1
|
Yu X, He Y, Kamenecka TM, Kojetin DJ. Towards a unified molecular mechanism for liganddependent activation of NR4A-RXR heterodimers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.642122. [PMID: 40166180 PMCID: PMC11956975 DOI: 10.1101/2025.03.19.642122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A subset of nuclear receptors (NRs) function as permissive heterodimers with retinoid X receptor (RXR), defined by transcriptional activation in response to binding RXR agonist ligands. Permissive NR-RXR activation operates via a classical pharmacological mechanism, where binding of an RXR agonist increases coactivator recruitment to the heterodimer. However, we previously demonstrated that transcriptional activation of permissive Nurr1-RXRα (NR4A2-NR2B1) heterodimers by an RXR ligand set, which included pharmacological RXR agonists and selective Nurr1-RXRα agonists that function as antagonists of RXRα homodimers, occurs via a non-classical mechanism: ligand-binding domain (LBD) heterodimer dissociation (Yu et al., 2023). Here, we extend mechanistic ligand profiling of the same RXR ligand set to Nur77-RXRγ (NR4A1-NR2B3), which is evolutionarily related to Nurr1-RXRα. Biochemical and NMR protein-protein interaction profiling along with cellular transcription studies indicate that the RXR ligand set, which lacks selective Nur77-RXRγ agonists, may influence Nur77-RXRγ transcriptional activation through both classical pharmacological activation and LBD heterodimer dissociation. However, upon reanalyzing our previously published data for Nurr1-RXRα, we found that the inclusion of selective Nurr1-RXRα agonists was essential for elucidating the LBD heterodimer dissociation mechanism. Our findings underscore the need for a more functionally diverse RXR ligand set to explore Nur77-RXRγ activation and unify LBD heterodimer dissociation as a potential targeting mechanism for NR4A-RXR heterodimers in neurodegenerative and inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
| | - Yuanjun He
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Theodore M. Kamenecka
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Douglas J. Kojetin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Strutzenberg TS, Mann MD, Li X, Shin H, Kelsey J, Aiyer S, Yu J, Gray G, Zhang Z, Shan Z, Zhou B, Zheng Y, Griffin PR, Lyumkis D. Nucleosome Engagement Regulates RORγt Structure and Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642251. [PMID: 40161694 PMCID: PMC11952427 DOI: 10.1101/2025.03.10.642251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The retinoic acid-related orphan receptor gamma (RORγt) acts as the major transcriptional activator in Th17 cell development and function to mediate adaptive immune defenses against pathogenic infection. RORγt engages accessible DNA response elements in the genome and interplays with coactivator proteins and accessory transcription factors to drive gene expression. However, how the chromatin environment mediates RORγt structure, dynamics, and function remains unclear. Here, we profile how the nucleosome promotes or restricts access to the main RORγt DNA response elements found in native enhancers and promoters, revealing preferential binding in regions of free DNA and nucleosomal entry/exit sites, with single base-pair resolution. Solution phase measurements using hydrogen deuterium exchange coupled to mass spectrometry identify novel allosteric effects that influence RORγt binding and mediate chromatin dynamics. A high-resolution structure of RORγt bound to the nucleosome reveals how structured elements assemble to confer binding specificity and avidity to chromatin substrates. The observations suggest an activation model where RORγt binding to chromatinized DNA promotes coregulator recruitment and chromatin decompaction.
Collapse
Affiliation(s)
| | - Matthew D. Mann
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Xiandu Li
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hyejeong Shin
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jordan Kelsey
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sriram Aiyer
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Gennavieve Gray
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zeyuan Zhang
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zelin Shan
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bo Zhou
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ye Zheng
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Patrick R. Griffin
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, USA
- Graduate School for Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Nhoek P, Hwang S, Huh J, Pel P, Park CW, Khiev P, Kim HW, Noh M, Chin YW. Butanolides and clerodane diterpenes from the twigs of Casearia grewiifolia and their effects on adiponectin secretion. Bioorg Chem 2024; 153:107890. [PMID: 39427630 DOI: 10.1016/j.bioorg.2024.107890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Three butanolides derivatives, grewiifolides A-C, and nine clerodane diterpenes, grewiifolins M-U, as well as a known sterol were isolated from the twigs of Casearia grewiifolia. The chemical structures and configurations of all isolates were established by various spectroscopic means and chemical derivatization. In a cell-based phenotypic assay using the adipogenesis model of human bone marrow mesenchymal stem cells (hBM-MSCs), grewiifolide B significantly promoted adiponectin-secretion with EC50 value of 24.8 µM. In target identification studies, butanolide derivatives were selectively bound to PPARγ with Ki values of 4.65, 0.55, and 17.8 µM, respectively. Further functional analysis and molecular modeling revealed that grewiifolide B promotes adiponectin-secretion through PPARγ full agonism.
Collapse
Affiliation(s)
- Piseth Nhoek
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seokyoung Hwang
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungmoo Huh
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Pisey Pel
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Chan-Woong Park
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Piseth Khiev
- Royal University of Phnom Penh, Department of Biology, Russian Federation Boulevard, Khan Toul Kork, Phnom Penh 12156, Cambodia
| | - Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do 04620, Republic of Korea
| | - Minsoo Noh
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Young-Won Chin
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Huang S, Jin Y, Zhang L, Zhou Y, Chen N, Wang W. PPAR gamma and PGC-1alpha activators protect against diabetic nephropathy by suppressing the inflammation and NF-kappaB activation. Nephrology (Carlton) 2024; 29:858-872. [PMID: 39229715 PMCID: PMC11579552 DOI: 10.1111/nep.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/13/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
AIM Inflammation plays a critical role in the progression of diabetic nephropathy. Peroxisome proliferator-activated receptor gamma (PPARγ) and its coactivator PPARγ coactivator-1 alpha (PGC-1α) enhance mitochondrial biogenesis and cellular energy metabolism but inhibit inflammation. However, the molecular mechanism through which these two proteins cooperate in the kidney remains unclear. The aim of the present study was to investigate this mechanism. METHODS HK-2 human proximal tubular cells were stimulated by inflammatory factors, the expression of PPARγ and PGC-1α were determined via reverse transcription-quantitative polymerase chain reaction (PCR) and western blotting (WB), and DNA binding capacity was measured by an EMSA. Furthermore, db/db mice were used to establish a diabetic nephropathy model and were administered PPARγ and PGC-1α activators. Kidney injury was evaluated microscopically, and the inflammatory response was assessed via WB, immunohistochemistry and immunofluorescence staining. Besides, HK-2 cells were stimulated by high glucose and inflammatory factors with and without ZLN005 treatment, the expression of PPARγ, PGC-1α, p-p65 and p65 were determined via qPCR and WB. RESULTS Our results revealed that both TNF-α and IL-1β significantly decreased PPARγ and PGC-1 expression in vitro. Cytokines obviously decreased PPARγ DNA binding capacity. Moreover, we detected rapid activation of the NF-κB pathway in the presence of TNF-α or IL-1β. PPARγ and PGC-1α activators effectively protected against diabetic nephropathy and suppressed NF-κB expression both in db/db mice and HK-2 cells. CONCLUSION PPARγ and its coactivator PGC-1α actively participate in protecting against renal inflammation by regulating the NF-κB pathway, which highlights their potential as therapeutic targets for renal diseases.
