1
|
Hou J, Hu C, Li H, Liu H, Xiang Y, Wu G, Li Y. Nanomaterial-based magnetic solid-phase extraction in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2025; 253:116543. [PMID: 39486391 DOI: 10.1016/j.jpba.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Magnetic solid-phase extraction (MSPE) holds significant scientific and technological interest as a novel sample preparation method for complex samples due to its easy operation, swift separation, high adsorption efficiency, and environmental friendliness. As the core of MSPE, magnetic sorbents have captured tremendous attention in recent years. Various promising nanomaterials, such as metal-organic frameworks and covalent organic frameworks, have been synthesized and utilized as sorbents in pharmaceutical and biomedical analysis. This review intends to (1) summarize recent progress of magnetic sorbents applied in this area and discuss their advantages, disadvantages, possible interaction mechanisms with the target substances; (2) explore their innovative applications in the analysis of pharmaceuticals, proteins, peptides, nucleic acids, nucleosides, metabolites, and other disease biomarkers from 2021 to 2024; (3) present the integration of MSPE with emerging analytical technologies; and (4) discuss the current challenges and future perspectives. It is expected to provide references and insights for the development of novel magnetic sorbents and their applications in bioanalysis.
Collapse
Affiliation(s)
- Jingxin Hou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Cong Hu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hanyin Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hongmei Liu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yangjiayi Xiang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacy, Jing'an District Central Hospital of Shanghai, Jing'an Branch, the Affiliated Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Gou Wu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China; MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 201203, China.
| |
Collapse
|
2
|
Yang QQ, He SB, Zhang YL, Li M, You XH, Xiao BW, Yang L, Yang ZQ, Deng HH, Chen W. A colorimetric sensing strategy based on chitosan-stabilized platinum nanoparticles for quick detection of α-glucosidase activity and inhibitor screening. Anal Bioanal Chem 2024; 416:6001-6010. [PMID: 38358531 DOI: 10.1007/s00216-024-05198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
α-Glucosidase (α-Glu) is implicated in the progression and pathogenesis of type II diabetes (T2D). In this study, we developed a rapid colorimetric technique using platinum nanoparticles stabilized by chitosan (Ch-PtNPs) to detect α-Glu activity and its inhibitor. The Ch-PtNPs facilitate the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized TMB (oxTMB) in the presence of dissolved O2. The catalytic hydrolysis of 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G) by α-Glu produces ascorbic acid (AA), which reduces oxTMB to TMB, leading to the fading of the blue color. However, the presence of α-Glu inhibitors (AGIs) hinders the generation of AA, allowing Ch-PtNPs to re-oxidize colorless TMB back to blue oxTMB. This unique phenomenon enables the colorimetric detection of α-Glu activity and AGIs. The linear range for α-Glu was found to be 0.1-1.0 U mL-1 and the detection limit was 0.026 U mL-1. Additionally, the half-maximal inhibition value (IC50) for acarbose, an α-Glu inhibitor, was calculated to be 0.4769 mM. Excitingly, this sensing platform successfully detected α-Glu activity in human serum samples and effectively screened AGIs. These promising findings highlight the potential application of the proposed strategy in clinical diabetes diagnosis and drug discovery.
Collapse
Affiliation(s)
- Qin-Qin Yang
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Shao-Bin He
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yi-Lin Zhang
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Min Li
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Xiu-Hua You
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Bo-Wen Xiao
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Liu Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Zhi-Qiang Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China.
