1
|
Meisen S, Schütte L, Balmayor E, Halbgebauer R, Huber-Lang M. TRAUMA AND THE ENTEROCYTE: DISTURBANCE OF COMMUNICATION AND DELINEATION. Shock 2025; 63:677-687. [PMID: 40239221 DOI: 10.1097/shk.0000000000002564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
ABSTRACT The enterocyte as major building stone of the intestinal barrier plays a central role in maintaining cellular homeostasis and mediating host-environment interactions. Trauma, whether direct or remote, disrupts enterocyte function through complex mechanisms including impaired oxygen delivery, disturbed intercellular communication, and compromised nutrient uptake and metabolite clearance. These changes may lead to barrier dysfunction and altered repair mechanisms, facilitating systemic inflammation and remote organ injury. The failure of communication pathways-both within enterocytes and across epithelial networks-undermines coordinated responses to injury. Understanding these multifaceted perturbations reveals the enterocyte not merely as a passive victim but as an active participant in trauma-induced pathology. Emerging therapeutic strategies focus on enhancing mucosal repair via sealing agents, promoting epithelial proliferation, and restoring metabolic and signaling homeostasis. This review delineates the dynamic response of the enterocyte to trauma, highlighting opportunities for targeted interventions aimed at restoring intestinal integrity and function.
Collapse
Affiliation(s)
- Sophie Meisen
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Lena Schütte
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Elizabeth Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
2
|
Xiong D, Geng H, Lv X, Wang S, Jia L. Inflammatory Response and Anti-Inflammatory Treatment in Persistent Inflammation-Immunosuppression-Catabolism Syndrome (PICS). J Inflamm Res 2025; 18:2267-2281. [PMID: 39968098 PMCID: PMC11834740 DOI: 10.2147/jir.s504694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Many patients now survive their initial critical events but subsequently develop chronic critical illness (CCI). CCI is characterized by prolonged hospital stays, poor outcomes, and significant long-term mortality. The incidence of chronic critical illness (CCI) is estimated to be 34.4 cases per 100,000 population. The incidence varies significantly with age, peaking at 82.1 cases per 100,000 in individuals aged 75-79. The one-year mortality rate among CCI patients approaches 50%. A subset of these patients enters a state of persistent inflammation, immune suppression, and ongoing catabolism, a condition termed persistent inflammation, immunosuppression, and catabolism syndrome (PICS) in 2012. In recent years, some progress has been made in treating PICS. For instance, recent advancements such as the persistent expansion of MDSCs (myeloid-derived suppressor cells) and the mechanisms underlying intestinal barrier dysfunction have provided new directions for therapeutic strategies, as discussed below. Persistent inflammation, a key feature of PICS, has received comparatively little research attention. In this review, we examine the potential pathophysiological changes and molecular mechanisms underlying persistent inflammation and its role in PICS. We also discuss current therapies about inflammation and offer recommendations for managing patients with PICS.
Collapse
Affiliation(s)
- Dacheng Xiong
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Huixian Geng
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Xuechun Lv
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shuqi Wang
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Lijing Jia
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
3
|
Munley JA, Kelly LS, Park G, Pons EE, Apple CG, Kannan KB, Bible LE, Efron PA, Nagpal R, Mohr AM. Nonselective beta blockade enhances gut microbiome diversity in a rodent model of trauma, hemorrhage, and chronic stress. J Trauma Acute Care Surg 2025; 98:309-318. [PMID: 39813154 DOI: 10.1097/ta.0000000000004461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
BACKGROUND Traumatic injury leads to gut dysbiosis with changes in microbiome diversity and conversion toward a "pathobiome" signature characterized by a selective overabundance of pathogenic bacteria. The use of non-selective beta antagonism in trauma patients has been established as a useful adjunct to reduce systemic inflammation. We sought to investigate whether beta-adrenergic blockade following trauma would prevent the conversion of microbiome to a "pathobiome" phenotype. METHODS Sprague-Dawley rats (n = 6-8/group) were subjected to routine daily handling (naïve), lung contusion with hemorrhagic shock (LCHS), or LCHS with daily chronic stress (LCHS/CS), each with or without administration of intraperitoneal propranolol (BB) (10 mg/kg/day). Fecal microbiome was measured on Days 0, 7, and 14 using high-throughput 16S rRNA sequencing and QIIME2 bioinformatics analyses. Alpha- and beta-diversity and microbiome composition were assessed with significance defined as * p < 0.05. RESULTS Use of propranolol following LCHS or LCHS/CS demonstrated a significant increase in the number of bacterial species (Chao1 index), as well as overall richness and evenness (Shannon index) compared with their untreated counterparts at Day 7. By Day 14, these differences were no longer apparent between BB and untreated groups subjected to LCHS/CS. There was an abundance of commensal bacteria such as Oscillospiraceae and Clostridia in LCHS and LCHS/CS treated with BB after 7 days which persisted at 14 days. CONCLUSION These findings suggest a role for beta-antagonism in altering the diversity of the gut microbiome and the need for further studies to elucidate the cellular and molecular mechanisms underlying this intriguing connection of microbiome with trauma and beta-blockade.
Collapse
Affiliation(s)
- Jennifer A Munley
- From the Department of Surgery and Sepsis and Critical Illness Research Center (J.A.M., L.S.K., E.E.P., C.G.A., K.B.K., L.E.B., P.A.E., A.M.M.), University of Florida College of Medicine, Gainesville; and The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences (G.P., R.N.), Florida State University College of Education, Health, and Human Sciences, Tallahassee, Florida
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Shi H, Sun J, Sun Y, Wu J, Jiang G, Xu Z, Shi X, Fang M. Intestinal Epithelial Cell-specific Knockout of METTL3 Aggravates Intestinal Inflammation in CLP Mice by Weakening the Intestinal Barrier. Curr Pharm Biotechnol 2025; 26:80-91. [PMID: 38482615 DOI: 10.2174/0113892010271970240202054245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 11/30/2024]
Abstract
BACKGROUND Many studies have demonstrated that the expression of methyltransferase- like 3 (METTL3) is altered in various inflammatory diseases. Its specific mechanistic role in the intestinal inflammatory response during sepsis remains limited and requires further investigation. OBJECTIVES Explore the potential mechanism of METTL3 in the intestinal inflammatory response during sepsis. MATERIALS AND METHODS Immunohistochemical analysis was utilized to detect the expression of METTL3 in the necrotic intestine of patients with intestinal necrosis and the small intestine of cecal ligation and puncture (CLP) mice. Mice were subjected to the CLP and Sham surgeries, intestine tissue was harvested and performed HE staining, and ELISA to examine intestinal inflammatory responses, while TUNEL staining was applied to detect intestinal cell apoptosis. Additionally, ELISA was used to detect diamine oxidase (DAO) and intestinal fatty acid binding protein (I-FABP) levels in intestinal tissue. Immunohistochemistry and RT-qPCR were also employed to examine the mRNA and protein expression levels of Zona Occludens 1 (ZO-1) and Claudin-1. Finally, transcriptomic sequencing was performed on the small intestine tissues of METTL3 Knock-out (KO) and Wild-type (WT) mice in response to sepsis. RESULTS METTL3 exhibited lower expression level in the necrotic intestine of patients and the small intestine of CLP mice. Loss of METTL3 in CLP mice triggered significantly higher expression of TNF-α and IL-18, down-regulated expression of ZO-1 and claudin-1, and decreased expression of DAO and I-FABP in the intestinal tissue. KEGG enrichment analysis showed that the differential genes were significantly enriched in immune-related pathways. CONCLUSION This study reveals a novel mechanism responsible for exacerbated intestinal inflammation orchestrated by METTL3. Particularly, METTL3 null mice displayed decreased ZO- 1 and Claudin-1 expression, which largely hampered intestinal epithelial barrier function, resulting in bacterial and toxin translocation and intestinal immune activation and inflammation against sepsis.
Collapse
Affiliation(s)
- Hongzhou Shi
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Jiahui Sun
- School of Public Health, Southeast University, Nanjing, 210000, China
| | - Yaya Sun
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Junjie Wu
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Guangqing Jiang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Zhaiyue Xu
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Xin Shi
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Miao Fang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| |
Collapse
|
5
|
Lin X, Lin C, Li X, Yao F, Guo X, Wang M, Zeng M, Yuan Y, Xie Q, Huang X, Jiao X. Gut Microbiota Dysbiosis Facilitates Susceptibility to Bloodstream Infection. J Microbiol 2024; 62:1113-1124. [PMID: 39621250 DOI: 10.1007/s12275-024-00190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 12/18/2024]
Abstract
To study the role of intestinal flora in the development of bloodstream infections (BSIs). 42 patients and 19 healthy controls (HCs) were screened into the study and their intestinal flora was measured by 16S rRNA gene sequencing. The bacterial diversity was significantly lower in the BSI group compared with that in the HCs (P < 0.001), and beta diversity was significantly differentiated between the two groups (PERMANOVA, P = 0.001). The four keystone species [Roseburia, Faecalibacterium, Prevotella, and Enterococcus (LDA > 4)] differed significantly between the two groups. Dysbiosis of fecal microbial ecology is a common condition present in patients with BSI. The proliferation of certain pathogens or reduction of SCFA-producing bacteria would cause susceptibility to BSI.
Collapse
Affiliation(s)
- Xiaomin Lin
- Department of Clinical Laboratory, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Chun Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Fen Yao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Xiaoling Guo
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Meimei Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Xudong Huang
- Department of Clinical Laboratory, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Weiss MG, de Jong AM, Seegert H, Moeslund N, Maassen H, Schjalm C, de Boer E, Leuvenink H, Mollnes TE, Eijken M, Keller AK, Dijkstra G, Jespersen B, Pischke SE. Activation of the Innate Immune System in Brain-Dead Donors Can Be Reduced by Luminal Intestinal Preservation During Organ Procurement Surgery - A Porcine Model. Transpl Int 2024; 37:13569. [PMID: 39544322 PMCID: PMC11560447 DOI: 10.3389/ti.2024.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Organs obtained from brain dead donors can have suboptimal outcomes. Activation of the innate immune system and translocation of intestinal bacteria could be causative. Thirty two pigs were assigned to control, brain death (BD), BD + luminal intestinal polyethylene glycol (PEG), and BD + luminal intestinal University of Wisconsin solution (UW) groups. Animals were observed for 360 min after BD before organ retrieval. 2,000 mL luminal intestinal preservation solution was instilled into the duodenum at the start of organ procurement. Repeated measurements of plasma C3a, Terminal Complement Complex (TCC), IL-8, TNF, and lipopolysaccharide binding protein were analysed by immunoassays. C3a was significantly higher in the BD groups compared to controls at 480 min after brain death. TCC was significantly higher in BD and BD + UW, but not BD + PEG, compared to controls at 480 min. TNF was significantly higher in the BD group compared to all other groups at 480 min. LPS binding protein increased following BD in all groups except BD + PEG, which at 480 min was significantly lower compared with all other groups. Brain death induced innate immune system activation was decreased by luminal preservation using PEG during organ procurement, possibly due to reduced bacterial translocation.
