1
|
Nussinov R. Pioneer in Molecular Biology: Conformational Ensembles in Molecular Recognition, Allostery, and Cell Function. J Mol Biol 2025; 437:169044. [PMID: 40015370 PMCID: PMC12021580 DOI: 10.1016/j.jmb.2025.169044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
In 1978, for my PhD, I developed the efficient O(n3) dynamic programming algorithm for the-then open problem of RNA secondary structure prediction. This algorithm, now dubbed the "Nussinov algorithm", "Nussinov plots", and "Nussinov diagrams", is still taught across Europe and the U.S. As sequences started coming out in the 1980s, I started seeking genome-encoded functional signals, later becoming a bioinformatics trend. In the early 1990s I transited to proteins, co-developing a powerful computer vision-based docking algorithm. In the late 1990s, I proposed the foundational role of conformational ensembles in molecular recognition and allostery. At the time, conformational ensembles and free energy landscapes were viewed as physical properties of proteins but were not associated with function. The classical view of molecular recognition and binding was based on only two conformations captured by crystallography: open and closed. I proposed that all conformational states preexist. Proteins always have not one folded form-nor two-but many folded forms. Thus, rather than inducing fit, binding can work by shifting the ensembles between states, and this shifting, or redistributing the ensembles to maintain equilibrium, is the origin of the allosteric effect and protein, thus cell, function. This transformative paradigm impacted community views in allosteric drug design, catalysis, and regulation. Dynamic conformational ensemble shifts are now acknowledged as the origin of recognition, allostery, and signaling, underscoring that conformational ensembles-not proteins-are the workhorses of the cell, pioneering the fundamental idea that dynamic ensembles are the driving force behind cellular processes. Nussinov was recognized as pioneer in molecular biology by JMB.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
2
|
Zhou Z, Nguyen TL, Li X, Poujol C, Berlinska E, Michelina SV, Kapp JN, Plückthun A, Winslow MM, Ambrogio C, Shan Y, Santamaría D, Westover KD. Experimental variables determine the outcome of RAS-RAS interactions. J Biol Chem 2024; 300:107859. [PMID: 39374781 PMCID: PMC11567016 DOI: 10.1016/j.jbc.2024.107859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
RAS clustering at the cell membrane is critical to activate signaling in cells, but whether this clustering is mediated exclusively by its c-terminal hypervariable region, receives contributions from the G-domain of RAS, and/or is influenced by secondary effectors has been intensely debated. Reports that G-domain mutations do not modulate RAS-RAS interactions have led some to question the validity of previous experiments that indicate the G-domain plays a role in RAS clustering/interactions. Here we reconcile these findings by clarifying the impact of experimental variables, such as protein expression levels, cellular context, RAS zygosity, and secondary effector interactions on RAS clustering. Lack of control over these variables impacts the results using G-domain mutations across various assay systems and can lead to unsound conclusions.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tra Ly Nguyen
- BoRdeaux Institute of onCology (BRIC), INSERM, University of Bordeaux, Bordeaux, France
| | - Xingxiao Li
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christel Poujol
- Bordeaux Imaging Center, University of Bordeaux, CNRS, INSERM, BIC, Bordeaux, France
| | - Ewa Berlinska
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Jonas N Kapp
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Yibing Shan
- Antidote Health Foundation for Cure of Cancer, Cambridge, Massachusetts, USA
| | - David Santamaría
- University of Bordeaux, INSERM, ACTION Laboratory, IECB, Pessac, France; Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
3
|
Parise A, Cresca S, Magistrato A. Molecular dynamics simulations for the structure-based drug design: targeting small-GTPases proteins. Expert Opin Drug Discov 2024; 19:1259-1279. [PMID: 39105536 DOI: 10.1080/17460441.2024.2387856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Molecular Dynamics (MD) simulations can support mechanism-based drug design. Indeed, MD simulations by capturing biomolecule motions at finite temperatures can reveal hidden binding sites, accurately predict drug-binding poses, and estimate the thermodynamics and kinetics, crucial information for drug discovery campaigns. Small-Guanosine Triphosphate Phosphohydrolases (GTPases) regulate a cascade of signaling events, that affect most cellular processes. Their deregulation is linked to several diseases, making them appealing drug targets. The broad roles of small-GTPases in cellular processes and the recent approval of a covalent KRas inhibitor as an anticancer agent renewed the interest in targeting small-GTPase with small molecules. AREA COVERED This review emphasizes the role of MD simulations in elucidating small-GTPase mechanisms, assessing the impact of cancer-related variants, and discovering novel inhibitors. EXPERT OPINION The application of MD simulations to small-GTPases exemplifies the role of MD simulations in the structure-based drug design process for challenging biomolecular targets. Furthermore, AI and machine learning-enhanced MD simulations, coupled with the upcoming power of quantum computing, are promising instruments to target elusive small-GTPases mutations and splice variants. This powerful synergy will aid in developing innovative therapeutic strategies associated to small-GTPases deregulation, which could potentially be used for personalized therapies and in a tissue-agnostic manner to treat tumors with mutations in small-GTPases.
Collapse
Affiliation(s)
- Angela Parise
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Sofia Cresca
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
4
|
Jungholm O, Trkulja C, Moche M, Srinivasa SP, Christakopoulou MN, Davidson M, Reymer A, Jardemark K, Fogaça RL, Ashok A, Jeffries G, Ampah-Korsah H, Strandback E, Andréll J, Nyman T, Nouairia G, Orwar O. Novel druggable space in human KRAS G13D discovered using structural bioinformatics and a P-loop targeting monoclonal antibody. Sci Rep 2024; 14:19656. [PMID: 39179604 PMCID: PMC11344056 DOI: 10.1038/s41598-024-70217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
KRAS belongs to a family of small GTPases that act as binary switches upstream of several signalling cascades, controlling proliferation and survival of cells. Mutations in KRAS drive oncogenesis, especially in pancreatic, lung, and colorectal cancers (CRC). Although historic attempts at targeting mutant KRAS with small molecule inhibitors have proven challenging, there are recent successes with the G12C, and G12D mutations. However, clinically important RAS mutations such as G12V, G13D, Q61L, and A146T, remain elusive drug targets, and insights to their structural landscape is of critical importance to develop novel, and effective therapeutic concepts. We present a fully open, P-loop exposing conformer of KRAS G13D by X-ray crystallography at 1.4-2.4 Å resolution in Mg2+-free phosphate and malonate buffers. The G13D conformer has the switch-I region displaced in an upright position leaving the catalytic core fully exposed. To prove that this state is druggable, we developed a P-loop-targeting monoclonal antibody (mAb). The mAb displayed high-affinity binding to G13D and was shown using high resolution fluorescence microscopy to be spontaneously taken up by G13D-mutated HCT 116 cells (human CRC derived) by macropinocytosis. The mAb inhibited KRAS signalling in phosphoproteomic and genomic studies. Taken together, the data propose novel druggable space of G13D that is reachable in the cellular context. It is our hope that these findings will stimulate attempts to drug this fully open state G13D conformer using mAbs or other modalities.
Collapse
Affiliation(s)
- Oscar Jungholm
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Carolina Trkulja
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
- Fluicell AB, Flöjelbergsgatan 8C, 431 37, Mölndal, Sweden
| | - Martin Moche
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sreesha P Srinivasa
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, India
| | | | - Max Davidson
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
| | - Anna Reymer
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Kent Jardemark
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | | | - Gavin Jeffries
- Fluicell AB, Flöjelbergsgatan 8C, 431 37, Mölndal, Sweden
| | - Henry Ampah-Korsah
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Emilia Strandback
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Juni Andréll
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Tomas Nyman
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ghada Nouairia
- Department of Medicine Huddinge, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Owe Orwar
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden.
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
5
|
Yun SD, Scott E, Chang JY, Bahramimoghaddam H, Lynn M, Lantz C, Russell DH, Laganowsky A. Capturing RAS oligomerization on a membrane. Proc Natl Acad Sci U S A 2024; 121:e2405986121. [PMID: 39145928 PMCID: PMC11348296 DOI: 10.1073/pnas.2405986121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
RAS GTPases associate with the biological membrane where they function as molecular switches to regulate cell growth. Recent studies indicate that RAS proteins oligomerize on membranes, and disrupting these assemblies represents an alternative therapeutic strategy. However, conflicting reports on RAS assemblies, ranging in size from dimers to nanoclusters, have brought to the fore key questions regarding the stoichiometry and parameters that influence oligomerization. Here, we probe three isoforms of RAS [Kirsten Rat Sarcoma viral oncogene (KRAS), Harvey Rat Sarcoma viral oncogene (HRAS), and Neuroblastoma oncogene (NRAS)] directly from membranes using mass spectrometry. We show that KRAS on membranes in the inactive state (GDP-bound) is monomeric but forms dimers in the active state (GTP-bound). We demonstrate that the small molecule BI2852 can induce dimerization of KRAS, whereas the binding of effector proteins disrupts dimerization. We also show that RAS dimerization is dependent on lipid composition and reveal that oligomerization of NRAS is regulated by palmitoylation. By monitoring the intrinsic GTPase activity of RAS, we capture the emergence of a dimer containing either mixed nucleotides or GDP on membranes. We find that the interaction of RAS with the catalytic domain of Son of Sevenless (SOScat) is influenced by membrane composition. We also capture the activation and monomer to dimer conversion of KRAS by SOScat. These results not only reveal the stoichiometry of RAS assemblies on membranes but also uncover the impact of critical factors on oligomerization, encompassing regulation by nucleotides, lipids, and palmitoylation.
Collapse
Affiliation(s)
- Sangho D. Yun
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Elena Scott
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Jing-Yuan Chang
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | | | - Michael Lynn
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Carter Lantz
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX77843
| |
Collapse
|
6
|
Silverman I, Gerber M, Shaykevich A, Stein Y, Siegman A, Goel S, Maitra R. Structural modifications and kinetic effects of KRAS interactions with HRAS and NRAS: an in silico comparative analysis of KRAS mutants. Front Mol Biosci 2024; 11:1436976. [PMID: 39184150 PMCID: PMC11342451 DOI: 10.3389/fmolb.2024.1436976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 08/27/2024] Open
Abstract
The RAS genes which code for KRAS, HRAS, and NRAS are three of the most frequently mutated oncogenes responsible for cancer deaths. Tumorigenesis is one of the most significant outcomes of deregulation of RAS GTPases. Although the structures have been extensively studied, there is still more to be discovered about the actual binding conformations of the three isoforms, especially when mutated, to design an inhibitory drug. Recent studies have identified important interactions between the three isoforms that affect the oncogenic strength of the others when they are mutated. In this study, we utilize molecular dynamics simulations to examine the modifications of the structural property, mechanism, and kinetic energy of KRAS when interacting individually and with HRAS and NRAS. Notably, we found that WT-KRAS' orientation when bound to WT-HRAS vs. WT-NRAS is rotated 180°, with mutants demonstrating a similar binding pattern. The binding sites of the isoforms with KRAS share similarities with those involved in the GDP/GTP active site and site of KRAS dimerization. Thus, the isoform interaction can serve as an inhibitory method of KRAS actions. This study advances the understanding of inhibiting RAS-driven cancers through a novel isoform interaction approach only recently discovered, which has been proven to be an effective alternate therapeutic approach. We developed a blueprint of the interaction which would be beneficial in the development of KRAS mutant-specific and pan-KRAS mutant inhibitory drugs that mimic the isoform interactions. Our results support the direct interaction inhibition mechanism of mutant KRAS when bound to WT-HRAS and WT-NRAS by the isoforms' hypervariable region binding to the G-domain of KRAS. Furthermore, our results support the approach of reducing the effects of oncogenic KRAS by altering the concentration of the isoforms or a drug alternative based on the overall structural and kinetic stability, as well as the binding strength of the mutant-isoform complexes.
