1
|
Abstract
SARS-CoV-2, the virus that causes coronavirus disease (COVID)-19, has become a persistent global health threat. Individuals who are symptomatic for COVID-19 frequently exhibit respiratory illness, which is often accompanied by neurological symptoms of anosmia and fatigue. Mounting clinical data also indicate that many COVID-19 patients display long-term neurological disorders postinfection such as cognitive decline, which emphasizes the need to further elucidate the effects of COVID-19 on the central nervous system. In this review article, we summarize an emerging body of literature describing the impact of SARS-CoV-2 infection on central nervous system (CNS) health and highlight important areas of future investigation.
Collapse
Affiliation(s)
- Nick R. Natale
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
2
|
Kay LM. COVID-19 and olfactory dysfunction: a looming wave of dementia? J Neurophysiol 2022; 128:436-444. [PMID: 35894511 PMCID: PMC9377782 DOI: 10.1152/jn.00255.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
Olfactory dysfunction is a hallmark symptom of COVID-19 disease resulting from the SARS-CoV-2 virus. The cause of the sudden and usually temporary anosmia that most people suffer from COVID-19 is likely entirely peripheral-inflammation and other damage caused by the virus in the sensory epithelium inside the upper recesses of the nasal cavity can damage or prevent chemicals from properly activating the olfactory sensory neurons. However, persistent olfactory dysfunction from COVID-19, in the form of hyposmia and parosmia (decreased or altered smell) may affect as many as 15 million people worldwide. This epidemic of olfactory dysfunction is thus a continuing public health concern. Mounting evidence suggests that the SARS-CoV-2 virus itself or inflammation from the immune response in the nasal sensory epithelium may invade the olfactory bulb, likely via non-neuronal transmission. COVID-19-related long-term olfactory dysfunction and early damage to olfactory and limbic brain regions suggest a pattern of degeneration similar to that seen in early stages of Alzheimer's disease, Parkinson's disease, and Lewy body dementia. Thus, long-term olfactory dysfunction coupled with cognitive and emotional disturbance from COVID-19 may be the first signs of delayed onset dementia from neurodegeneration. Few treatments are known to be effective to prevent further degeneration, but the first line of defense against degeneration may be olfactory and environmental enrichment. There is a pressing need for more research on treatments for olfactory dysfunction and longitudinal studies including cognitive and olfactory function from patients who have recovered from even mild COVID-19.NEW & NOTEWORTHY More than 15 million people worldwide experience persistent COVID-19 olfactory dysfunction, possibly caused by olfactory bulb damage. SARS-CoV-2 can cause inflammation and viral invasion of the olfactory bulb, initiating a cascade of degeneration similar to Alzheimer's disease and Lewy body disease. People who have had even mild cases of COVID-19 show signs of degeneration in cortical areas connected with the olfactory system. These data suggest a wave of post-COVID dementia in the coming decades.
Collapse
Affiliation(s)
- Leslie M Kay
- Institute for Mind and Biology, Department of Psychology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
3
|
Fitzek M, Patel PK, Solomon PD, Lin B, Hummel T, Schwob JE, Holbrook EH. Integrated age-related immunohistological changes occur in human olfactory epithelium and olfactory bulb. J Comp Neurol 2022; 530:2154-2175. [PMID: 35397118 PMCID: PMC9232960 DOI: 10.1002/cne.25325] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
Olfactory epithelium (OE) is capable of lifelong regeneration due to presence of basal progenitor cells that respond to injury or neuronal loss with increased activity. However, this capability diminishes with advancing age and a decrease in odor perception in older individuals is well established. To characterize changes associated with age in the peripheral olfactory system, an in-depth analysis of the OE and its neuronal projections onto the olfactory bulb (OB) as a function of age was performed. Human olfactory tissue autopsy samples from 36 subjects with an average age of 74.1 years were analyzed. Established cell type-specific antibodies were used to identify OE component cells in whole mucosal sheets and epithelial sections as well as glomeruli and periglomerular structures in OB sections. With age, a reduction in OE area occurs across the mucosa progressing in a posterior-dorsal direction. Deterioration of the olfactory system is accompanied with diminution of neuron-containing OE, mature olfactory sensory neurons (OSNs) and OB innervation. On an individual level, the neuronal density within the epithelium appears to predict synapse density within the OB. The innervation of the OB is uneven with higher density at the ventral half that decreases with age as opposed to stable innervation at the dorsal half. Respiratory metaplasia, submucosal cysts, and neuromata, were commonly identified in aged OE. The finding of respiratory metaplasia and aneuronal epithelium with reduction in global basal cells suggests a progression of stem cell quiescence as an underlying pathophysiology of age-related smell loss in humans. KEY POINTS: A gradual loss of olfactory sensory neurons with age in human olfactory epithelium is also reflected in a reduction in glomeruli within the olfactory bulb. This gradual loss of neurons and synaptic connections with age occurs in a specific, spatially inhomogeneous manner. Decreasing mitotically active olfactory epithelium basal cells may contribute to age-related neuronal decline and smell loss in humans.