Collapse
Affiliation(s)
- Marc Gjern Weiss
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Marye de Jong
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Helene Seegert
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Moeslund
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Hanno Maassen
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eline de Boer
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Henri Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Marco Eijken
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Anna Krarup Keller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Bente Jespersen
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Erik Pischke
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Anaesthesiology and Intensive Care, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Ziaka M, Exadaktylos A. Gut-derived immune cells and the gut-lung axis in ARDS. Crit Care 2024; 28:220. [PMID: 38965622 PMCID: PMC11225303 DOI: 10.1186/s13054-024-05006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The gut serves as a vital immunological organ orchestrating immune responses and influencing distant mucosal sites, notably the respiratory mucosa. It is increasingly recognized as a central driver of critical illnesses, with intestinal hyperpermeability facilitating bacterial translocation, systemic inflammation, and organ damage. The "gut-lung" axis emerges as a pivotal pathway, where gut-derived injurious factors trigger acute lung injury (ALI) through the systemic circulation. Direct and indirect effects of gut microbiota significantly impact immune responses. Dysbiosis, particularly intestinal dysbiosis, termed as an imbalance of microbial species and a reduction in microbial diversity within certain bodily microbiomes, influences adaptive immune responses, including differentiating T regulatory cells (Tregs) and T helper 17 (Th17) cells, which are critical in various lung inflammatory conditions. Additionally, gut and bone marrow immune cells impact pulmonary immune activity, underscoring the complex gut-lung interplay. Moreover, lung microbiota alterations are implicated in diverse gut pathologies, affecting local and systemic immune landscapes. Notably, lung dysbiosis can reciprocally influence gut microbiota composition, indicating bidirectional gut-lung communication. In this review, we investigate the pathophysiology of ALI/acute respiratory distress syndrome (ARDS), elucidating the role of immune cells in the gut-lung axis based on recent experimental and clinical research. This exploration aims to enhance understanding of ALI/ARDS pathogenesis and to underscore the significance of gut-lung interactions in respiratory diseases.
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic of Geriatric Medicine, Center of Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Ziaka M, Exadaktylos A. Pathophysiology of acute lung injury in patients with acute brain injury: the triple-hit hypothesis. Crit Care 2024; 28:71. [PMID: 38454447 PMCID: PMC10918982 DOI: 10.1186/s13054-024-04855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
It has been convincingly demonstrated in recent years that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after ABI. The pathophysiology of the bidirectional brain-lung interactions is multifactorial and involves inflammatory cascades, immune suppression, and dysfunction of the autonomic system. Indeed, the systemic effects of inflammatory mediators in patients with ABI create a systemic inflammatory environment ("first hit") that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery, and infections ("second hit"). Moreover, accumulating evidence supports the knowledge that gut microbiota constitutes a critical superorganism and an organ on its own, potentially modifying various physiological functions of the host. Furthermore, experimental and clinical data suggest the existence of a communication network among the brain, gastrointestinal tract, and its microbiome, which appears to regulate immune responses, gastrointestinal function, brain function, behavior, and stress responses, also named the "gut-microbiome-brain axis." Additionally, recent research evidence has highlighted a crucial interplay between the intestinal microbiota and the lungs, referred to as the "gut-lung axis," in which alterations during critical illness could result in bacterial translocation, sustained inflammation, lung injury, and pulmonary fibrosis. In the present work, we aimed to further elucidate the pathophysiology of acute lung injury (ALI) in patients with ABI by attempting to develop the "double-hit" theory, proposing the "triple-hit" hypothesis, focused on the influence of the gut-lung axis on the lung. Particularly, we propose, in addition to sympathetic hyperactivity, blast theory, and double-hit theory, that dysbiosis and intestinal dysfunction in the context of ABI alter the gut-lung axis, resulting in the development or further aggravation of existing ALI, which constitutes the "third hit."
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic for Geriatric Medicine, Center for Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Munley JA, Kelly LS, Park G, Gillies GS, Pons EE, Kannan KB, Bible LE, Efron PA, Nagpal R, Mohr AM. Sex-specific intestinal dysbiosis persists after multicompartmental injury. Surgery 2023; 174:1453-1462. [PMID: 37833155 DOI: 10.1016/j.surg.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Preclinical studies of the gut microbiome after severe traumatic injury have demonstrated severe dysbiosis in males, with sex-specific microbial differences up to 2 days after injury. However, the impact of host sex on injury-driven dysbiosis over time remains unknown. We hypothesized that sex-specific differences in intestinal microbiome diversity and composition after traumatic injury with and without stress would persist after 7 days. METHODS Male and proestrus female Sprague-Dawley rats (n = 8/group) were subjected to either polytrauma (lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofractures), polytrauma plus chronic restraint stress, or naïve controls. The fecal microbiome was measured on days 0, 3, and 7 using 16S rRNA sequencing and Quantitative Insights into Microbial Ecology bioinformatics analyses. Microbial alpha-diversity (Chao1 and Shannon indices) and beta-diversity were assessed. Analyses were performed in GraphPad and "R," with significance defined as P < .05. RESULTS Polytrauma and polytrauma plus chronic restraint stress reduced alpha-diversity (Chao1, Shannon) within 3 days postinjury, which persisted up to day 7 in both sexes; polytrauma and polytrauma plus chronic restraint stress females had significantly decreased Chao1 compared to male counterparts at day 7 (P = .02). At day 7, the microbiome composition in polytrauma females had higher proportion of Mucispirillum, whereas polytrauma plus chronic restraint stress males demonstrated elevated abundance of Ruminococcus and Akkermansia. CONCLUSION Multicompartmental trauma induces intestinal dysbiosis that is sex-specific with persistence of decreased diversity and unique "pathobiome" signatures in females after 1 week. These findings underline sex as an important biological variable that may influence variable host-specific responses and outcomes after severe trauma and critical illness. This underscores the need to consider precision medicine strategies to ameliorate these outcomes.
Collapse
Affiliation(s)
- Jennifer A Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL. https://twitter.com/jen_munley
| | - Lauren S Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL. https://twitter.com/LaurenKelly_MD
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL
| | - Gwendolyn S Gillies
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL. https://twitter.com/gee_gills
| | - Erick E Pons
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL
| | - Kolenkode B Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL
| | - Letitia E Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL. https://twitter.com/LBibleMD
| | - Philip A Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL
| | - Alicia M Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL.
| |
Collapse
|
10
|
Yan Y, Lei Y, Qu Y, Fan Z, Zhang T, Xu Y, Du Q, Brugger D, Chen Y, Zhang K, Zhang E. Bacteroides uniformis-induced perturbations in colonic microbiota and bile acid levels inhibit TH17 differentiation and ameliorate colitis developments. NPJ Biofilms Microbiomes 2023; 9:56. [PMID: 37580334 PMCID: PMC10425470 DOI: 10.1038/s41522-023-00420-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/14/2023] [Indexed: 08/16/2023] Open
Abstract
Inflammatory bowel disease (IBD) is associated with gut dysbiosis and can lead to colitis-associated malignancies. Bacteroides uniformis (Bu) regulates animal intestinal homeostasis; however, the mechanism by which it alleviates colitis in mice remains unknown. We investigated the effects of B. uniformis JCM5828 and its metabolites on female C57BL/6J mice with dextran sulfate sodium salt (DSS) induced colitis. Treatment with Bu considerably alleviated colitis progression and restored the mechanical and immune barrier protein expression. Additionally, Bu increased the abundance of the symbiotic bacteria Bifidobacterium and Lactobacillus vaginalis while decreasing that of pathogenic Escherichia-Shigella, and modulated intestinal bile acid metabolism. Bu largely regulated the expression of key regulatory proteins of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways in colonic tissues and the differentiation of TH17 cells. However, Bu could not directly inhibit TH17 cell differentiation in vitro; it modulated the process in the lamina propria by participating in bile acid metabolism and regulating key metabolites (alpha-muricholic, hyodeoxycholic, and isolithocholic acid), thereby modulating the intestinal immune response. Our findings suggest that Bu or bile acid supplements are potential therapies for colitis and other diseases associated with intestinal barrier dysfunction.
Collapse
Affiliation(s)
- YiTing Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yu Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ying Qu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhen Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ting Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangbin Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Daniel Brugger
- Institute of Animal Nutrition and Dietetics, Vetsuisse-Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ke Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Enping Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
11
|
Munley JA, Kirkpatrick SL, Gillies GS, Bible LE, Efron PA, Nagpal R, Mohr AM. The Intestinal Microbiome after Traumatic Injury. Microorganisms 2023; 11:1990. [PMID: 37630549 PMCID: PMC10459834 DOI: 10.3390/microorganisms11081990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
The intestinal microbiome plays a critical role in host immune function and homeostasis. Patients suffering from-as well as models representing-multiple traumatic injuries, isolated organ system trauma, and various severities of traumatic injury have been studied as an area of interest in the dysregulation of immune function and systemic inflammation which occur after trauma. These studies also demonstrate changes in gut microbiome diversity and even microbial composition, with a transition to a pathobiome state. In addition, sex has been identified as a biological variable influencing alterations in the microbiome after trauma. Therapeutics such as fecal transplantation have been utilized to ameliorate not only these microbiome changes but may also play a role in recovery postinjury. This review summarizes the alterations in the gut microbiome that occur postinjury, either in isolated injury or multiple injuries, along with proposed mechanisms for these changes and future directions for the field.
Collapse
Affiliation(s)
- Jennifer A. Munley
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Stacey L. Kirkpatrick
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Gwendolyn S. Gillies
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Letitia E. Bible
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL 32306, USA;
| | - Alicia M. Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| |
Collapse
|
12
|
Munley JA, Kelly LS, Park G, Gillies GS, Pons EE, Kannan KB, Whitley EM, Bible LE, Efron PA, Nagpal R, Mohr AM. Multicompartmental traumatic injury induces sex-specific alterations in the gut microbiome. J Trauma Acute Care Surg 2023; 95:30-38. [PMID: 36872509 PMCID: PMC10293079 DOI: 10.1097/ta.0000000000003939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND Previous preclinical studies have demonstrated an altered gut microbiome after traumatic injury; however, the impact of sex on dysbiosis remains unknown. We hypothesized that the "pathobiome" phenotype induced by multicompartmental injuries and chronic stress is host sex specific with unique microbiome signatures. METHODS Male and proestrus female Sprague-Dawley rats (n = 8/group) aged 9 weeks to 11 weeks were subjected to either multicompartmental injury (PT) (lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofractures), PT plus 2 hours daily chronic restraint stress (PT/CS) or naive controls. Fecal microbiome was measured on Days 0 and 2 using high-throughput 16S rRNA sequencing and Quantitative Insights Into Microbial Ecology bioinformatics analyses. Microbial alpha-diversity was assessed using Chao1 (number of different unique species) and Shannon (species richness and evenness) indices. Beta-diversity was assessed using principle coordinate analysis. Intestinal permeability was evaluated by plasma occludin and lipopolysaccharide binding protein. Histologic evaluation of ileum and colon tissues was scored for injury by a blinded pathologist. Analyses were performed in GraphPad and R, with significance defined as p < 0.05 between males versus females. RESULTS At baseline, females had significantly elevated alpha-diversity (Chao1, Shannon indices) compared with males ( p < 0.05) which was no longer present 2 days postinjury in PT and PT/CS. Beta-diversity also differed significantly between males and females after PT ( p = 0.01). At Day 2, the microbial composition in PT/CS females was dominated by Bifidobacterium , whereas PT males demonstrated elevated levels of Roseburia ( p < 0.01). The PT/CS males had significantly elevated ileum injury scores compared with females ( p = 0.0002). Plasma occludin was higher in PT males compared with females ( p = 0.004); plasma lipopolysaccharide binding protein was elevated in PT/CS males ( p = 0.03). CONCLUSION Multicompartmental trauma induces significant alterations in microbiome diversity and taxa, but these signatures differ by host sex. These findings suggest that sex is an important biological variable that may influence outcomes after severe trauma and critical illness.