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
3
|
Zhong Y, Wang Q, Chen ZJ, Wang H, Zhao S. GAA/(Au-Au/IrO 2)@Cu(PABA) reactor with cascade catalytic activity for α-glucosidase inhibitor screening. Anal Chim Acta 2024; 1298:342408. [PMID: 38462333 DOI: 10.1016/j.aca.2024.342408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND In vitro screening strategies based on the inhibition of α-glucosidase (GAA) activity have been widely used for the discovery of potential antidiabetic drugs, but they still face some challenges, such as poor enzyme stability, non-reusability and narrow range of applicability. To overcome these limitations, an in vitro screening method based on GAA@GOx@Cu-MOF reactor was developed in our previous study. However, the method was still not satisfactory enough in terms of construction cost, pH stability, organic solvent resistance and reusability. Thence, there is still a great need for the development of in vitro screening methods with lower cost and wider applicability. RESULTS A colorimetric sensing strategy based on GAA/(Au-Au/IrO2)@Cu(PABA) cascade catalytic reactor, which constructed through simultaneous encapsulating Au-Au/IrO2 nanozyme with glucose oxidase-mimicking and peroxidase-mimicking activities and GAA in Cu(PABA) carrier with peroxidase-mimicking activity, was innovatively developed for in vitro screening of GAA inhibitors in this work. It was found that the reactor not only exhibited excellent thermal stability, pH stability, organic solvent resistance, room temperature storage stability, and reusability, but also possessed cascade catalytic performance, with approximately 12.36-fold increased catalytic activity compared to the free system (GAA + Au-Au/IrO2). Moreover, the in vitro GAA inhibitors screening method based on this reactor demonstrated considerable anti-interference performance and detection sensitivity, with a detection limit of 4.79 nM for acarbose. Meanwhile, the method owned good reliability and accuracy, and has been successfully applied to the in vitro screening of oleanolic acid derivatives as potential GAA inhibitors. SIGNIFICANCE This method not only more effectively solved the shortcomings of poor stability, narrow scope of application, and non-reusability of natural enzymes in the classical method compared with our previous work, but also broaden the application scope of Au-Au/IrO2 nanozyme with glucose oxidase and peroxidase mimicking activities, and Cu(PABA) carrier with peroxidase mimicking activity, which was expected to be a new generation candidate method for GAA inhibitor screening.
Collapse
Affiliation(s)
- Yingying Zhong
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, People's Republic of China.
| | - Qing Wang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, People's Republic of China
| | - Zi-Jian Chen
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, People's Republic of China
| | - Hongwu Wang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, People's Republic of China.
| | - Suqing Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
4
|
Li N, Zhang Z, Li G. Recent advance on microextraction sampling technologies for bioanalysis. J Chromatogr A 2024; 1720:464775. [PMID: 38452559 DOI: 10.1016/j.chroma.2024.464775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The contents of target substances in biological samples are usually at low concentration levels, and the matrix of biological samples is usually complex. Sample preparation is considered a very critical step in bioanalysis. At present, the utilization of microextraction sampling technology has gained considerable prevalence in the realm of biological analysis. The key developments in this field focus on the efficient microextraction media and the miniaturization and automation of adaptable sample preparation methods currently. In this review, the recent progress on the microextraction sampling technologies for bioanalysis has been introduced from point of view of the preparation of microextraction media and the microextraction sampling strategies. The advance on the microextraction media was reviewed in detail, mainly including the aptamer-functionalized materials, molecularly imprinted polymers, carbon-based materials, metal-organic frameworks, covalent organic frameworks, etc. The advance on the microextraction sampling technologies was summarized mainly based on in-vivo sampling, in-vitro sampling and microdialysis technologies. Moreover, the current challenges and perspective on the future trends of microextraction sampling technologies for bioanalysis were briefly discussed.
Collapse
Affiliation(s)
- Na Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Zhai Z, Wang W, Chai Z, Yuan Y, Zhu Q, Ge J, Li Z. A ratiometric fluorescence platform based on WS 2 QDs/CoOOH nanosheet system for α-glucosidase activity detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123959. [PMID: 38290280 DOI: 10.1016/j.saa.2024.123959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
In this study, we have constructed a ratiometric fluorescence sensor for sensitive sensing of α-glucosidase activity based on WS2 QDs/ CoOOH nanosheet system. In this system, as an oxidase-imimicking nanomaterial, CoOOH nanosheet could convert o-phenylenediamine into 2,3-diaminophenazine (DAP), which had a high fluorescence emission at 575 nm. The DAP subsequently could quench the fluorescence of WS2 QDs via the inner filter effect (IFE). L-Ascorbic acid-2-O-α-D-glucopyranose could be hydrolyzed by α-glucosidase to yield ascorbic acid. CoOOH nanosheet can be converted to Co2+ ions by ascorbic acid, leading to the fluorescence decrease of DAP and the fluorescence recovery of WS2 QDs. Therefore, a novel ratio fluorescence sensing strategy was established for α-glucosidase detection based on WS2 QDs/CoOOH nanosheet system. This WS2 QDs/CoOOH nanosheet system has a low detection limit of 0.009 U/mL for α-Glu assay. The proposed strategy succeeded in detecting α-Glu in human serum samples.
