1
|
You GR, Chang DY, Huang HH, Chen YJ, Chang JT, Cheng AJ. Deciphering Nicotine-Driven Oncogenesis in Head and Neck Cancer: Integrative Transcriptomics and Drug Repurposing Insights. Cancers (Basel) 2025; 17:1430. [PMID: 40361356 PMCID: PMC12070984 DOI: 10.3390/cancers17091430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Chronic nicotine exposure drives head and neck cancer (HNC) progression, yet its molecular mechanisms remain underexplored. This study examines nicotine-induced transcriptomic changes and potential therapies via drug repurposing. Methods: HNC cell lines (OECM1, SAS, and CGHNC9) were exposed to an IC30 nicotine dose for three months to model chronic exposure in habitual smokers. Transcriptomic profiling of these sublines was integrated with TCGA-HNSC patient data. Differentially expressed genes (DEGs) underwent functional pathway enrichment analysis. Drug repurposing was conducted using gene-drug correlation analysis across GDSC, CTRP, and PRISM databases. Results: Transcriptomic analysis identified 1223 DEGs in nicotine-exposed HNC cells, and integration with TCGA-HNSC data defined a Nic-HNC gene set of 168 genes: 149 oncogenes and 19 tumor suppressors, with 36 oncogenes overexpressed in heavy smokers. Pathway analysis revealed the upregulation of oncogenic signaling, such as PI3K-AKT, alongside the suppression of immune regulation and metabolic reprogramming. Drug repurposing identified five compounds-AZD1332, JAK-8517, NU7441, BRD-K30748066, and neopeltolide-with the first two exhibiting the strongest inverse correlations with nicotine-induced oncogenes in heavy smokers, highlighting their potential as targeted therapies for tobacco-associated HNC. Conclusions: This study comprehensively characterizes nicotine-driven molecular dysregulation in HNC and proposes AZD1332 and JAK-8517 as promising therapeutic candidates through drug repurposing. These insights advance our understanding of nicotine's oncogenic role and provide a foundation for translational research to develop targeted interventions for tobacco-associated HNC.
Collapse
Affiliation(s)
- Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (D.Y.C.); (H.-H.H.)
| | - Daniel Yu Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (D.Y.C.); (H.-H.H.)
| | - Hung-Han Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (D.Y.C.); (H.-H.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
| | - Joseph T. Chang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (D.Y.C.); (H.-H.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
| |
Collapse
|
2
|
Brutscher F, Germani F, Hausmann G, Jutz L, Basler K. Activation of the Drosophila innate immune system accelerates growth in cooperation with oncogenic Ras. PLoS Biol 2025; 23:e3003068. [PMID: 40294154 PMCID: PMC12036928 DOI: 10.1371/journal.pbio.3003068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 02/13/2025] [Indexed: 04/30/2025] Open
Abstract
Innate immunity in Drosophila acts as an organismal surveillance system for external stimuli or cellular fitness and triggers context-specific responses to fight infections and maintain tissue homeostasis. However, uncontrolled activation of innate immune pathways can be detrimental. In mammals, innate immune signaling is often overactivated in malignant cells and contributes to tumor progression. Drosophila tumor models have been instrumental in the discovery of interactions between pathways that promote tumorigenesis, but little is known about whether and how the Toll innate immune pathway interacts with oncogenes. Here we use a Drosophila epithelial in vivo model to investigate the interplay between Toll signaling and oncogenic Ras. In the absence of oncogenic Ras (RasV12), Toll signaling suppresses differentiation and induces apoptosis. In contrast, in the context of RasV12, cells are protected from cell death and Dorsal promotes cell survival and proliferation to drive hyperplasia. Taken together, we show that the tissue-protective functions of innate immune activity can be hijacked by pre-malignant cells to induce tumorous overgrowth.