Collapse
Affiliation(s)
- Siyi Huang
- Department of NephrologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of NephrologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuanmeng Jin
- Department of NephrologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of NephrologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liwen Zhang
- Department of NephrologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Ying Zhou
- Department of NephrologyShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
| | - Nan Chen
- Department of NephrologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of NephrologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weiming Wang
- Department of NephrologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of NephrologyShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Rayl ML, Nemetchek MD, Voss AH, Hughes TS. Agonists of the Nuclear Receptor PPARγ Can Produce Biased Signaling. Mol Pharmacol 2024; 106:309-318. [PMID: 39443155 PMCID: PMC11585255 DOI: 10.1124/molpharm.124.000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Biased signaling and ligand bias, often termed functional selectivity or selective nuclear receptor modulation, have been reported for nuclear receptor partial agonists over the past 20 years. Whether signaling differences produced by partial agonists result from less intense modulation, off-target effects, or biased signaling remains unclear. A commonly postulated mechanism for biased signaling is coactivator favoritism, where agonists induce different coactivator recruitment profiles. We find that both GW1929 (full agonist) and MRL24 (partial agonist) favor recruitment of 100 to 300 residue regions from S-motif coactivators compared with a reference full agonist (rosiglitazone), yielding 95% bias value confidence intervals of 0.05-0.17 and 0.29-0.38, respectively. Calculations based on these data indicate that GW1929 and MRL24 would induce 30% to 60% higher S-motif coactivator occupancy at the receptor compared with rosiglitazone. We compare the transcriptional effects of these same three ligands on human adipocytes using RNA sequencing and exploratory Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Only 50% (rosiglitazone) and 77% (GW1929) of all gene expression changes are shared between these full agonists after 3 hours of exposure. After 24 hours of exposure, 13/98 KEGG pathways appear more intensely modulated by rosiglitazone than GW1929 (e.g., 95% confidence interval of bias in the regulation of lipolysis in adipocytes pathway is 0.03-0.09), despite similar signaling for the remaining 85 affected pathways. Similarly, rosiglitazone has an unusually large effect on several lipid metabolism-related pathways compared with the partial agonist MRL24. These data indicate that nuclear receptor full and partial agonists can induce biased signaling, likely through differences in coactivator recruitment. SIGNIFICANCE STATEMENT: Many nuclear receptor partial agonists cause fewer adverse effects and similar efficacy compared with full agonists, potentially by inducing biased agonism. Our data support the idea that partial agonists, and a full agonist, of the nuclear receptor Peroxisome proliferator-activated receptor gamma (PPARγ) are biased agonists, causing different signaling by inducing PPARγ to favor different coactivators. These data indicate that biased agonism can occur in nuclear receptors and should be considered in efforts to develop improved nuclear receptor-targeted drugs.
Collapse
Affiliation(s)
- Mariah L Rayl
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| | - Michelle D Nemetchek
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| | - Andrew H Voss
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| | - Travis S Hughes
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| |
Collapse
|
6
|
An S, Park IG, Hwang SY, Gong J, Lee Y, Ahn S, Noh M. Cheminformatic Read-Across Approach Revealed Ultraviolet Filter Cinoxate as an Obesogenic Peroxisome Proliferator-Activated Receptor γ Agonist. Chem Res Toxicol 2024; 37:1344-1355. [PMID: 39095321 DOI: 10.1021/acs.chemrestox.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
This study introduces a novel cheminformatic read-across approach designed to identify potential environmental obesogens, substances capable of disrupting metabolism and inducing obesity by mainly influencing nuclear hormone receptors (NRs). Leveraging real-valued two-dimensional features derived from chemical fingerprints of 8435 Tox21 compounds, cluster analysis and subsequent statistical testing revealed 385 clusters enriched with compounds associated with specific NR targets. Notably, one cluster exhibited selective enrichment in peroxisome proliferator-activated receptor γ (PPARγ) agonist activity, prominently featuring methoxy cinnamate ultraviolet (UV) filters and obesogen-related compounds. Experimental validation confirmed that 2-ethoxyethyl 4-methoxycinnamate, an organic UV filter cinoxate, could selectively bind to PPARγ (Ki = 18.0 μM), eliciting an obesogenic phenotype in human bone marrow-derived mesenchymal stem cells during adipogenic differentiation. Molecular docking and further experiments identified cinoxate as a potent PPARγ full agonist, demonstrating a preference for coactivator SRC3 recruitment. Moreover, cinoxate upregulated transcription levels of genes encoding lipid metabolic enzymes in normal human epidermal keratinocytes as primary cells exposed during clinical usage. This study provides compelling evidence for the efficacy of cheminformatic read-across analysis in prioritizing potential obesogens, showcasing its utility in unveiling cinoxate as an obesogenic PPARγ agonist.
Collapse
Affiliation(s)
- Seungchan An
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - In Guk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seok Young Hwang
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junpyo Gong
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yeonjin Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungjin Ahn
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Stincone P, Naimi A, Saviola AJ, Reher R, Petras D. Decoding the molecular interplay in the central dogma: An overview of mass spectrometry-based methods to investigate protein-metabolite interactions. Proteomics 2024; 24:e2200533. [PMID: 37929699 DOI: 10.1002/pmic.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the emergence of next-generation nucleotide sequencing and mass spectrometry-based proteomics and metabolomics tools, we have comprehensive and scalable methods to analyze the genes, transcripts, proteins, and metabolites of a multitude of biological systems. Despite the fascinating new molecular insights at the genome, transcriptome, proteome and metabolome scale, we are still far from fully understanding cellular organization, cell cycles and biology at the molecular level. Significant advances in sensitivity and depth for both sequencing as well as mass spectrometry-based methods allow the analysis at the single cell and single molecule level. At the same time, new tools are emerging that enable the investigation of molecular interactions throughout the central dogma of molecular biology. In this review, we provide an overview of established and recently developed mass spectrometry-based tools to probe metabolite-protein interactions-from individual interaction pairs to interactions at the proteome-metabolome scale.
Collapse
Affiliation(s)
- Paolo Stincone
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of Tuebingen, Center for Plant Molecular Biology, Tuebingen, Germany
| | - Amira Naimi
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | | | - Raphael Reher
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | - Daniel Petras
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of California Riverside, Department of Biochemistry, Riverside, USA
| |
Collapse
|
8
|
万 丰, 汪 松, 王 远, 文 耿, 唐 金, 李 浩, 郑 伟. [Arthroscopic suspension fixation with Endobutton in treatment of tibial insertion avulsion fractures of posterior cruciate ligament]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:267-271. [PMID: 38500417 PMCID: PMC10982042 DOI: 10.7507/1002-1892.202401028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
Objective To investigate the effectiveness of arthroscopic suspension fixation with Endobutton in the treatment of tibial insertion avulsion fractures of posterior cruciate ligament (PCL). Methods A retrospective analysis was conducted on the clinical data of 52 patients (52 knees) with tibial insertion avulsion fractures of PCL, who were treated by arthroscopic suspension fixation with Endobutton between June 2017 and October 2022. There were 29 males and 23 females, with an average age of 40.6 years (range, 19-66 years). There were 24 cases of traffic accident injuries, 17 cases of sports injuries, and 11 cases of fall injuries. The time from injury to operation ranged from 6 to 19 days (mean, 13.3 days). According to the Meyers-McKeever classification, there were 30 cases of type Ⅱ and 22 cases of type Ⅲ fractures. All patients exhibited positive posterior drawer test results. Preoperative knee joint function was assessed with Lysholm score (21.3±6.7), International Knee Documentation Committee (IKDC) score (20.7±5.8), and visual analogue scale (VAS) score (5.3±0.7); and knee joint range of motion was (41.73±3.17)°. Based on preoperative CT three-dimensional reconstruction measurements, the longitudinal diameter of the avulsed bone fragment ranged from 13 to 25 mm (mean, 18.1 mm). Operation time and occurrence of complications were recorded, and postoperative imaging was used to assess fracture healing. Knee joint function and pain severity were evaluated using knee joint range of motion, Lysholm score, IKDC score, and VAS score. Results The operation time ranged from 46 to 81 minutes (mean, 56.2 minutes). All patients were followed up 12-28 months (mean, 20.1 months). The iatrogenic fractures of bone fragments occurred during operation in 4 cases; and knee effusion occurred in 2 cases and anterior knee pain in 1 case after operation. All incisions healed by first intention. Imaging evaluations at 3 months after operation showed the fracture healing and no internal fixation failure. All patients demonstrated good knee function and had returned to normal activities at 12 months after operation. At last follow-up, the knee joint range of motion was (133.44±4.17)°, Lysholm score 93.6±3.1, IKDC score 93.4±2.5, and VAS score 1.0±0.6, with significant differences compared to preoperative scores ( P<0.05). Conclusion Arthroscopic suspension fixation with Endobutton in the treatment of tibial insertion avulsion fractures of PCL is simple to operate, and the knee joint function recovers well.
