1
|
Torres-Méndez CE, Nandi S, Martinovic K, Kühne P, Liu Y, Taylor S, Lysandrou M, Mascarenhas MIBR, Langwallner V, Alonso JES, Jovanovic I, Lüftner M, Gkountana GV, Bern D, Atif AR, Manouchehri Doulabi E, Mestres G, Kamali-Moghaddam M. Functionalized gold nanoflowers on carbon screen-printed electrodes: an electrochemical platform for biosensing hemagglutinin protein of influenza A H1N1 virus. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:540-550. [PMID: 40275987 PMCID: PMC12018907 DOI: 10.3762/bjnano.16.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
An electrochemical biosensor based on modified carbon screen-printed electrodes was developed for the detection of hemagglutinin of influenza A H1N1 virus (H1). Gold nanoflowers were electrodeposited on the electrode to increase conductivity and surface area. The electrochemical signal was amplified by functionalization of the gold nanoflowers with 4-aminothiophenol, which resulted in a 100-fold decrease of the charge transfer resistance due to a tunneling effect. Subsequently, monoclonal antibodies against H1 were immobilized on the surface via covalent amide bond formation, followed by blocking with bovine serum albumin to minimize nonspecific hydrophobic binding. The electrodes were characterized by cyclic voltammetry and electrochemical impedance spectroscopy experiments in the presence of [Fe(CN)6]3-/4-. Differential pulse voltammetry was used to measure the change in current across the electrode as a function of H1 concentration. This was performed on a series of samples of artificial saliva containing H1 protein in a clinically relevant concentration range. In these experiments, the biosensor showed a limit of detection of 19 pg/mL. Finally, the biosensor platform was coupled to an automated microfluidics system, and no significant decrease of the electrochemical signal was observed.
Collapse
Affiliation(s)
- Carlos Enrique Torres-Méndez
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Sharmilee Nandi
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Klara Martinovic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Patrizia Kühne
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Yifan Liu
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Sam Taylor
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Maria Lysandrou
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Viktoria Langwallner
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Ivana Jovanovic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maike Lüftner
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Georgia-Vasiliki Gkountana
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - David Bern
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Abdul-Raouf Atif
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Ehsan Manouchehri Doulabi
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gemma Mestres
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Kong X, Zhang Y, Liu Y, Lyu J, Yin ZZ. An electrochemical microsensor for osteopontin based on a molecularly imprinted layer and a built-in probe-functionalized acupuncture needle. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2902-2910. [PMID: 40130320 DOI: 10.1039/d5ay00114e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Osteopontin (OPN) is an important biomarker for reflecting osteoarthritic inflammation and endochondral ossification. In the field of electroanalysis, OPN is a non-electroactive protein, which is usually detected by means of an outer probe or biolabel. Here, a novel microsensor that can directly electroanalyze OPN was constructed by coordinating a surface molecularly imprinted polymer (SMIP) with a built-in electroactive probe of poly(methylene blue) (pMB) on an acupuncture needle microelectrode (ANME). The OPN template can be reversibly anchored using 4-mercaptophenylboronic acid (4-MBPA) via a borate bond between phenylboronic acid and the external cis-diol of the glycoprotein. Methylene blue (MB) and dopamine (DA) were sequentially electropolymerized and grown around templates, which played pivotal roles in the detection signal from the built-in pMB through the imprinted nanocavities. After the recombination of OPN molecules with imprinted nanocavities, the current strength of built-in pMB could be impeded, producing a highly sensitive response. This microsensor shows a linear relationship with the concentration of OPN from 0.01 to 1000 ng mL-1 with a detection limit of 3 pg mL-1. The microsensor also exhibits high selectivity and stability, which is attributed to the recognizing ability of the imprinted nanocavities and the hindrance and anti-interference function of coated polydopamine (pDA). This strategy of preparing a sensor shows practical and scientific significance for functionalizing microelectrodes and constructing microsensors for non-electroactive glycoproteins. In the future, it will be fascinating to integrate this microsensor with the acupuncture technique.
Collapse
Affiliation(s)
- Xue Kong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yi Zhang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yan Liu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Jinghui Lyu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zheng-Zhi Yin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
3
|
Baskar A, Madhivanan K, Atchudan R, Arya S, Sundramoorthy AK. Nanoparticle electrochemical biosensors for virus detection. Clin Chim Acta 2025; 566:120054. [PMID: 39551230 DOI: 10.1016/j.cca.2024.120054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Viruses pose a significant threat to global public health, underscoring the urgent need for rapid, accurate, and sensitive diagnostic methods for timely detection and intervention. The demand for efficient diagnostics that can detect a wide range of viral pathogens has never been greater. In this context, metal nanoparticle-based biosensors have emerged as a promising solution, offering exceptional sensitivity for detecting various analytes, including nucleic acids (DNA/RNA), proteins, and other biomarkers associated with pathogens. These biosensors are particularly critical for the development of point-of-care (POC) diagnostic tools, enabling early detection of infectious agents. This review explores recent advancements in nanoparticle (NP)-based biosensors that utilize noble metals like gold (Au), silver (Ag), and platinum (Pt) for viral pathogen detection, focusing on viruses such as SARS-CoV, HIV, hepatitis, influenza, and Zika. It highlights the role of NP-based electrochemical sensors and compares traditional and contemporary detection techniques. The review also examines key performance metrics such as limits of detection (LOD), linear detection ranges, cost-effectiveness, and accessibility, with a special emphasis on their application in POC diagnostics. The aim is to provide researchers with valuable insights into the development of next-generation NP-based biosensors, facilitating the creation of innovative diagnostic technologies for viral diseases.
Collapse
Affiliation(s)
- Anandavalli Baskar
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Keerthana Madhivanan
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu, Jammu and Kashmir, 180006, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
4
|
Mollarasouli F, Bahrani S, Amrollahimiyandeh Y, Paimard G. Nanomaterials-based immunosensors for avian influenza virus detection. Talanta 2024; 279:126591. [PMID: 39059066 DOI: 10.1016/j.talanta.2024.126591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Avian influenza viruses (AIV) are capable of infecting a considerable proportion of the world's population each year, leading to severe epidemics with high rates of morbidity and mortality. The methods now used to diagnose influenza virus A include the Western blot test (WB), hemagglutination inhibition (HI), and enzyme-linked immunosorbent assays (ELISAs). But because of their labor-intensiveness, lengthy procedures, need for costly equipment, and inexperienced staff, these approaches are considered inappropriate. The present review elucidates the recent advancements in the field of avian influenza detection through the utilization of nanomaterials-based immunosensors between 2014 and 2024. The classification of detection techniques has been taken into account to provide a comprehensive overview of the literature. The review encompasses a detailed illustration of the commonly employed detection mechanisms in immunosensors, namely, colorimetry, fluorescence assay, surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), electrochemical detection, quartz crystal microbalance (QCM) piezoelectric, and field-effect transistor (FET). Furthermore, the challenges and future prospects for the immunosensors have been deliberated upon. The present review aims to enhance the understanding of immunosensors-based sensing platforms for virus detection and to stimulate the development of novel immunosensors by providing novel ideas and inspirations. Therefore, the aim of this paper is to provide an updated information about biosensors, as a recent detection technique of influenza with its details regarding the various types of biosensors, which can be used for this review.
Collapse
Affiliation(s)
| | - Sonia Bahrani
- Borjobaru Fars Company, Nanotechnology Department, Fars Science and Technology Park, Shiraz, 7197687811, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yousef Amrollahimiyandeh
- Borjobaru Fars Company, Nanotechnology Department, Fars Science and Technology Park, Shiraz, 7197687811, Iran
| | - Giti Paimard
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology Optometry, and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
5
|
Zhang L, Li C, Shao S, Zhang Z, Chen D. Influenza viruses and SARS-CoV-2 diagnosis via sensitive testing methods in clinical application. Heliyon 2024; 10:e36410. [PMID: 39381246 PMCID: PMC11458974 DOI: 10.1016/j.heliyon.2024.e36410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 10/10/2024] Open
Abstract
The identification of influenza viruses and SARS-CoV-2 has garnered increasing attention due of their longstanding global menace to human life and health. The point-of-care test is a potential approach for identifying influenza viruses and SARS-CoV-2 in clinical settings, leading to timely discovery, documentation, and treatment. The primary difficulties encountered with conventional detection techniques for influenza viruses and SARS-CoV-2 are the limited or inadequate ability to identify the presence of the viruses, the lack of speed, precision, accuracy, sensitivity, and specificity, often resulting in a failure to promptly notify disease control authorities. Recently, point-of-care test methods, along with nucleic acid amplification, optics, electrochemistry, lateral/vertical flow, and minimization, have been demonstrated the characteristics of reliability, sensitivity, specificity, stability, and portability. A point-of-care test offers promising findings in the early detection of influenza viruses and SARS-CoV-2 in both scientific research and practical use. In this review, we will go over the principles, advantages, limitations, and real-world applications of point-of-care diagnostics. The significance of constraints of detection, throughput, sensitivity, and specificity in the analysis of clinical samples in settings with restricted resources is underscored. This discussion concludes with their prospects and challenges.