Collapse
Affiliation(s)
- Mira Fitzek
- Department of Otorhinolaryngology, Smell and Taste Clinic, University of Dresden Medical School, Dresden, Germany.,Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Parthkumar K Patel
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Peter D Solomon
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Brian Lin
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, University of Dresden Medical School, Dresden, Germany
| | - James E Schwob
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Eric H Holbrook
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Increased Retinoic Acid Catabolism in Olfactory Sensory Neurons Activates Dormant Tissue-Specific Stem Cells and Accelerates Age-Related Metaplasia. J Neurosci 2020; 40:4116-4129. [PMID: 32385093 DOI: 10.1523/jneurosci.2468-19.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/03/2020] [Accepted: 04/25/2020] [Indexed: 12/28/2022] Open
Abstract
The cellular and molecular basis of metaplasia and declining neurogenesis in the aging olfactory epithelium (OE) remains unknown. The horizontal basal cell (HBC) is a dormant tissue-specific stem cell presumed to only be forced into self-renewal and differentiation by injury. Here we analyze male and female mice and show that HBCs also are activated with increasing age as well as non-cell-autonomously by increased expression of the retinoic acid-degrading enzyme CYP26B1. Activating stimuli induce HBCs throughout OE to acquire a rounded morphology and express IP3R3, which is an inositol-1,4,5-trisphosphate receptor constitutively expressed in stem cells of the adjacent respiratory epithelium. Odor/air stimulates CYP26B1 expression in olfactory sensory neurons mainly located in the dorsomedial OE, which is spatially inverse to ventrolateral constitutive expression of the retinoic acid-synthesizing enzyme (RALDH1) in supporting cells. In ventrolateral OE, HBCs express low p63 levels and preferentially differentiate instead of self-renewing when activated. When activated by chronic CYP26B1 expression, repeated injury, or old age, ventrolateral HBCs diminish in number and generate a novel type of metaplastic respiratory cell that is RALDH- and secretes a mucin-like mucus barrier protein (FcγBP). Conversely, in the dorsomedial OE, CYP26B1 inhibits injury-induced and age-related replacement of RALDH- supporting cells with RALDH1+ ciliated respiratory cells. Collectively, these results support the concept that inositol-1,4,5-trisphosphate type 3 receptor signaling in HBCs, together with altered retinoic acid metabolism within the niche, promote HBC lineage commitment toward two types of respiratory cells that will maintain epithelial barrier function once the capacity to regenerate OE cells ceases.SIGNIFICANCE STATEMENT Little is known about signals that activate dormant stem cells to self-renew and regenerate odor-detecting neurons and other olfactory cell types after loss due to injury, infection, or toxin exposure in the nose. It is also unknown why the stem cells do not prevent age-dependent decline of odor-detecting neurons. We show that (1) stem cells are kept inactive by the vitamin A derivative retinoic acid, which is synthesized and degraded locally by olfactory cells; (2) old age as well as repeated injuries activate the stem cells and exhaust their potential to produce olfactory cells; and (3) exhausted stem cells alter the local retinoic acid metabolism and maintain the epithelial tissue barrier by generating airway cells instead of olfactory cells.
Collapse
|
5
|
Lemons K, Fu Z, Ogura T, Lin W. TRPM5-expressing Microvillous Cells Regulate Region-specific Cell Proliferation and Apoptosis During Chemical Exposure. Neuroscience 2020; 434:171-190. [PMID: 32224228 DOI: 10.1016/j.neuroscience.2020.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/23/2022]
Abstract
The mammalian main olfactory epithelium (MOE) is exposed to a wide spectrum of external chemicals during respiration and relies on adaptive plasticity to maintain its structural and functional integrity. We previously reported that the chemo-responsive and cholinergic transient receptor potential channel M5 (TRPM5)-expressing-microvillous cells (MCs) in the MOE are required for maintaining odor-evoked electrophysiological responses and olfactory-guided behavior during two-week exposure to an inhaled chemical mixture. Here, we investigated the underlying factors by assessing the potential modulatory effects of TRPM5-MCs on MOE morphology and cell proliferation and apoptosis, which are important for MOE maintenance. In the posterior MOE of TRPM5-GFP mice, we found that two-week chemical exposure induced a significant increase in Ki67-expressing proliferating basal stem cells without a significant reduction in the thickness of the whole epithelium or mature olfactory sensory neuron (OSN) layer. This adaptive increase in stem cell proliferation was missing in chemical-exposed transcription factor Skn-1a knockout (Skn-1a-/-) mice lacking TRPM5-MCs. In addition, a greater number of isolated OSNs from chemical-exposed Skn-1a-/- mice displayed unhealthily high levels of resting intracellular Ca2+. Intriguingly, in the anterior MOE where we found a higher density of TRPM5-MCs, chemical-exposed TRPM5-GFP mice exhibited a time-dependent increase in apoptosis and a loss of mature OSNs without a significant increase in proliferation or neurogenesis to compensate for OSN loss. Together, our data suggest that TRPM5-MC-dependent region-specific upregulation of cell proliferation in the majority of the MOE during chemical exposure contributes to the adaptive maintenance of OSNs and olfactory function.