Collapse
Affiliation(s)
- 丰 万
- 徐州医科大学附属医院骨科 (江苏徐州 221000)Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Jiangsu, 221000, P. R. China
| | - 松 汪
- 徐州医科大学附属医院骨科 (江苏徐州 221000)Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Jiangsu, 221000, P. R. China
| | - 远 王
- 徐州医科大学附属医院骨科 (江苏徐州 221000)Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Jiangsu, 221000, P. R. China
| | - 耿傲 文
- 徐州医科大学附属医院骨科 (江苏徐州 221000)Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Jiangsu, 221000, P. R. China
| | - 金龙 唐
- 徐州医科大学附属医院骨科 (江苏徐州 221000)Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Jiangsu, 221000, P. R. China
| | - 浩 李
- 徐州医科大学附属医院骨科 (江苏徐州 221000)Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Jiangsu, 221000, P. R. China
| | - 伟 郑
- 徐州医科大学附属医院骨科 (江苏徐州 221000)Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Jiangsu, 221000, P. R. China
| |
Collapse
|
9
|
Ashton AW, Dhanjal HK, Rossner B, Mahmood H, Patel VI, Nadim M, Lota M, Shahid F, Li Z, Joyce D, Pajkos M, Dosztányi Z, Jiao X, Pestell RG. Acetylation of nuclear receptors in health and disease: an update. FEBS J 2024; 291:217-236. [PMID: 36471658 DOI: 10.1111/febs.16695] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a common reversible post-translational modification of proteins that plays a key role in regulating gene expression. Nuclear receptors (NRs) include ligand-inducible transcription factors and orphan receptors for which the ligand is undetermined, which together regulate the expression of genes involved in development, metabolism, homeostasis, reproduction and human diseases including cancer. Since the original finding that the ERα, AR and HNF4 are acetylated, we now understand that the vast majority of NRs are acetylated and that this modification has profound effects on NR function. Acetylation sites are often conserved and involve both ordered and disordered regions of NRs. The acetylated residues function as part of an intramolecular signalling platform intersecting phosphorylation, methylation and other modifications. Acetylation of NR has been shown to impact recruitment into chromatin, co-repressor and coactivator complex formation, sensitivity and specificity of regulation by ligand and ligand antagonists, DNA binding, subcellular distribution and transcriptional activity. A growing body of evidence in mice indicates a vital role for NR acetylation in metabolism. Additionally, mutations of the NR acetylation site occur in human disease. This review focuses on the role of NR acetylation in coordinating signalling in normal physiology and disease.
Collapse
Affiliation(s)
- Anthony W Ashton
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | - Benjamin Rossner
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Huma Mahmood
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Vivek I Patel
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Mohammad Nadim
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Manpreet Lota
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Farhan Shahid
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Zhiping Li
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - David Joyce
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Matyas Pajkos
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Xuanmao Jiao
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - Richard G Pestell
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
- The Wistar Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
10
|
Choi WJ, Haratipour Z, Blind RD. Full-length nuclear receptor allosteric regulation. J Lipid Res 2023; 64:100406. [PMID: 37356665 PMCID: PMC10388211 DOI: 10.1016/j.jlr.2023.100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023] Open
Abstract
Nuclear receptors are a superfamily of transcription factors regulated by a wide range of lipids that include phospholipids, fatty acids, heme-based metabolites, and cholesterol-based steroids. Encoded as classic two-domain modular transcription factors, nuclear receptors possess a DNA-binding domain (DBD) and a lipid ligand-binding domain (LBD) containing a transcriptional activation function. Decades of structural studies on the isolated LBDs of nuclear receptors established that lipid-ligand binding allosterically regulates the conformation of the LBD, regulating transcriptional coregulator recruitment and thus nuclear receptor function. These structural studies have aided the development of several FDA-approved drugs, highlighting the importance of understanding the structure-function relationships between lipids and nuclear receptors. However, there are few published descriptions of full-length nuclear receptor structure and even fewer descriptions of how lipids might allosterically regulate full-length structure. Here, we examine multidomain interactions based on the published full-length nuclear receptor structures, evaluating the potential of interdomain interfaces within these nuclear receptors to act as inducible sites of allosteric regulation by lipids.
Collapse
Affiliation(s)
- Woong Jae Choi
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zeinab Haratipour
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Center for Structural Biology, Nashville, TN, USA; Program in Precision Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Raymond D Blind
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Center for Structural Biology, Nashville, TN, USA; Program in Precision Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Beinsteiner B, Billas IML, Moras D. Structural insights into the HNF4 biology. Front Endocrinol (Lausanne) 2023; 14:1197063. [PMID: 37404310 PMCID: PMC10315846 DOI: 10.3389/fendo.2023.1197063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor (NR) family that is expressed in liver, kidney, intestine and pancreas. It is a master regulator of liver-specific gene expression, in particular those genes involved in lipid transport and glucose metabolism and is crucial for the cellular differentiation during development. Dysregulation of HNF4 is linked to human diseases, such as type I diabetes (MODY1) and hemophilia. Here, we review the structures of the isolated HNF4 DNA binding domain (DBD) and ligand binding domain (LBD) and that of the multidomain receptor and compare them with the structures of other NRs. We will further discuss the biology of the HNF4α receptors from a structural perspective, in particular the effect of pathological mutations and of functionally critical post-translational modifications on the structure-function of the receptor.
Collapse
Affiliation(s)
- Brice Beinsteiner
- Laboratory IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle M. L. Billas
- Laboratory IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Dino Moras
- Laboratory IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| |
Collapse
|
12
|
Yen HY, Jazayeri A, Robinson CV. G Protein-Coupled Receptor Pharmacology-Insights from Mass Spectrometry. Pharmacol Rev 2023; 75:397-415. [PMID: 36918259 DOI: 10.1124/pharmrev.120.000237] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 03/16/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are key drug targets due to their involvement in many physiological processes. The complexity of receptor pharmacology, however, is influenced by multiple interactions with various types of ligands and protein transducers representing significant challenges for drug discovery. The ability of mass spectrometry (MS) to observe both the binding of ligand molecules, such as lipids, ions, or drugs, and their impact on interaction with transducers provides an exciting opportunity to probe many aspects that are difficult to track directly in cell-based systems. From the early days, when hydrogen deuterium exchange (HDX) experiments were used to probe the different conformations of GPCRs, through to the most recent insights in which the intact receptor-G protein/arrestin complexes associated with small molecules can be preserved by MS, this review highlights the potential of MS techniques for in-depth investigations of GPCR biology. We describe the utility of MS, including HDX-MS and native-MS, in investigating GPCR pharmacology. Specifically, we include ligand-drug interactions and Gi/s protein coupling and illustrate how these techniques can lead to the discovery of endogenous allosteric ligands and thereby offer a new perspective for drug discovery of GPCRs. SIGNIFICANCE STATEMENT: GPCRs are the largest and most diverse group of membrane receptors in eukaryotes. To carry out signaling, GPCRs adopt a range of conformational states to elicit G-protein coupling or arrestin binding. Because of their conformational dynamics, GPCRs remain challenging to study, particular in the gas phase after release from their protective detergent micelles. Over the past decade great advances have been made, however, enabling direct measure of coupling and signaling across native membranes. In this review we highlight these advances and consider the future of this exciting and challenging area.
Collapse
Affiliation(s)
- Hsin-Yung Yen
- Department of Chemistry (H.-Y.Y., C.V.R.) Kavli Institute for Nanoscience Discovery (C.V.R.), University of Oxford, Oxford, UK; OMass Pharmaceuticals Ltd., Oxford, UK (H.-Y.Y., A.J.); and Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (H.-Y.Y.)
| | - Ali Jazayeri
- Department of Chemistry (H.-Y.Y., C.V.R.) Kavli Institute for Nanoscience Discovery (C.V.R.), University of Oxford, Oxford, UK; OMass Pharmaceuticals Ltd., Oxford, UK (H.-Y.Y., A.J.); and Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (H.-Y.Y.)
| | - Carol V Robinson
- Department of Chemistry (H.-Y.Y., C.V.R.) Kavli Institute for Nanoscience Discovery (C.V.R.), University of Oxford, Oxford, UK; OMass Pharmaceuticals Ltd., Oxford, UK (H.-Y.Y., A.J.); and Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (H.-Y.Y.)
| |
Collapse
|
13
|
Wang K, Yang Z, Li X, Liu S, Wang L, Zhang H, Yu H. A Hepatocyte Nuclear Factor BtabHNF4 Mediates Desiccation Tolerance and Fecundity in Whitefly (Bemisia tabaci). ENVIRONMENTAL ENTOMOLOGY 2023; 52:138-147. [PMID: 36462170 DOI: 10.1093/ee/nvac103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 06/17/2023]
Abstract
Hepatocyte nuclear factor 4 (HNF4) is essential for glucose homeostasis and lipid metabolism in insects. However, little is known about the role of HNF4 in whiteflies. In the present study, we identified a hepatocyte nuclear factor protein from Bemsia tabaci (Diptera: Drosophilidae) and named it BtabHNF4. The full-length of BtabHNF4 was 3,006 bp, encoding a sequence of 434 amino acids that contains a conserved zinc-finger DNA-binding domain (DBD) and a well-conserved ligand-binding domain (LBD). The temporal and spatial expression showed that BtabHNF4 was highly expressed in the female adult stage and abdominal tissues of B. tabaci. A leaf-mediated RNA interference method was used to explore the function of BtabHNF4 in whiteflies. Our results showed that the knockdown of BtabHNF4 influences the desiccation tolerance, egg production, and egg hatching rate of whiteflies. Additionally, BtabHNF4 silencing significantly inhibited the expression level of vitellogenin. These results expand the function of HNF4 and pave the way for understanding the molecular mechanisms of HNF4 in regulating multiple physiological processes.