Collapse
Affiliation(s)
- Le Zhang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Chunwen Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - ShaSha Shao
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaowei Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Di Chen
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Santos DJAD, Oliveira TRD, Araújo GMD, Pott-Junior H, Melendez ME, Sabino EC, Leite OD, Faria RC. An electrochemical genomagnetic assay for detection of SARS-CoV-2 and Influenza A viruses in saliva. Biosens Bioelectron 2024; 255:116210. [PMID: 38537427 DOI: 10.1016/j.bios.2024.116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 04/15/2024]
Abstract
Viral respiratory infections represent a major threat to the population's health globally. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 disease and in some cases the symptoms can be confused with Influenza disease caused by the Influenza A viruses. A simple, fast, and selective assay capable of identifying the etiological agent and differentiating the diseases is essential to provide the correct clinical management to the patient. Herein, we described the development of a genomagnetic assay for the selective capture of viral RNA from SARS-CoV-2 and Influenza A viruses in saliva samples and employing a simple disposable electrochemical device for gene detection and quantification. The proposed method showed excellent performance detecting RNA of SARS-CoV-2 and Influenza A viruses, with a limit of detection (LoD) and limit of quantification (LoQ) of 5.0 fmol L-1 and 8.6 fmol L-1 for SARS-CoV-2, and 1.0 fmol L-1 and 108.9 fmol L-1 for Influenza, respectively. The genomagnetic assay was employed to evaluate the presence of the viruses in 36 saliva samples and the results presented similar responses to those obtained by the real-time reverse transcription-polymerase chain reaction (RT-PCR), demonstrating the reliability and capability of a method as an alternative for the diagnosis of COVID-19 and Influenza with point-of-care capabilities.
Collapse
Affiliation(s)
| | | | | | - Henrique Pott-Junior
- Department of Medicine, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | - Ester Cerdeira Sabino
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Oldair Donizeti Leite
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil; Federal Technological University of Paraná, Campus Medianeira, Medianeira, PR, 85884-000, Brazil.
| | - Ronaldo Censi Faria
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
7
|
Phonklam K, Sriwimol W, Thuptimdang W, Phairatana T. Disposable label-free electrochemical immunosensor based on gold nanoparticles-Prussian blue for neutrophil gelatinase-associated lipocalin detection in urine samples. Talanta 2024; 274:125960. [PMID: 38555767 DOI: 10.1016/j.talanta.2024.125960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a remarkable biomarker for assessing acute kidney injury. In this study, we developed a novel label-free NGAL electrochemical immunosensor based on gold nanoparticles (AuNPs) and Prussian blue (PB) without an external mediator. The AuNPs-PB based immunosensor was fabricated on a custom gold-electrode (AuE)-based polypropylene (PP) substrate. We systematically assessed and optimized key experimental parameters, including the process of AuNPs-PB electrodeposition, antibody concentration, and incubation time. The immunosensor response toward NGAL was determined using differential pulse voltammetry, where the decrease in the oxidation current response of the PB redox probe correlating with the increase in NGAL concentration. Our results demonstrated that the synergistic benefits of both AuNPs and PB significantly improved electrochemical activity for NGAL detection and provided a highly stable sensor across a range of pH values. The label-free immunosensor exhibited two linear ranges: 0.10-1.40 ng mL-1 and 1.40-25.0 ng mL-1, with a low detection limit of 0.094 ng mL-1. The developed NGAL immunosensor displayed high selectivity and excellent reproducibility. Furthermore, NGAL detection was completed within 30 min and the immunosensor exhibited storage stability for six weeks. Notably, NGAL levels determined in human urine samples using this developed label-free immunosensor showed good agreement with the results obtained from the enzyme-linked immunosorbent assay. This novel label-free NGAL immunosensor provides great potential in developing NGAL point-of-care testing applications.
Collapse
Affiliation(s)
- Kewarin Phonklam
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Wilaiwan Sriwimol
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Wanwara Thuptimdang
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Tonghathai Phairatana
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Medical Biosensor Laboratory, Medical Science Research and Innovation Institute, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
8
|
He X, Wang S, Ma C, Xu GR, Ma J, Xie H, Zhu W, Liu H, Wang L, Wang Y. Utilizing Electrochemical Biosensors as an Innovative Platform for the Rapid and On-Site Detection of Animal Viruses. Animals (Basel) 2023; 13:3141. [PMID: 37835747 PMCID: PMC10571726 DOI: 10.3390/ani13193141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Animal viruses are a significant threat to animal health and are easily spread across the globe with the rise of globalization. The limitations in diagnosing and treating animal virus infections have made the transmission of diseases and animal deaths unpredictable. Therefore, early diagnosis of animal virus infections is crucial to prevent the spread of diseases and reduce economic losses. To address the need for rapid diagnosis, electrochemical sensors have emerged as promising tools. Electrochemical methods present numerous benefits, including heightened sensitivity and selectivity, affordability, ease of use, portability, and rapid analysis, making them suitable for real-time virus detection. This paper focuses on the construction of electrochemical biosensors, as well as promising biosensor models, and expounds its advantages in virus detection, which is a promising research direction.
Collapse
Affiliation(s)
- Xun He
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Shan Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Caoyuan Ma
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Guang-Ri Xu
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Jinyou Ma
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Hongbing Xie
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Wei Zhu
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Hongyang Liu
- Shuangliao Animal Disease Control Center, Siping 136400, China;
| | - Lei Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Yimin Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| |
Collapse
|
9
|
Kumar THV, Srinivasan S, Krishnan V, Vaidyanathan R, Babu KA, Natarajan S, Veerapandian M. Peptide-based direct electrochemical detection of receptor binding domains of SARS-CoV-2 spike protein in pristine samples. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 377:133052. [PMID: 36438197 PMCID: PMC9682882 DOI: 10.1016/j.snb.2022.133052] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
RNA isolation and amplification-free user-friendly detection of SARS-CoV-2 is the need of hour especially at resource limited settings. Herein, we devised the peptides of human angiotensin converting enzyme-2 (hACE-2) as bioreceptor at electrode interface for selective targeting of receptor binding domains (RBD) of SARS-CoV-2 spike protein (SP). Disposable carbon-screen printed electrode modified with methylene blue (MB) electroadsorbed graphene oxide (GO) has been constructed as cost-efficient and scalable platform for hACE-2 peptide-based SARS-CoV-2 detection. In silico molecular docking of customized 25 mer peptides with RBD of SARS-CoV-2 SP were validated by AutoDock CrankPep. N-terminal region of ACE-2 showed higher binding affinity of - 20.6 kcal/mol with 15 H-bond, 9 of which were < 3 Å. Electrochemical biosensing of different concentrations of SPs were determined by cyclic voltammetry (CV) and chronoamperometry (CA), enabling a limit of detection (LOD) of 0.58 pg/mL and 0.71 pg/mL, respectively. MB-GO devised hACE-2 peptide platform exert an enhanced current sensitivity of 0.0105 mA/pg mL-1 cm-2 (R2 = 0.9792) (CV) and 0.45 nA/pg mL-1 (R2 = 0.9570) (CA) against SP in the range of 1 pg/mL to 1 µg/mL. For clinical feasibility, nasopharyngeal and oropharyngeal swab specimens in viral transport medium were directly tested with the prepared peptide biosensor and validated with RT-PCR, promising for point-of-need analysis.
Collapse
Affiliation(s)
- T H Vignesh Kumar
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sowmiya Srinivasan
- Dr. A.P.J. Abdul Kalam Center of Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Chennai 600095, Tamil Nadu, India
| | - Vinoth Krishnan
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rama Vaidyanathan
- Dr. A.P.J. Abdul Kalam Center of Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, Tamil Nadu, India
| | - Kannadasan Anand Babu
- Dr. A.P.J. Abdul Kalam Center of Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Chennai 600095, Tamil Nadu, India
| | - Sudhakar Natarajan
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Ghasemi F, Salimi A. Advances in 2d Based Field Effect Transistors as Biosensing Platforms: From Principle to Biomedical Applications. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Tortolini C, Gigli V, Angeloni A, Galantini L, Tasca F, Antiochia R. Disposable Voltammetric Immunosensor for D-Dimer Detection as Early Biomarker of Thromboembolic Disease and of COVID-19 Prognosis. BIOSENSORS 2022; 13:bios13010043. [PMID: 36671877 PMCID: PMC9855840 DOI: 10.3390/bios13010043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 06/12/2023]
Abstract
In this work, we report on the development of a simple electrochemical immunosensor for the detection of D-dimer protein in human plasma samples. The immunosensor is built by a simple drop-casting procedure of chitosan nanoparticles (CSNPs) as biocompatible support, Protein A (PrA), to facilitate the proper orientation of the antibody sites to epitopes as a capture biomolecule, and the D-dimer antibody onto a carboxyl functionalized multi-walled carbon nanotubes screen printed electrode (MWCNTs-SPE). The CSNPs have been morphologically characterized by Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS) techniques. Successively, the electrochemical properties of the screen-printed working electrode after each modification step have been characterized by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The resulting MWCNTs-CSNPs-PrA-D-dimer Ab immunosensor displays an optimal and promising platform for antibody immobilization and specific D-dimer detection. DPV has been used to investigate the antigen/antibody interaction at different D-dimer concentrations. The proposed voltammetric immunosensor allowed a linear range from 2 to 500 μg L-1 with a LOD of 0.6 μg L-1 and a sensitivity of 1.3 μA L μg-1 cm-2. Good stability and a fast response time (5 s) have been reported. Lastly, the performance of the voltammetric immunosensor has been tested in human plasma samples, showing satisfactory results, thus attesting to the promising feasibility of the proposed platform for detecting D-dimer in physiological samples.
