/Taz interact with multiple pathways to regulate a variety of cellular functions or are targeted for degradation. The Hippo pathway receives cues from diverse intracellular and extracellular inputs, including growth factor and integrin signaling, polarity complexes, and cell-cell junctions. This review highlights the mechanisms of regulation of Yap/Taz nucleocytoplasmic shuttling and their implications for epithelial cell behavior using the lung as an intriguing example of this paradigm. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Signaling Pathways > Cell Fate Signaling Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Benjamin J van Soldt
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Wellington V Cardoso
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
32
|
Bouchoucha A, Waltz F, Bonnard G, Arrivé M, Hammann P, Kuhn L, Schelcher C, Zuber H, Gobert A, Giegé P. Determination of protein-only RNase P interactome in Arabidopsis mitochondria and chloroplasts identifies a complex between PRORP1 and another NYN domain nuclease. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:549-561. [PMID: 31319441 DOI: 10.1111/tpj.14458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
The essential type of endonuclease that removes 5' leader sequences from transfer RNA precursors is called RNase P. While ribonucleoprotein RNase P enzymes containing a ribozyme are found in all domains of life, another type of RNase P called 'PRORP', for 'PROtein-only RNase P', is composed of protein that occurs only in a wide variety of eukaryotes, in organelles and in the nucleus. Here, to find how PRORP functions integrate with other cell processes, we explored the protein interaction network of PRORP1 in Arabidopsis mitochondria and chloroplasts. Although PRORP proteins function as single subunit enzymes in vitro, we found that PRORP1 occurs in protein complexes and is present in high-molecular-weight fractions that contain mitochondrial ribosomes. The analysis of immunoprecipitated protein complexes identified proteins involved in organellar gene expression processes. In particular, direct interaction was established between PRORP1 and MNU2 a mitochondrial nuclease. A specific domain of MNU2 and a conserved signature of PRORP1 were found to be directly accountable for this protein interaction. Altogether, results revealed the existence of an RNA maturation complex in Arabidopsis mitochondria and suggested that PRORP proteins cooperated with other gene expression factors for RNA maturation in vivo.
Collapse
Affiliation(s)
- Ayoub Bouchoucha
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Florent Waltz
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Géraldine Bonnard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Mathilde Arrivé
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 15 rue René Descartes, Strasbourg, F-67084, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 15 rue René Descartes, Strasbourg, F-67084, France
| | - Cédric Schelcher
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Anthony Gobert
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Giegé
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
33
|
c-Met activation leads to the establishment of a TGFβ-receptor regulatory network in bladder cancer progression. Nat Commun 2019; 10:4349. [PMID: 31554791 PMCID: PMC6761206 DOI: 10.1038/s41467-019-12241-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
Treatment of muscle-invasive bladder cancer remains a major clinical challenge. Aberrant HGF/c-MET upregulation and activation is frequently observed in bladder cancer correlating with cancer progression and invasion. However, the mechanisms underlying HGF/c-MET-mediated invasion in bladder cancer remains unknown. As part of a negative feedback loop SMAD7 binds to SMURF2 targeting the TGFβ receptor for degradation. Under these conditions, SMAD7 acts as a SMURF2 agonist by disrupting the intramolecular interactions within SMURF2. We demonstrate that HGF stimulates TGFβ signalling through c-SRC-mediated phosphorylation of SMURF2 resulting in loss of SMAD7 binding and enhanced SMURF2 C2-HECT interaction, inhibiting SMURF2 and enhancing TGFβ receptor stabilisation. This upregulation of the TGFβ pathway by HGF leads to TGFβ-mediated EMT and invasion. In vivo we show that TGFβ receptor inhibition prevents bladder cancer invasion. Furthermore, we make a rationale for the use of combinatorial TGFβ and MEK inhibitors for treatment of high-grade non-muscle-invasive bladder cancers.
