1
|
Verma V, Sinha N, Raja A. Nanoscale warriors against viral invaders: a comprehensive review of Nanobodies as potential antiviral therapeutics. MAbs 2025; 17:2486390. [PMID: 40201976 PMCID: PMC11988260 DOI: 10.1080/19420862.2025.2486390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
Viral infections remain a significant global health threat, with emerging and reemerging viruses causing epidemics and pandemics. Despite advancements in antiviral therapies, the development of effective treatments is often hindered by challenges, such as viral resistance and the emergence of new strains. In this context, the development of novel therapeutic modalities is essential to combat notorious viruses. While traditional monoclonal antibodies are widely used for the treatment of several diseases, nanobodies derived from heavy chain-only antibodies have emerged as promising "nanoscale warriors" against viral infections. Nanobodies possess unique structural properties that enhance their ability to recognize diverse epitopes. Their small size also imparts properties, such as improved bioavailability, solubility, stability, and proteolytic resistance, making them an ideal class of therapeutics for viral infections. In this review, we discuss the role of nanobodies as antivirals against various viruses. Techniques used for developing nanobodies, delivery strategies are covered, and the challenges and opportunities associated with their use as antiviral therapies are discussed. We also offer insights into the future of nanobody-based antiviral research to support the development of new strategies for managing viral infections.
Collapse
Affiliation(s)
- Vaishali Verma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, India
| | - Nimisha Sinha
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Abhavya Raja
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, India
- Department of Surgery and Cancer, Imperial College London, South, London, UK
| |
Collapse
|
2
|
Martinez-Orengo N, Shah S, Lai J, Basuli F, Lyndaker A, Turner ML, Peiravi M, Sourabh S, Sampson K, Zhang P, Swenson RE, Lusso P, Maldarelli F, Nath A, Lau CY, Hammoud DA. PET imaging of HIV-1 envelope protein gp120 using 18F-labeled nanobodies. iScience 2025; 28:111795. [PMID: 39917021 PMCID: PMC11800091 DOI: 10.1016/j.isci.2025.111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/02/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Radiolabeled antibodies against the HIV-1 envelope protein, gp120, have been previously tested in animal models and in people with HIV (PWH). Nanobodies offer advantages over antibodies, including smaller size and faster clearance, which allow labeling with fluorine-18. In this study, three nanobodies (J3, 3E3, B9) chosen based on their binding properties to the conserved CD4-binding site of gp120 were labeled with fluorine-18 and used for PET imaging in mice bearing wild-type (WT) and/or gp120-expressing (Env+) tumors. [18F]J3 and [18F]3E3 selectively targeted Env+ tumors and not WT tumors, with minimal background signal. Switching from non-site-specific radiolabeling method to sortase A-mediated site-specific conjugation at the C-terminus improved binding to Env+ tumors for all nanobodies. Site-specifically 18F-labeled J3 nanobody is the most promising candidate with the highest level of binding. These results establish an Env+ imaging method that will enable next stage testing in an HIV-1 preclinical infection model and potentially in PWH.
Collapse
Affiliation(s)
- Neysha Martinez-Orengo
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD, USA
| | - Swati Shah
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD, USA
| | - Jianhao Lai
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Rockville, MD, USA
| | - Anna Lyndaker
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD, USA
| | - Mitchell L. Turner
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD, USA
| | - Morteza Peiravi
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD, USA
| | - Suman Sourabh
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD, USA
| | - Kevon Sampson
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Peng Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Rockville, MD, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Avindra Nath
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Chuen-Yen Lau
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Rogers GL, Huang C, Mathur A, Huang X, Chen HY, Stanten K, Morales H, Chang CH, Kezirian EJ, Cannon PM. Reprogramming human B cells with custom heavy-chain antibodies. Nat Biomed Eng 2024; 8:1700-1714. [PMID: 39039240 DOI: 10.1038/s41551-024-01240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024]
Abstract
The immunoglobulin locus of B cells can be reprogrammed by genome editing to produce custom or non-natural antibodies that are not induced by immunization. However, current strategies for antibody reprogramming require complex expression cassettes and do not allow for customization of the constant region of the antibody. Here we show that human B cells can be edited at the immunoglobulin heavy-chain locus to express heavy-chain-only antibodies that support alterations to both the fragment crystallizable domain and the antigen-binding domain, which can be based on both antibody and non-antibody components. Using the envelope protein (Env) from the human immunodeficiency virus as a model antigen, we show that B cells edited to express heavy-chain antibodies to Env support the regulated expression of B cell receptors and antibodies through alternative splicing and that the cells respond to the Env antigen in a tonsil organoid model of immunization. This strategy allows for the reprogramming of human B cells to retain the potential for in vivo amplification while producing molecules with flexibility of composition beyond that of standard antibodies.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Chun Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Atishay Mathur