Collapse
Affiliation(s)
- Kui Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Zhifang Yang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Xiang Li
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Shunxiao Liu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- College of Agrarian Technology and Natural Resources, Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Liuhao Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hongwei Zhang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hao Yu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| |
Collapse
|
14
|
Interactions governing transcriptional activity of nuclear receptors. Biochem Soc Trans 2022; 50:1941-1952. [DOI: 10.1042/bst20220338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
The key players in transcriptional regulation are transcription factors (TFs), proteins that bind specific DNA sequences. Several mechanisms exist to turn TFs ‘on’ and ‘off’, including ligand binding which induces conformational changes within TFs, subsequently influencing multiple inter- and intramolecular interactions to drive transcriptional responses. Nuclear receptors are a specific family of ligand-regulated TFs whose activity relies on interactions with DNA, coregulator proteins and other receptors. These multidomain proteins also undergo interdomain interactions on multiple levels, further modulating transcriptional outputs. Cooperation between these distinct interactions is critical for appropriate transcription and remains an intense area of investigation. In this review, we report and summarize recent findings that continue to advance our mechanistic understanding of how interactions between nuclear receptors and diverse partners influence transcription.
Collapse
|
15
|
Abstract
Efforts to decrease the adverse effects of nuclear receptor (NR) drugs have yielded experimental agonists that produce better outcomes in mice. Some of these agonists have been shown to cause different, not just less intense, on-target transcriptomic effects; however, a structural explanation for such agonist-specific effects remains unknown. Here, we show that partial agonists of the NR peroxisome proliferator-associated receptor γ (PPARγ), which induce better outcomes in mice compared to clinically utilized type II diabetes PPARγ-binding drugs thiazolidinediones (TZDs), also favor a different group of coactivator peptides than the TZDs. We find that PPARγ full agonists can also be biased relative to each other in terms of coactivator peptide binding. We find differences in coactivator-PPARγ bonding between the coactivator subgroups which allow agonists to favor one group of coactivator peptides over another, including differential bonding to a C-terminal residue of helix 4. Analysis of all available NR-coactivator structures indicates that such differential helix 4 bonding persists across other NR-coactivator complexes, providing a general structural mechanism of biased agonism for many NRs. Further work will be necessary to determine if such bias translates into altered coactivator occupancy and physiology in cells.
Collapse
|
16
|
Microsecond MD Simulations to Explore the Structural and Energetic Differences between the Human RXRα-PPARγ vs. RXRα-PPARγ-DNA. Molecules 2022; 27:molecules27185778. [PMID: 36144514 PMCID: PMC9503000 DOI: 10.3390/molecules27185778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The heterodimeric complex between retinoic X receptor alpha (RXRα) and peroxisome proliferator-activated receptor gamma (PPARγ) is one of the most important and predominant regulatory systems, controlling lipid metabolism by binding to specific DNA promoter regions. X-ray and molecular dynamics (MD) simulations have revealed the average conformation adopted by the RXRα-PPARγ heterodimer bound to DNA, providing information about how multiple domains communicate to regulate receptor properties. However, knowledge of the energetic basis of the protein-ligand and protein-protein interactions is still lacking. Here we explore the structural and energetic mechanism of RXRα-PPARγ heterodimer bound or unbound to DNA and forming complex with co-crystallized ligands (rosiglitazone and 9-cis-retinoic acid) through microsecond MD simulations, molecular mechanics generalized Born surface area binding free energy calculations, principal component analysis, the free energy landscape, and correlated motion analysis. Our results suggest that DNA binding alters correlated motions and conformational mobility within RXRα–PPARγ system that impact the dimerization and the binding affinity on both receptors. Intradomain correlated motions denotes a stronger correlation map for RXRα-PPARγ-DNA than RXRα-PPARγ, involving residues at the ligand binding site. In addition, our results also corroborated the greater role of PPARγ in regulation of the free and bound DNA state.
Collapse
|
17
|
Lewandowski CT, Laham MS, Thatcher GR. Remembering your A, B, C's: Alzheimer's disease and ABCA1. Acta Pharm Sin B 2022; 12:995-1018. [PMID: 35530134 PMCID: PMC9072248 DOI: 10.1016/j.apsb.2022.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
The function of ATP binding cassette protein A1 (ABCA1) is central to cholesterol mobilization. Reduced ABCA1 expression or activity is implicated in Alzheimer's disease (AD) and other disorders. Therapeutic approaches to boost ABCA1 activity have yet to be translated successfully to the clinic. The risk factors for AD development and progression, including comorbid disorders such as type 2 diabetes and cardiovascular disease, highlight the intersection of cholesterol transport and inflammation. Upregulation of ABCA1 can positively impact APOE lipidation, insulin sensitivity, peripheral vascular and blood–brain barrier integrity, and anti-inflammatory signaling. Various strategies towards ABCA1-boosting compounds have been described, with a bias toward nuclear hormone receptor (NHR) agonists. These agonists display beneficial preclinical effects; however, important side effects have limited development. In particular, ligands that bind liver X receptor (LXR), the primary NHR that controls ABCA1 expression, have shown positive effects in AD mouse models; however, lipogenesis and unwanted increases in triglyceride production are often observed. The longstanding approach, focusing on LXRβ vs. LXRα selectivity, is over-simplistic and has failed. Novel approaches such as phenotypic screening may lead to small molecule NHR modulators that elevate ABCA1 function without inducing lipogenesis and are clinically translatable.
Collapse
|
18
|
Zhang C, Wu J, Chen Q, Tan H, Huang F, Guo J, Zhang X, Yu H, Shi W. Allosteric binding on nuclear receptors: Insights on screening of non-competitive endocrine-disrupting chemicals. ENVIRONMENT INTERNATIONAL 2022; 159:107009. [PMID: 34883459 DOI: 10.1016/j.envint.2021.107009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can compete with endogenous hormones and bind to the orthosteric site of nuclear receptors (NRs), affecting normal endocrine system function and causing severe symptoms. Recently, a series of pharmaceuticals and personal care products (PPCPs) have been discovered to bind to the allosteric sites of NRs and induce similar effects. However, it remains unclear how diverse EDCs work in this new way. Therefore, we have systematically summarized the allosteric sites and underlying mechanisms based on existing studies, mainly regarding drugs belonging to the PPCP class. Advanced methods, classified as structural biology, biochemistry and computational simulation, together with their advantages and hurdles for allosteric site recognition and mechanism insight have also been described. Furthermore, we have highlighted two available strategies for virtual screening of numerous EDCs, relying on the structural features of allosteric sites and lead compounds, respectively. We aim to provide reliable theoretical and technical support for a broader view of various allosteric interactions between EDCs and NRs, and to drive high-throughput and accurate screening of potential EDCs with non-competitive effects.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jinqiu Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Qinchang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Haoyue Tan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Fuyan Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
19
|
de Vink PJ, Koops AA, D'Arrigo G, Cruciani G, Spyrakis F, Brunsveld L. Cooperativity as quantification and optimization paradigm for nuclear receptor modulators. Chem Sci 2022; 13:2744-2752. [PMID: 35340861 PMCID: PMC8890100 DOI: 10.1039/d1sc06426f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
A cooperativity framework describes the formation of nuclear receptor ternary complexes and deconvolutes ligand and cofactor binding into intrinsic affinities and a cooperativity factor, providing a conceptually new understanding of NR modulation.