Collapse
|
34
|
Smad7 Binds Differently to Individual and Tandem WW3 and WW4 Domains of WWP2 Ubiquitin Ligase Isoforms. Int J Mol Sci 2019; 20:ijms20194682. [PMID: 31546607 PMCID: PMC6801763 DOI: 10.3390/ijms20194682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
WWP2 is an E3 ubiquitin ligase that differentially regulates the contextual tumour suppressor/progressor TGFβ signalling pathway by alternate isoform expression. WWP2 isoforms select signal transducer Smad2/3 or inhibitor Smad7 substrates for degradation through different compositions of protein–protein interaction WW domains. The WW4 domain-containing WWP2-C induces Smad7 turnover in vivo and positively regulates the metastatic epithelial–mesenchymal transition programme. This activity and the overexpression of these isoforms in human cancers make them candidates for therapeutic intervention. Here, we use NMR spectroscopy to solve the solution structure of the WWP2 WW4 domain and observe the binding characteristics of Smad7 substrate peptide. We also reveal that WW4 has an enhanced affinity for a Smad7 peptide phosphorylated at serine 206 adjacent to the PPxY motif. Using the same approach, we show that the WW3 domain also binds Smad7 and has significantly enhanced Smad7 binding affinity when expressed in tandem with the WW4 domain. Furthermore, and relevant to these biophysical findings, we present evidence for a novel WWP2 isoform (WWP2C-ΔHECT) comprising WW3–WW4 tandem domains and a truncated HECT domain that can inhibit TGFβ signalling pathway activity, providing a further layer of complexity and feedback to the WWP2 regulatory apparatus. Collectively, our data reveal a structural platform for Smad substrate selection by WWP2 isoform WW domains that may be significant in the context of WWP2 isoform switching linked to tumorigenesis.
Collapse
|
35
|
Yan X, Zhang W, Kong F, Li Q, Shan W, Zhang C, Han T, Che Y, Zhang Y. Ginsenoside Rg3 Reduces Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor-β1 by Inactivation of AKT in HMrSV5 Peritoneal Mesothelial Cells. Med Sci Monit 2019; 25:6972-6979. [PMID: 31527568 PMCID: PMC6761848 DOI: 10.12659/msm.915991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Ginsenosides, including ginsenoside Rg3, are components of Panax ginseng C.A. Meyer (Araliaceae) used in traditional Chinese medicine. Long-term peritoneal dialysis induces peritoneal fibrosis that impairs ultrafiltration and is associated with epithelial-mesenchymal transition (EMT) of peritoneal cells. This study aimed to investigate the effects of ginsenoside Rg3 on EMT induced by transforming growth factor-β1 (TGF-β1) in HMrSV5 human peritoneal mesothelial cells. Material/Methods The cell counting kit-8 (CCK-8) assay measured HMrSV5 cell viability. The expression of EMT markers, E-cadherin, vimentin, and α-smooth muscle actin (α-SMA) were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The wound-healing assay determined cell migration. The S-phase of the cell cycle was assessed by 5-ethynyl-2′-deoxyuridine (EdU) labeling, and expression of phosphorylated AKT was measured by Western blot. The effect of ginsenoside Rg3 and the AKT activator SC79 on the TGF-β1-induced EMT of HMrSV5 cells were evaluated. Results Low concentration of ginsenoside Rg3 did not effect cell viability of HMrSV5 cells. TGF-β1 treatment decreased the expression of E-cadherin, and increased the expression of vimentin and α-SMA and promoted cell migration of HMrSV5 cells. However, co-treatment of ginsenoside Rg3 and TGF-β1 significantly reduced TGF-β1-induced EMT in HMrSV5 cells. TGF-β1 increased the phosphorylation of AKT and increased the expression of Smurf2. Ginsenoside Rg3 reduced TGF-β1-induced activation of AKT and Smurf2. SC79 reversed the effects of ginsenoside Rg3 on TGF-β1-induced EMT in HMrSV5 cells. Conclusions Ginsenoside Rg3 inhibited EMT induced by TGF-β1 in HMrSV5 human peritoneal mesothelial cells by inhibiting the activation of AKT.