Collapse
Affiliation(s)
- Isaac Silverman
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Michael Gerber
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Aaron Shaykevich
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Yitzchak Stein
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Alexander Siegman
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Sanjay Goel
- Department of Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Radhashree Maitra
- Department of Biology, Yeshiva University, New York, NY, United States
| |
Collapse
|
7
|
Gebregiworgis T, Chan JYL, Kuntz DA, Privé GG, Marshall CB, Ikura M. Crystal structure of NRAS Q61K with a ligand-induced pocket near switch II. Eur J Cell Biol 2024; 103:151414. [PMID: 38640594 DOI: 10.1016/j.ejcb.2024.151414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
The RAS isoforms (KRAS, HRAS and NRAS) have distinct cancer type-specific profiles. NRAS mutations are the second most prevalent RAS mutations in skin and hematological malignancies. Although RAS proteins were considered undruggable for decades, isoform and mutation-specific investigations have produced successful RAS inhibitors that are either specific to certain mutants, isoforms (pan-KRAS) or target all RAS proteins (pan-RAS). While extensive structural and biochemical investigations have focused mainly on K- and H-RAS mutations, NRAS mutations have received less attention, and the most prevalent NRAS mutations in human cancers, Q61K and Q61R, are rare in K- and H-RAS. This manuscript presents a crystal structure of the NRAS Q61K mutant in the GTP-bound form. Our structure reveals a previously unseen pocket near switch II induced by the binding of a ligand to the active form of the protein. This observation reveals a binding site that can potentially be exploited for development of inhibitors against mutant NRAS. Furthermore, the well-resolved catalytic site of this GTPase bound to native GTP provides insight into the stalled GTP hydrolysis observed for NRAS-Q61K.
Collapse
Affiliation(s)
- Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5W9, Canada.
| | - Jonathan Yui-Lai Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Douglas A Kuntz
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Gilbert G Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Biochemistry, University of Toronto, 1 Kings College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| |
Collapse
|
8
|
Ash LJ, Busia-Bourdain O, Okpattah D, Kamel A, Liberchuk A, Wolfe AL. KRAS: Biology, Inhibition, and Mechanisms of Inhibitor Resistance. Curr Oncol 2024; 31:2024-2046. [PMID: 38668053 PMCID: PMC11049385 DOI: 10.3390/curroncol31040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
KRAS is a small GTPase that is among the most commonly mutated oncogenes in cancer. Here, we discuss KRAS biology, therapeutic avenues to target it, and mechanisms of resistance that tumors employ in response to KRAS inhibition. Several strategies are under investigation for inhibiting oncogenic KRAS, including small molecule compounds targeting specific KRAS mutations, pan-KRAS inhibitors, PROTACs, siRNAs, PNAs, and mutant KRAS-specific immunostimulatory strategies. A central challenge to therapeutic effectiveness is the frequent development of resistance to these treatments. Direct resistance mechanisms can involve KRAS mutations that reduce drug efficacy or copy number alterations that increase the expression of mutant KRAS. Indirect resistance mechanisms arise from mutations that can rescue mutant KRAS-dependent cells either by reactivating the same signaling or via alternative pathways. Further, non-mutational forms of resistance can take the form of epigenetic marks, transcriptional reprogramming, or alterations within the tumor microenvironment. As the possible strategies to inhibit KRAS expand, understanding the nuances of resistance mechanisms is paramount to the development of both enhanced therapeutics and innovative drug combinations.
Collapse
Affiliation(s)
- Leonard J. Ash
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Ottavia Busia-Bourdain
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Daniel Okpattah
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Avrosina Kamel
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College, Hunter College, City University of New York, New York, NY 10065, USA
| | - Ariel Liberchuk
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College, Hunter College, City University of New York, New York, NY 10065, USA
| | - Andrew L. Wolfe
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
9
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
10
|
Lee SY, Lee KY. Conditional Cooperativity in RAS Assembly Pathways on Nanodiscs and Altered GTPase Cycling. Angew Chem Int Ed Engl 2024; 63:e202316942. [PMID: 38305637 DOI: 10.1002/anie.202316942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Self-assemblies (i.e., nanoclusters) of the RAS GTPase on the membrane act as scaffolds that activate downstream RAF kinases and drive MAPK signaling for cell proliferation and tumorigenesis. However, the mechanistic details of nanoclustering remain largely unknown. Here, size-tunable nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses revealed the structural basis of the cooperative assembly processes of fully processed KRAS, mutated in a quarter of human cancers. The cooperativity is modulated by the mutation and nucleotide states of KRAS and the lipid composition of the membrane. Notably, the oncogenic mutants assemble in nonsequential pathways with two mutually cooperative 'α/α' and 'α/β' interfaces, while α/α dimerization of wild-type KRAS promotes the secondary α/β interaction sequentially. Mutation-based interface engineering was used to selectively trap the oligomeric intermediates of KRAS and probe their favorable interface interactions. Transiently exposed interfaces were available for the assembly. Real-time NMR demonstrated that higher-order oligomers retain higher numbers of active GTP-bound protomers in KRAS GTPase cycling. These data provide a deeper understanding of the nanocluster-enhanced signaling in response to the environment. Furthermore, our methodology is applicable to assemblies of many other membrane GTPases and lipid nanoparticle-based formulations of stable protein oligomers with enhanced cooperativity.
Collapse
Affiliation(s)
- Soo-Yeon Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-Do, South Korea
| | - Ki-Young Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-Do, South Korea
| |
Collapse
|
11
|
Lee KY. Membrane-Driven Dimerization of the Peripheral Membrane Protein KRAS: Implications for Downstream Signaling. Int J Mol Sci 2024; 25:2530. [PMID: 38473778 DOI: 10.3390/ijms25052530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Transient homo-dimerization of the RAS GTPase at the plasma membrane has been shown to promote the mitogen-activated protein kinase (MAPK) signaling pathway essential for cell proliferation and oncogenesis. To date, numerous crystallographic studies have focused on the well-defined GTPase domains of RAS isoforms, which lack the disordered C-terminal membrane anchor, thus providing limited structural insight into membrane-bound RAS molecules. Recently, lipid-bilayer nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses have revealed several distinct structures of the membrane-anchored homodimers of KRAS, an isoform that is most frequently mutated in human cancers. The KRAS dimerization interface is highly plastic and altered by biologically relevant conditions, including oncogenic mutations, the nucleotide states of the protein, and the lipid composition. Notably, PRE-derived structures of KRAS homodimers on the membrane substantially differ in terms of the relative orientation of the protomers at an "α-α" dimer interface comprising two α4-α5 regions. This interface plasticity along with the altered orientations of KRAS on the membrane impact the accessibility of KRAS to downstream effectors and regulatory proteins. Further, nanodisc platforms used to drive KRAS dimerization can be used to screen potential anticancer drugs that target membrane-bound RAS dimers and probe their structural mechanism of action.
Collapse
Affiliation(s)
- Ki-Young Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si 11160, Gyeonggi-Do, Republic of Korea
| |
Collapse
|
12
|
Clayton NS, Hodge RG, Infante E, Alibhai D, Zhou F, Ridley AJ. RhoU forms homo-oligomers to regulate cellular responses. J Cell Sci 2024; 137:jcs261645. [PMID: 38180080 PMCID: PMC10917059 DOI: 10.1242/jcs.261645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
RhoU is an atypical member of the Rho family of small G-proteins, which has N- and C-terminal extensions compared to the classic Rho GTPases RhoA, Rac1 and Cdc42, and associates with membranes through C-terminal palmitoylation rather than prenylation. RhoU mRNA expression is upregulated in prostate cancer and is considered a marker for disease progression. Here, we show that RhoU overexpression in prostate cancer cells increases cell migration and invasion. To identify RhoU targets that contribute to its function, we found that RhoU homodimerizes in cells. We map the region involved in this interaction to the C-terminal extension and show that C-terminal palmitoylation is required for self-association. Expression of the isolated C-terminal extension reduces RhoU-induced activation of p21-activated kinases (PAKs), which are known downstream targets for RhoU, and induces cell morphological changes consistent with inhibiting RhoU function. Our results show for the first time that the activity of a Rho family member is stimulated by self-association, and this is important for its activity.
Collapse
Affiliation(s)
- Natasha S. Clayton
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Richard G. Hodge
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Elvira Infante
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Dominic Alibhai
- Wolfson Bioimaging Facility, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Felix Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anne J. Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
13
|
Tariq M, Ikeya T, Togashi N, Fairall L, Kamei S, Mayooramurugan S, Abbott LR, Hasan A, Bueno-Alejo C, Sukegawa S, Romartinez-Alonso B, Muro Campillo MA, Hudson AJ, Ito Y, Schwabe JW, Dominguez C, Tanaka K. Structural insights into the complex of oncogenic KRas4B G12V and Rgl2, a RalA/B activator. Life Sci Alliance 2024; 7:e202302080. [PMID: 37833074 PMCID: PMC10576006 DOI: 10.26508/lsa.202302080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
About a quarter of total human cancers carry mutations in Ras isoforms. Accumulating evidence suggests that small GTPases, RalA, and RalB, and their activators, Ral guanine nucleotide exchange factors (RalGEFs), play an essential role in oncogenic Ras-induced signalling. We studied the interaction between human KRas4B and the Ras association (RA) domain of Rgl2 (Rgl2RA), one of the RA-containing RalGEFs. We show that the G12V oncogenic KRas4B mutation changes the interaction kinetics with Rgl2RA The crystal structure of the KRas4BG12V: Rgl2RA complex shows a 2:2 heterotetramer where the switch I and switch II regions of each KRasG12V interact with both Rgl2RA molecules. This structural arrangement is highly similar to the HRasE31K:RALGDSRA crystal structure and is distinct from the well-characterised Ras:Raf complex. Interestingly, the G12V mutation was found at the dimer interface of KRas4BG12V with its partner. Our study reveals a potentially distinct mode of Ras:effector complex formation by RalGEFs and offers a possible mechanistic explanation for how the oncogenic KRas4BG12V hyperactivates the RalA/B pathway.