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Xiaoli Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kalya Stanten
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Chan-Hua Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Eric J Kezirian
- Department of Otolaryngology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Liang T, Sun ZY, Hines MG, Penrose KJ, Hao Y, Chu X, Mellors JW, Dimitrov DS, Xie XQ, Li W, Feng Z. AI-based IsAb2.0 for antibody design. Brief Bioinform 2024; 25:bbae445. [PMID: 39285513 PMCID: PMC11405125 DOI: 10.1093/bib/bbae445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Therapeutic antibody design has garnered widespread attention, highlighting its interdisciplinary importance. Advancements in technology emphasize the critical role of designing nanobodies and humanized antibodies in antibody engineering. However, current experimental methods are costly and time-consuming. Computational approaches, while progressing, faced limitations due to insufficient structural data and the absence of a standardized protocol. To tackle these challenges, our lab previously developed IsAb1.0, an in silico antibody design protocol. Yet, IsAb1.0 lacked accuracy, had a complex procedure, and required extensive antibody bioinformation. Moreover, it overlooked nanobody and humanized antibody design, hindering therapeutic antibody development. Building upon IsAb1.0, we enhanced our design protocol with artificial intelligence methods to create IsAb2.0. IsAb2.0 utilized AlphaFold-Multimer (2.3/3.0) for accurate modeling and complex construction without templates and employed the precise FlexddG method for in silico antibody optimization. Validated through optimization of a humanized nanobody J3 (HuJ3) targeting HIV-1 gp120, IsAb2.0 predicted five mutations that can improve HuJ3-gp120 binding affinity. These predictions were confirmed by commercial software and validated through binding and neutralization assays. IsAb2.0 streamlined antibody design, offering insights into future techniques to accelerate immunotherapy development.
Collapse
Affiliation(s)
- Tianjian Liang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, 335 Sutherland Drive, Pittsburgh, PA 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
- Drug Discovery Institute, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15261, United States
- Department of Structural Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15261, United States
| | - Ze-Yu Sun
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, 335 Sutherland Drive, Pittsburgh, PA 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
- Drug Discovery Institute, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15261, United States
- Department of Structural Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15261, United States
| | - Margaret G Hines
- Division of Infectious Diseases, Department of Medicine, Center for Antibody Therapeutics, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, United States
| | - Kerri Jo Penrose
- Division of Infectious Diseases, Department of Medicine, Center for AIDS Research, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, United States
| | - Yixuan Hao
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, 335 Sutherland Drive, Pittsburgh, PA 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
- Drug Discovery Institute, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15261, United States
- Department of Structural Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15261, United States
| | - Xiaojie Chu
- Division of Infectious Diseases, Department of Medicine, Center for Antibody Therapeutics, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, United States
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, Center for Antibody Therapeutics, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, Center for AIDS Research, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, United States
| | - Dimiter S Dimitrov
- Division of Infectious Diseases, Department of Medicine, Center for Antibody Therapeutics, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, 335 Sutherland Drive, Pittsburgh, PA 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
- Drug Discovery Institute, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15261, United States
- Department of Structural Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15261, United States
| | - Wei Li
- Division of Infectious Diseases, Department of Medicine, Center for Antibody Therapeutics, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, 335 Sutherland Drive, Pittsburgh, PA 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
- Drug Discovery Institute, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15261, United States