Collapse
Affiliation(s)
- Xu Yan
- Department of Nephrology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China (mainland)
| | - Wei Zhang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Fanwu Kong
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Qianbo Li
- Department of Nephrology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China (mainland)
| | - Wei Shan
- Department of Nephrology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China (mainland)
| | - Chao Zhang
- Department of Nephrology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China (mainland)
| | - Tingting Han
- Department of Nephrology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China (mainland)
| | - Yu Che
- Department of Nephrology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China (mainland)
| | - Yan Zhang
- Department of Nephrology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China (mainland)
| |
Collapse
|
36
|
Schmidhauser M, Renz PF, Tsikrika P, Freimann R, Wutz A, Wrana JL, Beyer TA. Gaining Insights into the Function of Post-Translational Protein Modification Using Genome Engineering and Molecular Cell Biology. J Mol Biol 2019; 431:3920-3932. [PMID: 31306665 DOI: 10.1016/j.jmb.2019.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/18/2022]
Abstract
Modifications by kinases are a fast and reversible mechanism to diversify the function of the targeted proteins. The OCT4 transcription factor is essential for preimplantation development and pluripotency of embryonic stem cells (ESC), and its activity is tightly regulated by post-transcriptional modifications. Several phosphorylation sites have been identified by systemic approaches and their functions proposed. Here, we combined molecular and cellular biology with CRISPR/Cas9-mediated genome engineering to pinpoint the function of serine 12 of OCT4 in ESCs. Using chemical inhibitors and an antibody specific to OCT4 phosphorylated on S12, we identified cyclin-dependent kinase (CDK) 7 as upstream kinase. Surprisingly, generation of isogenic mESCs that endogenously ablate S12 revealed no effects on pluripotency and self-renewal, potentially due to compensation by other phosphorylation events. Our approach reveals that modification of distinct amino acids by precise genome engineering can help to clarify the functions of post-translational modifications on proteins encoded by essential gene in an endogenous context.
Collapse
Affiliation(s)
| | - Peter F Renz
- Institute for Molecular Health Sciences, ETH Zurich, Switzerland; Life Science Zurich Graduate School, Molecular Life Science program, University of Zürich, Switzerland
| | - Panagiota Tsikrika
- Institute for Molecular Health Sciences, ETH Zurich, Switzerland; Life Science Zurich Graduate School, Molecular Life Science program, University of Zürich, Switzerland
| | - Remo Freimann
- Institute for Molecular Health Sciences, ETH Zurich, Switzerland
| | - Anton Wutz
- Institute for Molecular Health Sciences, ETH Zurich, Switzerland
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Tobias A Beyer
- Institute for Molecular Health Sciences, ETH Zurich, Switzerland.
| |
Collapse
|
37
|
Rollins NJ, Brock KP, Poelwijk FJ, Stiffler MA, Gauthier NP, Sander C, Marks DS. Inferring protein 3D structure from deep mutation scans. Nat Genet 2019; 51:1170-1176. [PMID: 31209393 PMCID: PMC7295002 DOI: 10.1038/s41588-019-0432-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/29/2019] [Indexed: 11/09/2022]
Abstract
We describe an experimental method of three-dimensional (3D) structure determination that exploits the increasing ease of high-throughput mutational scans. Inspired by the success of using natural, evolutionary sequence covariation to compute protein and RNA folds, we explored whether 'laboratory', synthetic sequence variation might also yield 3D structures. We analyzed five large-scale mutational scans and discovered that the pairs of residues with the largest positive epistasis in the experiments are sufficient to determine the 3D fold. We show that the strongest epistatic pairings from genetic screens of three proteins, a ribozyme and a protein interaction reveal 3D contacts within and between macromolecules. Using these experimental epistatic pairs, we compute ab initio folds for a GB1 domain (within 1.8 Å of the crystal structure) and a WW domain (2.1 Å). We propose strategies that reduce the number of mutants needed for contact prediction, suggesting that genomics-based techniques can efficiently predict 3D structure.
Collapse
Affiliation(s)
- Nathan J Rollins
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Kelly P Brock
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Frank J Poelwijk
- cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael A Stiffler
- cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicholas P Gauthier
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Chris Sander
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
38
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
39
|
Sluimer J, Distel B. Regulating the human HECT E3 ligases. Cell Mol Life Sci 2018; 75:3121-3141. [PMID: 29858610 PMCID: PMC6063350 DOI: 10.1007/s00018-018-2848-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 01/09/2023]
Abstract
Ubiquitination, the covalent attachment of ubiquitin to proteins, by E3 ligases of the HECT (homologous to E6AP C terminus) family is critical in controlling diverse physiological pathways. Stringent control of HECT E3 ligase activity and substrate specificity is essential for cellular health, whereas deregulation of HECT E3s plays a prominent role in disease. The cell employs a wide variety of regulatory mechanisms to control HECT E3 activity and substrate specificity. Here, we summarize the current understanding of these regulatory mechanisms that control HECT E3 function. Substrate specificity is generally determined by interactions of adaptor proteins with domains in the N-terminal extensions of HECT E3 ligases. These N-terminal domains have also been found to interact with the HECT domain, resulting in the formation of inhibitory conformations. In addition, catalytic activity of the HECT domain is commonly regulated at the level of E2 recruitment and through HECT E3 oligomerization. The previously mentioned regulatory mechanisms can be controlled through protein-protein interactions, post-translational modifications, the binding of calcium ions, and more. Functional activity is determined not only by substrate recruitment and catalytic activity, but also by the type of ubiquitin polymers catalyzed to the substrate. While this is often determined by the specific HECT member, recent studies demonstrate that HECT E3s can be modulated to alter the type of ubiquitin polymers they catalyze. Insight into these diverse regulatory mechanisms that control HECT E3 activity may open up new avenues for therapeutic strategies aimed at inhibition or enhancement of HECT E3 function in disease-related pathways.