Collapse
Affiliation(s)
- Fabienne Brutscher
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Federico Germani
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lena Jutz
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Brutscher F, Basler K. Functions of Drosophila Toll/NF-κB signaling in imaginal tissue homeostasis and cancer. Front Cell Dev Biol 2025; 13:1559753. [PMID: 40143968 PMCID: PMC11936955 DOI: 10.3389/fcell.2025.1559753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
The Toll/NF-κB pathway plays a central role in patterning the Drosophila embryo and in orchestrating the innate immune response against microbial infections. Both discoveries were associated with a Nobel Prize award and led to the recognition of the Toll-like receptor pathway in mammals, which has significant implications for diseases. Recent discoveries have revealed that the Toll/NF-κB pathway also maintains epithelial homeostasis of imaginal tissues during development: local Toll/NF-κB signaling activity monitors internal cellular fitness, and precancerous mutant cells can trigger systemic Toll/NF-κB pathway activation. However, this signaling can be exploited in diseases like cancer, in which Toll/NF-κB signaling is often co-opted or subverted. Various models have been proposed to explain how Toll/NF-κB signaling contributes to different types of cancer. Here we provide an overview of the functions of Toll/NF-κB signaling in imaginal tissue homeostasis with a focus on their misuse in pathological contexts, particularly their significance for tumor formation.
Collapse
Affiliation(s)
- Fabienne Brutscher
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Jang JJ, Kang D, Lee YS, Lee YS. The Versatile Roles of nc886, a Fascinating and Peculiar Regulatory Non-Coding RNA, in Cancer. Int J Mol Sci 2024; 25:10825. [PMID: 39409154 PMCID: PMC11476670 DOI: 10.3390/ijms251910825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
This review concerns nc886, a 101-nucleotide non-coding RNA (ncRNA). Because nc886 is transcribed by RNA polymerase III (Pol III) and contains a CpG island in its promoter region, its expression is regulated by several transcription factors and the DNA methylation status. These features drive nc886 expression in two opposing directions during tumorigenesis. The known function of nc886 is to bind to and modulate the activity of target proteins such as PKR, Dicer, and OAS1. By being differentially expressed during tumorigenesis and interacting with these proteins, nc886 plays a role in tumor surveillance, promotes or suppresses tumorigenesis, and influences the efficacy of cancer therapy. The multiple roles of nc886 have been well-documented in the literature. In this review, we have summarized this literature and critically discussed the roles and mechanisms of action of nc886 in various cancers.
Collapse
Affiliation(s)
- Jiyoung Joan Jang
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea;
- Fluorescence Core Imaging Center, Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Dongmin Kang
- Fluorescence Core Imaging Center, Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Yeon-Su Lee
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea;
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea;
| |
Collapse
|
5
|
Shojaeian A, Nakhaie M, Amjad ZS, Boroujeni AK, Shokri S, Mahmoudvand S. Leveraging metformin to combat hepatocellular carcinoma: its therapeutic promise against hepatitis viral infections. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2023.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is categorized among the most common primary malignant liver cancer and a primary global cause of death from cancer. HCC tends to affect males 2-4 times more than females in many nations. The main factors that raise the incidence of HCC are chronic liver diseases, hepatotropic viruses like hepatitis B (HBV) and C (HCV), non-alcoholic fatty liver disease, exposure to toxins like aflatoxin, and non-alcoholic steatohepatitis (NASH). Among these, hepatitis B and C are the most prevalent causes of chronic hepatitis globally. Metformin, which is made from a naturally occurring compound called galegine, derived from the plant Galega officinalis (G. officinalis ), has been found to exhibit antitumor effects in a wide range of malignancies, including HCC. In fact, compared to patients on sulphonylureas or insulin, studies have demonstrated that metformin treatment significantly lowers the risk of HCC in patients with chronic liver disease. This article will first describe the molecular mechanism of hepatitis B and C viruses in the development of HCC. Then, we will provide detailed explanations about metformin, followed by a discussion of the association between metformin and hepatocellular carcinoma caused by the viruses mentioned above.