Collapse
Affiliation(s)
- Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Gwoncheol Park
- Department of Nutrition & Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, Florida
| | - Gwendolyn S. Gillies
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Erick E. Pons
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | | | - Letitia E. Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, Florida
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
13
|
Munley JA, Kelly LS, Pons EE, Kannan KB, Coldwell PS, Whitley EM, Gillies GS, Efron PA, Nagpal R, Mohr AM. Multicompartmental traumatic injury and the microbiome: Shift to a pathobiome. J Trauma Acute Care Surg 2023; 94:15-22. [PMID: 36203239 PMCID: PMC9805505 DOI: 10.1097/ta.0000000000003803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous animal models have demonstrated altered gut microbiome after mild traumatic injury; however, the impact of injury severity and critical illness is unknown. We hypothesized that a rodent model of severe multicompartmental injuries and chronic stress would demonstrate microbiome alterations toward a "pathobiome" characterized by an overabundance of pathogenic organisms, which would persist 1 week after injury. METHODS Male Sprague-Dawley rats (n = 8 per group) were subjected to either multiple injuries (PT) (lung contusion, hemorrhagic shock, cecectomy, and bifemoral pseudofractures), PT plus daily chronic restraint stress for 2 hours (PT/CS), or naive controls. Fecal microbiome was measured on days 0, 3, and 7 using high-throughput 16S rRNA sequencing and Quantitative Insights Into Microbial Ecology 2 bioinformatics analysis. Microbial α diversity was assessed using Chao1 and Shannon indices, and β diversity with principle coordinate analysis. Intestinal permeability was evaluated by plasma occludin; ileum and descending colon tissues were reviewed for injury. Analyses were performed in GraphPad (GraphPad Software, La Jolla, CA) and R (R Foundation for Statistical Computing, Vienna, Austria), with significance defined as p < 0.05. RESULTS There were significant alterations in β diversity at day 3 and between all groups. By day 3, both PT and PT/CS demonstrated significantly depleted bacterial diversity (Chao1) ( p = 0.01 and p = 0.001, respectively) versus naive, which persisted up to day 7 in PT/CS only ( p = 0.001). Anaerostipes and Rothia dominated PT and Lactobacillus bloomed in PT/CS cohorts by day 7. Plasma occludin was significantly elevated in PT/CS compared with naive ( p = 0.04), and descending colon of both PT and PT/CS showed significantly higher injury compared with naive ( p = 0.005, p = 0.006). CONCLUSIONS Multiple injuries with and without chronic stress induces significant alterations in microbiome diversity and composition within 3 days; these changes are more prominent and persist for 1 week postinjury with stress. This rapid and persistent transition to a "pathobiome" phenotype represents a critical phenomenon that may influence outcomes after severe trauma and critical illness.
Collapse
Affiliation(s)
- Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Erick E. Pons
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Preston S. Coldwell
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | | | - Gwendolyn S. Gillies
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, Florida
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
14
|
Jia DJC, Wang QW, Hu YY, He JM, Ge QW, Qi YD, Chen LY, Zhang Y, Fan LN, Lin YF, Sun Y, Jiang Y, Wang L, Fang YF, He HQ, Pi XE, Liu W, Chen SJ, Wang LJ. Lactobacillus johnsonii alleviates colitis by TLR1/2-STAT3 mediated CD206 + macrophages IL-10 activation. Gut Microbes 2022; 14:2145843. [PMID: 36398889 PMCID: PMC9677986 DOI: 10.1080/19490976.2022.2145843] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Imbalance of gut microbiota homeostasis is related to the occurrence of ulcerative colitis (UC), and probiotics are thought to modulate immune microenvironment and repair barrier function. Here, in order to reveal the interaction between UC and gut microbiota, we screened a new probiotic strain by 16S rRNA sequencing from Dextran Sulfate Sodium (DSS)-induced colitis mice, and explored the mechanism and clinical relevance. Lactobacillus johnsonii (L. johnsonii), as a potential anti-inflammatory bacterium was decreased colonization in colitis mice. Gavage L. johnsonii could alleviate colitis by specifically increasing the proportion of intestinal macrophages and the secretion of Il-10 with macrophages depleted model and in Il10-/- mice. We identified this subset of immune cells activated by L. johnsonii as CD206+ macrophagesIL-10. Mechanistically, L. johnsonii supplementation enhanced the mobilization of CD206+ macrophagesIL-10 through the activation of STAT3 in vivo and in vitro. In addition, we revealed that TLR1/2 was essential for the activation of STAT3 and the recognition of L. johnsonii by macrophages. Clinically, there was positive correlation between the abundance of L. johnsonii and the expression level of MRC1, IL10 and TLR1/2 in UC tissues. L. johnsonii could activate native macrophages into CD206+ macrophages and release IL-10 through TLR1/2-STAT3 pathway to relieve experimental colitis. L. johnsonii may serve as an immunomodulator and anti-inflammatory therapeutic target for UC.
Collapse
Affiliation(s)
- Ding-Jia-Cheng Jia
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Institution of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Qi-Wen Wang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, China,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Ying-Ying Hu
- Institution of Gastroenterology, Zhejiang University, Hangzhou, China,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jia-Min He
- Institution of Gastroenterology, Zhejiang University, Hangzhou, China,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qi-Wei Ge
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Institution of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Ya-Dong Qi
- Institution of Gastroenterology, Zhejiang University, Hangzhou, China,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lu-Yi Chen
- Institution of Gastroenterology, Zhejiang University, Hangzhou, China,Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, China,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Li-Na Fan
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Institution of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yi-Feng Lin
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Institution of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yong Sun
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Institution of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yao Jiang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Institution of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Lan Wang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, China,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yan-Fei Fang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, China,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hui-Qin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiong-E Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, China,Wei Liu Zhejiang Academy of Agriculture Sciences, Hangzhou, Zhejiang, 310021, China
| | - Shu-Jie Chen
- Institution of Gastroenterology, Zhejiang University, Hangzhou, China,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Shu-Jie Chen Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Liang-Jing Wang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Institution of Gastroenterology, Zhejiang University, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,CONTACT Liang-Jing Wang Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
15
|
Huo J, Wu Z, Sun W, Wang Z, Wu J, Huang M, Wang B, Sun B. Protective Effects of Natural Polysaccharides on Intestinal Barrier Injury: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:711-735. [PMID: 35078319 DOI: 10.1021/acs.jafc.1c05966] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their minimal side effects and effective protection from oxidative stress, inflammation, and malignant growth, natural polysaccharides (NPs) are a potential adjuvant therapy for several diseases caused by intestinal barrier injury (IBI). More studies are accumulating on the protective effects of NPs with respect to IBI, but the underlying mechanisms remain unclear. Thus, this review aims to represent current studies that investigate the protective effects of NPs on IBI by directly maintaining intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression) and indirectly regulating intestinal immunity and microbiota. Furthermore, the mechanisms underlying IBI development are briefly introduced, and the structure-activity relationships of polysaccharides with intestinal barrier protection effects are discussed. Potential developments and challenges associated with NPs exhibiting protective effects against IBI have also been highlighted to guide the application of NPs in the treatment of intestinal diseases caused by IBI.
Collapse
Affiliation(s)
- Jiaying Huo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Ziyan Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
16
|
Age-Dependent Intestinal Repair: Implications for Foals with Severe Colic. Animals (Basel) 2021; 11:ani11123337. [PMID: 34944114 PMCID: PMC8697879 DOI: 10.3390/ani11123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
Colic is a leading cause of death in horses, with the most fatal form being strangulating obstruction which directly damages the intestinal barrier. Following surgical intervention, it is imperative that the intestinal barrier rapidly repairs to prevent translocation of gut bacteria and their products and ensure survival of the patient. Age-related disparities in survival have been noted in many species, including horses, humans, and pigs, with younger patients suffering poorer clinical outcomes. Maintenance and repair of the intestinal barrier is regulated by a complex mucosal microenvironment, of which the ENS, and particularly a developing network of subepithelial enteric glial cells, may be of particular importance in neonates with colic. Postnatal development of an immature enteric glial cell network is thought to be driven by the microbial colonization of the gut and therefore modulated by diet-influenced changes in bacterial populations early in life. Here, we review the current understanding of the roles of the gut microbiome, nutrition, stress, and the ENS in maturation of intestinal repair mechanisms after foaling and how this may influence age-dependent outcomes in equine colic cases.
Collapse
|
17
|
Wright L, Joyce P, Barnes TJ, Prestidge CA. Mimicking the Gastrointestinal Mucus Barrier: Laboratory-Based Approaches to Facilitate an Enhanced Understanding of Mucus Permeation. ACS Biomater Sci Eng 2021. [PMID: 34784462 DOI: 10.1021/acsbiomaterials.1c00814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gastrointestinal mucus layer plays a significant role in maintaining gut homeostasis and health, offering protective capacities against the absorption of harmful pathogens as well as commensal gut bacteria and buffering stomach acid to protect the underlying epithelium. Despite this, the mucus barrier is often overlooked during preclinical pharmaceutical development and may pose a significant absorption barrier to high molecular weight or lipophilic drug species. The complex chemical and physical nature of the dynamic mucus layer has proven problematic to reliably replicate in a laboratory setting, leading to the development of multiple mucus models with varying complexity and predictive capacity. This, coupled with the wide range of analysis methods available, has led to a plethora of possible approaches to quantifying mucus permeation; however, the field remains significantly under-represented in biomedical research. For this reason, the development of a concise collation of the available approaches to mucus permeation is essential. In this review, we explore widely utilized mucus mimics ranging in complexity from simple mucin solutions to native mucus preparations for their predictive capacity in mucus permeation analysis. Furthermore, we highlight the diverse range of laboratory-based models available for the analysis of mucus interaction and permeability with a specific focus on in vitro, ex vivo, and in situ models. Finally, we highlight the predictive capacity of these models in correlation with in vivo pharmacokinetic data. This review provides a comprehensive and critical overview of the available technologies to analyze mucus permeation, facilitating the efficient selection of appropriate tools for further advancement in oral drug delivery.
Collapse
Affiliation(s)
- Leah Wright
- UniSA: Clinical and Health Sciences, Bradley Building, North Terrace, University of South Australia, Adelaide, 5001, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, North Terrace, University of South Australia, Adelaide, 5001, Australia
| | - Paul Joyce
- UniSA: Clinical and Health Sciences, Bradley Building, North Terrace, University of South Australia, Adelaide, 5001, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, North Terrace, University of South Australia, Adelaide, 5001, Australia
| | - Timothy J Barnes
- UniSA: Clinical and Health Sciences, Bradley Building, North Terrace, University of South Australia, Adelaide, 5001, Australia
| | - Clive A Prestidge
- UniSA: Clinical and Health Sciences, Bradley Building, North Terrace, University of South Australia, Adelaide, 5001, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, North Terrace, University of South Australia, Adelaide, 5001, Australia
| |
Collapse
|
18
|
Valade G, Libert N, Martinaud C, Vicaut E, Banzet S, Peltzer J. Therapeutic Potential of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in the Prevention of Organ Injuries Induced by Traumatic Hemorrhagic Shock. Front Immunol 2021; 12:749659. [PMID: 34659252 PMCID: PMC8511792 DOI: 10.3389/fimmu.2021.749659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
Severe trauma is the principal cause of death among young people worldwide. Hemorrhagic shock is the leading cause of death after severe trauma. Traumatic hemorrhagic shock (THS) is a complex phenomenon associating an absolute hypovolemia secondary to a sudden and significant extravascular blood loss, tissue injury, and, eventually, hypoxemia. These phenomena are responsible of secondary injuries such as coagulopathy, endotheliopathy, microcirculation failure, inflammation, and immune activation. Collectively, these dysfunctions lead to secondary organ failures and multi-organ failure (MOF). The development of MOF after severe trauma is one of the leading causes of morbidity and mortality, where immunological dysfunction plays a central role. Damage-associated molecular patterns induce an early and exaggerated activation of innate immunity and a suppression of adaptive immunity. Severe complications are associated with a prolonged and dysregulated immune–inflammatory state. The current challenge in the management of THS patients is preventing organ injury, which currently has no etiological treatment available. Modulating the immune response is a potential therapeutic strategy for preventing the complications of THS. Mesenchymal stromal cells (MSCs) are multipotent cells found in a large number of adult tissues and used in clinical practice as therapeutic agents for immunomodulation and tissue repair. There is growing evidence that their efficiency is mainly attributed to the secretion of a wide range of bioactive molecules and extracellular vesicles (EVs). Indeed, different experimental studies revealed that MSC-derived EVs (MSC-EVs) could modulate local and systemic deleterious immune response. Therefore, these new cell-free therapeutic products, easily stored and available immediately, represent a tremendous opportunity in the emergency context of shock. In this review, the pathophysiological environment of THS and, in particular, the crosstalk between the immune system and organ function are described. The potential therapeutic benefits of MSCs or their EVs in treating THS are discussed based on the current knowledge. Understanding the key mechanisms of immune deregulation leading to organ damage is a crucial element in order to optimize the preparation of EVs and potentiate their therapeutic effect.