Collapse
Affiliation(s)
- Kayla Lemons
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Ziying Fu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Tatsuya Ogura
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
6
|
Peterson J, Lin B, Barrios-Camacho CM, Herrick DB, Holbrook EH, Jang W, Coleman JH, Schwob JE. Activating a Reserve Neural Stem Cell Population In Vitro Enables Engraftment and Multipotency after Transplantation. Stem Cell Reports 2019; 12:680-695. [PMID: 30930245 PMCID: PMC6450498 DOI: 10.1016/j.stemcr.2019.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022] Open
Abstract
The olfactory epithelium (OE) regenerates after injury via two types of tissue stem cells: active globose cells (GBCs) and dormant horizontal basal cells (HBCs). HBCs are roused to activated status by OE injury when P63 levels fall. However, an in-depth understanding of activation requires a system for culturing them that maintains both their self-renewal and multipotency while preventing spontaneous differentiation. Here, we demonstrate that mouse, rat, and human HBCs can be cultured and passaged as P63+ multipotent cells. HBCs in vitro closely resemble HBCs in vivo based on immunocytochemical and transcriptomic comparisons. Genetic lineage analysis demonstrates that HBCs in culture arise from both tissue-derived HBCs and multipotent GBCs. Treatment with retinoic acid induces neuronal and non-neuronal differentiation and primes cultured HBCs for transplantation into the lesioned OE. Engrafted HBCs generate all OE cell types, including olfactory sensory neurons, confirming that HBC multipotency and neurocompetency are maintained in culture.
Collapse
Affiliation(s)
- Jesse Peterson
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Brian Lin
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Camila M Barrios-Camacho
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Daniel B Herrick
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Eric H Holbrook
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Woochan Jang
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Julie H Coleman
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - James E Schwob
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
7
|
Seo Y, Kim HS, Kang KS. Microglial involvement in the development of olfactory dysfunction. J Vet Sci 2018; 19:319-330. [PMID: 29032655 PMCID: PMC5974513 DOI: 10.4142/jvs.2018.19.3.319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/20/2017] [Accepted: 10/07/2017] [Indexed: 12/20/2022] Open
Abstract
Olfactory impairment is the most common clinical manifestation among the elderly, and its prevalence increases sharply with age. Notably, growing evidence has shown that olfactory dysfunction is the first sign of neurodegeneration, indicating the importance of olfactory assessment as an early marker in the diagnosis of neurological disorders. In this review, we describe the nature of olfactory dysfunction and the advantage of using animal models in olfaction study, and we include a brief introduction to olfactory behavior tests widely used in this field. The contribution of microglia in the neurodegenerative processes including olfactory impairment is then discussed to provide a comprehensive description of the physiopathological role of interactions between neurons and microglia within the olfactory system.
Collapse
Affiliation(s)
- Yoojin Seo
- Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Korea
| | - Hyung-Sik Kim
- Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, Seoul National University, Seoul 08826, Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
8
|
The Neuroregenerative Capacity of Olfactory Stem Cells Is Not Limitless: Implications for Aging. J Neurosci 2018; 38:6806-6824. [PMID: 29934351 DOI: 10.1523/jneurosci.3261-17.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022] Open
Abstract
The olfactory epithelium (OE) of vertebrates is a highly regenerative neuroepithelium that is maintained under normal conditions by a population of stem and progenitor cells, globose basal cells (GBCs), which also contribute to epithelial reconstitution after injury. However, aging of the OE often leads to neurogenic exhaustion, the disappearance of both GBCs and olfactory sensory neurons (OSNs). Aneuronal tissue may remain as olfactory, with an uninterrupted sheet of apically arrayed microvillar-capped sustentacular cell, or may undergo respiratory metaplasia. We have generated a transgenic mouse model for neurogenic exhaustion using olfactory marker protein-driven Tet-off regulation of the A subunit of Diphtheria toxin such that the death of mature OSNs is accelerated. At as early as 2 months of age, the epithelium of transgenic mice, regardless of sex, recapitulates what is seen in the aged OE of humans and rodents. Areas of the epithelium completely lack neurons and GBCs; whereas the horizontal basal cells, a reserve stem cell population, show no evidence of activation. Surprisingly, other areas that were olfactory undergo respiratory metaplasia. The impact of accelerated neuronal death and reduced innervation on the olfactory bulb (OB) was also examined. Constant neuronal turnover leaves glomeruli shrunken and affects the dopaminergic interneurons in the periglomerular layer. Moreover, the acceleration of OSN death can be reversed in those areas where some GBCs persist. However, the projection onto the OB recovers incompletely and the reinnervated glomeruli are markedly altered. Therefore, the capacity for OE regeneration is tempered when GBCs disappear.SIGNIFICANCE STATEMENT A large percentage of humans lose or suffer a significant decline in olfactory function as they age. Therefore, quality of life suffers and safety and nutritional status are put at risk. With age, the OE apparently becomes incapable of fully maintaining the neuronal population of the epithelium despite its well known capacity for recovering from most forms of injury when younger. Efforts to identify the mechanism by which olfactory neurogenesis becomes exhausted with age require a powerful model for accelerating age-related tissue pathology. The current OMP-tTA;TetO-DTA transgenic mouse model, in which olfactory neurons die when they reach maturity and accelerated death can be aborted to assess the capacity for structural recovery, satisfies that need.