- Department of Structural Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15261, United States
| |
Collapse
|
5
|
Xu J, Zhou T, McKee K, Zhang B, Liu C, Nazzari AF, Pegu A, Shen CH, Becker JE, Bender MF, Chan P, Changela A, Chaudhary R, Chen X, Einav T, Kwon YD, Lin BC, Louder MK, Merriam JS, Morano NC, O'Dell S, Olia AS, Rawi R, Roark RS, Stephens T, Teng IT, Tourtellott-Fogt E, Wang S, Yang ES, Shapiro L, Tsybovsky Y, Doria-Rose NA, Casellas R, Kwong PD. Ultrapotent Broadly Neutralizing Human-llama Bispecific Antibodies against HIV-1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309268. [PMID: 38704686 PMCID: PMC11234422 DOI: 10.1002/advs.202309268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Indexed: 05/07/2024]
Abstract
Broadly neutralizing antibodies are proposed as therapeutic and prophylactic agents against HIV-1, but their potency and breadth are less than optimal. This study describes the immunization of a llama with the prefusion-stabilized HIV-1 envelope (Env) trimer, BG505 DS-SOSIP, and the identification and improvement of potent neutralizing nanobodies recognizing the CD4-binding site (CD4bs) of vulnerability. Two of the vaccine-elicited CD4bs-targeting nanobodies, G36 and R27, when engineered into a triple tandem format with llama IgG2a-hinge region and human IgG1-constant region (G36×3-IgG2a and R27×3-IgG2a), neutralized 96% of a multiclade 208-strain panel at geometric mean IC80s of 0.314 and 0.033 µg mL-1, respectively. Cryo-EM structures of these nanobodies in complex with Env trimer revealed the two nanobodies to neutralize HIV-1 by mimicking the recognition of the CD4 receptor. To enhance their neutralizing potency and breadth, nanobodies are linked to the light chain of the V2-apex-targeting broadly neutralizing antibody, CAP256V2LS. The resultant human-llama bispecific antibody CAP256L-R27×3LS exhibited ultrapotent neutralization and breadth exceeding other published HIV-1 broadly neutralizing antibodies, with pharmacokinetics determined in FcRn-Fc mice similar to the parent CAP256V2LS. Vaccine-elicited llama nanobodies, when combined with V2-apex broadly neutralizing antibodies, may therefore be able to fulfill anti-HIV-1 therapeutic and prophylactic clinical goals.
Collapse
Affiliation(s)
- Jianliang Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, 20892, USA
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jordan E Becker
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Payton Chan
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tal Einav
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jonah S Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicholas C Morano
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan S Roark
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily Tourtellott-Fogt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rafael Casellas
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, 20892, USA
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| |
Collapse
|
6
|
Paneerselvam N, Khan A, Lawson BR. Broadly neutralizing antibodies targeting HIV: Progress and challenges. Clin Immunol 2023; 257:109809. [PMID: 37852345 PMCID: PMC10872707 DOI: 10.1016/j.clim.2023.109809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Anti-HIV broadly neutralizing antibodies (bNAbs) offer a novel approach to treating, preventing, or curing HIV. Pre-clinical models and clinical trials involving the passive transfer of bNAbs have demonstrated that they can control viremia and potentially serve as alternatives or complement antiretroviral therapy (ART). However, antibody decay, persistent latent reservoirs, and resistance impede bNAb treatment. This review discusses recent advancements and obstacles in applying bNAbs and proposes strategies to enhance their therapeutic potential. These strategies include multi-epitope targeting, antibody half-life extension, combining with current and newer antiretrovirals, and sustained antibody secretion.
Collapse
Affiliation(s)
| | - Amber Khan
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA
| | - Brian R Lawson
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA.
| |
Collapse
|
7
|
Rogers GL, Huang C, Mathur A, Huang X, Chen HY, Stanten K, Morales H, Chang CH, Kezirian EJ, Cannon PM. Reprogramming human B cells with custom heavy chain antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546944. [PMID: 37425794 PMCID: PMC10327003 DOI: 10.1101/2023.06.28.546944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
We describe a genome editing strategy to reprogram the immunoglobulin heavy chain (IgH) locus of human B cells to express custom molecules that respond to immunization. These heavy chain antibodies (HCAbs) comprise a custom antigen-recognition domain linked to an Fc domain derived from the IgH locus and can be differentially spliced to express either B cell receptor (BCR) or secreted antibody isoforms. The HCAb editing platform is highly flexible, supporting antigen-binding domains based on both antibody and non-antibody components, and also allowing alterations in the Fc domain. Using HIV Env protein as a model antigen, we show that B cells edited to express anti-Env HCAbs support the regulated expression of both BCRs and antibodies, and respond to Env antigen in a tonsil organoid model of immunization. In this way, human B cells can be reprogrammed to produce customized therapeutic molecules with the potential for in vivo amplification.