Collapse
Affiliation(s)
- Guillaume Valade
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| | - Nicolas Libert
- Service d'Anesthésie-Réanimation, Hôpital d'instruction des armées Percy, Clamart, France
| | - Christophe Martinaud
- Unité de Médicaments de Thérapie Innovante, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Eric Vicaut
- Laboratoire d'Etude de la Microcirculation, Université de Paris, UMRS 942 INSERM, Paris, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| | - Juliette Peltzer
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| |
Collapse
|
19
|
Zhou D, Wang Q, Liu H. Coronavirus disease-19 and the gut-lung axis. Int J Infect Dis 2021; 113:300-307. [PMID: 34517046 PMCID: PMC8431834 DOI: 10.1016/j.ijid.2021.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
Gastrointestinal and respiratory tract diseases often occur together. There are many overlapping pathologies, leading to the concept of the ‘gut–lung axis’ in which stimulation on one side triggers a response on the other side. This axis appears to be implicated in infections involving severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has triggered the global coronavirus disease 2019 (COVID-19) pandemic, in which respiratory symptoms of fever, cough and dyspnoea often occur together with gastrointestinal symptoms such as nausea, vomiting, abdominal pain and diarrhoea. Besides the gut–lung axis, it should be noted that the gut participates in numerous axes which may affect lung function, and consequently the severity of COVID-19, through several pathways. This article focuses on the latest evidence and the mechanisms that drive the operation of the gut–lung axis, and discusses the interaction between the gut–lung axis and its possible involvement in COVID-19 from the perspective of microbiota, microbiota metabolites, microbial dysbiosis, common mucosal immunity and angiotensin-converting enzyme II, raising hypotheses and providing methods to guide future research on this new disease and its treatments.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | - Qiu Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hanmin Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education.
| |
Collapse
|
20
|
Kelly LS, Apple CG, Gharaibeh R, Pons EE, Thompson CW, Kannan KB, Darden DB, Efron PA, Thomas RM, Mohr AM. Stress-related changes in the gut microbiome after trauma. J Trauma Acute Care Surg 2021; 91:192-199. [PMID: 34144563 PMCID: PMC8243873 DOI: 10.1097/ta.0000000000003209] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The gut microbiome protects the host from infection by promoting epithelial integrity and providing basal immunologic stimulation. Disruption of this delicate ecosystem is linked to morbidity and mortality among critically ill patients, but the impact of traumatic injury on the gut microbiome is poorly understood. This study sought to identify alterations in gut microbiota following trauma and persistent stress in rodents without confounding antibiotics. METHODS Male Sprague-Dawley rats aged 9 weeks to 11 weeks were randomized to naive, lung contusion with hemorrhagic shock (LCHS), and LCHS plus either 7 (LCHS/CS 7/7) or 14 days (LCHS/CS 14) of restraint cylinder stress for 2 hours daily. Stool was collected on Days 0, 3, 7, and 14 for bacterial whole genome DNA isolation. Alpha diversity, or the number and relative abundance of unique bacterial species within each cohort, was assessed using Chao1 indices. Beta diversity, or the measure of differences in biodiversity across cohorts, was assessed by principle coordinate analysis. False discovery rate correction was applied to all statistical analyses and corrected for cohousing effects. RESULTS Rodent groups subject to restraint stress demonstrated a progressive increase in alpha diversity over time. These microbiota changes resolved after cessation of stress (LCHS/CS 7/7) but continued to increase among rats subjected to ongoing stress (LCHS/CS 14). The LCHS/CS 7/7 also demonstrated reductions in class Actinobacteria and increased abundance of the genus Bacteroides by Day 7, which resolved by Day 14. Increased abundance of Bacteroides was also noted in the LCHS/CS 14 cohort, suggesting the role of chronic stress in its destabilization. CONCLUSION This study points to persistent stress as a potential source of the destabilization of microbial diversity seen after trauma. This lack of microbiota stability could be associated with worse long-term outcomes in critically ill trauma patients. Further studies are warranted to elucidate mechanistic pathways and potential therapeutic modalities.
Collapse
Affiliation(s)
- Lauren S. Kelly
- University of Florida College of Medicine, Department of Surgery and Sepsis and Critical Illness Research Center, Gainesville, Florida
| | - Camille G. Apple
- University of Florida College of Medicine, Department of Surgery and Sepsis and Critical Illness Research Center, Gainesville, Florida
| | - Raad Gharaibeh
- University of Florida College of Medicine, Department of Medicine, Gainesville, Florida
| | - Erick E. Pons
- University of Florida College of Medicine, Department of Surgery and Sepsis and Critical Illness Research Center, Gainesville, Florida
| | - Chase W. Thompson
- University of Florida College of Medicine, Department of Surgery and Sepsis and Critical Illness Research Center, Gainesville, Florida
| | - Kolenkode B. Kannan
- University of Florida College of Medicine, Department of Surgery and Sepsis and Critical Illness Research Center, Gainesville, Florida
| | - Dijoia B. Darden
- University of Florida College of Medicine, Department of Surgery and Sepsis and Critical Illness Research Center, Gainesville, Florida
| | - Philip A. Efron
- University of Florida College of Medicine, Department of Surgery and Sepsis and Critical Illness Research Center, Gainesville, Florida
| | - Ryan M. Thomas
- University of Florida College of Medicine, Department of Surgery, Gainesville, Florida
- University of Florida College of Medicine, Department of Molecular Genetics and Microbiology, Gainesville, Florida
| | - Alicia M. Mohr
- University of Florida College of Medicine, Department of Surgery and Sepsis and Critical Illness Research Center, Gainesville, Florida
| |
Collapse
|
21
|
Yang XJ, Liu D, Ren HY, Zhang XY, Zhang J, Yang XJ. Effects of sepsis and its treatment measures on intestinal flora structure in critical care patients. World J Gastroenterol 2021; 27:2376-2393. [PMID: 34040329 PMCID: PMC8130038 DOI: 10.3748/wjg.v27.i19.2376] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/23/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sepsis is a common disease in intensive care units, with high morbidity and mortality. Intestinal microecology plays a vital part in the development and progression of this disease, possibly because sepsis and its treatment cause specific changes in the composition of the intestinal flora.
AIM To investigate the characteristics of intestinal flora disturbance in sepsis patients treated with antibiotics.
METHODS In this prospective comparative study, we enrolled ten patients with sepsis (sepsis group), hospitalized in the Department of Critical Care Medicine of the General Hospital, Ningxia Medical University, China (a class IIIa general hospital) from February 2017 to June 2017; ten patients without sepsis hospitalized in the same period (non-sepsis group) and ten healthy individuals (control group) were also enrolled. Fecal samples collected from the three groups were subjected to 16S rRNA gene sequencing and the intestinal flora diversity, structure, and composition were determined. Additionally, the dynamics of the intestinal flora diversity, structure, and composition in sepsis patients were investigated via 16S rRNA gene sequencing of samples collected 0 d, 3 d, and 7 d after admittance to the intensive care unit. Correlations between the serum levels of procalcitonin, endotoxin, diamine oxidase, and D-lactic acid and the intestinal flora composition of sepsis patients were also investigated.
RESULTS Compared with the healthy control group, sepsis and non-sepsis patients showed reduced intestinal flora α-diversity and a distinct flora structure, with Firmicutes as the dominant phylum, and significantly decreased proportions of Bacteroidetes, as well as Prevotella and Lachnospira, among other genera. Of note, the proportion of Enterococcus was significantly increased in the intestinal tract of sepsis patients. Interestingly, the α-diversity in the sepsis group decreased gradually, from days 1 to 7 of treatment. However, pairwise comparisons showed that both the diversity and structure of the intestinal flora were not significantly different considering the three different time points studied. Curiously, the serum levels of procalcitonin, endotoxin, diamine oxidase, and D-lactic acid in sepsis patients correlated with the prevalence of various bacterial genera. For example, the prevalence of Ruminococcus was positively correlated with serum procalcitonin, endotoxins, and diamine oxidase; similarly, the prevalence of Roseburia was positively correlated with serum procalcitonin, endotoxins, and D-lactic acid.
CONCLUSION Sepsis patients in intensive care units show dysbiosis, lasting for at least 1 wk.
Collapse
Affiliation(s)
- Xiao-Juan Yang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Dan Liu
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Hong-Yan Ren
- Shanghai Mobio Biomedical Technology Co., Shanghai 201318, China
| | - Xiao-Ya Zhang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jun Zhang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Jun Yang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
22
|
Qiang W, Xuan H, Yu S, Hailun P, Yueli Z, Zhiguo P, Lei S. Impact of the gut microbiota on heat stroke rat mediated by Xuebijing metabolism. Microb Pathog 2021; 155:104861. [PMID: 33864878 DOI: 10.1016/j.micpath.2021.104861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022]
Abstract
The goal of the present study was to evaluate the fecal microbiome and serum metabolites in Xuebijing (XBJ)-injected rats after heat stroke using 16S rRNA gene sequencing and gas chromatography-mass spectrometry (GC-MS) metabolomics. Eighteen rats were divided into the control group (CON), heat stroke group (HS), and XBJ group. The 16S rRNA gene sequencing results revealed that the abundance of Bacteroidetes was overrepresented in the XBJ group compared to the HS group, while Actinobacteria was underrepresented. Metabolomic profiling showed that the pyrimidine metabolism pathway, pentose phosphate pathway, and glycerophospholipid metabolism pathway were upregulated in the XBJ group compared to the HS group. Taken together, these results demonstrated that heat stroke not only altered the gut microbiome community structure of rats but also greatly affected metabolic functions, leading to gut microbiome toxicity.
Collapse
Affiliation(s)
- Wen Qiang
- The First Clinical Medical College, Southern Medical University, Guangzhou, China; Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China
| | - He Xuan
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Shao Yu
- Second Department of Internal Medicine for Cadres, General Hospital of Guangzhou Military Command, China
| | - Peng Hailun
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zhao Yueli
- Graduate School, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Pan Zhiguo
- The First Clinical Medical College, Southern Medical University, Guangzhou, China; Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China.
| | - Su Lei
- The First Clinical Medical College, Southern Medical University, Guangzhou, China; Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China.
| |
Collapse
|
23
|
Mustansir Dawoodbhoy F, Patel BK, Patel K, Bhatia M, Lee CN, Moochhala SM. Gut Microbiota Dysbiosis as a Target for Improved Post-Surgical Outcomes and Improved Patient Care: A Review of Current Literature. Shock 2021; 55:441-454. [PMID: 32881759 DOI: 10.1097/shk.0000000000001654] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Critical illness results in significant changes in the human gut microbiota, leading to the breakdown of the intestinal barrier function, which plays a role in the pathogenesis of multiple organ dysfunction. Patients with sepsis/acute respiratory distress syndrome (ARDS) have a profoundly distorted intestinal microbiota rhythm, which plays a considerable role in the development of gut-derived infections and intestinal dysbiosis. Despite recent medical developments, postsurgical complications are associated with a high morbidity and mortality rate. Bacterial translocation, which is the movement of bacteria and bacterial products across the intestinal barrier, was shown to be a mechanism behind sepsis. Current research is focusing on a solution by addressing significant factors that contribute to intestinal dysbiosis, which subsequently leads to multiple organ failure and, thus, mortality. It may, however, be challenging to manipulate the microbiota in critically ill patients for enhanced therapeutic gain. Probiotic manipulation is advantageous for maintaining the gut-barrier defense and for modulating the immune response. Based on available published research, this review aims to address the application of potential strategies in the intensive care unit, supplemented with current therapeutics by the administration of probiotics, prebiotics, and fecal microbiota transplant, to reduce post-surgical complications of sepsis/ARDS in critically ill patients.