Collapse
|
9
|
Ueha R, Ueha S, Kondo K, Kikuta S, Yamasoba T. Cigarette Smoke-Induced Cell Death Causes Persistent Olfactory Dysfunction in Aged Mice. Front Aging Neurosci 2018; 10:183. [PMID: 29950987 PMCID: PMC6008309 DOI: 10.3389/fnagi.2018.00183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/30/2018] [Indexed: 11/21/2022] Open
Abstract
Introduction: Exposure to cigarette smoke is a cause of olfactory dysfunction. We previously reported that in young mice, cigarette smoke damaged olfactory progenitors and decreased mature olfactory receptor neurons (ORNs), then, mature ORNs gradually recovered after smoking cessation. However, in aged populations, the target cells in ORNs by cigarette smoke, the underlying molecular mechanisms by which cigarette smoke impairs the regenerative ORNs, and the degree of ORN regeneration after smoking cessation remain unclear. Objectives: To explore the effects of cigarette smoke on the ORN cell system using an aged mouse model of smoking, and to investigate the extent to which smoke-induced damage to ORNs recovers following cessation of exposure to cigarette smoke in aged mice. Methods: We intranasally administered a cigarette smoke solution (CSS) to 16-month-old male mice over 24 days, then examined ORN existence, cell survival, changes of inflammatory cytokines in the olfactory epithelium (OE), and olfaction using histological analyses, gene analyses and olfactory habituation/dishabituation tests. Results: CSS administration reduced the number of mature ORNs in the OE and induced olfactory dysfunction. These changes coincided with an increase in the number of apoptotic cells and Tumor necrosis factor (TNF) expression and a decrease in Il6 expression. Notably, the reduction in mature ORNs did not recover even on day 28 after cessation of treatment with CSS, resulting in persistent olfactory dysfunction. Conclusion: In aged mice, by increasing ORN death, CSS exposure could eventually overwhelm the regenerative capacity of the OE, resulting in continued reduction in the number of mature ORNs and olfactory dysfunction.
Collapse
Affiliation(s)
- Rumi Ueha
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kenji Kondo
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shu Kikuta
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Doty RL. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol 2017; 16:478-488. [DOI: 10.1016/s1474-4422(17)30123-0] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/25/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
|
11
|
Imamura F, Hasegawa-Ishii S. Environmental Toxicants-Induced Immune Responses in the Olfactory Mucosa. Front Immunol 2016; 7:475. [PMID: 27867383 PMCID: PMC5095454 DOI: 10.3389/fimmu.2016.00475] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/19/2016] [Indexed: 01/02/2023] Open
Abstract
Olfactory sensory neurons (OSNs) are the receptor cells for the sense of smell. Although cell bodies are located in the olfactory mucosa (OM) of the nasal cavity, OSN axons directly project to the olfactory bulb (OB) that is a component of the central nervous system (CNS). Because of this direct and short connection from this peripheral tissue to the CNS, the olfactory system has attracted attention as a port-of-entry for environmental toxicants that may cause neurological dysfunction. Selected viruses can enter the OB via the OM and directly affect the CNS. On the other hand, environmental toxicants may induce inflammatory responses in the OM, including infiltration of immune cells and production of inflammatory cytokines. In addition, these inflammatory responses cause the loss of OSNs that are then replaced with newly generated OSNs that re-connect to the OB after inflammation has subsided. It is now known that immune cells and cytokines in the OM play important roles in both degeneration and regeneration of OSNs. Thus, the olfactory system is a unique neuroimmune interface where interaction between nervous and immune systems in the periphery significantly affects the structure, neuronal circuitry, and immunological status of the CNS. The mechanisms by which immune cells regulate OSN loss and the generation of new OSNs are, however, largely unknown. To help develop a better understanding of the mechanisms involved, we have provided a review of key research that has investigated how the immune response in the OM affects the pathophysiology of OSNs.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine , Hershey, PA , USA
| | | |
Collapse
|
12
|
Schwob JE, Jang W, Holbrook EH, Lin B, Herrick DB, Peterson JN, Hewitt Coleman J. Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license. J Comp Neurol 2016; 525:1034-1054. [PMID: 27560601 DOI: 10.1002/cne.24105] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022]
Abstract
The capacity of the olfactory epithelium (OE) for lifelong neurogenesis and regeneration depends on the persistence of neurocompetent stem cells, which self-renew as well as generating all of the cell types found within the nasal epithelium. This Review focuses on the types of stem and progenitor cells in the epithelium and their regulation. Both horizontal basal cells (HBCs) and some among the population of globose basal cells (GBCs) are stem cells, but the two types plays vastly different roles. The GBC population includes the basal cells that proliferate in the uninjured OE and is heterogeneous with respect to transcription factor expression. From upstream in the hierarchy to downstream, GBCs encompass 1) Sox2+ /Pax6+ stem-like cells that are totipotent and self-renew over the long term, 2) Ascl1+ transit-amplifying progenitors with a limited capacity for expansive proliferation, and 3) Neurog1+ /NeuroD1+ immediate precursor cells that make neurons directly. In contrast, the normally quiescent HBCs are activated to multipotency and proliferate when sustentacular cells are killed, but not when only OSNs die, indicating that HBCs are reserve stem cells that respond to severe epithelial injury. The master regulator of HBC activation is the ΔN isoform of the transcription factor p63; eliminating ΔNp63 unleashes HBC multipotency. Notch signaling, via Jagged1 ligand on Sus cells and Notch1 and Notch2 receptors on HBCs, is likely to play a major role in setting the level of p63 expression. Thus, ΔNp63 becomes a potential therapeutic target for reversing the neurogenic exhaustion characteristic of the aged OE. J. Comp. Neurol. 525:1034-1054, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James E Schwob