Collapse
Affiliation(s)
- Cristina Tortolini
- Department of Experimental Medicine, Sapienza University of Rome, V.le Regina Elena 324, 00166 Rome, Italy
| | - Valeria Gigli
- Department of Experimental Medicine, Sapienza University of Rome, V.le Regina Elena 324, 00166 Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, V.le Regina Elena 324, 00166 Rome, Italy
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Federico Tasca
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago 9170022, Chile
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Tepeli Büyüksünetçi Y, Anık Ü. Graphene‐Gold Hybrid Nanomaterial Based Impedimetric Immunosensor for H3N2 Influenza A Virus Detection. ChemistrySelect 2022. [DOI: 10.1002/slct.202202614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yudum Tepeli Büyüksünetçi
- Sensors, Biosensors and Nano-Diagnostic Laboratory Research Laboratory Center Mugla Sitki Kocman University Kotekli-Mugla/ Turkey
| | - Ülkü Anık
- Sensors, Biosensors and Nano-Diagnostic Laboratory Research Laboratory Center Mugla Sitki Kocman University Kotekli-Mugla/ Turkey
- Mugla Sitki Kocman University, Faculty of Science Chemistry Department Kotekli-Mugla/ Turkey
| |
Collapse
|
13
|
Filchakova O, Dossym D, Ilyas A, Kuanysheva T, Abdizhamil A, Bukasov R. Review of COVID-19 testing and diagnostic methods. Talanta 2022; 244:123409. [PMID: 35390680 PMCID: PMC8970625 DOI: 10.1016/j.talanta.2022.123409] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/09/2023]
Abstract
More than six billion tests for COVID-19 has been already performed in the world. The testing for SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) virus and corresponding human antibodies is essential not only for diagnostics and treatment of the infection by medical institutions, but also as a pre-requisite for major semi-normal economic and social activities such as international flights, off line work and study in offices, access to malls, sport and social events. Accuracy, sensitivity, specificity, time to results and cost per test are essential parameters of those tests and even minimal improvement in any of them may have noticeable impact on life in the many countries of the world. We described, analyzed and compared methods of COVID-19 detection, while representing their parameters in 22 tables. Also, we compared test performance of some FDA approved test kits with clinical performance of some non-FDA approved methods just described in scientific literature. RT-PCR still remains a golden standard in detection of the virus, but a pressing need for alternative less expensive, more rapid, point of care methods is evident. Those methods that may eventually get developed to satisfy this need are explained, discussed, quantitatively compared. The review has a bioanalytical chemistry prospective, but it may be interesting for a broader circle of readers who are interested in understanding and improvement of COVID-19 testing, helping eventually to leave COVID-19 pandemic in the past.
Collapse
Affiliation(s)
- Olena Filchakova
- Biology Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Dina Dossym
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Aisha Ilyas
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Tamila Kuanysheva
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Altynay Abdizhamil
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Rostislav Bukasov
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| |
Collapse
|
14
|
Dual synergistic response for the electrochemical detection of H1N1 virus and viral proteins using high affinity peptide receptors. Talanta 2022; 248:123613. [PMID: 35653962 DOI: 10.1016/j.talanta.2022.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022]
Abstract
Identifying alternatives to antibodies as bioreceptors to test samples feasibly is crucial for developing next-generation in vitro diagnostic methods. Here, we aimed to devise an analytical method for detecting H1N1 viral proteins (hemagglutinin [HA] and neuraminidase [NA]) as well as the complete H1N1 virus with high sensitivity and selectivity. By applying biopanning of M13 peptide libraries, high affinity peptides specific for HA or NA were successfully identified. After selection, three different synthetic peptides that incorporated gold-binding motifs were designed and chemically synthesized on the basis of the original sequence identified phage display technique with or without two repeat. Their binding interactions were characterized by enzyme-linked immunosorbent assay (ELISA), square wave voltammetry (SWV), Time of flight-secondary ion mass spectroscopy (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The binding constants (Kd) of HA BP1, HA BP2 and NA BP1 peptides were found to be 169.72 nM, 70.02 nM and 224.49 nM for HA or NA proteins by electrochemical measurements (SWV). The single use of HA BP2 peptide enabled the detection of either H1N1 viral proteins or the actual H1N1 virus, while NA BP1 peptide exhibited lower binding for real H1N1 virus particles. Moreover, the use of both HA BP1 and BP2 as a divalent capturing reagent improved sensor performance as well as the strength of the electrochemical signal, thereby exhibiting a dual synergistic effect for the electrochemical detection of H1N1 antigens with satisfactory specificity and sensitivity (limit of detection of 1.52 PFU/mL).
Collapse
|
15
|
Fahmy HM, Abu Serea ES, Salah-Eldin RE, Al-Hafiry SA, Ali MK, Shalan AE, Lanceros-Méndez S. Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection. ACS Biomater Sci Eng 2022; 8:964-1000. [PMID: 35229605 DOI: 10.1021/acsbiomaterials.1c00710] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graphene- and carbon-based nanomaterials are key materials to develop advanced biosensors for the sensitive detection of many biomarkers owing to their unique properties. Biosensors have attracted increasing interest because they allow efficacious, sensitive, selective, rapid, and low-cost diagnosis. Biosensors are analytical devices based on receptors for the process of detection and transducers for response measuring. Biosensors can be based on electrochemical, piezoelectric, thermal, and optical transduction mechanisms. Early virus identification provides critical information about potentially effective and selective therapies, extends the therapeutic window, and thereby reduces morbidity. The sensitivity and selectivity of graphene can be amended via functionalizing it or conjoining it with further materials. Amendment of the optical and electrical features of the hybrid structure by introducing appropriate functional groups or counterparts is especially appealing for quick and easy-to-use virus detection. Various techniques for the electrochemical detection of viruses depending on antigen-antibody interactions or DNA hybridization are discussed in this work, and the reasons behind using graphene and related carbon nanomaterials for the fabrication are presented and discussed. We review the existing state-of-the-art directions of graphene-based classifications for detecting DNA, protein, and hormone biomarkers and summarize the use of the different biosensors to detect several diseases, like cancer, Alzheimer's disease, and diabetes, to sense numerous viruses, including SARS-CoV-2, human immunodeficiency virus, rotavirus, Zika virus, and hepatitis B virus, and to detect the recent pandemic virus COVID-19. The general concepts, mechanisms of action, benefits, and disadvantages of advanced virus biosensors are discussed to afford beneficial evidence of the creation and manufacture of innovative virus biosensors. We emphasize that graphene-based nanomaterials are ideal candidates for electrochemical biosensor engineering due to their special and tunable physicochemical properties.
Collapse
Affiliation(s)
- Heba Mohamed Fahmy
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Esraa Samy Abu Serea
- Chemistry and Biochemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.,BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Reem Essam Salah-Eldin
- Chemistry and Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Miar Khaled Ali
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Ahmed Esmail Shalan
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan, 11422 Cairo, Egypt
| | - Senentxu Lanceros-Méndez
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
16
|
Lee D, Bhardwaj J, Jang J. Paper-based electrochemical immunosensor for label-free detection of multiple avian influenza virus antigens using flexible screen-printed carbon nanotube-polydimethylsiloxane electrodes. Sci Rep 2022; 12:2311. [PMID: 35145121 PMCID: PMC8831593 DOI: 10.1038/s41598-022-06101-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Many studies have been conducted on measuring avian influenza viruses and their hemagglutinin (HA) antigens via electrochemical principles; most of these studies have used gold electrodes on ceramic, glass, or silicon substrates, and/or labeling for signal enhancement. Herein, we present a paper-based immunosensor for label-free measurement of multiple avian influenza virus (H5N1, H7N9, and H9N2) antigens using flexible screen-printed carbon nanotube-polydimethylsiloxane electrodes. These flexible electrodes on a paper substrate can complement the physical weakness of the paper-based sensors when wetted, without affecting flexibility. The relative standard deviation of the peak currents was 1.88% when the electrodes were repeatedly bent and unfolded twenty times with deionized water provided each cycle, showing the stability of the electrodes. For the detection of HA antigens, approximately 10-μl samples (concentration: 100 pg/ml–100 ng/ml) were needed to form the antigen–antibody complexes during 20–30 min incubation, and the immune responses were measured via differential pulse voltammetry. The limits of detections were 55.7 pg/ml (0.95 pM) for H5N1 HA, 99.6 pg/ml (1.69 pM) for H7N9 HA, and 54.0 pg/ml (0.72 pM) for H9N2 HA antigens in phosphate buffered saline, and the sensors showed good selectivity and reproducibility. Such paper-based sensors are economical, flexible, robust, and easy-to-manufacture, with the ability to detect several avian influenza viruses.