Collapse
Affiliation(s)
| | | | - Kadamb Patel
- School of Applied Sciences, Temasek Polytechnic, Singapore
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Chuen Neng Lee
- Department of Surgery, National University of Singapore, Singapore
| | | |
Collapse
|
24
|
Sandoval-Ramírez BA, Catalán Ú, Pedret A, Valls RM, Motilva MJ, Rubió L, Solà R. Exploring the effects of phenolic compounds to reduce intestinal damage and improve the intestinal barrier integrity: A systematic review of in vivo animal studies. Clin Nutr 2021; 40:1719-1732. [DOI: 10.1016/j.clnu.2020.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/13/2022]
|
25
|
Convertino VA, Koons NJ, Suresh MR. Physiology of Human Hemorrhage and Compensation. Compr Physiol 2021; 11:1531-1574. [PMID: 33577122 DOI: 10.1002/cphy.c200016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hemorrhage is a leading cause of death following traumatic injuries in the United States. Much of the previous work in assessing the physiology and pathophysiology underlying blood loss has focused on descriptive measures of hemodynamic responses such as blood pressure, cardiac output, stroke volume, heart rate, and vascular resistance as indicators of changes in organ perfusion. More recent work has shifted the focus toward understanding mechanisms of compensation for reduced systemic delivery and cellular utilization of oxygen as a more comprehensive approach to understanding the complex physiologic changes that occur following and during blood loss. In this article, we begin with applying dimensional analysis for comparison of animal models, and progress to descriptions of various physiological consequences of hemorrhage. We then introduce the complementary side of compensation by detailing the complexity and integration of various compensatory mechanisms that are activated from the initiation of hemorrhage and serve to maintain adequate vital organ perfusion and hemodynamic stability in the scenario of reduced systemic delivery of oxygen until the onset of hemodynamic decompensation. New data are introduced that challenge legacy concepts related to mechanisms that underlie baroreflex functions and provide novel insights into the measurement of the integrated response of compensation to central hypovolemia known as the compensatory reserve. The impact of demographic and environmental factors on tolerance to hemorrhage is also reviewed. Finally, we describe how understanding the physiology of compensation can be translated to applications for early assessment of the clinical status and accurate triage of hypovolemic and hypotensive patients. © 2021 American Physiological Society. Compr Physiol 11:1531-1574, 2021.
Collapse
Affiliation(s)
- Victor A Convertino
- Battlefield Healthy & Trauma Center for Human Integrative Physiology, United States Army Institute of Surgical Research, JBSA San Antonio, Texas, USA
| | - Natalie J Koons
- Battlefield Healthy & Trauma Center for Human Integrative Physiology, United States Army Institute of Surgical Research, JBSA San Antonio, Texas, USA
| | - Mithun R Suresh
- Battlefield Healthy & Trauma Center for Human Integrative Physiology, United States Army Institute of Surgical Research, JBSA San Antonio, Texas, USA
| |
Collapse
|
26
|
Schucht JE, Matheson PJ, Harbrecht BG, Bond L, Ashkettle GR, Smith JW. Plasma resuscitation with adjunctive peritoneal resuscitation reduces ischemia-induced intestinal barrier breakdown following hemorrhagic shock. J Trauma Acute Care Surg 2021; 90:27-34. [PMID: 32910075 DOI: 10.1097/ta.0000000000002916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Hemorrhagic shock (HS) and resuscitation (RES) cause ischemia-induced intestinal permeability due to intestinal barrier breakdown, damage to the endothelium, and tight junction (TJ) complex disruption between enterocytes. The effect of hemostatic RES with blood products on this phenomenon is unknown. Previously, we showed that fresh frozen plasma (FFP) RES, with or without directed peritoneal resuscitation (DPR) improved blood flow and alleviated organ injury and enterocyte damage following HS/RES. We hypothesized that FFP might decrease TJ injury and attenuate ischemia-induced intestinal permeability following HS/RES. METHODS Sprague-Dawley rats were randomly assigned to groups (n = 8): sham; crystalloid resuscitation (CR) (HS of 40% mean arterial pressure for 60 minutes) and CR (shed blood plus two volumes of CR); CR and DPR (intraperitoneal 2.5% peritoneal dialysis fluid); FFP (shed blood plus one volume of FFP); and FFP and DPR (intraperitoneal dialysis fluid plus two volumes of FFP). Fluorescein isothiocyanate-dextran (molecular weight, 4 kDa; FD4) was instilled into the gastrointestinal tract before hemorrhage; FD4 was measured by UV spectrometry at various time points. Plasma syndecan-1 and ileum tissue TJ proteins were measured using enzyme-linked immunosorbent assay. Immunofluorescence was used to visualize claudin-4 concentrations at 4 hours following HS/RES. RESULTS Following HS, FFP attenuated FD4 leak across the intestine at all time points compared with CR and DPR alone. This response was significantly improved with the adjunctive DPR at 3 and 4 hours post-RES (p < 0.05). Resuscitation with FFP-DPR increased intestinal tissue concentrations of TJ proteins and decreased plasma syndecan-1. Immunofluorescence demonstrated decreased mobilization of claudin-4 in both FFP and FFP-DPR groups. CONCLUSION Fresh frozen plasma-based RES improves intestinal TJ and endothelial integrity. The addition of DPR can further stabilize TJs and attenuate intestinal permeability. Combination therapy with DPR and FFP to mitigate intestinal barrier breakdown following shock could be a novel method of reducing ischemia-induced intestinal permeability and systemic inflammation after trauma. LEVEL OF EVIDENCE Prognostic/Epidemiologic, Level III.
Collapse
Affiliation(s)
- Jessica E Schucht
- From the Robley Rex Louisville Veterans Affairs Medical Center (J.E.S., P.J.M., J.W.S.), and Department of Surgery (J.E.S., P.J.M., B.G.H., L.B., J.W.S.), Department of Physiology and Biophysics (J.E.S., P.J.M., J.W.M.), University of Louisville, Louisville, Kentucky; and Eastern Kentucky University (G.R.A.)
| | | | | | | | | | | |
Collapse
|
27
|
Fan L, Qi Y, Qu S, Chen X, Li A, Hendi M, Xu C, Wang L, Hou T, Si J, Chen S. B. adolescentis ameliorates chronic colitis by regulating Treg/Th2 response and gut microbiota remodeling. Gut Microbes 2021; 13:1-17. [PMID: 33557671 PMCID: PMC7889144 DOI: 10.1080/19490976.2020.1826746] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is defined as an immune dysregulation disease with poor prognosis. Various therapies based on gut microbe modulation have been proposed. In this study, we aim to explore the therapeutic effect of B. adolescentis on IBD, as well as the immune and microecology mechanism of B. adolescentis in IBD. The fecal level of B. adolescentis was decreased in the IBD patients compared with the normal people in our cohort and the GMrepo database. To further clarify the role of B. adolescentis in IBD, we induced chronic colitis with three cycles of dextran sulfate sodium (DSS). We found B. adolescentis gavage exhibited protective effects as evidenced by the significantly decreased diarrhea score, spleen weight, and increased colon length. Accordingly, the cumulative histological grading was decreased in the B. adolescentis administration group. In addition, tight junction protein and mucin family were enhanced after B. adolescentis treatment. Furthermore, distinct effects were found with decreased pro-inflammatory cytokines such as TNF-α, IL-6, IL-1β, IL-18, IL-22, IL-9 and increased anti-inflammatory cytokines IL-10, IL-4, IL-5. Importantly, the colon lamina propria in the B. adolescentis group consisted of more Treg and Th2 cells, which inhibited extreme gut inflammation. Additionally, 16srRNA sequencing showed an evident increase in the B:F ratio in the B. adolescentis group. In particular, B. adolescentis application inhibited the excessive growth of Akkermansia and Escherichia-Shigella in genus level. In conclusion, B. adolescentis refined the DSS-induced chronic colitis by stimulating protective Treg/Th2 response and gut microbiota remodeling. B. adolescentis regularly treatment might improve the therapeutic effects for inflammatory bowel disease.
Collapse
Affiliation(s)
- Lina Fan
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Siwen Qu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Xueqin Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Aiqing Li
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Maher Hendi
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Chaochao Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| |
Collapse
|
28
|
Abstract
Dysfunction of the gut-blood barrier plays an important role in many diseases, such as inflammatory bowel disease, hemorrhagic shock (HS), or burn injury. However, little is known about gut barrier dysfunction after hemodynamically instable polytrauma (PT). Therefore, we aimed to evaluate the effects of PT and HS on remote intestinal damage and barrier dysfunction, especially regarding the role of zonula occludens protein 1 (ZO-1) as an important tight junction protein.Male C57BL/6 mice were subjected to either PT (thorax trauma, closed head injury, soft tissue injury, and distal femoral fracture), 60 min of pressure-controlled HS (30 ± 5 mmHg), or PT+HS, or sham procedures.Animals of all trauma groups showed an increase in abdominal girth and dilation of the intestine during the experimental period, which was largest in the PT+HS group. Increased blood-tissue permeability to albumin (assessed by Evans blue dye) was found in the HS group. Experimental groups showed a slight increase in plasma concentration of intestinal fatty acid binding protein and some intestinal damage was histologically detectable. Of note, PT+HS animals revealed significantly reduced expression of ZO-1 in intestinal epithelial cells. In an in-vitro model, stimulation of human colon epithelial cells with peptidoglycan, but not with lipopolysaccharide, resulted in elevated secretion of pro-inflammatory cytokines, reflecting inflammatory activity of the intestinal epithelium.Taken together, PT and HS lead to increased permeability of the gut-blood barrier. Bacterial components may lead to production of inflammatory and chemotactic mediators by gut epithelial cells, underlining the role of the gut as an immunologically active organ.
Collapse
|
29
|
Nakov R, Segal JP, Settanni CR, Bibbò S, Gasbarrini A, Cammarota G, Ianiro G. Microbiome: what intensivists should know. Minerva Anestesiol 2020; 86:777-785. [PMID: 32368882 DOI: 10.23736/s0375-9393.20.14278-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The standard conditions of critical illness (including sepsis, acute respiratory distress syndrome, and multiorgan failure) cause enormous global mortality and a growing economic burden. Increasing evidence suggests that critical illness may be associated with loss of commensal microbes and overgrowth of potentially pathogenic and inflammatory bacteria. This state could be associated with poor outcomes. Therefore, microbiota-targeted interventions are potentially attractive novel treatment options. Although the precise mechanisms of microbiome-directed treatments such as prebiotics, probiotics, and fecal microbiota transplantation remain to be determined, they can be utilized in the Intensive Care Unit (ICU) setting. The current review aims to offer intensivists an evidenced-based approach on what we currently know about the role of the microbiome in critical illness and how the microbiome could be targeted in the clinical practice to improve ICU-related outcomes.
Collapse
Affiliation(s)
- Radislav Nakov
- Department of Gastroenterology, Tsaritsa Yoanna University Hospital, Medical University of Sofia, Sofia, Bulgaria
| | | | - Carlo R Settanni
- Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Stefano Bibbò
- Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy -
| |
Collapse
|
30
|
Hu J, Kang H, Liu C, Hu P, Yang M, Zhou F. Regulatory T Cells Could Improve Intestinal Barrier Dysfunction in Heatstroke. Inflammation 2020; 42:1228-1238. [PMID: 30820807 DOI: 10.1007/s10753-019-00983-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intestinal barrier dysfunction plays a pivotal role in multiorgan dysfunction during heatstroke (HS). Neutrophils are involved in intestinal inflammation and thus dampen the mucosal integrity. Regulatory T cells (Tregs) have been shown to orchestrate neutrophils and thus sustain mucosal integrity in miscellaneous inflammation-related diseases. However, whether Tregs are involved in HS-induced intestinal barrier dysfunction remains unknown. Thus, we investigated whether Tregs could alleviate intestinal barrier dysfunction in mice. We found that HS could induce intestinal injury and mucosal barrier dysfunction 0, 24, and 72 h after heat stress. Flow cytometry revealed an increase of neutrophil infiltration and a decrease of Treg frequencies in the small intestinal epithelium 72 h after heat stress. Treg depletion starting 2 days before HS exacerbated intestinal damage and mucosal barrier dysfunction. Adoptive transfer of Tregs at 0 h improved intestinal injury and mucosal barrier dysfunction at 72 h. The manipulation of Tregs affected the neutrophil frequencies in the small intestinal epithelium 72 h after heat stress. Our study demonstrated that Tregs could improve HS-induced intestinal barrier dysfunction, probably via modulation of neutrophils in the intestine of mice during HS.