Collapse
Affiliation(s)
- Jasper Sluimer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Neuroscience, Erasmus Medical Center, Wijtemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
40
|
Zhu JY, Lin S, Ye J. YAP and TAZ, the conductors that orchestrate eye development, homeostasis, and disease. J Cell Physiol 2018; 234:246-258. [PMID: 30094836 DOI: 10.1002/jcp.26870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 12/25/2022]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators established as a nexus in numerous signaling pathways, notably in Hippo signaling. Previous research revealed multifarious function of YAP and TAZ in oncology and cardiovasology. Recently, the focus has been laid on their pivotal role in eye morphogenesis and homeostasis. In this review, we synthesize advances of YAP and TAZ function during eye development in different model organisms, introduce their function in different ocular tissues and eye diseases, and highlight the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jing-Yi Zhu
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Sen Lin
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
41
|
Biophysical studies and modelling indicate the binding preference of TAZ WW domain for LATS1 PPxY motif. Biochem Biophys Res Commun 2018; 502:307-312. [PMID: 29787761 DOI: 10.1016/j.bbrc.2018.05.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 11/22/2022]
Abstract
The Hippo tumor suppressor pathway is an important regulator of cell proliferation and apoptosis, and signal transduction occurs through phosphorylation of the effector protein TAZ by the serine/threonine kinase LATS1/2. Here, we report the biophysical and computational studies to characterize the interaction between TAZ and LATS1/2 through WW domain-PPxY motif binding. We show that the TAZ WW domain exhibits a binding preference for the second of the two PPxY motifs of LATS1 in vitro. We modelled the structure of the domain in complex with LATS1 PPxY2 peptide and, through molecular dynamics simulations, show that WW domain-PPxY2 complex is stable with some flexibility in the peptide region. Next, we predict and verify that L143 and T150 of the WW domain are important for TAZ binding with the PPxY2 peptide using mutational and isothermal titration calorimetric studies. Furthermore, we suggest that the electrostatic potential of charged residues within the binding pocket may influence the ligand affinity among otherwise highly similar WW domains.
Collapse
|
42
|
Molecular mechanisms underlying TGF-ß/Hippo signaling crosstalks – Role of baso-apical epithelial cell polarity. Int J Biochem Cell Biol 2018; 98:75-81. [DOI: 10.1016/j.biocel.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/31/2022]
|
43
|
Qin Z, Xia W, Fisher GJ, Voorhees JJ, Quan T. YAP/TAZ regulates TGF-β/Smad3 signaling by induction of Smad7 via AP-1 in human skin dermal fibroblasts. Cell Commun Signal 2018; 16:18. [PMID: 29695252 PMCID: PMC5918965 DOI: 10.1186/s12964-018-0232-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/17/2018] [Indexed: 12/22/2022] Open
Abstract
Background Transcription factors YAP and TAZ function as the primary mediators of the Hippo pathway. Yet, crosstalk of YAP and TAZ with other signaling pathways remains relatively unexplored. We have explored the impact of YAP and TAZ levels on the TGF-β/Smad signaling pathway in human skin dermal fibroblasts. Methods YAP and TAZ levels in dermal fibroblasts were reduced in dermal fibroblasts by siRNA-mediated knockdown. The effects of YAP and TAZ reduction on TGF-β/Smad signaling were examined by quantitative real-time PCR, Western analysis, and immunostaining. Luciferase reporter assays and electrophoretic mobility shift assays were conducted to investigate the transcription factor DNA-binding and transcriptional activities. Results Knockdown of both YAP and TAZ (YAP/TAZ), but not