Collapse
Affiliation(s)
- Pim J. de Vink
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Auke A. Koops
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Giulia D'Arrigo
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, The Netherlands
- Department of Drug Science and Technology, University of Turin, via Giuria 9, 10125 Turin, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, via Giuria 9, 10125 Turin, Italy
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
20
|
Strutzenberg TS, Zhu Y, Novick SJ, Garcia-Ordonez RD, Doebelin C, He Y, Chang MR, Kamenecka TM, Edwards DP, Griffin PR. Conformational Changes of RORγ During Response Element Recognition and Coregulator Engagement. J Mol Biol 2021; 433:167258. [PMID: 34547329 PMCID: PMC8556364 DOI: 10.1016/j.jmb.2021.167258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/09/2022]
Abstract
The retinoic acid receptor-related orphan receptor γ (RORγ) is a ligand-dependent transcription factor of the nuclear receptor super family that underpins metabolic activity, immune function, and cancer progression. Despite being a valuable drug target in health and disease, our understanding of the ligand-dependent activities of RORγ is far from complete. Like most nuclear receptors, RORγ must recruit coregulatory protein to enact the RORγ target gene program. To date, a majority of structural studies have been focused exclusively on the RORγ ligand-binding domain and the ligand-dependent recruitment of small peptide segments of coregulators. Herein, we examine the ligand-dependent assembly of full length RORγ:coregulator complexes on cognate DNA response elements using structural proteomics and small angle x-ray scattering. The results from our studies suggest that RORγ becomes elongated upon DNA recognition, preventing long range interdomain crosstalk. We also determined that the DNA binding domain adopts a sequence-specific conformation, and that coregulatory protein may be able to 'sense' the ligand- and DNA-bound status of RORγ. We propose a model where ligand-dependent coregulator recruitment may be influenced by the sequence of the DNA to which RORγ is bound. Overall, the efforts described herein will illuminate important aspects of full length RORγ and monomeric orphan nuclear receptor target gene regulation through DNA-dependent conformational changes.
Collapse
Affiliation(s)
| | - Yingmin Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Scott J Novick
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | | | - Christelle Doebelin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Yuanjun He
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Mi Ra Chang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
21
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
22
|
Tahri-Joutey M, Andreoletti P, Surapureddi S, Nasser B, Cherkaoui-Malki M, Latruffe N. Mechanisms Mediating the Regulation of Peroxisomal Fatty Acid Beta-Oxidation by PPARα. Int J Mol Sci 2021; 22:ijms22168969. [PMID: 34445672 PMCID: PMC8396561 DOI: 10.3390/ijms22168969] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
In mammalian cells, two cellular organelles, mitochondria and peroxisomes, share the ability to degrade fatty acid chains. Although each organelle harbors its own fatty acid β-oxidation pathway, a distinct mitochondrial system feeds the oxidative phosphorylation pathway for ATP synthesis. At the same time, the peroxisomal β-oxidation pathway participates in cellular thermogenesis. A scientific milestone in 1965 helped discover the hepatomegaly effect in rat liver by clofibrate, subsequently identified as a peroxisome proliferator in rodents and an activator of the peroxisomal fatty acid β-oxidation pathway. These peroxisome proliferators were later identified as activating ligands of Peroxisome Proliferator-Activated Receptor α (PPARα), cloned in 1990. The ligand-activated heterodimer PPARα/RXRα recognizes a DNA sequence, called PPRE (Peroxisome Proliferator Response Element), corresponding to two half-consensus hexanucleotide motifs, AGGTCA, separated by one nucleotide. Accordingly, the assembled complex containing PPRE/PPARα/RXRα/ligands/Coregulators controls the expression of the genes involved in liver peroxisomal fatty acid β-oxidation. This review mobilizes a considerable number of findings that discuss miscellaneous axes, covering the detailed expression pattern of PPARα in species and tissues, the lessons from several PPARα KO mouse models and the modulation of PPARα function by dietary micronutrients.
Collapse
Affiliation(s)
- Mounia Tahri-Joutey
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco;
| | - Pierre Andreoletti
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
| | - Sailesh Surapureddi
- Office of Pollution Prevention and Toxics, United States Environmental Protection Agency, Washington, DC 20460, USA;
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco;
| | - Mustapha Cherkaoui-Malki
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
| | - Norbert Latruffe
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
- Correspondence:
| |
Collapse
|
23
|
Ligands and DNA in the allosteric control of retinoid receptors function. Essays Biochem 2021; 65:887-899. [PMID: 34296739 DOI: 10.1042/ebc20200168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/26/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
Retinoids are a family of compounds that include both vitamin A (all-trans retinol) and its naturally occurring metabolites such as retinoic acids (e.g. all-trans retinoic acid) as well as synthetic analogs. They are critically involved in the regulation of a wide variety of essential biological processes, such as embryogenesis and organogenesis, apoptosis, reproduction, vision, and the growth and differentiation of normal and neoplastic cells in vertebrates. The ability of these small molecules to control the expression of several hundred genes through binding to nuclear ligand-dependent transcription factors accounts for most of their functions. Three retinoic acid receptor (RARα,β,γ) and three retinoid X receptor (RXRα,β,γ) subtypes form a variety of RXR-RAR heterodimers that have been shown to mediate the pleiotropic effects of retinoids through the recruitment of high-molecular weight co-regulatory complexes to response-element DNA sequences found in the promoter region of their target genes. Hence, heterodimeric retinoid receptors are multidomain entities that respond to various incoming signals, such as ligand and DNA binding, by allosteric structural alterations which are the basis of further signal propagation. Here, we provide an overview of the current state of knowledge with regard to the structural mechanisms by which retinoids and DNA response elements act as allosteric effectors that may combine to finely tune RXR-RAR heterodimers activity.
Collapse
|
24
|
Aarts JMMJG, Alink GM, Franssen HJ, Roebroeks W. Evolution of Hominin Detoxification: Neanderthal and Modern Human Ah Receptor Respond Similarly to TCDD. Mol Biol Evol 2021; 38:1292-1305. [PMID: 33230523 PMCID: PMC8042735 DOI: 10.1093/molbev/msaa287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In studies of hominin adaptations to fire use, the role of the aryl hydrocarbon receptor (AHR) in the evolution of detoxification has been highlighted, including statements that the modern human AHR confers a significantly better capacity to deal with toxic smoke components than the Neanderthal AHR. To evaluate this, we compared the AHR-controlled induction of cytochrome P4501A1 (CYP1A1) mRNA in HeLa human cervix epithelial adenocarcinoma cells transfected with an Altai-Neanderthal or a modern human reference AHR expression construct, and exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). We compared the complete AHR mRNA sequences including the untranslated regions (UTRs), maintaining the original codon usage. We observe no significant difference in CYP1A1 induction by TCDD between Neanderthal and modern human AHR, whereas a 150–1,000 times difference was previously reported in a study of the AHR coding region optimized for mammalian codon usage and expressed in rat cells. Our study exemplifies that expression in a homologous cellular background is of major importance to determine (ancient) protein activity. The Neanderthal and modern human dose–response curves almost coincide, except for a slightly higher extrapolated maximum for the Neanderthal AHR, possibly caused by a 5′-UTR G-variant known from modern humans (rs7796976). Our results are strongly at odds with a major role of the modern human AHR in the evolution of hominin detoxification of smoke components and consistent with our previous study based on 18 relevant genes in addition to AHR, which concluded that efficient detoxification alleles are more dominant in ancient hominins, chimpanzees, and gorillas than in modern humans.