Collapse
Affiliation(s)
- Zhiyao Zhai
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Weixia Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ziwei Chai
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yating Yuan
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qianqian Zhu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jia Ge
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
6
|
Xiang Y, Hu C, Wu G, Xu S, Li Y. Nanomaterial-based microfluidic systems for cancer biomarker detection: Recent applications and future perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Chen M, Jin J, Ji X, Chang K, Li J, Zhao L. Pharmacokinetics, bioavailability and tissue distribution of chitobiose and chitotriose in rats. BIORESOUR BIOPROCESS 2022; 9:13. [PMID: 38647841 PMCID: PMC10991139 DOI: 10.1186/s40643-022-00500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
Chitooligosaccharides (COSs) have various physiological activities and broad application prospects; however, their pharmacokinetics and tissue distribution remain unclear. In this study, a sensitive and selective ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for determining chitobiose (COS 2) and chitotriose (COS 3) in rat serum and tissues was developed. This method was successfully validated based on FDA guidelines in terms of selectivity, calibration curves (lower limit of quantification was 0.002 µg/mL for COS 2 and 0.02 µg/mL for COS 3), precision (intra-day relative standard deviation of 0.04%-3.55% and inter-day relative standard deviation of 1.94%-11.63%), accuracy (intra-day relative error of - 1.81%-11.06% and inter-day relative error of - 9.41%-8.63%), matrix effects, recovery (97.10%-101.29%), stability, dilution integrity, and carry-over effects. Then, the method was successfully applied to the pharmacokinetics and tissue distribution study of COS 2 and COS 3 after intragastric and intravenous administration. After intragastric administration, COS 2 and COS 3 were rapidly absorbed, reached peak concentrations in the serum after approximately 0.45 h, and showed rapid elimination with clearances greater than 18.82 L/h/kg and half-lives lower than 6 h. The absolute oral bioavailability of COS 2 and COS 3 was 0.32%-0.52%. COS 2 and COS 3 were widely distributed in Wistar rat tissues and could penetrated the blood-brain barrier without tissue accumulation.
Collapse
Affiliation(s)
- Mai Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiayang Jin
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoguo Ji
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Kunlin Chang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Juan Li
- Department of Nutrition, Chang-Zheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China.
| |
Collapse
|
8
|
Dramou P, Dahn SL, Wang F, Sun Y, Song Z, Liu H, He H. Current review about design's impact on analytical achievements of magnetic graphene oxide nanocomposites. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Yilmaz E, Sarp G, Uzcan F, Ozalp O, Soylak M. Application of magnetic nanomaterials in bioanalysis. Talanta 2021; 229:122285. [PMID: 33838779 DOI: 10.1016/j.talanta.2021.122285] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
The importance of magnetic nanomaterials and magnetic hybrid materials, which are classified as new generation materials, in analytical applications is increasingly understood, and research on the adaptation of these materials to analytical methods has gained momentum. Development of sample preparation techniques and sensor systems using magnetic nanomaterials for the analysis of inorganic, organic and biomolecules in biological samples, which are among the samples that analytical chemists work on most, are among the priority issues. Therefore in this review, we focused on the use of magnetic nanomaterials for the bioanalytical applications including inorganic and organic species and biomolecules in different biological samples such as primarily blood, serum, plasma, tissue extracts, urine and milk. We summarized recent progresses, prevailing techniques, applied formats, and future trends in sample preparation-analysis methods and sensors based on magnetic nanomaterials (Mag-NMs). First, we provided a brief introduction of magnetic nanomaterials, especially their magnetic properties that can be utilized for bioanalytical applications. Second, we discussed the synthesis of these Mag-NMs. Third, we reviewed recent advances in bioanalytical applications of the Mag-NMs in different formats. Finally, recently literature studies on the relevance of Mag-NMs for bioanalysis applications were presented.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Gokhan Sarp
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Furkan Uzcan