either separately, impaired TGF-β1-induced Smad3 phosphorylation and Smad3 transcriptional activity, thereby inhibiting the expression of TGF-β target genes. This reduction by reduced levels of YAP/TAZ results from induction of inhibitory Smad7, which inhibits Smad3 phosphorylation and activity by TGF-β1. Conversely, prevention of Smad7 induction restores Smad3 phosphorylation and Smad3 transcriptional activity in fibroblasts that have reduced YAP/TAZ. In agreement with these findings, inhibition of YAP/TAZ transcriptional activity, similar to the reduction of YAP/TAZ levels, also significantly induced Smad7 and impaired TGF-β/Smad signaling. Further investigations revealed that reduced levels of YAP/TAZ led to induction of activator protein-1 (AP-1) activity, Activated AP-1 bound to DNA sequences in the Smad7 gene promoter, and deletion of these AP-1 binding sequences substantially reduced Smad7 promoter reporter activity. Conclusion YAP/TAZ functions in concert with transcription factor AP-1 and Smad7 to regulate TGF-β signaling, in human dermal fibroblasts. Reduction of YAP/TAZ levels leads to activation of AP-1 activity, which induces Smad7. Smad7 suppresses the TGF-β pathway. Electronic supplementary material The online version of this article (10.1186/s12964-018-0232-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhaoping Qin
- Department of Dermatology, University of Michigan Medical School, 1301 Catherine, Medical Science I, Room 6447, Ann Arbor, MI, 48109-0609, USA
| | - Wei Xia
- Department of Dermatology, University of Michigan Medical School, 1301 Catherine, Medical Science I, Room 6447, Ann Arbor, MI, 48109-0609, USA
| | - Gary J Fisher
- Department of Dermatology, University of Michigan Medical School, 1301 Catherine, Medical Science I, Room 6447, Ann Arbor, MI, 48109-0609, USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan Medical School, 1301 Catherine, Medical Science I, Room 6447, Ann Arbor, MI, 48109-0609, USA
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, 1301 Catherine, Medical Science I, Room 6447, Ann Arbor, MI, 48109-0609, USA.
| |
Collapse
|
44
|
Rocklin GJ, Chidyausiku TM, Goreshnik I, Ford A, Houliston S, Lemak A, Carter L, Ravichandran R, Mulligan VK, Chevalier A, Arrowsmith CH, Baker D. Global analysis of protein folding using massively parallel design, synthesis, and testing. Science 2018; 357:168-175. [PMID: 28706065 PMCID: PMC5568797 DOI: 10.1126/science.aan0693] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/09/2017] [Indexed: 12/18/2022]
Abstract
Proteins fold into unique native structures stabilized by thousands of weak interactions that collectively overcome the entropic cost of folding. Although these forces are "encoded" in the thousands of known protein structures, "decoding" them is challenging because of the complexity of natural proteins that have evolved for function, not stability. We combined computational protein design, next-generation gene synthesis, and a high-throughput protease susceptibility assay to measure folding and stability for more than 15,000 de novo designed miniproteins, 1000 natural proteins, 10,000 point mutants, and 30,000 negative control sequences. This analysis identified more than 2500 stable designed proteins in four basic folds-a number sufficient to enable us to systematically examine how sequence determines folding and stability in uncharted protein space. Iteration between design and experiment increased the design success rate from 6% to 47%, produced stable proteins unlike those found in nature for topologies where design was initially unsuccessful, and revealed subtle contributions to stability as designs became increasingly optimized. Our approach achieves the long-standing goal of a tight feedback cycle between computation and experiment and has the potential to transform computational protein design into a data-driven science.