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Woochan Jang
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Eric H Holbrook
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Brian Lin
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Daniel B Herrick
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Jesse N Peterson
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Julie Hewitt Coleman
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| |
Collapse
|
13
|
Ueha R, Ueha S, Kondo K, Sakamoto T, Kikuta S, Kanaya K, Nishijima H, Matsushima K, Yamasoba T. Damage to Olfactory Progenitor Cells Is Involved in Cigarette Smoke-Induced Olfactory Dysfunction in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:579-86. [PMID: 26806086 DOI: 10.1016/j.ajpath.2015.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/01/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022]
Abstract
Exposure to cigarette smoke is a major cause of olfactory dysfunction. However, the underlying mechanisms by which cigarette smoke interferes with the highly regenerative olfactory nerve system remain unclear. To investigate whether cigarette smoke induces olfactory dysfunction by disrupting cell proliferation and cell survival in the olfactory epithelium (OE), we developed a mouse model of smoking that involved intranasal administration of a cigarette smoke solution (CSS). Immunohistological analyses and behavioral testing showed that CSS administration during a period of 24 days reduced the number of olfactory marker protein-positive mature olfactory receptor neurons (ORNs) in the OE and induced olfactory dysfunction. These changes coincided with a reduction in the number of SOX2(+) ORN progenitors and Ki-67(+) proliferating cells in the basal layer of the OE, an increase in the number of caspase-3(+) apoptotic cells, and an increase in the expression of mRNA for the inflammatory cytokines IL-1β and IL-6. Notably, the proliferating ORN progenitor population recovered after cessation of treatment with CSS, resulting in the subsequent restoration of mature ORN numbers and olfaction. These results suggest that SOX2(+) ORN progenitors are targets of CSS-induced impairment of the OE, and that by damaging the ORN progenitor population and increasing ORN death, CSS exposure eventually overwhelms the regenerative capacity of the epithelium, resulting in reduced numbers of mature ORNs and olfactory dysfunction.
Collapse
Affiliation(s)
- Rumi Ueha
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Satoshi Ueha
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Sakamoto
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shu Kikuta
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaori Kanaya
- Department of Otolaryngology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Hironobu Nishijima
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Abstract
UNLABELLED The olfactory epithelium (OE) is one of the few tissues to undergo constitutive neurogenesis throughout the mammalian lifespan. It is composed of multiple cell types including olfactory sensory neurons (OSNs) that are readily replaced by two populations of basal stem cells, frequently dividing globose basal cells and quiescent horizontal basal cells (HBCs). However, the precise mechanisms by which these cells mediate OE regeneration are unclear. Here, we show for the first time that the HBC subpopulation of basal stem cells uniquely possesses primary cilia that are aligned in an apical orientation in direct apposition to sustentacular cell end feet. The positioning of these cilia suggests that they function in the detection of growth signals and/or differentiation cues. To test this idea, we generated an inducible, cell type-specific Ift88 knock-out mouse line (K5rtTA;tetOCre;Ift88(fl/fl)) to disrupt cilia formation and maintenance specifically in HBCs. Surprisingly, the loss of HBC cilia did not affect the maintenance of the adult OE but dramatically impaired the regeneration of OSNs following lesion. Furthermore, the loss of cilia during development resulted in a region-specific decrease in neurogenesis, implicating HBCs in the establishment of the OE. Together, these results suggest a novel role for primary cilia in HBC activation, proliferation, and differentiation. SIGNIFICANCE STATEMENT We show for the first time the presence of primary cilia on a quiescent population of basal stem cells, the horizontal basal cells (HBCs), in the olfactory epithelium (OE). Importantly, our data demonstrate that cilia on HBCs are necessary for regeneration of the OE following injury. Moreover, the disruption of HBC cilia alters neurogenesis during the development of the OE, providing evidence that HBCs participate in the establishment of this tissue. These data suggest that the mechanisms of penetrance for ciliopathies in the OE extend beyond that of defects in olfactory sensory neurons and may include alterations in OE maintenance and regeneration.