Collapse
Affiliation(s)
- Jie Hu
- Critical Care Medicine, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Hongjun Kang
- Critical Care Medicine, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Chao Liu
- Critical Care Medicine, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Pan Hu
- Critical Care Medicine, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Mengmeng Yang
- Critical Care Medicine, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Feihu Zhou
- Critical Care Medicine, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
31
|
Yang J, Zhang J, Zhao C, Gai Z, Mu X, Wang Y, Zhang C, Su Z, Gao L, Zhu D, Zuo Z, Heng X, Zhang L. Blood Loss Leads to Increase in Relative Abundance of Opportunistic Pathogens in the Gut Microbiome of Rabbits. Curr Microbiol 2020; 77:415-424. [PMID: 31894374 DOI: 10.1007/s00284-019-01825-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/25/2019] [Indexed: 01/26/2023]
Abstract
Massive blood loss, a common pathological complication in the clinic, is often accompanied by altered gut integrity and intestinal wall damage. Little is known to what extent the gut microbiome could be correlated with this process. The gut microbiome plays a crucial role in human health, especially in immune and inflammatory responses. This study aims to determine whether acute blood loss affects the gut microbiome and the dynamic variation of the gut microbiome following the loss of blood. We used New Zealand rabbits to mimic the blood loss complication and designed a five-time-point fecal sampling strategy including 24-h pre-blood loss procedure, 24 h, 36 h, 48 h, and 1-week post-blood loss procedure. Gut microbiome composition and diversity were analyzed using 16S rRNA gene sequencing and downstream α-diversity, β-diversity, and taxonomy analysis. The gut microbiome changed dramatically after blood loss procedure. There was a significant increase in diversity and richness of the gut microbiome at 24-h post-procedure (P = 0.038). Based on an analysis of similarities, the composition of gut microbiome in the samples collected at 24-h post-procedure was significantly different from that of pre-procedure samples (r = 0.79, P = 0.004 weighted unifrac distance; r = 0.99, P = 0.002, unweighted unifrac distance). The relative abundance of Lactobacillus was significantly decreased in the post-procedure samples (P = 0.0006), while the relative abundance of Clostridiales (P = 0.018) and Bacteroidales (P = 0.015) was significantly increased after procedure. We also found the relative abundance of Bacilli, Lactobacillus, Myroides, and Prevotella decreased gradually at different time points after blood loss. The relative abundance of the Clostridia, Alphaproteobacteria, and Sporosarcina increased at 24-h post-procedure and decreased thereafter. This preliminary study discovered potential connections between blood loss and dysbiosis of gut microbiome. The diversity and abundance of the gut microbiome was affected to various extents after acute blood loss and unable to be restored to the original microbiome profile even after one week. The increase in relative abundance of opportunistic pathogens after blood loss could be an important indication to reconsider immune and inflammatory responses after acute blood loss from the perspective of gut microbiome.
Collapse
Affiliation(s)
- Junjie Yang
- Microbiological Laboratory, Department of Infection Management, Department of Neurosurgery, Lin Yi People's Hospital, Linyi, 276000, Shandong, China.,College of Life Science, Qilu Normal University, Jinan, 250200, Shandong, China
| | - Jiaming Zhang
- Microbiome-X Group, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Chemistry and Environment, Beihang University, Beijing, 100191, China.,Shandong Institutes for Food and Drug Control, Jinan, 250101, Shandong, China
| | - Changying Zhao
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, 250022, Shandong, China.,Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, Jinan, 250100, Shandong, China
| | - Zhongtao Gai
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, 250022, Shandong, China.,Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, Jinan, 250100, Shandong, China
| | - Xiaofeng Mu
- Clinical Laboratory and Core Research Laboratory, Qingdao Human Microbiome Center, The Affiliated Central Hospital of QingdaoUniversity, Qingdao, 266042, Shandong, China
| | - Ye Wang
- Clinical Laboratory and Core Research Laboratory, Qingdao Human Microbiome Center, The Affiliated Central Hospital of QingdaoUniversity, Qingdao, 266042, Shandong, China
| | - Chunling Zhang
- Department of Respiratory Medicine, The Affiliated Central Hospital of Qingdao University, Qingdao, 266042, Shandong, China
| | - Zhenzhen Su
- Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, Jinan, 250100, Shandong, China
| | - Lihe Gao
- Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, Jinan, 250100, Shandong, China
| | - Dequan Zhu
- Microbiological Laboratory, Department of Infection Management, Department of Neurosurgery, Lin Yi People's Hospital, Linyi, 276000, Shandong, China
| | - Zhiwen Zuo
- Microbiological Laboratory, Department of Infection Management, Department of Neurosurgery, Lin Yi People's Hospital, Linyi, 276000, Shandong, China
| | - Xueyuan Heng
- Microbiological Laboratory, Department of Infection Management, Department of Neurosurgery, Lin Yi People's Hospital, Linyi, 276000, Shandong, China.
| | - Lei Zhang
- Microbiome-X Group, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Chemistry and Environment, Beihang University, Beijing, 100191, China. .,Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, Jinan, 250100, Shandong, China.
| |
Collapse
|
32
|
Moron R, Galvez J, Colmenero M, Anderson P, Cabeza J, Rodriguez-Cabezas ME. The Importance of the Microbiome in Critically Ill Patients: Role of Nutrition. Nutrients 2019; 11:E3002. [PMID: 31817895 PMCID: PMC6950228 DOI: 10.3390/nu11123002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Critically ill patients have an alteration in the microbiome in which it becomes a disease-promoting pathobiome. It is characterized by lower bacterial diversity, loss of commensal phyla, like Firmicutes and Bacteroidetes, and a domination of pathogens belonging to the Proteobacteria phylum. Although these alterations are multicausal, many of the treatments administered to these patients, like antibiotics, play a significant role. Critically ill patients also have a hyperpermeable gut barrier and dysregulation of the inflammatory response that favor the development of the pathobiome, translocation of pathogens, and facilitate the emergence of sepsis. In order to restore the homeostasis of the microbiome, several nutritional strategies have been evaluated with the aim to improve the management of critically ill patients. Importantly, enteral nutrition has proven to be more efficient in promoting the homeostasis of the gut microbiome compared to parenteral nutrition. Several nutritional therapies, including prebiotics, probiotics, synbiotics, and fecal microbiota transplantation, are currently being used, showing variable results, possibly due to the unevenness of clinical trial conditions and the fact that the beneficial effects of probiotics are specific to particular species or even strains. Thus, it is of great importance to better understand the mechanisms by which nutrition and supplement therapies can heal the microbiome in critically ill patients in order to finally implement them in clinical practice with optimal safety and efficacy.
Collapse
Affiliation(s)
- Rocio Moron
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016-Granada, Spain; (R.M.); (J.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
| | - Julio Galvez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Department of Pharmacology, CIBER-ehd, Center of Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Manuel Colmenero
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Servicio de Medicina Intensiva, Hospital Universitaro Clinico San Cecilio, 18016 Granada, Spain
| | - Per Anderson
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Servicio de Análisis Clínicos e Inmunologia, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - José Cabeza
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016-Granada, Spain; (R.M.); (J.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
| | - Maria Elena Rodriguez-Cabezas
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Department of Pharmacology, CIBER-ehd, Center of Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| |
Collapse
|
33
|
Effect of dietary cellulose supplementation on gut barrier function and apoptosis in a murine model of endotoxemia. PLoS One 2019; 14:e0224838. [PMID: 31790417 PMCID: PMC6886840 DOI: 10.1371/journal.pone.0224838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
The gut plays a vital role in critical illness, and alterations in the gut structure and function have been reported in endotoxemia and sepsis models. Previously, we have demonstrated a novel link between the diet-induced alteration of the gut microbiome with cellulose and improved outcomes in sepsis. As compared to mice receiving basal fiber (BF) diet, mice that were fed a non-fermentable high fiber (HF) diet demonstrated significant improvement in survival and decreased organ injury in both cecal-ligation and puncture (CLP) and endotoxin sepsis models. To understand if the benefit conferred by HF diet extends to the gut structure and function, we hypothesized that HF diet would be associated with a reduction in sepsis-induced gut epithelial loss and permeability in mice. We demonstrate that the use of dietary cellulose decreased LPS-mediated intestinal hyperpermeability and protected the gut from apoptosis. Furthermore, we noted a significant increase in epithelial cell proliferation, as evidenced by an increase in the percentage of bromodeoxyuridine-positive cells in HF fed mice as compared to BF fed mice. Thus, the use of HF diet is a simple and effective tool that confers benefit in a murine model of sepsis, and understanding the intricate relationship between the epithelial barrier, gut microbiota, and diet will open-up additional therapeutic avenues for the treatment of gut dysfunction in critical illness.
Collapse
|
34
|
Yagi M, Morishita K, Ueno A, Nakamura H, Akabori H, Senda A, Kojima M, Aiboshi J, Costantini T, Coimbra R, Otomo Y. Electrical stimulation of the vagus nerve improves intestinal blood flow after trauma and hemorrhagic shock. Surgery 2019; 167:638-645. [PMID: 31759624 DOI: 10.1016/j.surg.2019.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/05/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Gut damage after trauma/hemorrhagic shock contributes to multiple organ dysfunction syndrome. Electrical vagal nerve stimulation is known to prevent gut damage in animal models of trauma/hemorrhagic shock by altering the gut inflammatory response; however, the effect of vagal nerve stimulation on intestinal blood flow, which is an essential function of the vagus nerve, is unknown. This study aimed to determine whether vagal nerve stimulation influences the abdominal vagus nerve activity, intestinal blood flow, gut injury, and the levels of autonomic neuropeptides. METHODS Male Sprague Dawley rats were anesthetized, and the cervical and abdominal vagus nerves were exposed. One pair of bipolar electrodes was attached to the cervical vagus nerve to stimulate it; another pair of bipolar electrodes were attached to the abdominal vagus nerve to measure action potentials. The rats underwent trauma/hemorrhagic shock (with maintenance of mean arterial pressure of 25 mmHg for 30 min) without fluid resuscitation and received cervical vagal nerve stimulation post-injury. A separate cohort of animals were subjected to transection of the abdominal vagus nerve (vagotomy) just before the start of cervical vagal nerve stimulation. Intestinal blood flow was measured by laser Doppler flowmetry. Gut injury and noradrenaline level in the portal venous plasma were also assessed. RESULTS Vagal nerve stimulation evoked action potentials in the abdominal vagus nerve and caused a 2-fold increase in intestinal blood flow compared to the shock phase (P < .05). Abdominal vagotomy eliminated the effect of vagal nerve stimulation on intestinal blood flow (P < .05). Vagal nerve stimulation protected against trauma/hemorrhagic shock -induced gut injury (P < .05), and circulating noradrenaline levels were decreased after vagal nerve stimulation (P < .05). CONCLUSION Cervical vagal nerve stimulation evoked abdominal vagal nerve activity and relieved the trauma/hemorrhagic shock-induced impairment in intestinal blood flow by modulating the vasoconstriction effect of noradrenaline, which provides new insight into the protective effect of vagal nerve stimulation.