Collapse
Affiliation(s)
- Mishal Tariq
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Teppei Ikeya
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Japan
| | - Naoyuki Togashi
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Japan
| | - Louise Fairall
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Leicester Institute of Structure and Chemical Biology, University of Leicester, Leicester, UK
| | - Shun Kamei
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Japan
| | | | - Lauren R Abbott
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Anab Hasan
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Carlos Bueno-Alejo
- Leicester Institute of Structure and Chemical Biology, University of Leicester, Leicester, UK
| | - Sakura Sukegawa
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Japan
| | - Beatriz Romartinez-Alonso
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Leicester Institute of Structure and Chemical Biology, University of Leicester, Leicester, UK
| | | | - Andrew J Hudson
- Leicester Institute of Structure and Chemical Biology, University of Leicester, Leicester, UK
- Department of Chemistry, University of Leicester, Leicester, UK
| | - Yutaka Ito
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Japan
| | - John Wr Schwabe
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Leicester Institute of Structure and Chemical Biology, University of Leicester, Leicester, UK
| | - Cyril Dominguez
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Leicester Institute of Structure and Chemical Biology, University of Leicester, Leicester, UK
| | - Kayoko Tanaka
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
14
|
Whaby M, Nair RS, O'Bryan JP. Probing RAS Function Using Monobody and NanoBiT Technologies. Methods Mol Biol 2024; 2797:211-225. [PMID: 38570462 PMCID: PMC11635904 DOI: 10.1007/978-1-0716-3822-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Missense mutations in the RAS family of oncogenes (HRAS, KRAS, and NRAS) are present in approximately 20% of human cancers, making RAS a valuable therapeutic target (Prior et al., Cancer Res 80:2969-2974, 2020). Although decades of research efforts to develop therapeutic inhibitors of RAS were unsuccessful, there has been success in recent years with the entrance of FDA-approved KRASG12C-specific inhibitors to the clinic (Skoulidis et al., N Engl J Med 384:2371-2381, 2021; Jänne et al., N Engl J Med 387:120-131, 2022). Additionally, KRASG12D-specific inhibitors are presently undergoing clinical trials (Wang et al., J Med Chem 65:3123-3133, 2022). The advent of these allele specific inhibitors has disproved the previous notion that RAS is undruggable. Despite these advancements in RAS-targeted therapeutics, several RAS mutants that frequently arise in cancers remain without tractable drugs. Thus, it is critical to further understand the function and biology of RAS in cells and to develop tools to identify novel therapeutic vulnerabilities for development of anti-RAS therapeutics. To do this, we have exploited the use of monobody (Mb) technology to develop specific protein-based inhibitors of selected RAS isoforms and mutants (Spencer-Smith et al., Nat Chem Biol 13:62-68, 2017; Khan et al., Cell Rep 38:110322, 2022; Wallon et al., Proc Natl Acad Sci USA 119:e2204481119, 2022; Khan et al., Small GTPases 13:114-127, 2021; Khan et al., Oncogene 38:2984-2993, 2019). Herein, we describe our combined use of Mbs and NanoLuc Binary Technology (NanoBiT) to analyze RAS protein-protein interactions and to screen for RAS-binding small molecules in live-cell, high-throughput assays.
Collapse
Affiliation(s)
- Michael Whaby
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Rakesh Sathish Nair
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
15
|
Saitoh T, Kim HN, Narita R, Ohtsuka I, Mo W, Lee KY, Enomoto M, Gasmi-Seabrook GMC, Marshall CB, Ikura M. Biochemical and biophysical characterization of the RAS family small GTPase protein DiRAS3. Protein Expr Purif 2023; 212:106361. [PMID: 37652393 DOI: 10.1016/j.pep.2023.106361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
DiRAS3, also called ARHI, is a RAS (sub)family small GTPase protein that shares 50-60% sequence identity with H-, K-, and N-RAS, with substitutions in key conserved G-box motifs and a unique 34 amino acid extension at its N-terminus. Unlike the RAS proto-oncogenes, DiRAS3 exhibits tumor suppressor properties. DiRAS3 function has been studied through genetics and cell biology, but there has been a lack of understanding of the biochemical and biophysical properties of the protein, likely due to its instability and poor solubility. To overcome this solubility issue, we engineered a DiRAS3 variant (C75S/C80S), which significantly improved soluble protein expression in E. coli. Recombinant DiRAS3 was purified by Ni-NTA and size exclusion chromatography (SEC). Concentration dependence of the SEC chromatogram indicated that DiRAS3 exists in monomer-dimer equilibrium. We then produced truncations of the N-terminal (ΔN) and both (ΔNC) extensions to the GTPase domain. Unlike full-length DiRAS3, the SEC profiles showed that ΔNC is monomeric while ΔN was monomeric with aggregation, suggesting that the N and/or C-terminal tail(s) contribute to dimerization and aggregation. The 1H-15N HSQC NMR spectrum of ΔNC construct displayed well-dispersed peaks similar to spectra of other GTPase domains, which enabled us to demonstrate that DiRAS3 has a GTPase domain that can bind GDP and GTP. Taken together, we conclude that, despite the substitutions in the G-box motifs, DiRAS3 can switch between nucleotide-bound states and that the N- and C-terminal extensions interact transiently with the GTPase domain in intra- and inter-molecular fashions, mediating weak multimerization of this unique small GTPase.
Collapse
Affiliation(s)
- Takashi Saitoh
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, 006-8585, Japan; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada.
| | - Ha-Neul Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Riku Narita
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, 006-8585, Japan
| | - Ibuki Ohtsuka
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, 006-8585, Japan
| | - Weiyu Mo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Ki-Young Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | | | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada.
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
16
|
Jurado M, Zorzano A, Castaño O. Cooperativity and oscillations: Regulatory mechanisms of K-Ras nanoclusters. Comput Biol Med 2023; 166:107455. [PMID: 37742420 DOI: 10.1016/j.compbiomed.2023.107455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
K-Ras nanoclusters (NCs) concentrate all required molecules belonging to the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway in a small area where signaling events take place, increasing efficiency and specificity of signaling. Such nanostructures are characterized by controlled sizes and lifetimes distributions, but there is a poor understanding of the mechanisms involved in their dynamics of growth/decay. Here, a minimum computational model is presented to analyze the behavior of K-Ras NCs as cooperative dynamic structures that self-regulate their growth and decay according to their size. Indeed, the proposed model reveals that the growth and the local production of a K-Ras nanocluster depend positively on its actual size, whilst its lifetime is inversely proportional to the root of its size. The cooperative binding between the structural constituents of the NC (K-Ras proteins) induces oscillations in the size distributions of K-Ras NCs allowing them to range within controlled values, regulating the growth/decay dynamics of these NCs. Thereby, the size of a K-Ras NC is proposed as a key factor to regulate cell signaling, opening a range of possibilities to develop strategies for use in chronic diseases and cancer.
Collapse
Affiliation(s)
- Manuel Jurado
- Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER of Diabetes and Associated Metabolic Diseases, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | - Oscar Castaño
- Electronics and Biomedical Engineering, Universitat de Barcelona (UB), Barcelona, Spain; Nanobioengineering and Biomaterials, Institute of Nanoscience and Nanotechnology of the University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
18
|
Chen PY, Huang BJ, Harris M, Boone C, Wang W, Carias H, Mesiona B, Mavrici D, Kohler AC, Bollag G, Zhang C, Zhang Y, Shannon K. Structural and functional analyses of a germline KRAS T50I mutation provide insights into Raf activation. JCI Insight 2023; 8:e168445. [PMID: 37681415 PMCID: PMC10544224 DOI: 10.1172/jci.insight.168445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023] Open
Abstract
A T50I substitution in the K-Ras interswitch domain causes Noonan syndrome and emerged as a third-site mutation that restored the in vivo transforming activity and constitutive MAPK pathway activation by an attenuated KrasG12D,E37G oncogene in a mouse leukemia model. Biochemical and crystallographic data suggested that K-RasT50I increases MAPK signal output through a non-GTPase mechanism, potentially by promoting asymmetric Ras:Ras interactions between T50 and E162. We generated a "switchable" system in which K-Ras mutant proteins expressed at physiologic levels supplant the fms like tyrosine kinase 3 (FLT3) dependency of MOLM-13 leukemia cells lacking endogenous KRAS and used this system to interrogate single or compound G12D, T50I, D154Q, and E162L mutations. These studies support a key role for the asymmetric lateral assembly of K-Ras in a plasma membrane-distal orientation that promotes the formation of active Ras:Raf complexes in a membrane-proximal conformation. Disease-causing mutations such as T50I are a valuable starting point for illuminating normal Ras function, elucidating mechanisms of disease, and identifying potential therapeutic opportunities for Rasopathy disorders and cancer.
Collapse
Affiliation(s)
- Pan-Yu Chen
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | | | - Max Harris
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | | | - Weijie Wang
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Heidi Carias
- Plexxikon Inc., South San Francisco, California, USA
| | - Brian Mesiona
- Plexxikon Inc., South San Francisco, California, USA
| | | | | | - Gideon Bollag
- Plexxikon Inc., South San Francisco, California, USA
| | - Chao Zhang
- Plexxikon Inc., South San Francisco, California, USA
| | - Ying Zhang
- Plexxikon Inc., South San Francisco, California, USA
| | - Kevin Shannon
- Department of Pediatrics, UCSF, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| |
Collapse
|
19
|
Leonard TA, Loose M, Martens S. The membrane surface as a platform that organizes cellular and biochemical processes. Dev Cell 2023; 58:1315-1332. [PMID: 37419118 DOI: 10.1016/j.devcel.2023.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
Membranes are essential for life. They act as semi-permeable boundaries that define cells and organelles. In addition, their surfaces actively participate in biochemical reaction networks, where they confine proteins, align reaction partners, and directly control enzymatic activities. Membrane-localized reactions shape cellular membranes, define the identity of organelles, compartmentalize biochemical processes, and can even be the source of signaling gradients that originate at the plasma membrane and reach into the cytoplasm and nucleus. The membrane surface is, therefore, an essential platform upon which myriad cellular processes are scaffolded. In this review, we summarize our current understanding of the biophysics and biochemistry of membrane-localized reactions with particular focus on insights derived from reconstituted and cellular systems. We discuss how the interplay of cellular factors results in their self-organization, condensation, assembly, and activity, and the emergent properties derived from them.
Collapse
Affiliation(s)
- Thomas A Leonard
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| | - Martin Loose
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
20
|
Tomazini A, Shifman JM. Targeting Ras with protein engineering. Oncotarget 2023; 14:672-687. [PMID: 37395750 DOI: 10.18632/oncotarget.28469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Ras proteins are small GTPases that regulate cell growth and division. Mutations in Ras genes are associated with many types of cancer, making them attractive targets for cancer therapy. Despite extensive efforts, targeting Ras proteins with small molecules has been extremely challenging due to Ras's mostly flat surface and lack of small molecule-binding cavities. These challenges were recently overcome by the development of the first covalent small-molecule anti-Ras drug, sotorasib, highlighting the efficacy of Ras inhibition as a therapeutic strategy. However, this drug exclusively inhibits the Ras G12C mutant, which is not a prevalent mutation in most cancer types. Unlike the G12C variant, other Ras oncogenic mutants lack reactive cysteines, rendering them unsuitable for targeting via the same strategy. Protein engineering has emerged as a promising method to target Ras, as engineered proteins have the ability to recognize various surfaces with high affinity and specificity. Over the past few years, scientists have engineered antibodies, natural Ras effectors, and novel binding domains to bind to Ras and counteract its carcinogenic activities via a variety of strategies. These include inhibiting Ras-effector interactions, disrupting Ras dimerization, interrupting Ras nucleotide exchange, stimulating Ras interaction with tumor suppressor genes, and promoting Ras degradation. In parallel, significant advancements have been made in intracellular protein delivery, enabling the delivery of the engineered anti-Ras agents into the cellular cytoplasm. These advances offer a promising path for targeting Ras proteins and other challenging drug targets, opening up new opportunities for drug discovery and development.