Collapse
|
15
|
Abstract
UNLABELLED The olfactory epithelium (OE) is one of the few tissues to undergo constitutive neurogenesis throughout the mammalian lifespan. It is composed of multiple cell types including olfactory sensory neurons (OSNs) that are readily replaced by two populations of basal stem cells, frequently dividing globose basal cells and quiescent horizontal basal cells (HBCs). However, the precise mechanisms by which these cells mediate OE regeneration are unclear. Here, we show for the first time that the HBC subpopulation of basal stem cells uniquely possesses primary cilia that are aligned in an apical orientation in direct apposition to sustentacular cell end feet. The positioning of these cilia suggests that they function in the detection of growth signals and/or differentiation cues. To test this idea, we generated an inducible, cell type-specific Ift88 knock-out mouse line (K5rtTA;tetOCre;Ift88(fl/fl)) to disrupt cilia formation and maintenance specifically in HBCs. Surprisingly, the loss of HBC cilia did not affect the maintenance of the adult OE but dramatically impaired the regeneration of OSNs following lesion. Furthermore, the loss of cilia during development resulted in a region-specific decrease in neurogenesis, implicating HBCs in the establishment of the OE. Together, these results suggest a novel role for primary cilia in HBC activation, proliferation, and differentiation. SIGNIFICANCE STATEMENT We show for the first time the presence of primary cilia on a quiescent population of basal stem cells, the horizontal basal cells (HBCs), in the olfactory epithelium (OE). Importantly, our data demonstrate that cilia on HBCs are necessary for regeneration of the OE following injury. Moreover, the disruption of HBC cilia alters neurogenesis during the development of the OE, providing evidence that HBCs participate in the establishment of this tissue. These data suggest that the mechanisms of penetrance for ciliopathies in the OE extend beyond that of defects in olfactory sensory neurons and may include alterations in OE maintenance and regeneration.
Collapse
|
16
|
Xia Y, Kong L, Yao Y, Jiao Y, Song J, Tao Z, You Z, Yang J. Osthole confers neuroprotection against cortical stab wound injury and attenuates secondary brain injury. J Neuroinflammation 2015; 12:155. [PMID: 26337552 PMCID: PMC4559066 DOI: 10.1186/s12974-015-0373-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/16/2015] [Indexed: 12/31/2022] Open
Abstract
Background Neuroendoscopy is an innovative technique for neurosurgery that can nonetheless result in traumatic brain injury. The accompanying neuroinflammation may lead to secondary tissue damage, which is the major cause of delayed neuronal death after surgery. The present study investigated the capacity of osthole to prevent secondary brain injury and the underlying mechanism of action in a mouse model of stab wound injury. Methods A mouse model of cortical stab wound injury was established by inserting a needle into the cerebral cortex for 20 min to mimic neuroendoscopy. Mice received an intraperitoneal injection of osthole 30 min after surgery and continued for 14 days. Neurological severity was evaluated 12 h and up to 21 days after the trauma. Brains were collected 3–21 days post-injury for histological analysis, immunocytochemistry, quantitative real-time PCR, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and enzyme-linked immunosorbent assays. Results Neurological function improved in mice treated with osthole and was accompanied by reduced brain water content and accelerated wound closure relative to untreated mice. Osthole treatment reduced the number of macrophages/microglia and peripheral infiltrating of neutrophils and lowered the level of the proinflammatory cytokines interleukin-6 and tumor necrosis factor α in the lesioned cortex. Osthole-treated mice had fewer TUNEL+ apoptotic neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions Osthole reduced secondary brain damage by suppressing inflammation and apoptosis in a mouse model of stab wound injury. These results suggest a new strategy for promoting neuronal survival and function after neurosurgery to improve long-term patient outcome.
Collapse
Affiliation(s)
- Yang Xia
- Department of Engineering, University of Oxford, Oxford, OX1 3LZ, UK.
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| | - Yingjia Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| | - Yanan Jiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| | - Jie Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| | - Zhenyu Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| | - Zhong You
- Department of Engineering, University of Oxford, Oxford, OX1 3LZ, UK.
| | - Jingxian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
17
|
Transcription factor p63 controls the reserve status but not the stemness of horizontal basal cells in the olfactory epithelium. Proc Natl Acad Sci U S A 2015; 112:E5068-77. [PMID: 26305958 DOI: 10.1073/pnas.1512272112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Adult tissue stem cells can serve two broad functions: to participate actively in the maintenance and regeneration of a tissue or to wait in reserve and participate only when activated from a dormant state. The adult olfactory epithelium, a site for ongoing, life-long, robust neurogenesis, contains both of these functional stem cell types. Globose basal cells (GBCs) act as the active stem cell population and can give rise to all the differentiated cells found in the normal tissue. Horizontal basal cells (HBCs) act as reserve stem cells and remain dormant unless activated by tissue injury. Here we show that HBC activation following injury by the olfactotoxic gas methyl bromide is coincident with the down-regulation of protein 63 (p63) but anticipates HBC proliferation. Gain- and loss-of-function studies show that this down-regulation of p63 is necessary and sufficient for HBC activation. Moreover, activated HBCs give rise to GBCs that persist for months and continue to act as bona fide stem cells by participating in tissue maintenance and regeneration over the long term. Our analysis provides mechanistic insight into the dynamics between tissue stem cell subtypes and demonstrates that p63 regulates the reserve state but not the stem cell status of HBCs.