Collapse
Affiliation(s)
- Gabriel J Rocklin
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Tamuka M Chidyausiku
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.,Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA 98195, USA
| | - Inna Goreshnik
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alex Ford
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.,Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA 98195, USA
| | - Scott Houliston
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada.,Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Alexander Lemak
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | - Lauren Carter
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Vikram K Mulligan
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Aaron Chevalier
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada.,Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
45
|
Verma A, Jing-Song F, Finch-Edmondson ML, Velazquez-Campoy A, Balasegaran S, Sudol M, Sivaraman J. Biophysical studies and NMR structure of YAP2 WW domain - LATS1 PPxY motif complexes reveal the basis of their interaction. Oncotarget 2018; 9:8068-8080. [PMID: 29487715 PMCID: PMC5814282 DOI: 10.18632/oncotarget.23909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/05/2017] [Indexed: 11/30/2022] Open
Abstract
YES-associated protein (YAP) is a major effector protein of the Hippo tumor suppressor pathway, and is phosphorylated by the serine/threonine kinase LATS. Their binding is mediated by the interaction between WW domains of YAP and PPxY motifs of LATS. Their isoforms, YAP2 and LATS1 contain two WW domains and two PPxY motifs respectively. Here, we report the study of the interaction of these domains both in vitro and in human cell lines, to better understand the mechanism of their binding. We show that there is a reciprocal binding preference of YAP2-WW1 with LATS1-PPxY2, and YAP2-WW2 with LATS1-PPxY1. We solved the NMR structures of these complexes and identified several conserved residues that play a critical role in binding. We further created a YAP2 mutant by swapping the WW domains, and found that YAP2 phosphorylation at S127 by LATS1 is not affected by the spatial configuration of its WW domains. This is likely because the region between the PPxY motifs of LATS1 is unstructured, even upon binding with its partner. Based on our observations, we propose possible models for the interaction between YAP2 and LATS1.
Collapse
Affiliation(s)
- Apoorva Verma
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Fan Jing-Song
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, Universidad de Zaragoza, Spain, Department of Biochemistry and Molecular and Cellular Biology, Universidad de Zaragoza, Fundacion ARAID, Gobierno de Aragon, Spain, Aragon Health Research Institute (IIS Aragon), Universidad de Zaragoza, Zaragoza, Spain
| | - Shanker Balasegaran
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore
| | - Jayaraman Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
46
|
Bae SJ, Ni L, Osinski A, Tomchick DR, Brautigam CA, Luo X. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK. eLife 2017; 6:30278. [PMID: 29063833 PMCID: PMC5663475 DOI: 10.7554/elife.30278] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/22/2017] [Indexed: 11/15/2022] Open
Abstract
The Hippo pathway controls tissue growth and homeostasis through a central MST-LATS kinase cascade. The scaffold protein SAV1 promotes the activation of this kinase cascade, but the molecular mechanisms remain unknown. Here, we discover SAV1-mediated inhibition of the PP2A complex STRIPAKSLMAP as a key mechanism of MST1/2 activation. SLMAP binding to autophosphorylated MST2 linker recruits STRIPAK and promotes PP2A-mediated dephosphorylation of MST2 at the activation loop. Our structural and biochemical studies reveal that SAV1 and MST2 heterodimerize through their SARAH domains. Two SAV1–MST2 heterodimers further dimerize through SAV1 WW domains to form a heterotetramer, in which MST2 undergoes trans-autophosphorylation. SAV1 directly binds to STRIPAK and inhibits its phosphatase activity, protecting MST2 activation-loop phosphorylation. Genetic ablation of SLMAP in human cells leads to spontaneous activation of the Hippo pathway and alleviates the need for SAV1 in Hippo signaling. Thus, SAV1 promotes Hippo activation through counteracting the STRIPAKSLMAP PP2A phosphatase complex.
Collapse
Affiliation(s)
- Sung Jun Bae
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lisheng Ni
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Adam Osinski
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xuelian Luo
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
47
|
Zhu K, Shan Z, Chen X, Cai Y, Cui L, Yao W, Wang Z, Shi P, Tian C, Lou J, Xie Y, Wen W. Allosteric auto-inhibition and activation of the Nedd4 family E3 ligase Itch. EMBO Rep 2017; 18:1618-1630. [PMID: 28747490 DOI: 10.15252/embr.201744454] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
The Nedd4 family E3 ligases are key regulators of cell growth and proliferation and are often misregulated in human cancers and other diseases. The ligase activities of Nedd4 E3s are tightly controlled via auto-inhibition. However, the molecular mechanism underlying Nedd4 E3 auto-inhibition and activation is poorly understood. Here, we show that the WW domains proceeding the catalytic HECT domain play an inhibitory role by binding directly to HECT in the Nedd4 E3 family member Itch. Our structural and biochemical analyses of Itch reveal that the WW2 domain and a following linker allosterically lock HECT in an inactive state inhibiting E2-E3 transthiolation. Binding of the Ndfip1 adaptor or JNK1-mediated phosphorylation relieves the auto-inhibition of Itch in a WW2-dependent manner. Aberrant activation of Itch leads to migration defects of cortical neurons during development. Our study provides a new mechanism governing the regulation of Itch.