Collapse
Affiliation(s)
- Atilio Tomazini
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
21
|
Ikari M, Yagi H, Kasai T, Inomata K, Ito M, Higuchi K, Matsuda N, Ito Y, Kigawa T. Direct Observation of Membrane-Associated H-Ras in the Native Cellular Environment by In-Cell 19F-NMR Spectroscopy. JACS AU 2023; 3:1658-1669. [PMID: 37388687 PMCID: PMC10302746 DOI: 10.1021/jacsau.3c00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023]
Abstract
Ras acts as a molecular switch to control intracellular signaling on the plasma membrane (PM). Elucidating how Ras associates with PM in the native cellular environment is crucial for understanding its control mechanism. Here, we used in-cell nuclear magnetic resonance (NMR) spectroscopy combined with site-specific 19F-labeling to explore the membrane-associated states of H-Ras in living cells. The site-specific incorporation of p-trifluoromethoxyphenylalanine (OCF3Phe) at three different sites of H-Ras, i.e., Tyr32 in switch I, Tyr96 interacting with switch II, and Tyr157 on helix α5, allowed the characterization of their conformational states depending on the nucleotide-bound states and an oncogenic mutational state. Exogenously delivered 19F-labeled H-Ras protein containing a C-terminal hypervariable region was assimilated via endogenous membrane-trafficking, enabling proper association with the cell membrane compartments. Despite poor sensitivity of the in-cell NMR spectra of membrane-associated H-Ras, the Bayesian spectral deconvolution identified distinct signal components on three 19F-labeled sites, thus offering the conformational multiplicity of H-Ras on the PM. Our study may be helpful in elucidating the atomic-scale picture of membrane-associated proteins in living cells.
Collapse
Affiliation(s)
- Masaomi Ikari
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Hiromasa Yagi
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Takuma Kasai
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- PRESTO/Japan
Science and Technology Agency, Saitama 332-0012, Japan
| | - Kohsuke Inomata
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- PRESTO/Japan
Science and Technology Agency, Saitama 332-0012, Japan
| | - Masahiro Ito
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Kae Higuchi
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Natsuko Matsuda
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- SI Innovation
Center, Taiyo Nippon Sanso Corporation, Tokyo 206-0001, Japan
| | - Yutaka Ito
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Takanori Kigawa
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| |
Collapse
|
22
|
Ingólfsson H, Bhatia H, Aydin F, Oppelstrup T, López CA, Stanton LG, Carpenter TS, Wong S, Di Natale F, Zhang X, Moon JY, Stanley CB, Chavez JR, Nguyen K, Dharuman G, Burns V, Shrestha R, Goswami D, Gulten G, Van QN, Ramanathan A, Van Essen B, Hengartner NW, Stephen AG, Turbyville T, Bremer PT, Gnanakaran S, Glosli JN, Lightstone FC, Nissley DV, Streitz FH. Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure. J Chem Theory Comput 2023; 19:2658-2675. [PMID: 37075065 PMCID: PMC10173464 DOI: 10.1021/acs.jctc.2c01018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 04/20/2023]
Abstract
Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF. To capture the driving forces that bring RAS and RAF (represented as two domains, RBD and CRD) together on the plasma membrane, simulations with the ability to calculate atomic detail while having long time and large length- scales are needed. The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) is able to resolve RAS/RAF protein-membrane interactions that identify specific lipid-protein fingerprints that enhance protein orientations viable for effector binding. MuMMI is a fully automated, ensemble-based multiscale approach connecting three resolution scales: (1) the coarsest scale is a continuum model able to simulate milliseconds of time for a 1 μm2 membrane, (2) the middle scale is a coarse-grained (CG) Martini bead model to explore protein-lipid interactions, and (3) the finest scale is an all-atom (AA) model capturing specific interactions between lipids and proteins. MuMMI dynamically couples adjacent scales in a pairwise manner using machine learning (ML). The dynamic coupling allows for better sampling of the refined scale from the adjacent coarse scale (forward) and on-the-fly feedback to improve the fidelity of the coarser scale from the adjacent refined scale (backward). MuMMI operates efficiently at any scale, from a few compute nodes to the largest supercomputers in the world, and is generalizable to simulate different systems. As computing resources continue to increase and multiscale methods continue to advance, fully automated multiscale simulations (like MuMMI) will be commonly used to address complex science questions.
Collapse
Affiliation(s)
- Helgi
I. Ingólfsson
- Physical
and Life Sciences (PLS) Directorate, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Harsh Bhatia
- Computing
Directorate, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Fikret Aydin
- Physical
and Life Sciences (PLS) Directorate, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Tomas Oppelstrup
- Physical
and Life Sciences (PLS) Directorate, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Cesar A. López
- Theoretical
Biology and Biophysics Group, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Liam G. Stanton
- Department
of Mathematics and Statistics, San José
State University, San José, California 95192, United States
| | - Timothy S. Carpenter
- Physical
and Life Sciences (PLS) Directorate, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Sergio Wong
- Physical
and Life Sciences (PLS) Directorate, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Francesco Di Natale
- Computing
Directorate, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Xiaohua Zhang
- Physical
and Life Sciences (PLS) Directorate, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph Y. Moon
- Computing
Directorate, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Christopher B. Stanley
- Computational
Sciences and Engineering Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Joseph R. Chavez
- Computing
Directorate, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Kien Nguyen
- Theoretical
Biology and Biophysics Group, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Gautham Dharuman
- Physical
and Life Sciences (PLS) Directorate, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Violetta Burns
- Theoretical
Biology and Biophysics Group, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Rebika Shrestha
- RAS Initiative,
The Cancer Research Technology Program, Frederick National Laboratory, Frederick, Maryland 21701, United States
| | - Debanjan Goswami
- RAS Initiative,
The Cancer Research Technology Program, Frederick National Laboratory, Frederick, Maryland 21701, United States
| | - Gulcin Gulten
- RAS Initiative,
The Cancer Research Technology Program, Frederick National Laboratory, Frederick, Maryland 21701, United States
| | - Que N. Van
- RAS Initiative,
The Cancer Research Technology Program, Frederick National Laboratory, Frederick, Maryland 21701, United States
| | - Arvind Ramanathan
- Computing,
Environment & Life Sciences (CELS) Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Brian Van Essen
- Computing
Directorate, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Nicolas W. Hengartner
- Theoretical
Biology and Biophysics Group, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew G. Stephen
- RAS Initiative,
The Cancer Research Technology Program, Frederick National Laboratory, Frederick, Maryland 21701, United States
| | - Thomas Turbyville
- RAS Initiative,
The Cancer Research Technology Program, Frederick National Laboratory, Frederick, Maryland 21701, United States
| | - Peer-Timo Bremer
- Computing
Directorate, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - S. Gnanakaran
- Theoretical
Biology and Biophysics Group, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - James N. Glosli
- Physical
and Life Sciences (PLS) Directorate, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Felice C. Lightstone
- Physical
and Life Sciences (PLS) Directorate, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Dwight V. Nissley
- RAS Initiative,
The Cancer Research Technology Program, Frederick National Laboratory, Frederick, Maryland 21701, United States
| | - Frederick H. Streitz
- Physical
and Life Sciences (PLS) Directorate, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
23
|
Lee KY, Ikura M, Marshall CB. The Self-Association of the KRAS4b Protein is Altered by Lipid-Bilayer Composition and Electrostatics. Angew Chem Int Ed Engl 2023; 62:e202218698. [PMID: 36883374 DOI: 10.1002/anie.202218698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
KRAS is a peripheral membrane protein that regulates multiple signaling pathways, and is mutated in ≈30 % of cancers. Transient self-association of KRAS is essential for activation of the downstream effector RAF and oncogenicity. The presence of anionic phosphatidylserine (PS) lipids in the membrane was shown to promote KRAS self-assembly, however, the structural mechanisms remain elusive. Here, we employed nanodisc bilayers of defined lipid compositions, and probed the impact of PS concentration on KRAS self-association. Paramagnetic NMR experiments demonstrated the existence of two transient dimer conformations involving alternate electrostatic contacts between R135 and either D153 or E168 on the "α4/5-α4/5" interface, and revealed that lipid composition and salt modulate their dynamic equilibrium. These dimer interfaces were validated by charge-reversal mutants. This plasticity demonstrates how the dynamic KRAS dimerization interface responds to the environment, and likely extends to the assembly of other signaling complexes on the membrane.
Collapse
Affiliation(s)
- Ki-Young Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-Do, South Korea
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
24
|
Simanshu DK, Philips MR, Hancock JF. Consensus on the RAS dimerization hypothesis: Strong evidence for lipid-mediated clustering but not for G-domain-mediated interactions. Mol Cell 2023; 83:1210-1215. [PMID: 36990093 PMCID: PMC10150945 DOI: 10.1016/j.molcel.2023.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
One of the open questions in RAS biology is the existence of RAS dimers and their role in RAF dimerization and activation. The idea of RAS dimers arose from the discovery that RAF kinases function as obligate dimers, which generated the hypothesis that RAF dimer formation might be nucleated by G-domain-mediated RAS dimerization. Here, we review the evidence for RAS dimerization and describe a recent discussion among RAS researchers that led to a consensus that the clustering of two or more RAS proteins is not due to the stable association of G-domains but, instead, is a consequence of RAS C-terminal membrane anchors and the membrane phospholipids with which they interact.