Collapse
Affiliation(s)
- Geoffrey L. Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Chun Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Atishay Mathur
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Xiaoli Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Kalya Stanten
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Chan-Hua Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Eric J. Kezirian
- Department of Otolaryngology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Zhang B, Gorman J, Kwon YD, Pegu A, Chao CW, Liu T, Asokan M, Bender MF, Bylund T, Damron L, Gollapudi D, Lei P, Li Y, Liu C, Louder MK, McKee K, Olia AS, Rawi R, Schön A, Wang S, Yang ES, Yang Y, Carlton K, Doria-Rose NA, Shapiro L, Seaman MS, Mascola JR, Kwong PD. Bispecific antibody CAP256.J3LS targets V2-apex and CD4-binding sites with high breadth and potency. MAbs 2023; 15:2165390. [PMID: 36729903 PMCID: PMC9897750 DOI: 10.1080/19420862.2023.2165390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Antibody CAP256-VRC26.25 targets the second hypervariable region (V2) at the apex of the HIV envelope (Env) trimer with extraordinary neutralization potency, although less than optimal breadth. To improve breadth, we linked the light chain of CAP256V2LS, an optimized version of CAP256-VRC26.25 currently under clinical evaluation, to the llama nanobody J3, which has broad CD4-binding site-directed neutralization. The J3-linked bispecific antibody exhibited improved breadth and potency over both J3 and CAP256V2LS, indicative of synergistic neutralization. The cryo-EM structure of the bispecific antibody in complex with a prefusion-closed Env trimer revealed simultaneous binding of J3 and CAP256V2LS. We further optimized the pharmacokinetics of the bispecific antibody by reducing the net positive charge of J3. The optimized bispecific antibody, which we named CAP256.J3LS, had a half-life similar to CAP256V2LS in human FcRn knock-in mice and exhibited suitable auto-reactivity, manufacturability, and biophysical risk. CAP256.J3LS neutralized over 97% of a multiclade 208-strain panel (geometric mean concentration for 80% inhibition (IC80) 0.079 μg/ml) and 100% of a 100-virus clade C panel (geometric mean IC80 of 0.05 μg/ml), suggesting its anti-HIV utility especially in regions where clade C dominates.
Collapse
Affiliation(s)
- Baoshan Zhang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Jason Gorman
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Young D. Kwon
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Amarendra Pegu
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Cara W. Chao
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Tracy Liu
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | | | - Michael F. Bender
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Tatsiana Bylund
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Leland Damron
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Deepika Gollapudi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Paula Lei
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Yile Li
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Cuiping Liu
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Mark K. Louder
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Krisha McKee
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Adam S. Olia
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Shuishu Wang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Yongping Yang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Carlton
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A. Doria-Rose
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence Shapiro
- Department of Biochemistry, Columbia University, New York, NY, USA
| | - Michael S. Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John R. Mascola
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Peter D. Kwong
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA,Department of Biochemistry, Columbia University, New York, NY, USA,CONTACT Peter D. Kwong Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD20892, USA
| |
Collapse
|
9
|
Chen Y, Wang X, Zhang M, Li J, Gao X, Nan Y, Zhao Q, Zhou EM, Liu B. Identification of two novel neutralizing nanobodies against swine hepatitis E virus. Front Microbiol 2022; 13:1048180. [PMID: 36504801 PMCID: PMC9727072 DOI: 10.3389/fmicb.2022.1048180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatitis E virus (HEV) is thought to be a zoonotic pathogen that causes serious economic loss and threatens human health. However, there is a lack of efficient antiviral strategies. As a more promising tool for antiviral therapy, nanobodies (also named single-domain antibodies, sdAbs) exhibit higher specificity and affinity than traditional antibodies. In this study, nanobody anti-genotype four HEV open reading frame 2 (ORF2) was screened using phage display technology, and two nanobodies (nb14 and nb53) with high affinity were prokaryotically expressed. They were identified to block HEV ORF2 virus like particle (VLP) sp239 (aa 368-606) absorbing HepG2 cells in vitro. With the previously built animal model, the detection indicators of fecal shedding, viremia, seroconversion, alanine aminotransferase (ALT) levels, and liver lesions showed that nb14 could completely protect rabbits from swine HEV infection, and nb53 partially blocked swine HEV infection in rabbits. Collectively, these results revealed that nb14, with its anti-HEV neutralizing activity, may be developed as an antiviral drug for HEV.
Collapse
|