Collapse
Affiliation(s)
- Jac M M J G Aarts
- Human Origins Group, Faculty of Archaeology, Leiden University, Leiden, The Netherlands.,Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Gerrit M Alink
- Human Origins Group, Faculty of Archaeology, Leiden University, Leiden, The Netherlands
| | - Henk J Franssen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Wil Roebroeks
- Human Origins Group, Faculty of Archaeology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
25
|
Clerc I, Sagar A, Barducci A, Sibille N, Bernadó P, Cortés J. The diversity of molecular interactions involving intrinsically disordered proteins: A molecular modeling perspective. Comput Struct Biotechnol J 2021; 19:3817-3828. [PMID: 34285781 PMCID: PMC8273358 DOI: 10.1016/j.csbj.2021.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
Intrinsically Disordered Proteins and Regions (IDPs/IDRs) are key components of a multitude of biological processes. Conformational malleability enables IDPs/IDRs to perform very specialized functions that cannot be accomplished by globular proteins. The functional role for most of these proteins is related to the recognition of other biomolecules to regulate biological processes or as a part of signaling pathways. Depending on the extent of disorder, the number of interacting sites and the type of partner, very different architectures for the resulting assemblies are possible. More recently, molecular condensates with liquid-like properties composed of multiple copies of IDPs and nucleic acids have been proven to regulate key processes in eukaryotic cells. The structural and kinetic details of disordered biomolecular complexes are difficult to unveil experimentally due to their inherent conformational heterogeneity. Computational approaches, alone or in combination with experimental data, have emerged as unavoidable tools to understand the functional mechanisms of this elusive type of assemblies. The level of description used, all-atom or coarse-grained, strongly depends on the size of the molecular systems and on the timescale of the investigated mechanism. In this mini-review, we describe the most relevant architectures found for molecular interactions involving IDPs/IDRs and the computational strategies applied for their investigation.
Collapse
Affiliation(s)
- Ilinka Clerc
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Amin Sagar
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Alessandro Barducci
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
26
|
Bianchetti L, Sinar D, Depenveiller C, Dejaegere A. Insights into mineralocorticoid receptor homodimerization from a combined molecular modeling and bioinformatics study. Proteins 2021; 89:952-965. [PMID: 33713045 DOI: 10.1002/prot.26073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023]
Abstract
In vertebrates, the mineralocorticoid receptor (MR) is a steroid-activated nuclear receptor (NR) that plays essential roles in water-electrolyte balance and blood pressure homeostasis. It belongs to the group of oxo-steroidian NRs, together with the glucocorticoid (GR), progesterone (PR), and androgen (AR) receptors. Classically, these oxo-steroidian NRs homodimerize and bind to specific genomic sequences to activate gene expression. NRs are multi-domain proteins, and dimerization is mediated by both the DNA (DBD) and ligand binding domains (LBDs), with the latter thought to provide the largest dimerization interface. However, at the structural level, the dimerization of oxo-steroidian receptors LBDs has remained largely a matter of debate and, despite their sequence homology, there is currently no consensus on a common homodimer assembly across the four receptors, that is, GR, PR, AR, and MR. Here, we examined all available MR LBD crystals using different computational methods (protein common interface database, proteins, interfaces, structures and assemblies, protein-protein interaction prediction by structural matching, and evolutionary protein-protein interface classifier, and the molecular mechanics Poisson-Boltzmann surface area method). A consensus is reached by all methods and singles out an interface mediated by helices H9, H10 and the C-terminal F domain as having characteristics of a biologically relevant assembly. Interestingly, a similar assembly was previously identified for GRα, MR closest homolog. Alternative architectures that were proposed for GRα were not observed for MR. These data call for further experimental investigations of oxo-steroid dimer architectures.
Collapse
Affiliation(s)
- Laurent Bianchetti
- Laboratoire de Chimie Biophysique de la Signalisation de la Transcription, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, Illkirch, France
| | - Deniz Sinar
- Laboratoire de Chimie Biophysique de la Signalisation de la Transcription, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, Illkirch, France
| | - Camille Depenveiller
- Laboratoire de Chimie Biophysique de la Signalisation de la Transcription, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, Illkirch, France
| | - Annick Dejaegere
- Laboratoire de Chimie Biophysique de la Signalisation de la Transcription, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, Illkirch, France
| |
Collapse
|
27
|
Structural Insights into the Interaction of the Intrinsically Disordered Co-activator TIF2 with Retinoic Acid Receptor Heterodimer (RXR/RAR). J Mol Biol 2021; 433:166899. [PMID: 33647291 DOI: 10.1016/j.jmb.2021.166899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Retinoic acid receptors (RARs) and retinoid X receptors (RXRs) form heterodimers that activate target gene transcription by recruiting co-activator complexes in response to ligand binding. The nuclear receptor (NR) co-activator TIF2 mediates this recruitment by interacting with the ligand-binding domain (LBD) of NRs trough the nuclear receptor interaction domain (TIF2NRID) containing three highly conserved α-helical LxxLL motifs (NR-boxes). The precise binding mode of this domain to RXR/RAR is not clear due to the disordered nature of TIF2. Here we present the structural characterization of TIF2NRID by integrating several experimental (NMR, SAXS, Far-UV CD, SEC-MALS) and computational data. Collectively, the data are in agreement with a largely disordered protein with partially structured regions, including the NR-boxes and their flanking regions, which are evolutionary conserved. NMR and X-ray crystallographic data on TIF2NRID in complex with RXR/RAR reveal a multisite binding of the three NR-boxes as well as an active role of their flanking regions in the interaction.
Collapse
|
28
|
Belorusova AY, Bourguet M, Hessmann S, Chalhoub S, Kieffer B, Cianférani S, Rochel N. Molecular determinants of MED1 interaction with the DNA bound VDR-RXR heterodimer. Nucleic Acids Res 2020; 48:11199-11213. [PMID: 32990725 PMCID: PMC7641746 DOI: 10.1093/nar/gkaa775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
The MED1 subunit of the Mediator complex is an essential coactivator of nuclear receptor-mediated transcriptional activation. While structural requirements for ligand-dependent binding of classical coactivator motifs of MED1 to numerous nuclear receptor ligand-binding domains have been fully elucidated, the recognition of the full-length or truncated coactivator by full nuclear receptor complexes remain unknown. Here we present structural details of the interaction between a large part of MED1 comprising its structured N-terminal and the flexible receptor-interacting domains and the mutual heterodimer of the vitamin D receptor (VDR) and the retinoid X receptor (RXR) bound to their cognate DNA response element. Using a combination of structural and biophysical methods we show that the ligand-dependent interaction between VDR and the second coactivator motif of MED1 is crucial for complex formation and we identify additional, previously unseen, interaction details. In particular, we identified RXR regions involved in the interaction with the structured N-terminal domain of MED1, as well as VDR regions outside the classical coactivator binding cleft affected by coactivator recruitment. These findings highlight important roles of each receptor within the heterodimer in selective recognition of MED1 and contribute to our understanding of the nuclear receptor-coregulator complexes.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maxime Bourguet
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Sandra Chalhoub
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bruno Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
29
|
Ozohanics O, Ambrus A. Hydrogen-Deuterium Exchange Mass Spectrometry: A Novel Structural Biology Approach to Structure, Dynamics and Interactions of Proteins and Their Complexes. Life (Basel) 2020; 10:E286. [PMID: 33203161 PMCID: PMC7696067 DOI: 10.3390/life10110286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022] Open
Abstract
Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) is a rapidly evolving technique for analyzing structural features and dynamic properties of proteins. It may stand alone or serve as a complementary method to cryo-electron-microscopy (EM) or other structural biology approaches. HDX-MS is capable of providing information on individual proteins as well as large protein complexes. Owing to recent methodological advancements and improving availability of instrumentation, HDX-MS is becoming a routine technique for some applications. When dealing with samples of low to medium complexity and sizes of less than 150 kDa, conformation and ligand interaction analyses by HDX-MS are already almost routine applications. This is also well supported by the rapid evolution of the computational (software) background that facilitates the analysis of the obtained experimental data. HDX-MS can cope at times with analytes that are difficult to tackle by any other approach. Large complexes like viral capsids as well as disordered proteins can also be analyzed by this method. HDX-MS has recently become an established tool in the drug discovery process and biopharmaceutical development, as it is now also capable of dissecting post-translational modifications and membrane proteins. This mini review provides the reader with an introduction to the technique and a brief overview of the most common applications. Furthermore, the most challenging likely applications, the analyses of glycosylated and membrane proteins, are also highlighted.