Collapse
Affiliation(s)
- Daesoon Lee
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jyoti Bhardwaj
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaesung Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea. .,Department of Urban and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
17
|
Zhang Z, Ma P, Ahmed R, Wang J, Akin D, Soto F, Liu BF, Li P, Demirci U. Advanced Point-of-Care Testing Technologies for Human Acute Respiratory Virus Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103646. [PMID: 34623709 DOI: 10.1002/adma.202103646] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Indexed: 04/14/2023]
Abstract
The ever-growing global threats to human life caused by the human acute respiratory virus (RV) infections have cost billions of lives, created a significant economic burden, and shaped society for centuries. The timely response to emerging RVs could save human lives and reduce the medical care burden. The development of RV detection technologies is essential for potentially preventing RV pandemic and epidemics. However, commonly used detection technologies lack sensitivity, specificity, and speed, thus often failing to provide the rapid turnaround times. To address this problem, new technologies are devised to address the performance inadequacies of the traditional methods. These emerging technologies offer improvements in convenience, speed, flexibility, and portability of point-of-care test (POCT). Herein, recent developments in POCT are comprehensively reviewed for eight typical acute respiratory viruses. This review discusses the challenges and opportunities of various recognition and detection strategies and discusses these according to their detection principles, including nucleic acid amplification, optical POCT, electrochemistry, lateral flow assays, microfluidics, enzyme-linked immunosorbent assays, and microarrays. The importance of limits of detection, throughput, portability, and specificity when testing clinical samples in resource-limited settings is emphasized. Finally, the evaluation of commercial POCT kits for both essential RV diagnosis and clinical-oriented practices is included.
Collapse
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Peng Ma
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
18
|
Wu X, Manickam S, Wu T, Pang CH. Insights into the Role of Graphene/Graphene‐hybrid Nanocomposites in Antiviral Therapy. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xinyun Wu
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
| | - Sivakumar Manickam
- University of Technology Brunei Department of Petroleum and Chemical Engineering BE1410 Bandar Seri Begawan Brunei Darussalam
| | - Tao Wu
- University of Nottingham Ningbo China Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province 315100 Ningbo China
- University of Nottingham Ningbo China New Materials Institute 315100 Ningbo China
| | - Cheng Heng Pang
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
- University of Nottingham Ningbo China Municipal Key Laboratory of Clean Energy Conversion Technologies 315100 Ningbo China
| |
Collapse
|
19
|
Homayoonnia S, Lee Y, Andalib D, Rahman MS, Shin J, Kim K, Kim S. Micro/nanotechnology-inspired rapid diagnosis of respiratory infectious diseases. Biomed Eng Lett 2021; 11:335-365. [PMID: 34513114 PMCID: PMC8424173 DOI: 10.1007/s13534-021-00206-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
Humans have suffered from a variety of infectious diseases since a long time ago, and now a new infectious disease called COVID-19 is prevalent worldwide. The ongoing COVID-19 pandemic has led to research of the effective methods of diagnosing respiratory infectious diseases, which are important to reduce infection rate and help the spread of diseases be controlled. The onset of COVID-19 has led to the further development of existing diagnostic methods such as polymerase chain reaction, reverse transcription polymerase chain reaction, and loop-mediated isothermal amplification. Furthermore, this has contributed to the further development of micro/nanotechnology-based diagnostic methods, which have advantages of high-throughput testing, effectiveness in terms of cost and space, and portability compared to conventional diagnosis methods. Micro/nanotechnology-based diagnostic methods can be largely classified into (1) nanomaterials-based, (2) micromaterials-based, and (3) micro/nanodevice-based. This review paper describes how micro/nanotechnologies have been exploited to diagnose respiratory infectious diseases in each section. The research and development of micro/nanotechnology-based diagnostics should be further explored and advanced as new infectious diseases continue to emerge. Only a handful of micro/nanotechnology-based diagnostic methods has been commercialized so far and there still are opportunities to explore.
Collapse
Affiliation(s)
- Setareh Homayoonnia
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Yoonjung Lee
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Daniyal Andalib
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Md Sazzadur Rahman
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Jaemyung Shin
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Seonghwan Kim
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
20
|
Singh N, Chung S, Sveiven M, Hall DA. Cortisol Detection in Undiluted Human Serum Using a Sensitive Electrochemical Structure-Switching Aptamer over an Antifouling Nanocomposite Layer. ACS OMEGA 2021; 6:27888-27897. [PMID: 34722988 PMCID: PMC8552316 DOI: 10.1021/acsomega.1c03552] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/16/2021] [Indexed: 05/16/2023]
Abstract
There is a strong and growing need to monitor stress biomarkers in vivo for real-time emotional and wellness assessment. Toward this, we report a reagent-free electrochemical aptasensor with a nanocomposite antifouling layer for sensitive and continuous detection of cortisol in human serum. A thiolated, methylene blue (MB)-tagged conformation-switching aptamer was immobilized over a gold nanowire (AuNW) nanocomposite to capture cortisol and generate a signal proportional to the cortisol concentration. The signal is recorded through differential pulse voltammetry (DPV) and chronoamperometry. The aptasensor exhibited a sensitive response with 0.51 and 0.68 nM detection limits in spiked buffer and undiluted serum samples, respectively. Interference from other structurally similar analogs, namely, epinephrine and cholic acid, was negligible (<10%). The developed nanocomposite-based aptasensor showed excellent stability in undiluted human serum, outperforming several other nanocomposite materials even after prolonged exposure. This work lays the foundation for new biosensor formats such as implantable and wearable sensors.
Collapse
Affiliation(s)
- Naveen
K. Singh
- Department
of Electrical and Computer Engineering, University of California—San Diego, La Jolla, California 92093, United States
| | - Saeromi Chung
- Department
of Electrical and Computer Engineering, University of California—San Diego, La Jolla, California 92093, United States
| | - Michael Sveiven
- Department
of Bioengineering, University of California—San
Diego, La Jolla, California 92093, United States
| | - Drew A. Hall
- Department
of Electrical and Computer Engineering, University of California—San Diego, La Jolla, California 92093, United States
- Department
of Bioengineering, University of California—San
Diego, La Jolla, California 92093, United States
| |
Collapse
|
21
|
Özmen EN, Kartal E, Turan MB, Yazıcıoğlu A, Niazi JH, Qureshi A. Graphene and carbon nanotubes interfaced electrochemical nanobiosensors for the detection of SARS-CoV-2 (COVID-19) and other respiratory viral infections: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112356. [PMID: 34579878 PMCID: PMC8339589 DOI: 10.1016/j.msec.2021.112356] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 01/15/2023]
Abstract
Recent COVID-19 pandemic has claimed millions of lives due to lack of a rapid diagnostic tool. Global scientific community is now making joint efforts on developing rapid and accurate diagnostic tools for early detection of viral infections to preventing future outbreaks. Conventional diagnostic methods for virus detection are expensive and time consuming. There is an immediate requirement for a sensitive, reliable, rapid and easy-to-use Point-of-Care (PoC) diagnostic technology. Electrochemical biosensors have the potential to fulfill these requirements, but they are less sensitive for sensing viruses/viral infections. However, sensitivity and performance of these electrochemical platforms can be improved by integrating carbon nanostructure, such as graphene and carbon nanotubes (CNTs). These nanostructures offer excellent electrical property, biocompatibility, chemical stability, mechanical strength and, large surface area that are most desired in developing PoC diagnostic tools for detecting viral infections with speed, sensitivity, and cost-effectiveness. This review summarizes recent advancements made toward integrating graphene/CNTs nanostructures and their surface modifications useful for developing new generation of electrochemical nanobiosensors for detecting viral infections. The review also provides prospects and considerations for extending the graphene/CNTs based electrochemical transducers into portable and wearable PoC tools that can be useful in preventing future outbreaks and pandemics.
Collapse
Affiliation(s)
- Emine Nur Özmen
- Department of Molecular Biology and Genetics, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - Enise Kartal
- Department of Mechanical Engineering, Bilkent University, Ankara, Turkey
| | - Mehmet Bora Turan
- Department of Mechanical Engineering, Bilkent University, Ankara, Turkey
| | - Alperen Yazıcıoğlu
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle 34956, Tuzla, Istanbul, Turkey
| | - Javed H Niazi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla 34956, Istanbul, Turkey.
| | - Anjum Qureshi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla 34956, Istanbul, Turkey.
| |
Collapse
|
22
|
In-situ redox-active hybrid graphene platform for label-free electrochemical biosensor: Insights from electrodeposition and electroless deposition. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Bukkitgar SD, Shetti NP, Aminabhavi TM. Electrochemical investigations for COVID-19 detection-A comparison with other viral detection methods. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 420:127575. [PMID: 33162783 PMCID: PMC7605744 DOI: 10.1016/j.cej.2020.127575] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
Virus-induced infection such as SARS-CoV-2 is a serious threat to human health and the economic setback of the world. Continued advances in the development of technologies are required before the viruses undergo mutation. The low concentration of viruses in environmental samples makes the detection extremely challenging; simple, accurate and rapid detection methods are in urgent need. Of all the analytical techniques, electrochemical methods have the established capabilities to address the issues. Particularly, the integration of nanotechnology would allow miniature devices to be made available at the point-of-care. This review outlines the capabilities of electrochemical methods in conjunction with nanotechnology for the detection of SARS-CoV-2. Future directions and challenges of the electrochemical biosensors for pathogen detection are covered including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, and reusable biosensors for on-site monitoring, thereby providing low-cost and disposable biosensors.