Collapse
Affiliation(s)
- Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Mark R Philips
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
25
|
Tang X, Xue D, Zhang T, Nilsson-Payant BE, Carrau L, Duan X, Gordillo M, Tan AY, Qiu Y, Xiang J, Schwartz RE, tenOever BR, Evans T, Chen S. A multi-organoid platform identifies CIART as a key factor for SARS-CoV-2 infection. Nat Cell Biol 2023; 25:381-389. [PMID: 36918693 PMCID: PMC10014579 DOI: 10.1038/s41556-023-01095-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
COVID-19 is a systemic disease involving multiple organs. We previously established a platform to derive organoids and cells from human pluripotent stem cells to model SARS-CoV-2 infection and perform drug screens1,2. This provided insight into cellular tropism and the host response, yet the molecular mechanisms regulating SARS-CoV-2 infection remain poorly defined. Here we systematically examined changes in transcript profiles caused by SARS-CoV-2 infection at different multiplicities of infection for lung airway organoids, lung alveolar organoids and cardiomyocytes, and identified several genes that are generally implicated in controlling SARS-CoV-2 infection, including CIART, the circadian-associated repressor of transcription. Lung airway organoids, lung alveolar organoids and cardiomyocytes derived from isogenic CIART-/- human pluripotent stem cells were significantly resistant to SARS-CoV-2 infection, independently of viral entry. Single-cell RNA-sequencing analysis further validated the decreased levels of SARS-CoV-2 infection in ciliated-like cells of lung airway organoids. CUT&RUN, ATAC-seq and RNA-sequencing analyses showed that CIART controls SARS-CoV-2 infection at least in part through the regulation of NR4A1, a gene also identified from the multi-organoid analysis. Finally, transcriptional profiling and pharmacological inhibition led to the discovery that the Retinoid X Receptor pathway regulates SARS-CoV-2 infection downstream of CIART and NR4A1. The multi-organoid platform identified the role of circadian-clock regulation in SARS-CoV-2 infection, which provides potential therapeutic targets for protection against COVID-19 across organ systems.
Collapse
Affiliation(s)
- Xuming Tang
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Dongxiang Xue
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin E Nilsson-Payant
- Department of Microbiology, New York University, New York, NY, USA
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Lucia Carrau
- Department of Microbiology, New York University, New York, NY, USA
| | - Xiaohua Duan
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Miriam Gordillo
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Adrian Y Tan
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Yunping Qiu
- Stable Isotope and Metabolomics Core Facility, The Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA.
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Abuasaker B, Garrido E, Vilaplana M, Gómez-Zepeda JD, Brun S, Garcia-Cajide M, Mauvezin C, Jaumot M, Pujol MD, Rubio-Martínez J, Agell N. α4-α5 Helices on Surface of KRAS Can Accommodate Small Compounds That Increase KRAS Signaling While Inducing CRC Cell Death. Int J Mol Sci 2023; 24:ijms24010748. [PMID: 36614192 PMCID: PMC9821572 DOI: 10.3390/ijms24010748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
KRAS is the most frequently mutated oncogene associated with the genesis and progress of pancreatic, lung and colorectal (CRC) tumors. KRAS has always been considered as a therapeutic target in cancer but until now only two compounds that inhibit one specific KRAS mutation have been approved for clinical use. In this work, by molecular dynamics and a docking process, we describe a new compound (P14B) that stably binds to a druggable pocket near the α4-α5 helices of the allosteric domain of KRAS. This region had previously been identified as the binding site for calmodulin (CaM). Using surface plasmon resonance and pulldown analyses, we prove that P14B binds directly to oncogenic KRAS thus competing with CaM. Interestingly, P14B favors oncogenic KRAS interaction with BRAF and phosphorylated C-RAF, and increases downstream Ras signaling in CRC cells expressing oncogenic KRAS. The viability of these cells, but not that of the normal cells, is impaired by P14B treatment. These data support the significance of the α4-α5 helices region of KRAS in the regulation of oncogenic KRAS signaling, and demonstrate that drugs interacting with this site may destine CRC cells to death by increasing oncogenic KRAS downstream signaling.
Collapse
Affiliation(s)
- Baraa Abuasaker
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Eduardo Garrido
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona & Institut de Recerca en Química Teòrica i Computacional (IQTCUB), 08028 Barcelona, Spain
| | - Marta Vilaplana
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jesús Daniel Gómez-Zepeda
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sonia Brun
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Marta Garcia-Cajide
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Caroline Mauvezin
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Montserrat Jaumot
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Maria Dolors Pujol
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaime Rubio-Martínez
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona & Institut de Recerca en Química Teòrica i Computacional (IQTCUB), 08028 Barcelona, Spain
- Correspondence: (J.R.-M.); (N.A.); Tel.: +34-934039263 (J.R.-M.); +34-934035267 (N.A.)
| | - Neus Agell
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- Correspondence: (J.R.-M.); (N.A.); Tel.: +34-934039263 (J.R.-M.); +34-934035267 (N.A.)
| |
Collapse
|
27
|
Tang R, Shuldiner EG, Kelly M, Murray CW, Hebert JD, Andrejka L, Tsai MK, Hughes NW, Parker MI, Cai H, Li YC, Wahl GM, Dunbrack RL, Jackson PK, Petrov DA, Winslow MM. Multiplexed screens identify RAS paralogues HRAS and NRAS as suppressors of KRAS-driven lung cancer growth. Nat Cell Biol 2023; 25:159-169. [PMID: 36635501 PMCID: PMC10521195 DOI: 10.1038/s41556-022-01049-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2022] [Indexed: 01/13/2023]
Abstract
Oncogenic KRAS mutations occur in approximately 30% of lung adenocarcinoma. Despite several decades of effort, oncogenic KRAS-driven lung cancer remains difficult to treat, and our understanding of the regulators of RAS signalling is incomplete. Here to uncover the impact of diverse KRAS-interacting proteins on lung cancer growth, we combined multiplexed somatic CRISPR/Cas9-based genome editing in genetically engineered mouse models with tumour barcoding and high-throughput barcode sequencing. Through a series of CRISPR/Cas9 screens in autochthonous lung cancer models, we show that HRAS and NRAS are suppressors of KRASG12D-driven tumour growth in vivo and confirm these effects in oncogenic KRAS-driven human lung cancer cell lines. Mechanistically, RAS paralogues interact with oncogenic KRAS, suppress KRAS-KRAS interactions, and reduce downstream ERK signalling. Furthermore, HRAS and NRAS mutations identified in oncogenic KRAS-driven human tumours partially abolished this effect. By comparing the tumour-suppressive effects of HRAS and NRAS in oncogenic KRAS- and oncogenic BRAF-driven lung cancer models, we confirm that RAS paralogues are specific suppressors of KRAS-driven lung cancer in vivo. Our study outlines a technological avenue to uncover positive and negative regulators of oncogenic KRAS-driven cancer in a multiplexed manner in vivo and highlights the role RAS paralogue imbalance in oncogenic KRAS-driven lung cancer.
Collapse
Affiliation(s)
- Rui Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Marcus Kelly
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Baxter Laboratories, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher W Murray
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Jess D Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Andrejka
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Min K Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas W Hughes
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mitchell I Parker
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular and Cell Biology and Genetics Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Hongchen Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yao-Cheng Li
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Roland L Dunbrack
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peter K Jackson
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Baxter Laboratories, Stanford University School of Medicine, Stanford, CA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- The Chan Zuckerberg BioHub, San Francisco, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Abstract
Bao G, Pan W, Huang J, Zhou T. K-RasG12V/T35S -ERK1/2 pathway regulates H2BS14ph through Mst1 to facilitate the advancement of breast cancer cells. BioFactors. 2023;49:202. https://doi.org/10.1002/biof.1589 This article, published online on 28 November 2019 in Wiley Online Library, has been retracted by agreement between the International Union of Biochemistry and Molecular Biology, the Editor in Chief (Dr. Angelo Azzi), and Wiley Periodicals LLC. The retraction has been agreed following an investigation based on allegations raised by a third party. Evidence for image manipulation was found in figures 1, 4, 5, and 6. As a result, the conclusions of this article are considered to be invalid.
Collapse
|
29
|
Whaby M, Wallon L, Mazzei M, Khan I, Teng KW, Koide S, O’Bryan JP. Mutations in the α4-α5 allosteric lobe of RAS do not significantly impair RAS signaling or self-association. J Biol Chem 2022; 298:102661. [PMID: 36334633 PMCID: PMC9763690 DOI: 10.1016/j.jbc.2022.102661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Mutations in one of the three RAS genes (HRAS, KRAS, and NRAS) are present in nearly 20% of all human cancers. These mutations shift RAS to the GTP-loaded active state due to impairment in the intrinsic GTPase activity and disruption of GAP-mediated GTP hydrolysis, resulting in constitutive activation of effectors such as RAF. Because activation of RAF involves dimerization, RAS dimerization has been proposed as an important step in RAS-mediated activation of effectors. The α4-α5 allosteric lobe of RAS has been proposed as a RAS dimerization interface. Indeed, the NS1 monobody, which binds the α4-α5 region within the RAS G domain, inhibits RAS-dependent signaling and transformation as well as RAS nanoclustering at the plasma membrane. Although these results are consistent with a model in which the G domain dimerizes through the α4-α5 region, the isolated G domain of RAS lacks intrinsic dimerization capacity. Furthermore, prior studies analyzing α4-α5 point mutations have reported mixed effects on RAS function. Here, we evaluated the activity of a panel of single amino acid substitutions in the α4-α5 region implicated in RAS dimerization. We found that these proposed "dimerization-disrupting" mutations do not significantly impair self-association, signaling, or transformation of oncogenic RAS. These results are consistent with a model in which activated RAS protomers cluster in close proximity to promote the dimerization of their associated effector proteins (e.g., RAF) without physically associating into dimers mediated by specific molecular interactions. Our findings suggest the need for a nonconventional approach to developing therapeutics targeting the α4-α5 region.
Collapse
Affiliation(s)
- Michael Whaby
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lauren Wallon
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Megan Mazzei
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Imran Khan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Kai Wen Teng
- Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Shohei Koide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA,Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA,For correspondence: John P. O’Bryan; Shohei Koide
| | - John P. O’Bryan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA,For correspondence: John P. O’Bryan; Shohei Koide
| |
Collapse
|
30
|
Ngo VA, Garcia AE. Millisecond molecular dynamics simulations of KRas-dimer formation and interfaces. Biophys J 2022; 121:3730-3744. [PMID: 35462078 PMCID: PMC9617078 DOI: 10.1016/j.bpj.2022.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022] Open
Abstract
Ras dimers have been proposed as building blocks for initiating the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) cellular signaling pathway. To better examine the structure of possible dimer interfaces, the dynamics of Ras dimerization, and its potential signaling consequences, we performed molecular dynamics simulations totaling 1 ms of sampling, using an all-atom model of two full-length, farnesylated, guanosine triphosphate (GTP)-bound, wild-type KRas4b proteins diffusing on 29%POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine)-mixed POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membranes. Our simulations unveil an ensemble of thermodynamically weak KRas dimers spanning multiple conformations. The most stable conformations, having the largest interface areas, involve helix α2 and a hypervariable region (HVR). Among the dimer conformations, we found that the HVR of each KRas has frequent interactions with various parts of the dimer, thus potentially mediating the dimerization. Some dimer configurations have one KRas G-domain elevated above the lipid bilayer surface by residing on top of the other G-domain, thus likely contributing to the recruitment of cytosolic Raf kinases in the context of a stably formed multi-protein complex. We identified a variant of the α4-α5 KRas-dimer interface that is similar to the interfaces obtained with fluorescence resonance energy transfer (FRET) data of HRas on lipid bilayers. Interestingly, we found two arginine fingers, R68 and R149, that directly interact with the beta-phosphate of the GTP bound in KRas, in a manner similar to what is observed in a crystal structure of GAP-HRas complex, which can facilitate the GTP hydrolysis via the arginine finger of GTPase-activating protein (GAP).