Collapse
Affiliation(s)
- Masayuki Yagi
- Department of Acute Critical Care and Disaster Medicine, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| | - Koji Morishita
- Department of Acute Critical Care and Disaster Medicine, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan.
| | - Akinori Ueno
- Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Denki University, Tokyo, Japan
| | - Hajime Nakamura
- Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Denki University, Tokyo, Japan
| | - Hiroya Akabori
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Atsushi Senda
- Department of Acute Critical Care and Disaster Medicine, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| | - Mitsuaki Kojima
- Department of Acute Critical Care and Disaster Medicine, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| | - Junichi Aiboshi
- Department of Acute Critical Care and Disaster Medicine, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| | - Todd Costantini
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California, SanDiego, CA
| | - Raul Coimbra
- Riverside University Health System Medical Center and Loma Linda University School of Medicine, Riverside, CA
| | - Yasuhiro Otomo
- Department of Acute Critical Care and Disaster Medicine, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Abstract
Background The gut is hypothesized to be the “motor” of critical illness. Under basal conditions, the gut plays a crucial role in the maintenance of health. However, in critical illness, all elements of the gut are injured, potentially worsening multiple organ dysfunction syndrome. Main body Under basal conditions, the intestinal epithelium absorbs nutrients and plays a critical role as the first-line protection against pathogenic microbes and as the central coordinator of mucosal immunity. In contrast, each element of the gut is impacted in critical illness. In the epithelium, apoptosis increases, proliferation decreases, and migration slows. In addition, gut barrier function is worsened via alterations to the tight junction, resulting in intestinal hyperpermeability. This is associated with damage to the mucus that separates the contents of the intestinal lumen from the epithelium. Finally, the microbiome of the intestine is converted into a pathobiome, with an increase in disease-promoting bacteria and induction of virulence factors in commensal bacteria. Toxic factors can then leave the intestine via both portal blood flow and mesenteric lymph to cause distant organ damage. Conclusion The gut plays a complex role in both health and critical illness. Here, we review gut integrity in both health and illness and highlight potential strategies for targeting the intestine for therapeutic gain in the intensive care unit.
Collapse
Affiliation(s)
- Shunsuke Otani
- 1Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, 101 Woodruff Circle, Suite WMB 5105, Atlanta, GA 30322 USA.,2Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.,3Department of General Medical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8670 Japan
| | - Craig M Coopersmith
- 1Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, 101 Woodruff Circle, Suite WMB 5105, Atlanta, GA 30322 USA
| |
Collapse
|
36
|
Direct peritoneal resuscitation reduces intestinal permeability after brain death. J Trauma Acute Care Surg 2019; 84:265-272. [PMID: 29194322 DOI: 10.1097/ta.0000000000001742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The profound inflammatory response associated with brain death is frequently cited as the reason organs procured from brain dead donors are associated with worse graft function. The intestine releases inflammatory mediators in other types of shock, but its role is brain death has not been well-studied. Direct peritoneal resuscitation (DPR) improves visceral organ blood flow and reduces inflammation after hemorrhagic shock. We hypothesized that use of DPR would maintain intestinal integrity and reduce circulating inflammatory mediators after brain death. METHODS Brain death was induced in male Sprague-Dawley rats by inserting a 4F Fogarty catheter into the epidural space and slowly inflating it. After herniation, rats were resuscitated with normal saline to maintain a mean arterial pressure of 80 mm Hg and killed with tissue collected immediately (time 0), or 2 hours, 4 hours, or 6 hours after brain death. Randomly selected animals received DPR via an intraperitoneal injection of 30-mL commercial peritoneal dialysis solution. RESULTS Levels of proinflammatory cytokines, including IL-1β and IL-6, as well as high-mobility group box 1 protein and heat shock protein 70, were all increased after brain death and decreased with DPR. Fatty acid binding protein and lipopolysaccharide, both markers of intestinal injury, were increased in the serum after brain death and decreased with DPR. Immunohistochemistry staining for zona occludin-1 showed decreased intestinal tight junction integrity after brain death, which improved with DPR. CONCLUSIONS Intestinal permeability increases after brain death, and this contributes to the increased inflammation seen throughout the body. Using DPR prevents intestinal ischemia and helps preserve intestinal integrity. This suggests that using this novel therapy as an adjunct to the resuscitation of brain dead donors has the potential to reduce inflammation and potentially improve the quality of transplanted organs.
Collapse
|
37
|
Metabolomics analysis of gut barrier dysfunction in a trauma-hemorrhagic shock rat model. Biosci Rep 2019; 39:BSR20181215. [PMID: 30393232 PMCID: PMC6328858 DOI: 10.1042/bsr20181215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Intestinal barrier dysfunction has been implicated in the development of multiorgan dysfunction syndrome caused by the trauma-hemorrhagic shock (THS). However, the mechanisms underlying THS-induced gut barrier injury are still poorly understood. In the present study, we used the metabolomics analysis to test the hypothesis that altered metabolites might be related to the development of THS-induced barrier dysfunction in the large intestine. Under the induction of THS, gut barrier failure was characterized by injury of permeability and mucus layer, which were companied by the decreased expression of zonula occludens-1 in the colon and increased levels of inflammatory factors including tumor necrosis factor-α, interferon-γ, interleukin (IL)-6, and IL-1β in the serum. A total of 16 differential metabolites were identified in colonic tissues from THS-treated rats compared with control rats. These altered metabolites included dihydroxy acetone phosphate, ribose-5-phosphate, fructose, glyceric acid, succinic acid, and adenosine, which are critical intermediates or end products that are involved in pentose phosphate pathway, glycolysis, and tricarboxylic acid cycle as well as mitochondrial adenosine triphosphate biosynthesis. These findings may offer important insight into the metabolic alterations in THS-treated gut injury, which will be helpful for developing effective metabolites-based strategies to prevent THS-induced gut barrier dysfunction.
Collapse
|
38
|
Volatile Decay Products in Breath During Peritonitis Shock are Attenuated by Enteral Blockade of Pancreatic Digestive Proteases. Shock 2018; 48:571-575. [PMID: 28498300 PMCID: PMC5626116 DOI: 10.1097/shk.0000000000000888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is a need to develop markers for early detection of organ failure in shock that can be noninvasively measured at point of care. We explore here the use of volatile organic compounds (VOCs) in expired air in a rat peritonitis shock model. Expired breath samples were collected into Tedlar gas bags and analyzed by standardized gas chromatography. The gas chromatograms were digitally analyzed for presence of peak amounts over a range of Kovach indices. Following the induction of peritonitis, selected volatile compounds were detected within about 1 h, which remained at elevated amounts over a 6 h observation period. These VOCs were not present in control animals without peritonitis. Comparisons with know VOCs indicate that they include 1,4-diaminobutane and trimethylamine N-oxide. When pancreatic digestive proteases were blocked with tranexamic acid in the intestine and peritoneum, a procedure that serves to reduce organ failure in shock, the amounts of VOCs in the breath decreased spontaneously to control values without peritonitis. These results indicate that peritonitis shock is accompanied by development of volatile organic compounds that may be generated by digestive enzymes in the small intestine. VOCs may serve as indicators for detection of early forms of autodigestion by digestive proteases.
Collapse
|
39
|
Abstract
Intestinal barrier dysfunction is thought to contribute to the development of multiple organ dysfunction syndrome in sepsis. Although there are similarities in clinical course following sepsis, there are significant differences in the host response depending on the initiating organism and time course of the disease, and pathways of gut injury vary widely in different preclinical models of sepsis. The purpose of this study was to determine whether the timecourse and mechanisms of intestinal barrier dysfunction are similar in disparate mouse models of sepsis with similar mortalities. FVB/N mice were randomized to receive cecal ligation and puncture (CLP) or sham laparotomy, and permeability was measured to fluoresceinisothiocyanate conjugated-dextran (FD-4) six to 48 h later. Intestinal permeability was elevated following CLP at all timepoints measured, peaking at 6 to 12 h. Tight junction proteins claudin 1, 2, 3, 4, 5, 7, 8, 13, and 15, Junctional Adhesion Molecule-A (JAM-A), occludin, and ZO-1 were than assayed by Western blot, real-time polymerase chain reaction, and immunohistochemistry 12 h after CLP to determine potential mechanisms underlying increases in intestinal permeability. Claudin 2 and JAM-A were increased by sepsis, whereas claudin-5 and occludin were decreased by sepsis. All other tight junction proteins were unchanged. A further timecourse experiment demonstrated that alterations in claudin-2 and occludin were detectable as early as 1 h after the onset of sepsis. Similar experiments were then performed in a different group of mice subjected to Pseudomonas aeruginosa pneumonia. Mice with pneumonia had an increase in intestinal permeability similar in timecourse and magnitude to that seen in CLP. Similar changes in tight junction proteins were seen in both models of sepsis although mice subjected to pneumonia also had a marked decrease in ZO-1 not seen in CLP. These results indicate that two disparate, clinically relevant models of sepsis induce a significant increase in intestinal permeability mediated through a common pathway involving alterations in claudin 2, claudin 5, JAM-A, and occludin although model-specific differences in ZO-1 were also identified.
Collapse
|
40
|
Evaluation of gut-blood barrier dysfunction in various models of trauma, hemorrhagic shock, and burn injury. J Trauma Acute Care Surg 2017; 83:944-953. [DOI: 10.1097/ta.0000000000001654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Fay KT, Ford ML, Coopersmith CM. The intestinal microenvironment in sepsis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2574-2583. [PMID: 28286161 PMCID: PMC5589488 DOI: 10.1016/j.bbadis.2017.03.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/16/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
The gastrointestinal tract has long been hypothesized to function as "the motor" of multiple organ dysfunction syndrome. The gastrointestinal microenvironment is comprised of a single cell layer epithelia, a local immune system, and the microbiome. These three components of the intestine together play a crucial role in maintaining homeostasis during times of health. However, the gastrointestinal microenvironment is perturbed during sepsis, resulting in pathologic changes that drive both local and distant injury. In this review, we seek to characterize the relationship between the epithelium, gastrointestinal lymphocytes, and commensal bacteria during basal and pathologic conditions and how the intestinal microenvironment may be targeted for therapeutic gain in septic patients.
Collapse
Affiliation(s)
- Katherine T Fay
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Craig M Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
42
|
Hummitzsch L, Zitta K, Berndt R, Kott M, Schildhauer C, Parczany K, Steinfath M, Albrecht M. Doxycycline protects human intestinal cells from hypoxia/reoxygenation injury: Implications from an in-vitro hypoxia model. Exp Cell Res 2017; 353:109-114. [PMID: 28300560 DOI: 10.1016/j.yexcr.2017.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/29/2022]
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a grave clinical emergency and associated with high morbidity and mortality rates. Based on the complex underlying mechanisms, a multimodal pharmacological approach seems necessary to prevent intestinal I/R injury. The antibiotic drug doxycycline, which exhibits a wide range of pleiotropic therapeutic properties, might be a promising candidate for also reducing I/R injury in the intestine. To investigate possible protective effects of doxycycline on intestinal I/R injury, human intestinal CaCo-2 cells were exposed to doxycycline at clinically relevant concentrations. In order to mimic I/R injury, CaCo-2 were thereafter subjected to hypoxia/reoxygenation by using our recently described two-enzyme in-vitro hypoxia model. Investigations of cell morphology, cell damage, apoptosis and hydrogen peroxide formation were performed 24h after the hypoxic insult. Hypoxia/reoxygenation injury resulted in morphological signs of cell damage, elevated LDH concentrations in the respective culture media (P<0.001) and increased protein expression of proapoptotic caspase-3 (P<0.05) in the intestinal cultures. These events were associated with increased levels hydrogen peroxide (P<0.001). Preincubation of CaCo-2 cells with different concentrations of doxycycline (5µM, 10µM, 50µM) reduced the hypoxia induced signs of cell damage and LDH release (P<0.001 for all concentrations). The reduction of cellular damage was associated with a reduced expression of caspase-3 (5µM, P<0.01; 10µM, P<0.01; 50µM, P<0.05), while hydrogen peroxide levels remained unchanged. In summary, doxycycline protects human intestinal cells from hypoxia/reoxygenation injury in-vitro. Further animal and clinical studies are required to prove the protective potential of doxycycline on intestinal I/R injury under in-vivo conditions.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Karina Zitta
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Rouven Berndt
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Matthias Kott
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Christin Schildhauer
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Kerstin Parczany
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Markus Steinfath
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Martin Albrecht
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany.
| |
Collapse
|
43
|
He Y, Wen Q, Yao F, Xu D, Huang Y, Wang J. Gut-lung axis: The microbial contributions and clinical implications. Crit Rev Microbiol 2016; 43:81-95. [PMID: 27781554 DOI: 10.1080/1040841x.2016.1176988] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gut microbiota interacts with host immune system in ways that influence the development of disease. Advances in respiratory immune system also broaden our knowledge of the interaction between host and microbiome in the lung. Increasing evidence indicated the intimate relationship between the gastrointestinal tract and respiratory tract. Exacerbations of chronic gut and lung disease have been shown to share key conceptual features with the disorder and dysregulation of the microbial ecosystem. In this review, we discuss the impact of gut and lung microbiota on disease exacerbation and progression, and the recent understanding of the immunological link between the gut and the lung, the gut-lung axis.