Collapse
Key Words
- AIV H5N1, Avian influenza
- AIV, Avian influenza virus
- ASFV, African swine fever virus
- BVDV, Bovine viral diarrhea virus
- CGV, Chikungunya viruses
- CMV, Cucumber mosaic virus
- COVID-19
- CSFV, Classic swine fever virus
- CV, Cyclic voltammetry
- DAstV-1, Duck astrovirus 1
- DAstV-2, Duck astrovirus 2
- DENV, Dengue virus
- DEV, Duck enteritis virus
- DHAV-1, Duck hepatitis A virus 1
- DHAV-3, Duck hepatitis A virus 3
- DPV, Differential pulse voltammetry
- DRV-1, Duck reovirus 1
- DRV-2, Duck reovirus 2
- Detection
- EBV, Epstein-Barr virus
- EIS, Electric impedance spectroscopy
- EPC, External positive controls
- EV, Human enterovirus
- EV71, Human enterovirus 71
- Electrochemical sensor
- FMI SMOF, Fluorescence molecularly imprinted sensor based on a metal–organic framework
- GCE, Glassy carbon electrode
- GCFaV-1, Ginger chlorotic fleck associated virus 1
- GCFaV-2, Ginger chlorotic fleck-associated virus 2
- GEV VN-96, Gastroenteritis virus VN-96
- GPV, Goose parvovirus
- HHV, Human herpes virus 6
- HIAV, Human influenza A viruses
- HPB19, Human parvovirus B19
- HSV, Herpes simplex
- IAV, influenza A virus
- IEA, Interdigitated electrode array
- IMA, Interdigitated microelectrode array
- INAA, Isothermal nucleic acid amplification-based
- JEV, Japanese encephalitis virus
- LAMP, Loop-Mediated Isothermal Amplification
- LSV, Linear sweep voltammetry
- MERS, Middle East respiratory syndrome
- MIEC, Molecularly imprinted electrochemiluminescence
- MNV, Murine norovirus
- MeV, Measles virus
- NNV, Nervous necrosis virus
- Nanotechnology
- PBoV, Porcine bocavirus
- PCNAME, Pt-coated nanostructured alumina membrane electrode
- PCR
- PCRLFS, Polymerase Chain Reaction with a lateral flow strip with a lateral flow strip
- PCV, Porcine circovirus 3
- PEDV, Porcine epidemic diarrhoea virus
- PRRSV, porcine reproductive and respiratory syndrome virus
- PSV, Pseudorabies virus
- RCA, Rolling circle amplification
- RGO, Reduced graphene oxide
- RT-LAMP-VF, RT-LAMP and a vertical flow visualization strip
- RV, Rubella virus
- SARS, Severe acute respiratory syndrome
- SIVH1N1, Swine influenza virus
- SWV, Square wave voltammetry
- TGEV, transmissible gastroenteritis coronavirus
- TMUV, Tembusu virus
- USEGFET, Ultra-sensitive electrolyte-gated field-effect transistor
- VZV, Varicella-zoster virus
- VZV, varicella-Zoster virus
- Viruses
- ZV, Zika virus
Collapse
Affiliation(s)
- Shikandar D Bukkitgar
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Nagaraj P Shetti
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, Soniya College of Pharmacy, Dharwad 580-007, India
| |
Collapse
|
24
|
Yaiwong P, Semakul N, Bamrungsap S, Jakmunee J, Ounnunkad K. Electrochemical detection of matrix metalloproteinase-7 using an immunoassay on a methylene blue/2D MoS 2/graphene oxide electrode. Bioelectrochemistry 2021; 142:107944. [PMID: 34500138 DOI: 10.1016/j.bioelechem.2021.107944] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Methylene blue (MB) adsorption onto a two-dimensional molybdenum disulfide (2D MoS2)/graphene oxide (GO) nanocomposite sitting on a screen-printed carbon electrode (SPCE) is used to develop a new sensitive label-free electrochemical immunosensor for the detection of matrix metalloproteinase-7 (MMP-7) cancer biomarkers. The 2D MoS2/GO nanocomposite deposited onto an SPCE provides a large specific surface area, fast electron transfer, and exceptional electrical conductivity. Furthermore, MB adsorbed onto the 2D MoS2/GO nanocomposite architecture can be used for signal amplification in electrochemical immunosensors. Moreover, an immunosensor platform was fabricated by the adsorption of anti-MMP-7 capture antibodies onto the MB/2D MoS2/GO nanocomposite surface via electrostatic interactions for the detection of the MMP-7 immunocomplex. Under optimum conditions, the label-free immunosensor exhibits a decrease in the current response for MB corresponding to the MMP-7 concentration. The sensor affords a linear logarithmic range of 0.010-75 ng mL-1 with a limit of detection (LOD) of 0.007 ng mL-1. The developed electrochemical immunosensor provides high selectivity, good reproducibility, and excellent stability. Furthermore, the proposed immunosensor can be applied for the detection of MMP-7 in human serum samples with good recovery. Thus, this device can be applied for the early clinical diagnosis of pancreatic and colorectal cancers.
Collapse
Affiliation(s)
- Patrawadee Yaiwong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
25
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
26
|
Kuzniewski S. Prevalence, environmental fate, treatment strategies, and future challenges for wastewater contaminated with SARS-CoV-2. REMEDIATION (NEW YORK, N.Y.) 2021; 31:97-110. [PMID: 34539159 PMCID: PMC8441782 DOI: 10.1002/rem.21691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in untreated and treated wastewater and studies have shown that the concentration of SARS-CoV-2 is proportional to the prevalence of the coronavirus disease 2019 (COVID-19) in communities. This article presents a literature review of the prevalence of SARS-CoV-2 in wastewater, its environmental fate, recommended treatment strategies for contaminated wastewater, and treatment challenges to be faced in the future. The environmental fate of SARS-CoV-2 in wastewater is not straightforward because it can be a source of infection when present in the treated wastewater depending on the permeability of the wastewater treatment plant containment area, and can also leach into aquifers, which may serve as drinking water supplies. Secondly, there are different practices that can mitigate the SARS-CoV-2 infection rate from infected feces and urine. The World Health Organization has recommended the use of ultraviolet radiation (UV), disinfection, and filtration for wastewater contaminated with SARS-CoV-2, processes also common in wastewater treatment facilities. This article discusses these strategies referencing studies performed with surrogate viruses and shows that SARS-CoV-2 treatment can be complicated due to the interference from other aqueous chemical and physical factors. Considering that COVID-19 is not the first and certainly not the last pandemic, it is imperative to develop an effective multitreatment strategy for wastewater contaminated with contagious viruses and, preferably, those that are compatible with current wastewater treatment methods.
Collapse
|
27
|
Zhao Z, Huang C, Huang Z, Lin F, He Q, Tao D, Jaffrezic-Renault N, Guo Z. Advancements in electrochemical biosensing for respiratory virus detection: A review. Trends Analyt Chem 2021; 139:116253. [PMID: 33727755 PMCID: PMC7952277 DOI: 10.1016/j.trac.2021.116253] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Respiratory viruses are real menace for human health which result in devastating epidemic disease. Consequently, it is in urgent need of identifying and quantifying virus with a rapid, sensitive and precise approach. The study of electrochemical biosensors for respiratory virus detection has become one of the most rapidly developing scientific fields. Recent developments in electrochemical biosensors concerning respiratory virus detection are comprehensively reviewed in this paper. This review is structured along common detecting objects of respiratory viruses, electrochemical biosensors, electrochemical biosensors for respiratory virus detection and future challenges. The electrochemical biosensors for respiratory virus detection are introduced, including nucleic acids-based, immunosensors and other affinity biosensors. Lastly, for Coronavirus disease 2019 (COVID-19) diagnosis, the future challenges regarding developing electrochemical biosensor-based Point-of-Care Tests (POCTs) are summarized. This review is expected to provide a helpful guide for the researchers entering this interdisciplinary field and developing more novel electrochemical biosensors for respiratory virus detection.
Collapse
Affiliation(s)
- Zhi Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Changfu Huang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Ziyu Huang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Fengjuan Lin
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Qinlin He
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Dan Tao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne 69100, France
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
| |
Collapse
|
28
|
Brazaca LC, Dos Santos PL, de Oliveira PR, Rocha DP, Stefano JS, Kalinke C, Abarza Muñoz RA, Bonacin JA, Janegitz BC, Carrilho E. Biosensing strategies for the electrochemical detection of viruses and viral diseases - A review. Anal Chim Acta 2021; 1159:338384. [PMID: 33867035 PMCID: PMC9186435 DOI: 10.1016/j.aca.2021.338384] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Viruses are the causing agents for many relevant diseases, including influenza, Ebola, HIV/AIDS, and COVID-19. Its rapid replication and high transmissibility can lead to serious consequences not only to the individual but also to collective health, causing deep economic impacts. In this scenario, diagnosis tools are of significant importance, allowing the rapid, precise, and low-cost testing of a substantial number of individuals. Currently, PCR-based techniques are the gold standard for the diagnosis of viral diseases. Although these allow the diagnosis of different illnesses with high precision, they still present significant drawbacks. Their main disadvantages include long periods for obtaining results and the need for specialized professionals and equipment, requiring the tests to be performed in research centers. In this scenario, biosensors have been presented as promising alternatives for the rapid, precise, low-cost, and on-site diagnosis of viral diseases. This critical review article describes the advancements achieved in the last five years regarding electrochemical biosensors for the diagnosis of viral infections. First, genosensors and aptasensors for the detection of virus and the diagnosis of viral diseases are presented in detail regarding probe immobilization approaches, detection methods (label-free and sandwich), and amplification strategies. Following, immunosensors are highlighted, including many different construction strategies such as label-free, sandwich, competitive, and lateral-flow assays. Then, biosensors for the detection of viral-diseases-related biomarkers are presented and discussed, as well as point of care systems and their advantages when compared to traditional techniques. Last, the difficulties of commercializing electrochemical devices are critically discussed in conjunction with future trends such as lab-on-a-chip and flexible sensors.