Collapse
Affiliation(s)
- Van A Ngo
- Advanced Computing for Life Sciences and Engineering Group, Science Engagement Section, National Center for Computational Sciences, Oak Ridge National Lab, Oak Ridge, Tennessee; Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Angel E Garcia
- Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, New Mexico.
| |
Collapse
|
31
|
Nguyen K, López CA, Neale C, Van QN, Carpenter TS, Di Natale F, Travers T, Tran TH, Chan AH, Bhatia H, Frank PH, Tonelli M, Zhang X, Gulten G, Reddy T, Burns V, Oppelstrup T, Hengartner N, Simanshu DK, Bremer PT, Chen D, Glosli JN, Shrestha R, Turbyville T, Streitz FH, Nissley DV, Ingólfsson HI, Stephen AG, Lightstone FC, Gnanakaran S. Exploring CRD mobility during RAS/RAF engagement at the membrane. Biophys J 2022; 121:3630-3650. [PMID: 35778842 PMCID: PMC9617161 DOI: 10.1016/j.bpj.2022.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
During the activation of mitogen-activated protein kinase (MAPK) signaling, the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF bind to active RAS at the plasma membrane. The orientation of RAS at the membrane may be critical for formation of the RAS-RBDCRD complex and subsequent signaling. To explore how RAS membrane orientation relates to the protein dynamics within the RAS-RBDCRD complex, we perform multiscale coarse-grained and all-atom molecular dynamics (MD) simulations of KRAS4b bound to the RBD and CRD domains of RAF-1, both in solution and anchored to a model plasma membrane. Solution MD simulations describe dynamic KRAS4b-CRD conformations, suggesting that the CRD has sufficient flexibility in this environment to substantially change its binding interface with KRAS4b. In contrast, when the ternary complex is anchored to the membrane, the mobility of the CRD relative to KRAS4b is restricted, resulting in fewer distinct KRAS4b-CRD conformations. These simulations implicate membrane orientations of the ternary complex that are consistent with NMR measurements. While a crystal structure-like conformation is observed in both solution and membrane simulations, a particular intermolecular rearrangement of the ternary complex is observed only when it is anchored to the membrane. This configuration emerges when the CRD hydrophobic loops are inserted into the membrane and helices α3-5 of KRAS4b are solvent exposed. This membrane-specific configuration is stabilized by KRAS4b-CRD contacts that are not observed in the crystal structure. These results suggest modulatory interplay between the CRD and plasma membrane that correlate with RAS/RAF complex structure and dynamics, and potentially influence subsequent steps in the activation of MAPK signaling.
Collapse
Affiliation(s)
- Kien Nguyen
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Chris Neale
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Que N Van
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Timothy S Carpenter
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Francesco Di Natale
- Applications, Simulations, and Quality, Lawrence Livermore National Laboratory, Livermore, California
| | | | - Timothy H Tran
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Albert H Chan
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Harsh Bhatia
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California
| | - Peter H Frank
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin
| | - Xiaohua Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Gulcin Gulten
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Tyler Reddy
- CCS-7, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Violetta Burns
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Tomas Oppelstrup
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Nick Hengartner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Dhirendra K Simanshu
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Peer-Timo Bremer
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California
| | - De Chen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - James N Glosli
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Rebika Shrestha
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Thomas Turbyville
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Frederick H Streitz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Dwight V Nissley
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Helgi I Ingólfsson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Andrew G Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Felice C Lightstone
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico.
| |
Collapse
|
32
|
Nussinov R, Zhang M, Maloney R, Liu Y, Tsai CJ, Jang H. Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs. J Mol Biol 2022; 434:167569. [PMID: 35378118 PMCID: PMC9398924 DOI: 10.1016/j.jmb.2022.167569] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/12/2023]
Abstract
Here, we discuss the principles of allosteric activating mutations, propagation downstream of the signals that they prompt, and allosteric drugs, with examples from the Ras signaling network. We focus on Abl kinase where mutations shift the landscape toward the active, imatinib binding-incompetent conformation, likely resulting in the high affinity ATP outcompeting drug binding. Recent pharmacological innovation extends to allosteric inhibitor (GNF-5)-linked PROTAC, targeting Bcr-Abl1 myristoylation site, and broadly, allosteric heterobifunctional degraders that destroy targets, rather than inhibiting them. Designed chemical linkers in bifunctional degraders can connect the allosteric ligand that binds the target protein and the E3 ubiquitin ligase warhead anchor. The physical properties and favored conformational state of the engineered linker can precisely coordinate the distance and orientation between the target and the recruited E3. Allosteric PROTACs, noncompetitive molecular glues, and bitopic ligands, with covalent links of allosteric ligands and orthosteric warheads, increase the effective local concentration of productively oriented and placed ligands. Through covalent chemical or peptide linkers, allosteric drugs can collaborate with competitive drugs, degrader anchors, or other molecules of choice, driving innovative drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
33
|
Wang G, Bai Y, Cui J, Zong Z, Gao Y, Zheng Z. Computer-Aided Drug Design Boosts RAS Inhibitor Discovery. Molecules 2022; 27:5710. [PMID: 36080477 PMCID: PMC9457765 DOI: 10.3390/molecules27175710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/13/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The Rat Sarcoma (RAS) family (NRAS, HRAS, and KRAS) is endowed with GTPase activity to regulate various signaling pathways in ubiquitous animal cells. As proto-oncogenes, RAS mutations can maintain activation, leading to the growth and proliferation of abnormal cells and the development of a variety of human cancers. For the fight against tumors, the discovery of RAS-targeted drugs is of high significance. On the one hand, the structural properties of the RAS protein make it difficult to find inhibitors specifically targeted to it. On the other hand, targeting other molecules in the RAS signaling pathway often leads to severe tissue toxicities due to the lack of disease specificity. However, computer-aided drug design (CADD) can help solve the above problems. As an interdisciplinary approach that combines computational biology with medicinal chemistry, CADD has brought a variety of advances and numerous benefits to drug design, such as the rapid identification of new targets and discovery of new drugs. Based on an overview of RAS features and the history of inhibitor discovery, this review provides insight into the application of mainstream CADD methods to RAS drug design.
Collapse
Affiliation(s)
- Ge Wang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Yuhao Bai
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Jiarui Cui
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Zirui Zong
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Yuan Gao
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Zhen Zheng
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
34
|
Nanoscopic Spatial Association between Ras and Phosphatidylserine on the Cell Membrane Studied with Multicolor Super Resolution Microscopy. Biomolecules 2022; 12:biom12081033. [PMID: 35892343 PMCID: PMC9332490 DOI: 10.3390/biom12081033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/02/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Recent work suggests that Ras small GTPases interact with the anionic lipid phosphatidylserine (PS) in an isoform-specific manner, with direct implications for their biological functions. Studies on PS-Ras associations in cells, however, have relied on immuno-EM imaging of membrane sheets. To study their spatial relationships in intact cells, we have combined the use of Lact-C2-GFP, a biosensor for PS, with multicolor super resolution imaging based on DNA-PAINT. At ~20 nm spatial resolution, the resulting super resolution images clearly show the nonuniform molecular distribution of PS on the cell membrane and its co-enrichment with caveolae, as well as with unidentified membrane structures. Two-color imaging followed by spatial analysis shows that KRas-G12D and HRas-G12V both co-enrich with PS in model U2OS cells, confirming previous observations, yet exhibit clear differences in their association patterns. Whereas HRas-G12V is almost always co-enriched with PS, KRas-G12D is strongly co-enriched with PS in about half of the cells, with the other half exhibiting a more moderate association. In addition, perturbations to the actin cytoskeleton differentially impact PS association with the two Ras isoforms. These results suggest that PS-Ras association is context-dependent and demonstrate the utility of multiplexed super resolution imaging in defining the complex interplay between Ras and the membrane.
Collapse
|
35
|
Abstract
Both the mTORC2 and Ras-ERK pathways respond to growth factor stimulation and play critical roles in cell growth and proliferation, disarray of these pathways leads to many diseases, especially cancer. These two signaling pathways crosstalk at many levels; recently it's become clear that the SIN1 component of mTORC2 could interact with Ras family small GTPases, but how these two proteins interact at the molecular level and the functional outcomes of this interaction remain to be addressed. In this work we determined the high-resolution structure of Ras-SIN1 complexes and revealed the detailed interaction mechanism. We also showed that Ras-SIN1 association inhibits insulin-induced ERK activation. Insights from this work could improve our understanding of the disease-causing mechanism of errant mTORC2 or Ras proteins. Over the years it has been established that SIN1, a key component of mTORC2, could interact with Ras family small GTPases through its Ras-binding domain (RBD). The physical association of Ras and SIN1/mTORC2 could potentially affect both mTORC2 and Ras-ERK pathways. To decipher the precise molecular mechanism of this interaction, we determined the high-resolution structures of HRas/KRas-SIN1 RBD complexes, showing the detailed interaction interface. Mutation of critical interface residues abolished Ras-SIN1 interaction and in SIN1 knockout cells we demonstrated that Ras-SIN1 association promotes SGK1 activity but inhibits insulin-induced ERK activation. With structural comparison and competition fluorescence resonance energy transfer (FRET) assays we showed that HRas-SIN1 RBD association is much weaker than HRas-Raf1 RBD but is slightly stronger than HRas-PI3K RBD interaction, providing a possible explanation for the different outcome of insulin or EGF stimulation. We also found that SIN1 isoform lacking the PH domain binds stronger to Ras than other longer isoforms and the PH domain appears to have an inhibitory effect on Ras-SIN1 binding. In addition, we uncovered a Ras dimerization interface that could be critical for Ras oligomerization. Our results advance our understanding of Ras-SIN1 association and crosstalk between growth factor-stimulated pathways.
Collapse
|
36
|
Smith KP, Lee W, Tonelli M, Lee Y, Light SH, Cornilescu G, Chakravarthy S. Solution structure and dynamics of the mitochondrial-targeted GTPase-activating protein (GAP) VopE by an integrated NMR/SAXS approach. Protein Sci 2022; 31:e4282. [PMID: 35137487 PMCID: PMC9047041 DOI: 10.1002/pro.4282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
The bacterial pathogen Vibrio cholerae use a type III secretion system to inject effector proteins into a host cell. Recently, a putative Toxic GTPase Activating Protein (ToxGAP) called Vibrio outer protein E (VopE) was identified as a T3SS substrate and virulence factor that affected host mitochondrial dynamics and immune response. However, biophysical and structural characterization has been absent. Here, we describe solution NMR structure of the putative GTPase-activating protein (GAP) domain (73-204) of VopE. Using size exclusion chromatography coupled with small-angle x-ray scattering and residual dipolar coupling data, we restrained the MD process to efficiently determine the overall fold and improve the quality of the output calculated structures. Comparing the structure of VopE with other ToxGAP's revealed a similar overall fold with several features unique to VopE. Specifically, the "Bulge 1," α1 helix, and noteworthy "backside linker" elements on the N-terminus are dissimilar to the other ToxGAP's. By using NMR relaxation dispersion experiments, we demonstrate that these regions undergo motions on a > 6 s-1 timescale. Based on the disposition of these mobile regions relative to the putative catalytic arginine residue, we hypothesize that the protein may undergo structural changes to bind cognate GTPases.