Collapse
Affiliation(s)
- Kang Zhu
- Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zelin Shan
- Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xing Chen
- Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuqun Cai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lei Cui
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Weiyi Yao
- Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhen Wang
- Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Pan Shi
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Changlin Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yunli Xie
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Iyengar PV. Regulation of Ubiquitin Enzymes in the TGF-β Pathway. Int J Mol Sci 2017; 18:ijms18040877. [PMID: 28425962 PMCID: PMC5412458 DOI: 10.3390/ijms18040877] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
The transforming growth factor-β (TGF-β) pathway has a tumor suppressor role in normal and premalignant cells but promotes oncogenesis in advanced cancer cells. Components of the pathway are tightly controlled by ubiquitin modifying enzymes and aberrations in these enzymes are frequently observed to dysregulate the pathway causing diseases such as bone disorders, cancer and metastasis. These enzymes and their counterparts are increasingly being tested as druggable targets, and thus a deeper understanding of the enzymes is required. This review summarizes the roles of specific ubiquitin modifying enzymes in the TGF-β pathway and how they are regulated.
Collapse
|
49
|
Kit Leng Lui S, Iyengar PV, Jaynes P, Isa ZFBA, Pang B, Tan TZ, Eichhorn PJA. USP26 regulates TGF-β signaling by deubiquitinating and stabilizing SMAD7. EMBO Rep 2017; 18:797-808. [PMID: 28381482 PMCID: PMC5412796 DOI: 10.15252/embr.201643270] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 01/09/2023] Open
Abstract
The amplitude of transforming growth factor-β (TGF-β) signal is tightly regulated to ensure appropriate physiological responses. As part of negative feedback loop SMAD7, a direct transcriptional target of downstream TGF-β signaling acts as a scaffold to recruit the E3 ligase SMURF2 to target the TGF-β receptor complex for ubiquitin-mediated degradation. Here, we identify the deubiquitinating enzyme USP26 as a novel integral component of this negative feedback loop. We demonstrate that TGF-β rapidly enhances the expression of USP26 and reinforces SMAD7 stability by limiting the ubiquitin-mediated turnover of SMAD7. Conversely, knockdown of USP26 rapidly degrades SMAD7 resulting in TGF-β receptor stabilization and enhanced levels of p-SMAD2. Clinically, loss of USP26 correlates with high TGF-β activity and confers poor prognosis in glioblastoma. Our data identify USP26 as a novel negative regulator of the TGF-β pathway and suggest that loss of USP26 expression may be an important factor in glioblastoma pathogenesis.
Collapse
Affiliation(s)
- Sarah Kit Leng Lui
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Brendan Pang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
50
|
Sang Y, Zhang R, Creagh AL, Haynes CA, Straus SK. Interactions of U24 from Roseolovirus with WW domains: canonical vs noncanonical. Biochem Cell Biol 2017; 95:350-358. [PMID: 28314105 DOI: 10.1139/bcb-2016-0250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
U24 is a C-terminal membrane-anchored protein found in both human herpes virus type 6 and 7 (HHV-6 and HHV-7), with an N-terminal segment that is rich in prolines (PPxY motif in both HHV-6A and 7; PxxP motif in HHV-6A). Previous work has shown that U24 interacts strongly with Nedd4 WW domains, in particular, hNedd4L-WW3*. It was also shown that this interaction depends strongly on the nature of the amino acids that are upstream from the PY motif in U24. In this contribution, data was obtained from pull-downs, isothermal titration calorimetry, and NMR to further determine what modulates U24:WW domain interactions. Specifically, 3 non-canonical WW domains from human Smad ubiquitination regulatory factor (Smurf), namely hSmurf2-WW2, hSmurf2-WW3, and a tandem construct hSmurf2-WW2 + 3, were studied. Overall, the interactions between U24 and these Smurf WW domains were found to be weaker than those in U24:Nedd4 WW domain pairs, suggesting that U24 function is tightly linked to specific E3 ubiqitin ligases.
Collapse
Affiliation(s)
- Yurou Sang
- a Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Rui Zhang
- a Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - A Louise Creagh
- b Michael Smith Laboratories and Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Charles A Haynes
- b Michael Smith Laboratories and Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Suzana K Straus
- a Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|