Collapse
Affiliation(s)
- Oliver Ozohanics
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, 37–47 Tuzolto Street, 1094 Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, 37–47 Tuzolto Street, 1094 Budapest, Hungary
| |
Collapse
|
30
|
Osz J, McEwen AG, Bourguet M, Przybilla F, Peluso-Iltis C, Poussin-Courmontagne P, Mély Y, Cianférani S, Jeffries CM, Svergun DI, Rochel N. Structural basis for DNA recognition and allosteric control of the retinoic acid receptors RAR-RXR. Nucleic Acids Res 2020; 48:9969-9985. [PMID: 32974652 PMCID: PMC7515732 DOI: 10.1093/nar/gkaa697] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid receptors (RARs) as a functional heterodimer with retinoid X receptors (RXRs), bind a diverse series of RA-response elements (RAREs) in regulated genes. Among them, the non-canonical DR0 elements are bound by RXR–RAR with comparable affinities to DR5 elements but DR0 elements do not act transcriptionally as independent RAREs. In this work, we present structural insights for the recognition of DR5 and DR0 elements by RXR–RAR heterodimer using x-ray crystallography, small angle x-ray scattering, and hydrogen/deuterium exchange coupled to mass spectrometry. We solved the crystal structures of RXR–RAR DNA-binding domain in complex with the Rarb2 DR5 and RXR–RXR DNA-binding domain in complex with Hoxb13 DR0. While cooperative binding was observed on DR5, the two molecules bound non-cooperatively on DR0 on opposite sides of the DNA. In addition, our data unveil the structural organization and dynamics of the multi-domain RXR–RAR DNA complexes providing evidence for DNA-dependent allosteric communication between domains. Differential binding modes between DR0 and DR5 were observed leading to differences in conformation and structural dynamics of the multi-domain RXR–RAR DNA complexes. These results reveal that the topological organization of the RAR binding element confer regulatory information by modulating the overall topology and structural dynamics of the RXR–RAR heterodimers.
Collapse
Affiliation(s)
- Judit Osz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM) U1258, Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Alastair G McEwen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM) U1258, Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maxime Bourguet
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Frédéric Przybilla
- Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Carole Peluso-Iltis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM) U1258, Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pierre Poussin-Courmontagne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM) U1258, Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM) U1258, Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
31
|
PPAR γ and Its Agonists in Chronic Kidney Disease. Int J Nephrol 2020; 2020:2917474. [PMID: 32158560 PMCID: PMC7060840 DOI: 10.1155/2020/2917474] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/11/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) has become a global healthcare issue. CKD can progress to irreversible end-stage renal diseases (ESRD) or renal failure. The major risk factors for CKD include obesity, diabetes, and cardiovascular diseases. Understanding the key process involved in the disease development may lead to novel interventive strategies, which is currently lagging behind. Peroxisome proliferator-activated receptor γ (PPARγ) is one of the ligand-activated transcription factor superfamily members and is globally expressed in human tissues. Its agonists such as thiazolidinediones (TZDs) have been applied as effective antidiabetic drugs as they control insulin sensitivity in multiple metabolic tissues. Besides, TZDs exert protective effects in multiple other CKD risk disease contexts. As PPARγ is abundantly expressed in major kidney cells, its physiological roles in those cells have been studied in both cell and animal models. The function of PPARγ in the kidney ranges from energy metabolism, cell proliferation to inflammatory suppression, although major renal side effects of existing agonists (including TZDs) have been reported, which limited their application in treating CKD. In the current review, we systemically assess the function of PPARγ in CKDs and the benefits and current limitations of its agonists in the clinical applications.
Collapse
|
32
|
Guillien M, le Maire A, Mouhand A, Bernadó P, Bourguet W, Banères JL, Sibille N. IDPs and their complexes in GPCR and nuclear receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:105-155. [DOI: 10.1016/bs.pmbts.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
le Maire A, Germain P, Bourguet W. Protein-protein interactions in the regulation of RAR–RXR heterodimers transcriptional activity. Methods Enzymol 2020; 637:175-207. [DOI: 10.1016/bs.mie.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Cordeiro TN, Sibille N, Germain P, Barthe P, Boulahtouf A, Allemand F, Bailly R, Vivat V, Ebel C, Barducci A, Bourguet W, le Maire A, Bernadó P. Interplay of Protein Disorder in Retinoic Acid Receptor Heterodimer and Its Corepressor Regulates Gene Expression. Structure 2019; 27:1270-1285.e6. [DOI: 10.1016/j.str.2019.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/30/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022]
|
35
|
Masson GR, Burke JE, Ahn NG, Anand GS, Borchers C, Brier S, Bou-Assaf GM, Engen JR, Englander SW, Faber J, Garlish R, Griffin PR, Gross ML, Guttman M, Hamuro Y, Heck AJR, Houde D, Iacob RE, Jørgensen TJD, Kaltashov IA, Klinman JP, Konermann L, Man P, Mayne L, Pascal BD, Reichmann D, Skehel M, Snijder J, Strutzenberg TS, Underbakke ES, Wagner C, Wales TE, Walters BT, Weis DD, Wilson DJ, Wintrode PL, Zhang Z, Zheng J, Schriemer DC, Rand KD. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat Methods 2019; 16:595-602. [PMID: 31249422 PMCID: PMC6614034 DOI: 10.1038/s41592-019-0459-y] [Citation(s) in RCA: 478] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
Abstract
Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017). It is meant to represent both a consensus viewpoint and an opportunity to stimulate further additions and refinements as the field advances.
Collapse
Affiliation(s)
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| | - Natalie G Ahn
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Ganesh S Anand
- Department of Biological Science, National University of Singapore, Singapore, Singapore
| | - Christoph Borchers
- Genome BC Proteomics Centre, University of Victoria, Victoria, BC, Canada
| | - Sébastien Brier
- Institut Pasteur, Chemistry and Structural Biology Department, Paris, France
| | | | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - S Walter Englander
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Patrick R Griffin
- Department of Integrative Structural and Computational Biology, Scripps Florida, The Scripps Research Institute, Jupiter, FL, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Yoshitomo Hamuro
- Johnson & Johnson Pharmaeutical Research and Development, Jersey City, NJ, USA
| | - Albert J R Heck
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | | | - Roxana E Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej, Odense, Denmark
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON, Canada
| | - Petr Man
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Leland Mayne
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce D Pascal
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Dana Reichmann
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Joost Snijder
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Timothy S Strutzenberg
- Department of Integrative Structural and Computational Biology, Scripps Florida, The Scripps Research Institute, Jupiter, FL, USA
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | | | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Benjamin T Walters
- Department of Early Stage Pharmaceutical Development, Genentech, Inc., South San Francisco, CA, USA
| | - David D Weis
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, ON, Canada
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | | | - Jie Zheng
- Department of Integrative Structural and Computational Biology, Scripps Florida, The Scripps Research Institute, Jupiter, FL, USA
| | - David C Schriemer
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB, Canada.
| | - Kasper D Rand
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Marinkovic M, Fuoco C, Sacco F, Cerquone Perpetuini A, Giuliani G, Micarelli E, Pavlidou T, Petrilli LL, Reggio A, Riccio F, Spada F, Vumbaca S, Zuccotti A, Castagnoli L, Mann M, Gargioli C, Cesareni G. Fibro-adipogenic progenitors of dystrophic mice are insensitive to NOTCH regulation of adipogenesis. Life Sci Alliance 2019; 2:e201900437. [PMID: 31239312 PMCID: PMC6599969 DOI: 10.26508/lsa.201900437] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
Fibro-adipogenic progenitors (FAPs) promote satellite cell differentiation in adult skeletal muscle regeneration. However, in pathological conditions, FAPs are responsible for fibrosis and fatty infiltrations. Here we show that the NOTCH pathway negatively modulates FAP differentiation both in vitro and in vivo. However, FAPs isolated from young dystrophin-deficient mdx mice are insensitive to this control mechanism. An unbiased mass spectrometry-based proteomic analysis of FAPs from muscles of wild-type and mdx mice suggested that the synergistic cooperation between NOTCH and inflammatory signals controls FAP differentiation. Remarkably, we demonstrated that factors released by hematopoietic cells restore the sensitivity to NOTCH adipogenic inhibition in mdx FAPs. These results offer a basis for rationalizing pathological ectopic fat infiltrations in skeletal muscle and may suggest new therapeutic strategies to mitigate the detrimental effects of fat depositions in muscles of dystrophic patients.