Collapse
Affiliation(s)
- Kyle P. Smith
- Department of Cell & Developmental BiologyNorthwestern University ChicagoIllinoisUSA
- Xilio TherapeuticsWalthamMassachusettsUSA
| | - Woonghee Lee
- Department of ChemistryUniversity of Colorado‐DenverDenverColoradoUSA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yeongjoon Lee
- Department of ChemistryUniversity of Colorado‐DenverDenverColoradoUSA
| | - Samuel H. Light
- Department of MicrobiologyUniversity of ChicagoChicagoIllinoisUSA
| | - Gabriel Cornilescu
- Advanced Technology Research Facility, Frederick National Laboratory for Cancer ResearchLeidos Biomedical Research, Inc., National Cancer Institute, National Institutes of HealthFrederickMarylandUSA
| | | |
Collapse
|
37
|
Negri F, Bottarelli L, de’Angelis GL, Gnetti L. KRAS: A Druggable Target in Colon Cancer Patients. Int J Mol Sci 2022; 23:4120. [PMID: 35456940 PMCID: PMC9027058 DOI: 10.3390/ijms23084120] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/18/2022] Open
Abstract
Mutations in KRAS are among the most frequent aberrations in cancer, including colon cancer. KRAS direct targeting is daunting due to KRAS protein resistance to small molecule inhibition. Moreover, its elevated affinity to cellular guanosine triphosphate (GTP) has made the design of specific drugs challenging. Indeed, KRAS was considered 'undruggable'. KRASG12C is the most commonly mutated variant of KRAS in non-small cell lung cancer. Currently, the achievements obtained with covalent inhibitors of this variant have given the possibility to assess the best therapeutic approach to KRAS-driven tumors. Mutation-related biochemical assets and the tissue of origin are expected to influence responses to treatment. Further attempts to obtain mutant-specific KRAS (KRASG12C) switch-II covalent inhibitors are ongoing and the results are promising. Drugs targeted to block KRAS effector pathways could be combined with direct KRAS inhibitors, immunotherapy or T cell-targeting approaches in KRAS-mutant tumors. The development of valuable combination regimens will be essential against potential mechanisms of resistance that may arise during treatment.
Collapse
Affiliation(s)
- Francesca Negri
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
| | - Lorena Bottarelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Gian Luigi de’Angelis
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Letizia Gnetti
- Pathology Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
| |
Collapse
|
38
|
Seguin L. KRAS Addiction Promotes Cancer Cell Adaptation in Harsh Microenvironment Through Macropinocytosis. Subcell Biochem 2022; 98:189-204. [PMID: 35378709 DOI: 10.1007/978-3-030-94004-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
KRAS is the most frequently mutated oncogene in cancer and despite intensive studies, attempts to develop effective therapies targeting KRAS or its downstream signaling have failed mostly due to the complexity of KRAS activation and function in cancer initiation and progression. Over the years, KRAS has been involved in several biological processes including cell survival, proliferation, and metabolism by promoting not only a favorable tumor environment but also a cell-microenvironment dialog to allow cancer cells to adapt to tumor microenvironment scarcity. One of the mechanisms involved in this adaption is KRAS-mediated macropinocytosis. Macropinocytosis is an evolutionarily conserved, large-scale, and nonselective form of endocytosis involving actin-driven cell membrane remodeling to engulf large amounts of extracellular fluids and proteins from the local environment. While macropinocytosis process has been known for decades, recent gain interest due to its regulation of KRAS-driven tumor growth in adverse microenvironments. By promoting extracellular protein and other macromolecules internalization, macropinocytosis provides a survival mechanism under nutrient scarce conditions and the potential for unrestricted tumor growth. Thus, a better understanding of macropinocytotic process is needed to develop alternative therapeutic strategies.
Collapse
|
39
|
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. BIOPHYSICS REVIEWS 2022; 3:011306. [PMID: 38505224 PMCID: PMC10903413 DOI: 10.1063/5.0080512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 03/21/2024]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Supriyo Bhattacharyya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | | | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
40
|
Andreadelis I, Kiriakidi S, Lamprakis C, Theodoropoulou A, Doerr S, Chatzigoulas A, Manchester J, Velez-Vega C, Duca JS, Cournia Z. Membrane Composition and Raf[CRD]-Membrane Attachment Are Driving Forces for K-Ras4B Dimer Stability. J Phys Chem B 2022; 126:1504-1519. [PMID: 35142524 DOI: 10.1021/acs.jpcb.1c01184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ras proteins are membrane-anchored GTPases that regulate key cellular signaling networks. It has been recently shown that different anionic lipid types can affect the properties of Ras in terms of dimerization/clustering on the cell membrane. To understand the effects of anionic lipids on key spatiotemporal properties of dimeric K-Ras4B, we perform all-atom molecular dynamics simulations of the dimer K-Ras4B in the presence and absence of Raf[RBD/CRD] effectors on two model anionic lipid membranes: one containing 78% mol DOPC, 20% mol DOPS, and 2% mol PIP2 and another one with enhanced concentration of anionic lipids containing 50% mol DOPC, 40% mol DOPS, and 10% mol PIP2. Analysis of our results unveils the orientational space of dimeric K-Ras4B and shows that the stability of the dimer is enhanced on the membrane containing a high concentration of anionic lipids in the absence of Raf effectors. This enhanced stability is also observed in the presence of Raf[RBD/CRD] effectors although it is not influenced by the concentration of anionic lipids in the membrane, but rather on the ability of Raf[CRD] to anchor to the membrane. We generate dominant K-Ras4B conformations by Markov state modeling and yield the population of states according to the K-Ras4B orientation on the membrane. For the membrane containing anionic lipids, we observe correlations between the diffusion of K-Ras4B and PIP2 and anchoring of anionic lipids to the Raf[CRD] domain. We conclude that the presence of effectors with the Raf[CRD] domain anchoring on the membrane as well as the membrane composition both influence the conformational stability of the K-Ras4B dimer, enabling the preservation of crucial interface interactions.
Collapse
Affiliation(s)
- Ioannis Andreadelis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Sofia Kiriakidi
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Christos Lamprakis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | | | - Stefan Doerr
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Alexios Chatzigoulas
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - John Manchester
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Camilo Velez-Vega
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - José S Duca
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
41
|
Erman B. Gaussian network model revisited: Effects of mutation and ligand binding on protein behavior. Phys Biol 2022; 19. [PMID: 35105836 DOI: 10.1088/1478-3975/ac50ba] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/01/2022] [Indexed: 11/12/2022]
Abstract
The coarse-grained Gaussian Network model, GNM, considers only the alpha carbons of the folded protein. Therefore it is not directly applicable to the study of mutation or ligand binding problems where atomic detail is required. This shortcoming is improved by including all atom pairs within the coordination shell of each other into the Kirchoff Adjacency Matrix. Counting all contacts rather than only alpha carbon contacts diminishes the magnitude of fluctuations in the system. But more importantly, it changes the graph-like connectivity structure, i.e., the Kirchoff Adjacency Matrix of the protein. This change depends on amino acid type which introduces amino acid specific and position specific information into the classical coarse-grained GNM which was originally modelled in analogy with the phantom network model of rubber elasticity. With this modification, it is now possible to explain the consequences of mutation and ligand binding on residue fluctuations, their pair-correlations and mutual information (MI) shared by each pair. We refer to the new model as 'all-atom GNM'. Using examples from published data we show that the all-atom GNM gives B-factors that are in better agreement with experiment, can explain effects of mutation on long range communication in PDZ domains and can predict effects of GDP and GTP binding on the dimerization of KRAS.
Collapse
Affiliation(s)
- Burak Erman
- Department of Chemical and Biological Engineering, Koc University, Rumeifeneri Yolu, Istanbul, Istanbul, 34450, TURKEY
| |
Collapse
|
42
|
Ozdemir ES, Koester AM, Nan X. Ras Multimers on the Membrane: Many Ways for a Heart-to-Heart Conversation. Genes (Basel) 2022; 13:219. [PMID: 35205266 PMCID: PMC8872464 DOI: 10.3390/genes13020219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
Formation of Ras multimers, including dimers and nanoclusters, has emerged as an exciting, new front of research in the 'old' field of Ras biomedicine. With significant advances made in the past few years, we are beginning to understand the structure of Ras multimers and, albeit preliminary, mechanisms that regulate their formation in vitro and in cells. Here we aim to synthesize the knowledge accrued thus far on Ras multimers, particularly the presence of multiple globular (G-) domain interfaces, and discuss how membrane nanodomain composition and structure would influence Ras multimer formation. We end with some general thoughts on the potential implications of Ras multimers in basic and translational biology.
Collapse
Affiliation(s)
- E. Sila Ozdemir
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave., Portland, OR 97201, USA;
| | - Anna M. Koester
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA;
| | - Xiaolin Nan
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave., Portland, OR 97201, USA;
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA;
| |
Collapse
|
43
|
Ingólfsson HI, Neale C, Carpenter TS, Shrestha R, López CA, Tran TH, Oppelstrup T, Bhatia H, Stanton LG, Zhang X, Sundram S, Di Natale F, Agarwal A, Dharuman G, Kokkila Schumacher SIL, Turbyville T, Gulten G, Van QN, Goswami D, Jean-Francois F, Agamasu C, Chen D, Hettige JJ, Travers T, Sarkar S, Surh MP, Yang Y, Moody A, Liu S, Van Essen BC, Voter AF, Ramanathan A, Hengartner NW, Simanshu DK, Stephen AG, Bremer PT, Gnanakaran S, Glosli JN, Lightstone FC, McCormick F, Nissley DV, Streitz FH. Machine learning-driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins. Proc Natl Acad Sci U S A 2022; 119:e2113297119. [PMID: 34983849 PMCID: PMC8740753 DOI: 10.1073/pnas.2113297119] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 01/17/2023] Open
Abstract
RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.