Collapse
Affiliation(s)
- Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| | - Pãmyla Layene Dos Santos
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Paulo Roberto de Oliveira
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Diego Pessoa Rocha
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Jéssica Santos Stefano
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil; Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Cristiane Kalinke
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, 13083-859, Brazil
| | - Rodrigo Alejandro Abarza Muñoz
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil; Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Juliano Alves Bonacin
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, 13083-859, Brazil
| | - Bruno Campos Janegitz
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil.
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
29
|
Imran S, Ahmadi S, Kerman K. Electrochemical Biosensors for the Detection of SARS-CoV-2 and Other Viruses. MICROMACHINES 2021; 12:174. [PMID: 33578979 PMCID: PMC7916687 DOI: 10.3390/mi12020174] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
The last few decades have been plagued by viral outbreaks that present some of the biggest challenges to public safety. The current coronavirus (COVID-19) disease pandemic has exponentiated these concerns. Increased research on diagnostic tools is currently being implemented in order to assist with rapid identification of the virus, as mass diagnosis and containment is the best way to prevent the outbreak of the virus. Accordingly, there is a growing urgency to establish a point-of-care device for the rapid detection of coronavirus to prevent subsequent spread. This device needs to be sensitive, selective, and exhibit rapid diagnostic capabilities. Electrochemical biosensors have demonstrated these traits and, hence, serve as promising candidates for the detection of viruses. This review summarizes the designs and features of electrochemical biosensors developed for some past and current pandemic or epidemic viruses, including influenza, HIV, Ebola, and Zika. Alongside the design, this review also discusses the detection principles, fabrication techniques, and applications of the biosensors. Finally, research and perspective of biosensors as potential detection tools for the rapid identification of SARS-CoV-2 is discussed.
Collapse
Affiliation(s)
- Saim Imran
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (S.I.); (S.A.)
| | - Soha Ahmadi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (S.I.); (S.A.)
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (S.I.); (S.A.)
| |
Collapse
|
30
|
Bhardwaj SK, Bhardwaj N, Kumar V, Bhatt D, Azzouz A, Bhaumik J, Kim KH, Deep A. Recent progress in nanomaterial-based sensing of airborne viral and bacterial pathogens. ENVIRONMENT INTERNATIONAL 2021; 146:106183. [PMID: 33113463 DOI: 10.1016/j.envint.2020.106183] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 05/25/2023]
Abstract
Airborne pathogens are small microbes that can cause a multitude of diseases (e.g., the common cold, flu, asthma, anthrax, tuberculosis, botulism, and pneumonia). As pathogens are transmitted from infected hosts via a number of routes (e.g., aerosolization, sneezing, and coughing), there is a great demand to accurately monitor their presence and behavior. Despite such need, conventional detection methods (e.g., colony counting, immunoassays, and various molecular techniques) generally suffer from a number of demerits (e.g., complex, time-consuming, and labor-intensive nature). To help overcome such limitations, nanomaterial-based biosensors have evolved as alternative candidates to realize portable, rapid, facile, and direct on-site identification of target microbes. In this review, nano-biosensors developed for the detection of airborne pathogens are listed and discussed in reference to conventional options. The prospects for the development of advanced nano-biosensors with enhanced accuracy and portability are also discussed.
Collapse
Affiliation(s)
- Sanjeev K Bhardwaj
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh 160025, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute, S.A.S. Nagar 140306, Punjab, India
| | - Deepanshu Bhatt
- Central Scientific Instruments Organisation, Sector 30 C, Chandigarh 160030, India
| | - Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tétouan, Morocco
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 133-791, Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organisation, Sector 30 C, Chandigarh 160030, India.
| |
Collapse
|
31
|
Huang X, Wu N, Liu W, Shang Y, Liu H, He Y, Meng H, Dong Y. Construction of electrochemical immunosensors based on redox hydrogels for ultrasensitive detection of carcinoembryonic antigens. NEW J CHEM 2021. [DOI: 10.1039/d1nj01282g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of cellulose nanocrystals (CNCs) endows a redox hydrogel with a larger specific surface area and better adhesion to an electrode.
Collapse
Affiliation(s)
- Xiangrong Huang
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Na Wu
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Wenxiu Liu
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Honglai Liu
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yifan He
- Key Laboratory of Cosmetic
- China National Light Industry
- School of Science
- Beijing Technology and Business University
- Beijing 100048
| | - Hong Meng
- Key Laboratory of Cosmetic
- China National Light Industry
- School of Science
- Beijing Technology and Business University
- Beijing 100048
| | - Yinmao Dong
- Key Laboratory of Cosmetic
- China National Light Industry
- School of Science
- Beijing Technology and Business University
- Beijing 100048
| |
Collapse
|
32
|
Ribeiro BV, Cordeiro TAR, Oliveira E Freitas GR, Ferreira LF, Franco DL. Biosensors for the detection of respiratory viruses: A review. TALANTA OPEN 2020; 2:100007. [PMID: 34913046 PMCID: PMC7428963 DOI: 10.1016/j.talo.2020.100007] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
The recent events of outbreaks related to different respiratory viruses in the past few years, exponentiated by the pandemic caused by the coronavirus disease 2019 (COVID-19), reported worldwide caused by SARS-CoV-2, raised a concern and increased the search for more information on viruses-based diseases. The detection of the virus with high specificity and sensitivity plays an important role for an accurate diagnosis. Despite the many efforts to identify the SARS-CoV-2, the diagnosis still relays on expensive and time-consuming analysis. A fast and reliable alternative is the use of low-cost biosensor for in loco detection. This review gathers important contributions in the biosensor area regarding the most current respiratory viruses, presents the advances in the assembly of the devices and figures of merit. All information is useful for further biosensor development for the detection of respiratory viruses, such as for the new coronavirus.
Collapse
Affiliation(s)
- Brayan Viana Ribeiro
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology (RMPCT), Laboratory of Electroanlytical Applied to Biotechnology and Food Engineering (LEABE) - Chemistry Institute, Federal University of Uberlândia - campus Patos de Minas, Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais 38700-128, Brazil
| | - Taís Aparecida Reis Cordeiro
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Guilherme Ramos Oliveira E Freitas
- Laboratory of Microbiology (MICRO), Biotechnology Institute, Federal University of Uberlândia - campus Patos de Minas - Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais, Brazil
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Diego Leoni Franco
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology (RMPCT), Laboratory of Electroanlytical Applied to Biotechnology and Food Engineering (LEABE) - Chemistry Institute, Federal University of Uberlândia - campus Patos de Minas, Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais 38700-128, Brazil
| |
Collapse
|
33
|
Application of carbon nanomaterials in human virus detection. JOURNAL OF SCIENCE: ADVANCED MATERIALS AND DEVICES 2020; 5. [PMCID: PMC7509950 DOI: 10.1016/j.jsamd.2020.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Human-pathogenic viruses are still a chief reason for illness and death on the globe, as epitomized by the COVID-19 pandemic instigated by a coronavirus in 2020. Multiple novel sensors have been invented because diseases must be detected and diagnosed as early as possible, and recognition methods have to be carried out with minimal invasivity. Sensors have been particularly developed focusing on miniaturization by the use of nanomaterials for fabricating nanosensors. The nano-sized nature of nanomaterials and their exclusive optical, electronical, magnetical, and mechanical attributes can enhance patient care through the use of sensors with minimal invasivity and extreme sensitivity. Amongst the nanomaterials utilized for fabricating nano-sensors, carbon-based nanomaterials are promising as these sensors respond better to signals in various sensing settings. This review provides an overview of the recent developments in carbon nanomaterial-based biosensors for viral recognition based on the biomarkers that arise from the infection, the nucleic acids from the viruses, and the entire virus. The role of carbon nanomaterials is highlighted by the improvement of sensor and recognition functionality. The Dengue virus, Ebola virus, Hepatits virus, human immunodeficiency virus (HIV), influenza virus, Zika virus and Adenovirus are the virus types reviewed to illustrate the implementation of the techniques. Finally, the drawbacks and advantages of carbon nanomaterial-based biosensors for viral recognition are identified and discussed.
Collapse
|
34
|
Alhalaili B, Popescu IN, Kamoun O, Alzubi F, Alawadhia S, Vidu R. Nanobiosensors for the Detection of Novel Coronavirus 2019-nCoV and Other Pandemic/Epidemic Respiratory Viruses: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6591. [PMID: 33218097 PMCID: PMC7698809 DOI: 10.3390/s20226591] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is considered a public health emergency of international concern. The 2019 novel coronavirus (2019-nCoV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused this pandemic has spread rapidly to over 200 countries, and has drastically affected public health and the economies of states at unprecedented levels. In this context, efforts around the world are focusing on solving this problem in several directions of research, by: (i) exploring the origin and evolution of the phylogeny of the SARS-CoV-2 viral genome; (ii) developing nanobiosensors that could be highly effective in detecting the new coronavirus; (iii) finding effective treatments for COVID-19; and (iv) working on vaccine development. In this paper, an overview of the progress made in the development of nanobiosensors for the detection of human coronaviruses (SARS-CoV, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV) is presented, along with specific techniques for modifying the surface of nanobiosensors. The newest detection methods of the influenza virus responsible for acute respiratory syndrome were compared with conventional methods, highlighting the newest trends in diagnostics, applications, and challenges of SARS-CoV-2 (COVID-19 causative virus) nanobiosensors.