Collapse
|
18
|
Jang W, Chen X, Flis D, Harris M, Schwob JE. Label-retaining, quiescent globose basal cells are found in the olfactory epithelium. J Comp Neurol 2014; 522:731-49. [PMID: 24122672 DOI: 10.1002/cne.23470] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 02/01/2023]
Abstract
The vertebrate olfactory epithelium (OE) is known for its ability to renew itself throughout life as well as to reconstitute after injury. Although this remarkable capacity demonstrates the persistence of stem cells and multipotent progenitor cells, their nature in the OE remains undefined and controversial, as both horizontal basal cells (HBCs) and globose basal cells (GBCs) have features in common with each other and with stem cells in other tissues. Here, we investigate whether some among the population of GBCs satisfy a key feature of stem cells, i.e., mitotic quiescence with retention of thymidine analogue label and activation by injury. Accordingly, we demonstrate that some GBCs express p27(Kip1) , a member of the Kip/Cip family of cyclin-dependent kinase inhibitors. In addition, some GBCs retain bromodeoxyuridine or ethynyldeoxyuridine for an extended period when the pulse is administered in neonates followed by a 1-month chase. Their identity as GBCs was confirmed by electron microscopy. All spared GBCs express Ki-67 in the methyl bromide (MeBr)-lesioned OE initially after lesion, indicating that the label-retaining (LR) GBCs are activated in response to injury. LR-GBCs reappear during the acute recovery period following MeBr exposure, as demonstrated with 2- or 4-week chase periods after labeling. Taken together, our data demonstrate the existence of LR-GBCs that are seemingly activated in response to epithelial injury and then re-established after the initial phase of recovery is completed. In this regard, some among the GBCs satisfy a common criterion for functioning like stem cells.
Collapse
Affiliation(s)
- Woochan Jang
- Department of Developmental, Molecular, and Chemical Biology, School of Medicine, Tufts University, Boston, Massachusetts, 02111
| | | | | | | | | |
Collapse
|
19
|
Holbrook EH, Iwema CL, Peluso CE, Schwob JE. The regeneration of P2 olfactory sensory neurons is selectively impaired following methyl bromide lesion. Chem Senses 2014; 39:601-16. [PMID: 25056730 DOI: 10.1093/chemse/bju033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The capacity of the peripheral olfactory system to recover after injury has not been thoroughly explored. P2-IRES-tauLacZ mice were exposed to methyl bromide, which causes epithelial damage and kills 90% of the P2 neurons. With subsequent neuronal regeneration, P2 neurons recover within their usual territory to equal control numbers by 1 month but then decline sharply to roughly 40% of control by 3 months. At this time, the P2 projection onto the olfactory bulb is erroneous in several respects. Instead of converging onto 1 or 2 glomeruli per surface, small collections of P2 axons innervate multiple glomeruli at roughly the same position in the bulb as in controls. Within these glomeruli, the P2 axons are aggregated near the edge, whereas the remainder of the glomerulus contains olfactory marker protein (+), non-P2 axons, violating the one receptor-one glomerulus rule normally observed. The aggregates are denser than found in control P2-innervated glomeruli, suggesting that the P2 axons may not be synaptically connected. Based on published literature and other data, we hypothesize that P2 neurons lose out in an activity-based competition for synaptic territory within the glomeruli and are not maintained at control numbers due to a lack of trophic support from the bulb.
Collapse
Affiliation(s)
- Eric H Holbrook
- Department of Otology and Laryngology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA, Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Carrie L Iwema
- Department of Cell and Developmental Biology and Program in Neuroscience, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210, USA and
| | - Carolyn E Peluso
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - James E Schwob
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA, Department of Cell and Developmental Biology and Program in Neuroscience, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210, USA and
| |
Collapse
|
20
|
Franceschini V, Bettini S, Pifferi S, Menini A, Siciliano G, Ognio E, Brini AT, Di Oto E, Revoltella RP. Transplanted human adipose tissue-derived stem cells engraft and induce regeneration in mice olfactory neuroepithelium in response to dichlobenil subministration. Chem Senses 2014; 39:617-29. [PMID: 25056732 DOI: 10.1093/chemse/bju035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used immunodeficient mice, whose dorsomedial olfactory region was permanently damaged by dichlobenil inoculation, to test the neuroregenerative properties of transplanted human adipose tissue-derived stem cells after 30 and 60 days. Analysis of polymerase chain reaction bands revealed that stem cells preferentially engrafted in the lesioned olfactory epithelium compared with undamaged mucosa of untreated transplanted mice. Although basal cell proliferation in untransplanted lesioned mice did not give rise to neuronal cells in the olfactory mucosa, we observed clusters of differentiating olfactory cells in transplanted mice. After 30 days, and even more at 60 days, epithelial thickness was partially recovered to normal values, as also the immunohistochemical properties. Functional reactivity to odorant stimulation was also confirmed through electro-olfactogram recording in the dorsomedial epithelium. Furthermore, we demonstrated that engrafted stem cells fused with mouse cells in the olfactory organ, even if heterokaryons detected were too rare to hypothesize they directly repopulated the lesioned epithelium. The data reported prove that the migrating transplanted stem cells were able to induce a neuroregenerative process in a specific lesioned sensory area, enforcing the perspective that they could become an available tool for stem cell therapy.