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Ozgur Ozalp
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
10
|
Ji W, Yang S, Zhang W, Sun Z, Wen Q, He K. Pharmacodynamic comparison of acarbose tablets in Chinese healthy volunteers under chewing and swallowing conditions. J Clin Pharm Ther 2021; 46:814-819. [PMID: 33462825 DOI: 10.1111/jcpt.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 11/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Acarbose can efficiently block glucose absorption in the intestine as an alpha-glucosidase inhibitor. It is currently manufactured in several oral dosage forms, with the most common types being tablets and chewable tablets. The acarbose tablet (Glucobay® , 50 mg, Bayer) package insert gives instructions for either directly swallowing or chewing then swallowing. This study compared the pharmacodynamic effects of a single formulation of acarbose tablets under these two different administration routes. METHODS This randomized, crossover study enrolled 24 healthy subjects who were instructed to chew (C group) or swallow (S group) the acarbose tablet. Glucose levels were monitored in subjects for up to 4 h following administration of 75 g of sucrose to establish a baseline firstly, after which subjects in the C and S groups were administered 50- or 100- mg of acarbose along with 75 g of sucrose. Then, subjects entered a 1-week washout period before being crossed over to the alternate dosing route. RESULTS AND DISCUSSION Compared with the S group, the C group had a lower maximum concentration of serum glucose (Cmax ) and areas under the concentration-time curve (AUC0-2 , AUC0-1.5 ). In addition, the maximum reduction in serum glucose (ΔCmax ) and the reduction in the AUC (AUEC0-1.5 ) were both increased in the S group. This occurred at both the 50 mg and 100 mg dosages. These results indicate that fluctuations in blood glucose were lower following chewing of the acarbose tablet. Both administration routes exhibited similar safety and tolerance profiles. WHAT IS NEW AND CONCLUSION In summary, chewing acarbose tablets appears to induce a superior glycaemic-controlling effect compared with swallowing them directly, at least with a single dose. It will be important to inform both clinicians and patients about these differences between the two administrations so that informed clinical decisions can be made, as numerous patients with diabetes are inclined to directly swallow acarbose tablets for convenience.
Collapse
Affiliation(s)
- Wei Ji
- Department of Clinical Research Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Shaomei Yang
- Department of Clinical Research Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Wenyu Zhang
- Department of Clinical Research Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Zhongliang Sun
- Shanghai LingXian Medical Consulting CO., LTD, Jinan, China
| | - Qing Wen
- Department of Clinical Research Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Kun He
- Department of Clinical Research Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
11
|
A colorimetric sensing strategy based on enzyme@metal-organic framework and oxidase-like IrO 2/MnO 2 nanocomposite for α-glucosidase inhibitor screening. Mikrochim Acta 2020; 187:675. [PMID: 33241461 DOI: 10.1007/s00604-020-04660-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/19/2020] [Indexed: 11/27/2022]
Abstract
A highly sensitive colorimetric sensing strategy based on enzyme@metal-organic framework (GAA@Cu-MOF) and IrO2/MnO2 nanocomposite was exploited innovatively for screening of α-glucosidase (GAA) inhibitors. IrO2/MnO2 nanocomposite exhibits excellent oxidase-mimicking activity which can directly catalyze the oxidation of 3,3,5,5,-tetramethylbenzidine (TMB) into a blue product with an absorption maximum at 652 nm. And GAA@Cu-MOF can decompose L-ascorbic acid-2-O-α-D-glucopyranosyl (AAG) to ascorbic acid (AA). The produced AA can destroy the IrO2/MnO2 nanocomposite and reduce its oxidase-like activity. However, the generation of AA is restricted when GAA inhibitors are added to the system, which allows the oxidase-like activity of the IrO2/MnO2 nanocomposite to be maintained. In view of this, a method for screening of GAA inhibitors was developed. In addition to enhancing the stability of GAA, the method can also effectively avoid the potential interference of H2O2 in the screening process of GAA inhibitors, which helps to improve the sensitivity of the method. Therefore, highly sensitive determination for acarbose and ascorbic acid are achieved with detection limits of 6.27 nM and 1.23 μM, respectively. The proposed method was successfully applied to screen potential GAA inhibitors from oleanolic acid derivatives. Graphical abstract.