Collapse
Affiliation(s)
- Badriyah Alhalaili
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Ileana Nicoleta Popescu
- Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 13 Aleea Sinaia Street, 130004 Targoviste, Romania
| | - Olfa Kamoun
- Physics of Semiconductor Devices Unit, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis 1068, Tunisia;
| | - Feras Alzubi
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Sami Alawadhia
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Ruxandra Vidu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Electrical and Computer Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
35
|
Jiang Z, Feng B, Xu J, Qing T, Zhang P, Qing Z. Graphene biosensors for bacterial and viral pathogens. Biosens Bioelectron 2020; 166:112471. [PMID: 32777726 PMCID: PMC7382337 DOI: 10.1016/j.bios.2020.112471] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
The infection and spread of pathogens (e.g., COVID-19) pose an enormous threat to the safety of human beings and animals all over the world. The rapid and accurate monitoring and determination of pathogens are of great significance to clinical diagnosis, food safety and environmental evaluation. In recent years, with the evolution of nanotechnology, nano-sized graphene and graphene derivatives have been frequently introduced into the construction of biosensors due to their unique physicochemical properties and biocompatibility. The combination of biomolecules with specific recognition capabilities and graphene materials provides a promising strategy to construct more stable and sensitive biosensors for the detection of pathogens. This review tracks the development of graphene biosensors for the detection of bacterial and viral pathogens, mainly including the preparation of graphene biosensors and their working mechanism. The challenges involved in this field have been discussed, and the perspective for further development has been put forward, aiming to promote the development of pathogens sensing and the contribution to epidemic prevention.
Collapse
Affiliation(s)
- Zixin Jiang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China.
| | - Jin Xu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China.
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, Hunan Province, China.
| |
Collapse
|
36
|
Vermisoglou E, Panáček D, Jayaramulu K, Pykal M, Frébort I, Kolář M, Hajdúch M, Zbořil R, Otyepka M. Human virus detection with graphene-based materials. Biosens Bioelectron 2020; 166:112436. [PMID: 32750677 PMCID: PMC7375321 DOI: 10.1016/j.bios.2020.112436] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Our recent experience of the COVID-19 pandemic has highlighted the importance of easy-to-use, quick, cheap, sensitive and selective detection of virus pathogens for the efficient monitoring and treatment of virus diseases. Early detection of viruses provides essential information about possible efficient and targeted treatments, prolongs the therapeutic window and hence reduces morbidity. Graphene is a lightweight, chemically stable and conductive material that can be successfully utilized for the detection of various virus strains. The sensitivity and selectivity of graphene can be enhanced by its functionalization or combination with other materials. Introducing suitable functional groups and/or counterparts in the hybrid structure enables tuning of the optical and electrical properties, which is particularly attractive for rapid and easy-to-use virus detection. In this review, we cover all the different types of graphene-based sensors available for virus detection, including, e.g., photoluminescence and colorimetric sensors, and surface plasmon resonance biosensors. Various strategies of electrochemical detection of viruses based on, e.g., DNA hybridization or antigen-antibody interactions, are also discussed. We summarize the current state-of-the-art applications of graphene-based systems for sensing a variety of viruses, e.g., SARS-CoV-2, influenza, dengue fever, hepatitis C virus, HIV, rotavirus and Zika virus. General principles, mechanisms of action, advantages and drawbacks are presented to provide useful information for the further development and construction of advanced virus biosensors. We highlight that the unique and tunable physicochemical properties of graphene-based nanomaterials make them ideal candidates for engineering and miniaturization of biosensors.
Collapse
Affiliation(s)
- Eleni Vermisoglou
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - David Panáček
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Kolleboyina Jayaramulu
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic; Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India
| | - Martin Pykal
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Ivo Frébort
- Centre of the Region Haná (CRH), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine (UMTM), Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic.
| |
Collapse
|
37
|
P K S, Bathula C, K N C, Das M. Usage of Graphene Oxide in Fluorescence Quenching-Linked Immunosorbent Assay for the Detection of Cry2Ab Protein Present in Transgenic Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3656-3662. [PMID: 32073854 DOI: 10.1021/acs.jafc.9b06650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene oxide-based sensor technologies in various detection platforms have been adopted in multiple dimensions. Most of the applications in combination with other materials such as gold, silver, enzymes, and so forth are read as electrical, electrochemical, impedance, and fluorescence signals. We report the development of a novel and simple fluorescence quenching-based immunoassay platform that provides quantitative binding sites for the Cry2Ab protein content present in the transgenic cotton (Gossypium hirsutum) plant. In this assay, the graphene oxide-conjugated anti-Cry2Ab antibody serves as the binding site for the analyte Cry2Ab protein, which forms a complex with a second anti-Cry2Ab fluorescein isothiocyanate (FITC)-conjugated antibody. This complex acts as the reaction center of this platform where the graphene oxide quenches the fluorescence signal of the FITC molecule. This microtiter plate-based method currently works at a sensitivity of 0.78 ng /ml, which can further be improved.
Collapse
Affiliation(s)
- Smitha P K
- Department of Biotechnology, Research and Development Centre, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
- Beyond Antibody, S-005 Krishna Greens, Krishna Temple Road, Dodda Bommasandra, Bangalore 560 097, Karnataka, India
| | - Christopher Bathula
- Tumor Immunology Program, DSRG1, MSCTR, MSMF, 8th floor, Mazumdar Shaw Medical Centre, Narayana Health City, Bommasandra, Bangalore 560 099, Karnataka, India
| | - Chandrashekara K N
- Division of Plant Physiology and Biotechnology, UPASI Tea Research Foundation, Tea Research Institute, Nirar Dam, Valparai, Coimbatore 642 127, Tamil Nadu, India
| | - Manjula Das
- Tumor Immunology Program, DSRG1, MSCTR, MSMF, 8th floor, Mazumdar Shaw Medical Centre, Narayana Health City, Bommasandra, Bangalore 560 099, Karnataka, India
| |
Collapse
|
38
|
Joshi SR, Sharma A, Kim GH, Jang J. Low cost synthesis of reduced graphene oxide using biopolymer for influenza virus sensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110465. [DOI: 10.1016/j.msec.2019.110465] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/01/2019] [Accepted: 11/17/2019] [Indexed: 01/30/2023]
|
39
|
Opto-electrochemical functionality of Ru(II)-reinforced graphene oxide nanosheets for immunosensing of dengue virus non-structural 1 protein. Biosens Bioelectron 2020; 150:111878. [DOI: 10.1016/j.bios.2019.111878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/25/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022]
|
40
|
Abstract
Infectious diseases are caused from pathogens, which need a reliable and fast diagnosis. Today, expert personnel and centralized laboratories are needed to afford much time in diagnosing diseases caused from pathogens. Recent progress in electrochemical studies shows that biosensors are very simple, accurate, precise, and cheap at virus detection, for which researchers find great interest in this field. The clinical levels of these pathogens can be easily analyzed with proposed biosensors. Their working principle is based on affinity between antibody and antigen in body fluids. The progress still continues on these biosensors for accurate, rapid, reliable sensors in future.
Collapse
|
41
|
López-Marzo AM, Baldrich E. AuNPs/methylene blue dual-signal nanoimmunoconjugates and electrode activation for electrochemical biosensors. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Lee T, Park SY, Jang H, Kim GH, Lee Y, Park C, Mohammadniaei M, Lee MH, Min J. Fabrication of electrochemical biosensor consisted of multi-functional DNA structure/porous au nanoparticle for avian influenza virus (H5N1) in chicken serum. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:511-519. [DOI: 10.1016/j.msec.2019.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
|
43
|
Pandey G, Marimuthu M, Kanagavalli P, Ravichandiran V, Balamurugan K, Veerapandian M. Chitosanylated MoO3–Ruthenium(II) Nanocomposite as Biocompatible Probe for Bioimaging and Herbaceutical Detection. ACS Biomater Sci Eng 2019; 5:3606-3617. [DOI: 10.1021/acsbiomaterials.9b00575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gaurav Pandey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700 054, India
| | - Mohana Marimuthu
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630 003, India
| | | | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700 054, India
| | - Krishnaswamy Balamurugan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630 003, India
| | | |
Collapse
|
44
|
Marimuthu M, Praveen Kumar B, Mariya Salomi L, Veerapandian M, Balamurugan K. Methylene Blue-Fortified Molybdenum Trioxide Nanoparticles: Harnessing Radical Scavenging Property. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43429-43438. [PMID: 30480995 DOI: 10.1021/acsami.8b15841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A hybrid nanosystem with impeccable cellular imaging and antioxidant functionality is demonstrated. The microwave irradiation-derived molybdenum trioxide nanoparticles (MoO3 NPs) were surface-functionalized with the cationic dye molecule, methylene blue (MB), which enables superior UV-visible absorbance and fluorescence emission wavelengths potential for bioimaging. The radical scavenging property of the pristine MoO3 NPs and MoO3-MB NPs were studied in vivo using Caenorhabditis elegans as the model system. Heat shock-induced oxidative stress in C. elegans was significantly resolved by the MoO3-MB NPs, in agreement with the in vitro radical scavenging study by electron paramagnetic resonance spectroscopy. Hybrid nanostructures of MoO3-MB demonstrate synergistic benefits in intracellular imaging with intrinsic biocompatibility and antioxidant behavior, which can facilitate application as advanced healthcare materials toward bioimaging and clinical therapeutics.