Collapse
Affiliation(s)
- Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, and Foundation Onlus Stem Cells and Life, Via Selmi 3, 40126 Bologna, Italy,
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, and Foundation Onlus Stem Cells and Life, Via Selmi 3, 40126 Bologna, Italy
| | - Simone Pifferi
- International School for Advanced Studies, SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Anna Menini
- International School for Advanced Studies, SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Emanuela Ognio
- IRCCS San Martino, National Institute for Cancer Research (IST), Largo Rosanna Benzi 10, 16132 Genua, Italy
| | - Anna Teresa Brini
- Department of Biomedical, Surgical and Odontoiatric Sciences, University of Milan, Via Vanvitelli 32, 2019 Milan, Italy
| | - Enrico Di Oto
- Department of Hematology and Oncology "L. and A. Seragnoli," Section of Anatomic Pathology at Bellaria Hospital, University of Bologna, Via Altura 3, 40139 Bologna, Italy and
| | - Roberto P Revoltella
- Institute for Chemical, Physical Processes, C.N.R. and Foundation Onlus Stem Cells and Life, Via L.L. Zamenhof 8, 56127 Pisa, Italy
| |
Collapse
|
21
|
Ueha R, Mukherjee S, Ueha S, de Almeida Nagata DE, Sakamoto T, Kondo K, Yamasoba T, Lukacs NW, Kunkel SL. Viral disruption of olfactory progenitors is exacerbated in allergic mice. Int Immunopharmacol 2014; 22:242-7. [PMID: 24998164 DOI: 10.1016/j.intimp.2014.06.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/03/2014] [Accepted: 06/20/2014] [Indexed: 11/30/2022]
Abstract
Upper airway viral infection in patients with airway allergy often exacerbates olfactory dysfunction, but the mechanism for this exacerbation remains unclear. Here, we examined the effects of respiratory syncytial virus (RSV) infection, in the presence or absence of airway allergy, on olfactory receptor neurons (ORNs) and their progenitors in mice. Immunohistological analyses revealed that cockroach allergen (CRA)-induced airway allergy alone did not affect the number of OMP(+) mature ORNs and SOX2(+) ORN progenitors. Intranasal RSV line 19 infection in allergy-free mice resulted in a transient decrease in SOX2(+) ORN progenitors without affecting OMP(+) ORNs. In contrast, the RSV-induced decrease in SOX2(+) ORN progenitors was exacerbated and prolonged in allergic mice, which resulted in eventual loss of OMP(+) ORNs. In the allergic mice, reduction of RSV in the olfactory epithelium was delayed as compared with allergy-free mice. These results suggest that ORN progenitors were impaired by RSV infection and that airway allergy exacerbated damage to ORN progenitors by reducing viral clearance.
Collapse
Affiliation(s)
- R Ueha
- Department of Pathology, University of Michigan, United States; Department of Otolaryngology, University of Tokyo, Japan.
| | - S Mukherjee
- Department of Pathology, University of Michigan, United States
| | - S Ueha
- Department of Pathology, University of Michigan, United States; Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Japan; CREST, Japan Science and Technology Agency, Japan
| | | | - T Sakamoto
- Department of Otolaryngology, University of Tokyo, Japan
| | - K Kondo
- Department of Otolaryngology, University of Tokyo, Japan
| | - T Yamasoba
- Department of Otolaryngology, University of Tokyo, Japan
| | - N W Lukacs
- Department of Pathology, University of Michigan, United States
| | - S L Kunkel
- Department of Pathology, University of Michigan, United States
| |
Collapse
|
22
|
Liu SJ, Zou Y, Belegu V, Lv LY, Lin N, Wang TY, McDonald JW, Zhou X, Xia QJ, Wang TH. Co-grafting of neural stem cells with olfactory en sheathing cells promotes neuronal restoration in traumatic brain injury with an anti-inflammatory mechanism. J Neuroinflammation 2014; 11:66. [PMID: 24690089 PMCID: PMC3977666 DOI: 10.1186/1742-2094-11-66] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/24/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We sought to investigate the effects of co-grafting neural stem cells (NSCs) with olfactory ensheathing cells (OECs) on neurological behavior in rats subjected to traumatic brain injury (TBI) and explore underlying molecular mechanisms. METHODS TBI was established by percussion device made through a weight drop (50 g) from a 30 cm height. Cultured NSCs and OECs isolated from rats were labeled by Hoechst 33342 (blue) and chloromethyl-benzamidodialkyl carbocyanine (CM-Dil) (red), respectively. Then, NSCs and/or OECs, separately or combined, were transplanted into the area surrounding the injury site. Fourteen days after transplantation, neurological severity score (NSS) were recorded. The brain tissue was harvested and processed for immunocytochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Significant neurological function improvement was observed in the three transplant groups, compared to the TBI group, and co-transplantation gave rise to the best improvement. Morphological evaluation showed that the number of neurons in cortex from combination implantation was more than for other groups (P <0.05); conversely, the number of apoptotic cells showed a significant decrease by TUNEL staining. Transplanted NSCs and OECs could survive and migrate in the brain, and the number of neurons differentiating from NSCs in the co-transplantation group was significantly greater than in the NSCs group. At the molecular level, the expressions of IL-6 and BAD in the co-graft group were found to be down regulated significantly, when compared to either the NSC or OEC alone groups. CONCLUSION The present study demonstrates for the first time the optimal effects of co-grafting NSCs and OECs as a new strategy for the treatment of TBI via an anti-inflammation mechanism.
Collapse
Affiliation(s)
- Su-Juan Liu
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Zou
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Visar Belegu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Long-Yun Lv
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| | - Na Lin
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| | - Ting-Yong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| | - John W McDonald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xue Zhou
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting-Hua Wang
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| |
Collapse
|