Collapse
Affiliation(s)
- Yang He
- a Department of Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Qu Wen
- a Department of Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Fangfang Yao
- a Department of Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Dong Xu
- b Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Yuancheng Huang
- b Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Junshuai Wang
- c Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
44
|
Pinheiro DFDC, Fontes B, Shimazaki JK, Heimbecker AMC, Jacysyn JDF, Rasslan S, Montero EFDS, Utiyama EM. Ischemic preconditioning modifies mortality and inflammatory response. Acta Cir Bras 2016; 31:1-7. [PMID: 26840349 DOI: 10.1590/s0102-865020160010000001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/12/2015] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To evaluate the effect of ischemic preconditioning on mortality, inflammatory mediators and oxidative stress after intestinal ischemia and reperfusion. METHODS Male Wistar rats were allocated according to the period of ischemia with or without ischemic preconditioning which consist on clamping the superior mesenteric artery for 10 minutes followed by reperfusion for 10 minutes before the sustained ischemia period. Mortality was assessed in Phase 1 study, and the CINC-1, CINC-2 and MDA levels in the lungs were analyzed in Phase 2. RESULTS Mortality was lower in the ischemic preconditioning group subjected to 90 minutes of ischemia compared to the group without ischemic preconditioning (I-90: 50% and IPC-90: 15%, p=0.018), and it was lower in the ischemic preconditioning group as a whole compared to the groups without ischemic preconditioning (IPC-14% and I=30%, p=0.006). Lower levels of MDA, CINC-1, and CINC-2 were observed in the animals that were subjected to ischemic preconditioning compared to the animals that were not (MDA: I-45=1.23 nmol/mg protein, and IPC-45=0.62 nmol/mg protein, p=0.0333; CINC-1: I-45=0.82 ng/mL and IPC-45=0.67 ng/mL, p=0.041; CINC-2: I-45=0.52 ng/mL and IPC-45=0.35 ng/mL, p=0.032). CONCLUSION Ischemic preconditioning reduces mortality, inflammatory process and oxidative stress in rats subjected to intestinal ischemia and reperfusion.
Collapse
Affiliation(s)
| | - Belchor Fontes
- Department of Surgery, Medical School, FMUSP, Sao Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Early tranexamic acid administration: A protective effect on gut barrier function following ischemia/reperfusion injury. J Trauma Acute Care Surg 2016; 79:1015-22. [PMID: 26317817 DOI: 10.1097/ta.0000000000000703] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The mucus barrier is a critical component of the gut barrier and may be disrupted by pancreatic enzymes following trauma/hemorrhagic shock (T/HS). Luminal strategies against pancreatic enzyme activation or contact with the intestine are protective of the mucus layer and gut barrier integrity following T/HS. There is increasing evidence the use of tranexamic acid (TA) attenuates inflammatory responses in cardiac surgery and is readily absorbed from the gut. We therefore postulated that systemic administration of TA would attenuate mucus degradation and gut barrier failure following T/HS. This was studied in an in vitro model. METHODS Confluent monolayers of HT29-MTX (mucus-producing clone) and Caco-2 cocultures were exposed to 90 minutes of hypoxia followed by reoxygenation (H/R), luminal trypsin (5 μM), or both treatment groups. In a subset of experiments, TA (40 μM or 150 μM) was added to the basal chamber (systemic side) of intestinal cell cultures immediately following the hypoxic period. Mucus barrier function was indexed by rheologic measurement of both mucus thickness and viscosity (G', dyne/cm) and oxidant stress. Intestinal cell barrier integrity was indexed by transepithelial electrical resistance, permeability to fluorescein isothiocyanate-dextran, and apoptosis by flow cytometry. RESULTS Exposure to both trypsin and H/R of Caco-2/HT29-MTX cocultures led to the most severe effect on mucus barrier function. Administration of TA immediately following hypoxia abrogated the effects noted on mucus barrier function. The epithelial barrier was also most severely impacted by both trypsin and H/R. Addition of TA after the hypoxic event was shown to be protective. CONCLUSION Intestinal mucus physiochemical properties and intestinal barrier function were most severely impacted by exposure to both trypsin (concentration related) and H/R. The "systemic" administration of TA immediately after the hypoxic period was protective and suggests an additional role for early administration of TA in trauma patients in shock.
Collapse
|
46
|
Abstract
Acute gastrointestinal injury (AGI) is common in critical illness and negatively affects outcome. A variety of definitions have been used to describe AGI, which has led to clinical confusion and hampered comparison of research studies across institutions. An international working group of the European Society of Intensive Care Medicine was convened to standardize definitions for AGI and provide current evidence-based understanding of its pathophysiology and management. This disorder is associated with a wide variety of signs and symptoms and may be difficult to detect, therefore a high index of suspicion is warranted.
Collapse
Affiliation(s)
- Robert W Taylor
- Department of Critical Care Medicine, Mercy Hospital St. Louis, Suite 4006B, St Louis, MO 63141, USA.
| |
Collapse
|
47
|
Protection by enteral glutamine is mediated by intestinal epithelial cell peroxisome proliferator-activated receptor-γ during intestinal ischemia/reperfusion. Shock 2016; 43:327-33. [PMID: 25394240 DOI: 10.1097/shk.0000000000000297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have demonstrated that enteral glutamine provides protection to the postischemic gut, and that peroxisome proliferator-activated receptor-γ (PPARγ) plays a role in this protection. Using Cre/lox technology to generate an intestinal epithelial cell (IEC)-specific PPARγ null mouse model, we now investigated the contribution of IEC PPARγ to glutamine's local and distant organ-protective effects. These mice exhibited absence of expression of PPARγ in the intestine but normal PPARγ expression in other tissues. After 1 h of intestinal ischemia under isoflurane anesthesia, wild-type and null mice received enteral glutamine (60 mM) or vehicle followed by 6 h of reperfusion or 7 days in survival experiments and compared with shams. Small intestine, liver, and lungs were analyzed for injury and inflammatory parameters. Glutamine provided significant protection against gut injury and inflammation, with similar protection in the lung and liver. Changes in systemic tumor necrosis factor-α reflected those seen in the injured organs. Importantly, mice lacking IEC PPARγ had worsened injury and inflammation, and glutamine lost its protective effects in the gut and lung. The survival benefit found in glutamine-treated wild-type mice was not observed in null mice. Using an IEC-targeted loss-of-function approach, these studies provide the first in vivo confirmation in native small intestine and lung that PPARγ is responsible for the protective effects of enteral glutamine in reducing intestinal and lung injury and inflammation and improving survival. These data suggest that early enteral glutamine may be a potential therapeutic modality to reduce shock-induced gut dysfunction and subsequent distant organ injury.
Collapse
|
48
|
Dickson RP. The microbiome and critical illness. THE LANCET. RESPIRATORY MEDICINE 2016; 4:59-72. [PMID: 26700442 PMCID: PMC4752077 DOI: 10.1016/s2213-2600(15)00427-0] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
The central role of the microbiome in critical illness is supported by a half century of experimental and clinical study. The physiological effects of critical illness and the clinical interventions of intensive care substantially alter the microbiome. In turn, the microbiome predicts patients' susceptibility to disease, and manipulation of the microbiome has prevented or modulated critical illness in animal models and clinical trials. This Review surveys the microbial ecology of critically ill patients, presents the facts and unanswered questions surrounding gut-derived sepsis, and explores the radically altered ecosystem of the injured alveolus. The revolution in culture-independent microbiology has provided the tools needed to target the microbiome rationally for the prevention and treatment of critical illness, holding great promise to improve the acute and chronic outcomes of the critically ill.
Collapse
Affiliation(s)
- Robert P Dickson
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Delgado ME, Grabinger T, Brunner T. Cell death at the intestinal epithelial front line. FEBS J 2015; 283:2701-19. [PMID: 26499289 DOI: 10.1111/febs.13575] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/23/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022]
Abstract
The intestinal epithelium represents the largest epithelial surface in our body. This single-cell-layer epithelium mediates important functions in the absorption of nutrients and in the maintenance of barrier function, preventing luminal microorganisms from invading the body. Due to its constant regeneration the intestinal epithelium is a tissue not only with very high proliferation rates but also with very prominent physiological and pathophysiological cell death induction. The normal physiological differentiation and maturation of intestinal epithelial cells leads to their shedding and apoptotic cell death within a few days, without disturbing the epithelial barrier integrity. In contrast excessive intestinal epithelial cell death induced by irradiation, drugs and inflammation severely impairs the vital functions of this tissue. In this review we discuss cell death processes in the intestinal epithelium in health and disease, with special emphasis on cell death triggered by the tumour necrosis factor receptor family.
Collapse
Affiliation(s)
- Maria Eugenia Delgado
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Thomas Grabinger
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Thomas Brunner
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| |
Collapse
|
50
|
A sphingosine-1 phosphate agonist (FTY720) limits trauma/hemorrhagic shock-induced multiple organ dysfunction syndrome. Shock 2015; 42:448-55. [PMID: 25004059 DOI: 10.1097/shk.0000000000000227] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Trauma/hemorrhagic shock (T/HS) is one of the major consequences of battlefield injury as well as civilian trauma. FTY720 (sphingosine-1-phosphate agonist) has the capability to decrease the activity of the innate and adaptive immune systems and, at the same time, maintain endothelial cell barrier function and vascular homeostasis during stress. For this reason, we hypothesize that FTY720, as part of resuscitation therapy, would limit T/HS-induced multiple organ dysfunction syndrome in a rodent T/HS model. METHODS Rats subjected to trauma/sham shock (T/SS) or T/HS (30 mm Hg × 90 min) were administered FTY720 (1 mg/kg) post-T/HS during volume resuscitation. Lung injury (permeability to Evans blue dye), polymorphonuclear leukocyte (PMN) priming (respiratory burst activity), and red blood cell (RBC) rigidity were measured. In addition, lymph duct-cannulated rats were used to quantify the effect of FTY720 on gut injury (permeability and morphology) and the biologic activity of T/HS versus T/SS lymph on PMN-RBC and RBC deformability. RESULTS Trauma/hemorrhagic shock-induced increased lung permeability, PMN priming, and RBC rigidity were all abrogated by FTY720. The systemic protective effect of FTY720 was only partially at the gut level, because FTY720 did not prevent T/HS-induced gut injury (morphology or permeability); however, it did abrogate T/HS lymph-induced increased respiratory burst and RBC rigidity. CONCLUSIONS FTY720 limited T/HS-induced multiple organ dysfunction syndrome (lung injury, red cell injury, and neutrophil priming) as well as T/HS lymph bioactivity, although it did not limit gut injury.
Collapse
|