Collapse
Affiliation(s)
- Mohana Marimuthu
- Department of Biotechnology , Alagappa University , Science Campus , Karaikudi 630 003 , Tamil Nadu , India
| | - B Praveen Kumar
- Department of Biotechnology , Alagappa University , Science Campus , Karaikudi 630 003 , Tamil Nadu , India
| | - L Mariya Salomi
- Department of Biotechnology , Pavendar Bharathidasan College of Engineering and Technology , Tiruchirappalli 620 024 , Tamil Nadu , India
| | | | - Krishnaswamy Balamurugan
- Department of Biotechnology , Alagappa University , Science Campus , Karaikudi 630 003 , Tamil Nadu , India
| |
Collapse
|
45
|
Lee T, Ahn JH, Park SY, Kim GH, Kim J, Kim TH, Nam I, Park C, Lee MH. Recent Advances in AIV Biosensors Composed of Nanobio Hybrid Material. MICROMACHINES 2018; 9:E651. [PMID: 30544883 PMCID: PMC6316213 DOI: 10.3390/mi9120651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 11/17/2022]
Abstract
Since the beginning of the 2000s, globalization has accelerated because of the development of transportation systems that allow for human and material exchanges throughout the world. However, this globalization has brought with it the rise of various pathogenic viral agents, such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), Zika virus, and Dengue virus. In particular, avian influenza virus (AIV) is highly infectious and causes economic, health, ethnical, and social problems to human beings, which has necessitated the development of an ultrasensitive and selective rapid-detection system of AIV. To prevent the damage associated with the spread of AIV, early detection and adequate treatment of AIV is key. There are traditional techniques that have been used to detect AIV in chickens, ducks, humans, and other living organisms. However, the development of a technique that allows for the more rapid diagnosis of AIV is still necessary. To achieve this goal, the present article reviews the use of an AIV biosensor employing nanobio hybrid materials to enhance the sensitivity and selectivity of the technique while also reducing the detection time and high-throughput process time. This review mainly focused on four techniques: the electrochemical detection system, electrical detection method, optical detection methods based on localized surface plasmon resonance, and fluorescence.
Collapse
Affiliation(s)
- Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Jae-Hyuk Ahn
- Department of Electronic Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Sun Yong Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Ga-Hyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Jeonghyun Kim
- Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Inho Nam
- Division of Chemistry & Bio-Environmental Sciences, Seoul Women's University, Seoul 01797, Korea.
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
46
|
Dziąbowska K, Czaczyk E, Nidzworski D. Detection Methods of Human and Animal Influenza Virus-Current Trends. BIOSENSORS-BASEL 2018; 8:bios8040094. [PMID: 30340339 PMCID: PMC6315519 DOI: 10.3390/bios8040094] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
The basic affairs connected to the influenza virus were reviewed in the article, highlighting the newest trends in its diagnostic methods. Awareness of the threat of influenza arises from its ability to spread and cause a pandemic. The undiagnosed and untreated viral infection can have a fatal effect on humans. Thus, the early detection seems pivotal for an accurate treatment, when vaccines and other contemporary prevention methods are not faultless. Public health is being attacked with influenza containing new genes from a genetic assortment between animals and humankind. Unfortunately, the population does not have immunity for mutant genes and is attacked in every viral outbreak season. For these reasons, fast and accurate devices are in high demand. As currently used methods like Rapid Influenza Diagnostic Tests lack specificity, time and cost-savings, new methods are being developed. In the article, various novel detection methods, such as electrical and optical were compared. Different viral elements used as detection targets and analysis parameters, such as sensitivity and specificity, were presented and discussed.
Collapse
Affiliation(s)
- Karolina Dziąbowska
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| | - Elżbieta Czaczyk
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| | - Dawid Nidzworski
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| |
Collapse
|
47
|
Peña-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF. Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnology 2018; 16:75. [PMID: 30243292 PMCID: PMC6150956 DOI: 10.1186/s12951-018-0400-z] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/15/2018] [Indexed: 12/26/2022] Open
Abstract
Graphene's unique physical structure, as well as its chemical and electrical properties, make it ideal for use in sensor technologies. In the past years, novel sensing platforms have been proposed with pristine and modified graphene with nanoparticles and polymers. Several of these platforms were used to immobilize biomolecules, such as antibodies, DNA, and enzymes to create highly sensitive and selective biosensors. Strategies to attach these biomolecules onto the surface of graphene have been employed based on its chemical composition. These methods include covalent bonding, such as the coupling of the biomolecules via the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide reactions, and physisorption. In the literature, several detection methods are employed; however, the most common is electrochemical. The main reason for researchers to use this detection approach is because this method is simple, rapid and presents good sensitivity. These biosensors can be particularly useful in life sciences and medicine since in clinical practice, biosensors with high sensitivity and specificity can significantly enhance patient care, early diagnosis of diseases and pathogen detection. In this review, we will present the research conducted with antibodies, DNA molecules and, enzymes to develop biosensors that use graphene and its derivatives as scaffolds to produce effective biosensors able to detect and identify a variety of diseases, pathogens, and biomolecules linked to diseases.
Collapse
Affiliation(s)
- Janire Peña-Bahamonde
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Hang N. Nguyen
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Sofia K. Fanourakis
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Debora F. Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| |
Collapse
|
48
|
Hassanpour S, Baradaran B, Hejazi M, Hasanzadeh M, Mokhtarzadeh A, de la Guardia M. Recent trends in rapid detection of influenza infections by bio and nanobiosensor. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Anik Ü, Tepeli Y, Sayhi M, Nsiri J, Diouani MF. Towards the electrochemical diagnostic of influenza virus: development of a graphene–Au hybrid nanocomposite modified influenza virus biosensor based on neuraminidase activity. Analyst 2018; 143:150-156. [DOI: 10.1039/c7an01537b] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An effective electrochemical influenza A biosensor based on a graphene–gold (Au) hybrid nanocomposite modified Au-screen printed electrode has been developed.
Collapse
Affiliation(s)
- Ülkü Anik
- Mugla Sitki Kocman University
- Faculty of Science
- Chemistry Department
- Kotekli/Mugla
- Turkey
| | - Yudum Tepeli
- Mugla Sitki Kocman University
- Faculty of Science
- Chemistry Department
- Kotekli/Mugla
- Turkey
| | - Maher Sayhi
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV)
- Institut Pasteur de Tunis
- University of Tunis El Manar
- LR11IPT03
- Tunis-Belvédère 1002
| | - Jihene Nsiri
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV)
- Institut Pasteur de Tunis
- University of Tunis El Manar
- LR11IPT03
- Tunis-Belvédère 1002
| | - Mohamed Fethi Diouani
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV)
- Institut Pasteur de Tunis
- University of Tunis El Manar
- LR11IPT03
- Tunis-Belvédère 1002
| |
Collapse
|
50
|
Zhu F, Zhao G, Dou W. Voltammetric sandwich immunoassay for Cronobacter sakazakii using a screen-printed carbon electrode modified with horseradish peroxidase, reduced graphene oxide, thionine and gold nanoparticles. Mikrochim Acta 2017; 185:45. [PMID: 29594632 DOI: 10.1007/s00604-017-2572-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/09/2017] [Indexed: 12/22/2022]
Abstract
The authors describe a sandwich-type of electrochemical immunoassay for rapid determination of the foodborne pathogen Cronobacter sakazakii (C. sakazakii). Polyclonal antibody against C. sakazakii (anti-C. sakazakii) and horseradish peroxidase were immobilized on a nanocomposite consisting of reduced graphene oxide, thionine and gold nanoparticles (AuNPs) that was placed on a screen-printed carbon electrode (SPCE). Thionine acts as an electron mediator which also shortens the electron transfer pathway from the conjugated HRP to the electrode surface and amplifies the electrochemical signal. The AuNPs, in turn, improve the electron transfer rate and increase the surface area for capturing antibody. The morphologies of the electrodes were characterized by means of field emission scanning electron microscopy. The electrochemical performance of the immunoassay was evaluated by cyclic voltammetry and differential pulse voltammetry. Under optimal experimental conditions, the electrochemical immunoassay, best operated at a woking potential of -0.18 V (vs. Ag/AgCl) and scan rate of 20 mV/s has a linear response that covers the 8.8 × 104 to 8.8 × 108 CFU·mL-1 C. sakazakii concentration range, with a 1.0 × 104 CFU·mL-1 detection limit (at an S/N ratio of 3). The assay was applied to the detemination of C. sakazakii in spiked infant milk powder and gave recoveries ranging from 92.0 to 105.7%. Graphical abstract A sandwich-type electrochemical immunosensor was designed for C. sakazakii based on the use of rGO. TH, HRP, antibody and AuNPs were anchored on rGO. The nanocomposites were used as traces tag and H2O2 as enzyme substrates. AuNPs were modified on SPCE by electrodeposition.
Collapse
Affiliation(s)
- Fanjun Zhu
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|