Collapse
|
12
|
Wang M, Wang M, Zhang F, Su X. A ratiometric fluorescent biosensor for the sensitive determination of α-glucosidase activity and acarbose based on N-doped carbon dots. Analyst 2020; 145:5808-5815. [PMID: 32672281 DOI: 10.1039/d0an01065k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this work, a novel ratiometric fluorescent platform for α-glucosidase (α-glu) and its inhibitor was constructed based on N-doped carbon dots (N-CDs). The α-glucosidase present can catalyze the release of hydroquinone (HQ) from α-arbutin. Then, the generated HQ can be oxidized and copolymerized with polyethyleneimine (PEI) to form a yellowish green fluorescence copolymer (PHQ-PEI) with intense fluorescence emission at 510 nm. When the PHQ-PEI was formed, blue fluorescence of N-CDs at 425 nm was decreased, whereas the fluorescence of PHQ-PEI at 510 nm increased sharply as a result of the fluorescence resonance energy transfer (FRET) effect between N-CDs and PHQ-PEI. However, in the presence of acarbose, the activity of α-glucosidase is inhibited, and α-arbutin cannot be hydrolyzed to hydroquinone, leading to the fluorescence recovery of N-CDs at 425 nm and the fluorescence decrease of PHQ-PEI at 510 nm. The linear range from 0.2 to 1.6 mU mL-1 and 25-150 μmol L-1 was obtained for α-glucosidase and acarbose detection, respectively, and the detection limit (LOD) for α-glucosidase and acarbose was as low as 0.082 mU mL-1 and 14.5 μmol L-1. Thus, a ratiometric fluorescent sensor with good sensitivity and high specificity was established for α-glucosidase assay and satisfactory results were acquired in real sample determination.
Collapse
Affiliation(s)
- Mengjun Wang
- College of Chemistry, Jilin University, Changchun, 130012, PR China.
| | | | | | | |
Collapse
|
13
|
Yao CX, Zhao N, Liu JC, Chen LJ, Liu JM, Fang GZ, Wang S. Recent Progress on Luminescent Metal-Organic Framework-Involved Hybrid Materials for Rapid Determination of Contaminants in Environment and Food. Polymers (Basel) 2020; 12:E691. [PMID: 32244951 PMCID: PMC7183274 DOI: 10.3390/polym12030691] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/28/2023] Open
Abstract
The high speed of contaminants growth needs the burgeoning of new analytical techniques to keep up with the continuous demand for monitoring and legislation on food safety and environmental pollution control. Metal-organic frameworks (MOFs) are a kind of advanced crystal porous materials with controllable apertures, which are self-assembled by organic ligands and inorganic metal nodes. They have the merits of large specific surface areas, high porosity and the diversity of structures and functions. Latterly, the utilization of metal-organic frameworks has attracted much attention in environmental protection and the food industry. MOFs have exhibited great value as sensing materials for many targets. Among many sensing methods, fluorometric sensing is one of the widely studied methods in the detection of harmful substances in food and environmental samples. Fluorometric detection based on MOFs and its functional materials is currently one of the most key research subjects in the food and environmental fields. It has gradually become a hot research direction to construct the highly sensitive rapid sensors to detect harmful substances in the food matrix based on metal-organic frameworks. In this paper, we introduced the synthesis and detection application characteristics (absorption, fluorescence, etc.) of metal-organic frameworks. We summarized their applications in the MOFs-based fluorometric detection of harmful substances in food and water over the past few years. The harmful substances mainly include heavy metals, organic pollutants and other small molecules, etc. On this basis, the future development and possible application of the MOFs have prospected in this review paper.
Collapse
Affiliation(s)
- Chi-Xuan Yao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (C.-X.Y.); (G.-Z.F.)
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (N.Z.); (J.-M.L.)
| | - Ji-Chao Liu
- Beijing San Yuan foods co., LTD., No. 8 Yingchang Road, Yinghai, Daxing District, Beijing 100076, China;
| | - Li-Jun Chen
- Beijing San Yuan foods co., LTD., No. 8 Yingchang Road, Yinghai, Daxing District, Beijing 100076, China;
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (N.Z.); (J.-M.L.)
| | - Guo-Zhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (C.-X.Y.); (G.-Z.F.)
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (C.-X.Y.); (G.-Z.F.)
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (N.Z.); (J.-M.L.)
| |
Collapse
|