Collapse
Affiliation(s)
- Helgi I Ingólfsson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Chris Neale
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Timothy S Carpenter
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Rebika Shrestha
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Timothy H Tran
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Tomas Oppelstrup
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Harsh Bhatia
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Liam G Stanton
- Department of Mathematics and Statistics, San José State University, San José, CA 95192
| | - Xiaohua Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Shiv Sundram
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Francesco Di Natale
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Animesh Agarwal
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Gautham Dharuman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | | | - Thomas Turbyville
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Gulcin Gulten
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Que N Van
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Debanjan Goswami
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Frantz Jean-Francois
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Constance Agamasu
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - De Chen
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Jeevapani J Hettige
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Sumantra Sarkar
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Michael P Surh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Yue Yang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Adam Moody
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Shusen Liu
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Brian C Van Essen
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Arthur F Voter
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Arvind Ramanathan
- Computing, Environment & Life Sciences Directorate, Argonne National Laboratory, Lemont, IL 60439
| | - Nicolas W Hengartner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Dhirendra K Simanshu
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Andrew G Stephen
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Peer-Timo Bremer
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - James N Glosli
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Felice C Lightstone
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Frank McCormick
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701;
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115
| | - Dwight V Nissley
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701;
| | - Frederick H Streitz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550;
| |
Collapse
|
44
|
Bildik G, Liang X, Sutton MN, Bast RC, Lu Z. DIRAS3: An Imprinted Tumor Suppressor Gene that Regulates RAS and PI3K-driven Cancer Growth, Motility, Autophagy, and Tumor Dormancy. Mol Cancer Ther 2022; 21:25-37. [PMID: 34667114 DOI: 10.1158/1535-7163.mct-21-0331] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/20/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023]
Abstract
DIRAS3 is an imprinted tumor suppressor gene that encodes a 26 kDa GTPase with 60% amino acid homology to RAS, but with a distinctive 34 amino acid N-terminal extension required to block RAS function. DIRAS3 is maternally imprinted and expressed only from the paternal allele in normal cells. Loss of expression can occur in a single "hit" through multiple mechanisms. Downregulation of DIRAS3 occurs in cancers of the ovary, breast, lung, prostate, colon, brain, and thyroid. Reexpression of DIRAS3 inhibits signaling through PI3 kinase/AKT, JAK/STAT, and RAS/MAPK, blocking malignant transformation, inhibiting cancer cell growth and motility, and preventing angiogenesis. DIRAS3 is a unique endogenous RAS inhibitor that binds directly to RAS, disrupting RAS dimers and clusters, and preventing RAS-induced transformation. DIRAS3 is essential for autophagy and triggers this process through multiple mechanisms. Reexpression of DIRAS3 induces dormancy in a nu/nu mouse xenograft model of ovarian cancer, inhibiting cancer cell growth and angiogenesis. DIRAS3-mediated induction of autophagy facilitates the survival of dormant cancer cells in a nutrient-poor environment. DIRAS3 expression in dormant, drug-resistant autophagic cancer cells can serve as a biomarker and as a target for novel therapy to eliminate the residual disease that remains after conventional therapy.
Collapse
Affiliation(s)
- Gamze Bildik
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaowen Liang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Margie N Sutton
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
45
|
Naschberger A, Baradaran R, Rupp B, Carroni M. The structure of neurofibromin isoform 2 reveals different functional states. Nature 2021; 599:315-319. [PMID: 34707296 PMCID: PMC8580823 DOI: 10.1038/s41586-021-04024-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/13/2021] [Indexed: 01/20/2023]
Abstract
The autosomal dominant monogenetic disease neurofibromatosis type 1 (NF1) affects approximately one in 3,000 individuals and is caused by mutations in the NF1 tumour suppressor gene, leading to dysfunction in the protein neurofibromin (Nf1)1,2. As a GTPase-activating protein, a key function of Nf1 is repression of the Ras oncogene signalling cascade. We determined the human Nf1 dimer structure at an overall resolution of 3.3 Å. The cryo-electron microscopy structure reveals domain organization and structural details of the Nf1 exon 23a splicing3 isoform 2 in a closed, self-inhibited, Zn-stabilized state and an open state. In the closed conformation, HEAT/ARM core domains shield the GTPase-activating protein-related domain (GRD) so that Ras binding is sterically inhibited. In a distinctly different, open conformation of one protomer, a large-scale movement of the GRD occurs, which is necessary to access Ras, whereas Sec14-PH reorients to allow interaction with the cellular membrane4. Zn incubation of Nf1 leads to reduced Ras-GAP activity with both protomers in the self-inhibited, closed conformation stabilized by a Zn binding site between the N-HEAT/ARM domain and the GRD-Sec14-PH linker. The transition between closed, self-inhibited states of Nf1 and open states provides guidance for targeted studies deciphering the complex molecular mechanism behind the widespread neurofibromatosis syndrome and Nf1 dysfunction in carcinogenesis.
Collapse
Affiliation(s)
- Andreas Naschberger
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- Institute of Genetic Epidemiology, Medical University Innsbruck, Innsbruck, Austria
| | - Rozbeh Baradaran
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Bernhard Rupp
- Institute of Genetic Epidemiology, Medical University Innsbruck, Innsbruck, Austria.
- k.-k. Hofkristallamt, San Diego, CA, USA.
| | - Marta Carroni
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| |
Collapse
|
46
|
Lee KY, Enomoto M, Gebregiworgis T, Gasmi-Seabrook GMC, Ikura M, Marshall CB. Oncogenic KRAS G12D mutation promotes dimerization through a second, phosphatidylserine-dependent interface: a model for KRAS oligomerization. Chem Sci 2021; 12:12827-12837. [PMID: 34703570 PMCID: PMC8494122 DOI: 10.1039/d1sc03484g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/04/2021] [Indexed: 12/02/2022] Open
Abstract
KRAS forms transient dimers and higher-order multimers (nanoclusters) on the plasma membrane, which drive MAPK signaling and cell proliferation. KRAS is a frequently mutated oncogene, and while it is well known that the most prevalent mutation, G12D, impairs GTP hydrolysis, thereby increasing KRAS activation, G12D has also been shown to enhance nanoclustering. Elucidating structures of dynamic KRAS assemblies on a membrane has been challenging, thus we have refined our NMR approach that uses nanodiscs to study KRAS associated with membranes. We incorporated paramagnetic relaxation enhancement (PRE) titrations and interface mutagenesis, which revealed that, in addition to the symmetric ‘α–α’ dimerization interface shared with wild-type KRAS, the G12D mutant also self-associates through an asymmetric ‘α–β’ interface. The ‘α–β’ association is dependent on the presence of phosphatidylserine lipids, consistent with previous reports that this lipid promotes KRAS self-assembly on the plasma membrane in cells. Experiments using engineered mutants to spoil each interface, together with PRE probes attached to the membrane or free in solvent, suggest that dimerization through the primary ‘α–α’ interface releases β interfaces from the membrane promoting formation of the secondary ‘α–β’ interaction, potentially initiating nanoclustering. In addition, the small molecule BI-2852 binds at a β–β interface, stabilizing a new dimer configuration that outcompetes native dimerization and blocks the effector-binding site. Our data indicate that KRAS self-association involves a delicately balanced conformational equilibrium between transient states, which is sensitive to disease-associated mutation and small molecule inhibitors. The methods developed here are applicable to biologically important transient interactions involving other membrane-associated proteins. Studies of membrane-dependent dimerization of KRAS on nanodiscs using paramagnetic NMR titrations and mutagenesis revealed a novel asymmetric ‘α–β’ interface that provides a potential mechanism for the enhanced assembly of KRAS–G12D nanoclusters.![]()
Collapse
Affiliation(s)
- Ki-Young Lee
- Princess Margaret Cancer Centre, University Health Network Toronto Ontario M5G 1L7 Canada
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network Toronto Ontario M5G 1L7 Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network Toronto Ontario M5G 1L7 Canada
| | | | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network Toronto Ontario M5G 1L7 Canada .,Department of Medical Biophysics, University of Toronto Toronto Ontario M5G 1L7 Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network Toronto Ontario M5G 1L7 Canada
| |
Collapse
|
47
|
Mysore VP, Zhou ZW, Ambrogio C, Li L, Kapp JN, Lu C, Wang Q, Tucker MR, Okoro JJ, Nagy-Davidescu G, Bai X, Plückthun A, Jänne PA, Westover KD, Shan Y, Shaw DE. A structural model of a Ras-Raf signalosome. Nat Struct Mol Biol 2021; 28:847-857. [PMID: 34625747 PMCID: PMC8643099 DOI: 10.1038/s41594-021-00667-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/25/2021] [Indexed: 01/29/2023]
Abstract
The protein K-Ras functions as a molecular switch in signaling pathways regulating cell growth. In the human mitogen-activated protein kinase (MAPK) pathway, which is implicated in many cancers, multiple K-Ras proteins are thought to assemble at the cell membrane with Ras effector proteins from the Raf family. Here we propose an atomistic structural model for such an assembly. Our starting point was an asymmetric guanosine triphosphate-mediated K-Ras dimer model, which we generated using unbiased molecular dynamics simulations and verified with mutagenesis experiments. Adding further K-Ras monomers in a head-to-tail fashion led to a compact helical assembly, a model we validated using electron microscopy and cell-based experiments. This assembly stabilizes K-Ras in its active state and presents composite interfaces to facilitate Raf binding. Guided by existing experimental data, we then positioned C-Raf, the downstream kinase MEK1 and accessory proteins (Galectin-3 and 14-3-3σ) on and around the helical assembly. The resulting Ras-Raf signalosome model offers an explanation for a large body of data on MAPK signaling.
Collapse
Affiliation(s)
| | - Zhi-Wei Zhou
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chiara Ambrogio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonas N Kapp
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Chunya Lu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- D. E. Shaw Research, New York, NY, USA
| | | | - Jeffrey J Okoro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Xiaochen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - David E Shaw
- D. E. Shaw Research, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
48
|
Affiliation(s)
- John F Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
49
|
RAS Dimers: The Novice Couple at the RAS-ERK Pathway Ball. Genes (Basel) 2021; 12:genes12101556. [PMID: 34680951 PMCID: PMC8535645 DOI: 10.3390/genes12101556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Signals conveyed through the RAS-ERK pathway constitute a pivotal regulatory element in cancer-related cellular processes. Recently, RAS dimerization has been proposed as a key step in the relay of RAS signals, critically contributing to RAF activation. RAS clustering at plasma membrane microdomains and endomembranes facilitates RAS dimerization in response to stimulation, promoting RAF dimerization and subsequent activation. Remarkably, inhibiting RAS dimerization forestalls tumorigenesis in cellular and animal models. Thus, the pharmacological disruption of RAS dimers has emerged as an additional target for cancer researchers in the quest for a means to curtail aberrant RAS activity.
Collapse
|
50
|
Heinrich F, Van QN, Jean-Francois F, Stephen AG, Lösche M. Membrane-bound KRAS approximates an entropic ensemble of configurations. Biophys J 2021; 120:4055-4066. [PMID: 34384763 PMCID: PMC8510975 DOI: 10.1016/j.bpj.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022] Open
Abstract
KRAS4B is a membrane-anchored signaling protein and a primary target in cancer research. Predictions from molecular dynamics simulations that have previously shaped our mechanistic understanding of KRAS signaling disagree with recent experimental results from neutron reflectometry, NMR, and thermodynamic binding studies. To gain insight into these discrepancies, we compare this body of biophysical data to back-calculated experimental results from a series of molecular simulations that implement different subsets of molecular interactions. Our results show that KRAS4B approximates an entropic ensemble of configurations at model membranes containing 30% phosphatidylserine lipids, which is not significantly shaped by interactions between the globular G-domain of KRAS4B and the lipid membrane. These findings revise our understanding of KRAS signaling and promote a model in which the protein samples the accessible conformational space in a near-uniform manner while being available to bind to effector proteins.
Collapse
Affiliation(s)
- Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland.
| | - Que N Van
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Frantz Jean-Francois
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Andrew G Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland
| |
Collapse
|