Collapse
Affiliation(s)
| | - Claudia Fuoco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Giulio Giuliani
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Elisa Micarelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Alessio Reggio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Federica Riccio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Filomena Spada
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Simone Vumbaca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Luisa Castagnoli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
37
|
Meijer FA, Leijten-van de Gevel IA, de Vries RMJM, Brunsveld L. Allosteric small molecule modulators of nuclear receptors. Mol Cell Endocrinol 2019; 485:20-34. [PMID: 30703487 DOI: 10.1016/j.mce.2019.01.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
Abstract
Nuclear Receptors (NRs) are multi-domain proteins, whose natural regulation occurs via ligands for a classical, orthosteric, binding pocket and via intra- and inter-domain allosteric mechanisms. Allosteric modulation of NRs via synthetic small molecules has recently emerged as an interesting entry to address the need for small molecules targeting NRs in pathology, via novel modes of action and with beneficial profiles. In this review the general concept of allosteric modulation in drug discovery is first discussed, serving as a background and inspiration for NRs. Subsequently, the review focuses on examples of small molecules that allosterically modulate NRs, with a strong focus on structural information and the ligand binding domain. Recently discovered nanomolar potent allosteric site NR modulators are catapulting allosteric targeting of NRs to the center of attention. The obtained insights serve as a basis for recommendations for the next steps to take in allosteric small molecular targeting of NRs.
Collapse
Affiliation(s)
- Femke A Meijer
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Iris A Leijten-van de Gevel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Rens M J M de Vries
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands.
| |
Collapse
|
38
|
Okafor CD, Colucci JK, Ortlund EA. Ligand-Induced Allosteric Effects Governing SR Signaling. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Lu S, He X, Ni D, Zhang J. Allosteric Modulator Discovery: From Serendipity to Structure-Based Design. J Med Chem 2019; 62:6405-6421. [PMID: 30817889 DOI: 10.1021/acs.jmedchem.8b01749] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Xinheng He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
40
|
Mosure SA, Shang J, Eberhardt J, Brust R, Zheng J, Griffin PR, Forli S, Kojetin DJ. Structural Basis of Altered Potency and Efficacy Displayed by a Major in Vivo Metabolite of the Antidiabetic PPARγ Drug Pioglitazone. J Med Chem 2019; 62:2008-2023. [PMID: 30676741 PMCID: PMC6898968 DOI: 10.1021/acs.jmedchem.8b01573] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pioglitazone (Pio) is a Food and Drug Administration-approved drug for type-2 diabetes that binds and activates the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ), yet it remains unclear how in vivo Pio metabolites affect PPARγ structure and function. Here, we present a structure-function comparison of Pio and its most abundant in vivo metabolite, 1-hydroxypioglitazone (PioOH). PioOH displayed a lower binding affinity and reduced potency in co-regulator recruitment assays. X-ray crystallography and molecular docking analysis of PioOH-bound PPARγ ligand-binding domain revealed an altered hydrogen bonding network, including the formation of water-mediated bonds, which could underlie its altered biochemical phenotype. NMR spectroscopy and hydrogen/deuterium exchange mass spectrometry analysis coupled to activity assays revealed that PioOH better stabilizes the PPARγ activation function-2 (AF-2) co-activator binding surface and better enhances co-activator binding, affording slightly better transcriptional efficacy. These results indicating that Pio hydroxylation affects its potency and efficacy as a PPARγ agonist contributes to our understanding of PPARγ-drug metabolite interactions.
Collapse
Affiliation(s)
| | | | - Jerome Eberhardt
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | | | | | | | - Stefano Forli
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | | |
Collapse
|
41
|
Broekema MF, Hollman DAA, Koppen A, van den Ham HJ, Melchers D, Pijnenburg D, Ruijtenbeek R, van Mil SWC, Houtman R, Kalkhoven E. Profiling of 3696 Nuclear Receptor-Coregulator Interactions: A Resource for Biological and Clinical Discovery. Endocrinology 2018; 159:2397-2407. [PMID: 29718163 DOI: 10.1210/en.2018-00149] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
Abstract
Nuclear receptors (NRs) are ligand-inducible transcription factors that play critical roles in metazoan development, reproduction, and physiology and therefore are implicated in a broad range of pathologies. The transcriptional activity of NRs critically depends on their interaction(s) with transcriptional coregulator proteins, including coactivators and corepressors. Short leucine-rich peptide motifs in these proteins (LxxLL in coactivators and LxxxIxxxL in corepressors) are essential and sufficient for NR binding. With 350 different coregulator proteins identified to date and with many coregulators containing multiple interaction motifs, an enormous combinatorial potential is present for selective NR-mediated gene regulation. However, NR-coregulator interactions have often been determined experimentally on a one-to-one basis across diverse experimental conditions. In addition, NR-coregulator interactions are difficult to predict because the molecular determinants that govern specificity are not well established. Therefore, many biologically and clinically relevant NR-coregulator interactions may remain to be discovered. Here, we present a comprehensive overview of 3696 NR-coregulator interactions by systematically characterizing the binding of 24 nuclear receptors with 154 coregulator peptides. We identified unique ligand-dependent NR-coregulator interaction profiles for each NR, confirming many well-established NR-coregulator interactions. Hierarchical clustering based on the NR-coregulator interaction profiles largely recapitulates the classification of NR subfamilies based on the primary amino acid sequences of the ligand-binding domains, indicating that amino acid sequence is an important, although not the only, molecular determinant in directing and fine-tuning NR-coregulator interactions. This NR-coregulator peptide interactome provides an open data resource for future biological and clinical discovery as well as NR-based drug design.
Collapse
Affiliation(s)
- Marjoleine F Broekema
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | - Danielle A A Hollman
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | - Arjen Koppen
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | | | - Diana Melchers
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Dirk Pijnenburg
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Rob Ruijtenbeek
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Saskia W C van Mil
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | - René Houtman
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Eric Kalkhoven
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| |
Collapse
|
42
|
Buchman CD, Chai SC, Chen T. A current structural perspective on PXR and CAR in drug metabolism. Expert Opin Drug Metab Toxicol 2018; 14:635-647. [PMID: 29757018 DOI: 10.1080/17425255.2018.1476488] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are two members of the nuclear receptor superfamily that play major roles in the expression of various drug metabolism enzymes and are known for their ligand promiscuity. As with other nuclear receptors, PXR and CAR are each composed of a ligand-binding domain (LBD) and a DNA-binding domain (DBD) connected by a hinge region. Areas covered: This review focuses on the information obtained over the last 15+ years from X-ray crystallography studies of the structure of PXR and CAR. Areas of focus include the mobility of each structure, based on temperature factors (B factors); multimeric interactions; the binding of coregulators and ligands; and how the crystal structures were obtained. The first use of hydrogen-deuterium exchange coupled with mass spectroscopy (HDX-MS) to study compound-protein interactions in the PXR-LBD is also addressed. Expert opinion: X-ray crystallography studies have provided us with an excellent understanding of how the LBDs of each receptor function; however, many questions remain concerning the structure of these receptors. Future research should focus on determining the co-crystal structure of an antagonist bound to PXR and on studying the structural aspects of the full-length CAR and PXR proteins.
Collapse
Affiliation(s)
- Cameron D Buchman
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Sergio C Chai
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Taosheng Chen
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| |
Collapse
|
43
|
Berlow RB, Dyson HJ, Wright PE. Expanding the Paradigm: Intrinsically Disordered Proteins and Allosteric Regulation. J Mol Biol 2018; 430:2309-2320. [PMID: 29634920 DOI: 10.1016/j.jmb.2018.04.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 11/30/2022]
Abstract
Allosteric regulatory processes are implicated at all levels of biological function. Recent advances in our understanding of the diverse and functionally significant class of intrinsically disordered proteins have identified a multitude of ways in which disordered proteins function within the confines of the allosteric paradigm. Allostery within or mediated by intrinsically disordered proteins ensures robust and efficient signal integration through mechanisms that would be extremely unfavorable or even impossible for globular protein interaction partners. Here, we highlight recent examples that indicate the breadth of biological outcomes that can be achieved through allosteric regulation by intrinsically disordered proteins. Ongoing and future work in this rapidly evolving area of research will expand our appreciation of the central role of intrinsically disordered proteins in ensuring the fidelity and efficiency of cellular regulation.
Collapse
Affiliation(s)
- Rebecca B Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|