Collapse
|
6
|
Zhang L, Ludden CM, Cullen AJ, Tew KD, Branco de Barros AL, Townsend DM. Nuclear factor kappa B expression in non-small cell lung cancer. Biomed Pharmacother 2023; 167:115459. [PMID: 37716117 PMCID: PMC10591792 DOI: 10.1016/j.biopha.2023.115459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023] Open
Abstract
In this mini-review, we discuss the role of NF-κB, a proinflammatory transcription factor, in the expression of genes involved in inflammation, proliferation, and apoptosis pathways, and link it with prognosis of various human cancers, particularly non-small cell lung cancer (NSCLC). We and others have shown that NF-κB activity can be impacted by post-translational S-glutathionylation through reversible formation of a mixed disulfide bond between its cysteine residues and glutathione (GSH). Clinical data analysis showed that high expression of NF-κB correlated with shorter overall survival (OS) in NSCLC patients, suggesting a tumor promotion function for NF-κB. Moreover, NF-κB expression was associated with tumor stage, lymph node metastasis, and 5-year OS in these patients. NF-κB was over-expressed in the cytoplasm of tumor tissue compared to adjacent normal tissues. S-glutathionylation of NF-κB caused negative regulation by interfering with DNA binding activities of NF-κB subunits. In response to oxidants, S-glutathionylation of NF-κB also correlated with enhanced lung inflammation. Thus, S-glutathionylation is an important contributor to NF-κB regulation and clinical results highlight the importance of NF-κB in NSCLC, where NF-κB levels are associated with unfavorable prognosis.
Collapse
Affiliation(s)
- Leilei Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Claudia M Ludden
- Department of Drug Discovery and Experimental Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Alexander J Cullen
- Department of Drug Discovery and Experimental Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - André Luís Branco de Barros
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Experimental Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
7
|
Li Y, Huang H, Zhu Z, Chen S, Liang Y, Shu L. TSC22D3 as an immune-related prognostic biomarker for acute myeloid leukemia. iScience 2023; 26:107451. [PMID: 37575189 PMCID: PMC10415931 DOI: 10.1016/j.isci.2023.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Acute myeloid leukemia (AML) is the type of hematologic neoplasm most common in adults. Glucocorticoid-induced gene TSC22D3 regulates cell proliferation through its function as a transcription factor. However, there is no consensus on the prognostic and immunoregulatory significance of TSC22D3 in AML. In the present study, we evaluated the correlation between TSC22D3 expression, immunoinfiltration, and prognostic significance in AML. Knockdown of TSC22D3 significantly attenuated the proliferation of Hel cells and increased sensitivity to cytarabine (Ara-c) drugs. Furthermore, TSC22D3 reduced the release of interleukin-1β (IL-1β) by inhibiting the NF-κB/NLRP3 signaling pathway, thereby inhibiting macrophage polarization to M1 subtype, and attenuating the pro-inflammatory tumor microenvironment. In conclusion, this study identified TSC22D3 as an immune-related prognostic biomarker for AML patients and suggested that therapeutic targeting of TSC22D3 may be a potential treatment option for AML through tumor immune escape.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Hanying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ziang Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Shuzhao Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Lingling Shu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong 999077, P.R. China
| |
Collapse
|
8
|
Russell MD, Stovin C, Alveyn E, Adeyemi O, Chan CKD, Patel V, Adas MA, Atzeni F, Ng KKH, Rutherford AI, Norton S, Cope AP, Galloway JB. JAK inhibitors and the risk of malignancy: a meta-analysis across disease indications. Ann Rheum Dis 2023; 82:1059-1067. [PMID: 37247942 PMCID: PMC10359573 DOI: 10.1136/ard-2023-224049] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVES To estimate the association of Janus kinase inhibitors (JAKi) with the incidence of malignancy, compared with placebo, tumour necrosis factor (TNF)-α inhibitors (TNFi) and methotrexate. METHODS Systematic searches of databases were performed, to December 2022, to identify phase II/III/IV randomised clinical trials (RCTs) and long-term extension (LTE) studies of JAKi (tofacitinib, baricitinib, upadacitinib, filgotinib, peficitinib) compared with placebo, TNFi or methotrexate, in adults with rheumatoid arthritis, psoriatic arthritis, psoriasis, axial spondyloarthritis, inflammatory bowel disease or atopic dermatitis. Network and pairwise meta-analyses were performed to estimate incidence rate ratios (IRRs) for malignancy between JAKi and comparators. Bias was assessed using the Cochrane Risk of Bias-2 tool. RESULTS In 62 eligible RCTs and 16 LTE studies, there were 82 366 person-years of exposure to JAKi, 2924 to placebo, 7909 to TNFi and 1074 to methotrexate. The overall malignancy incidence rate was 1.15 per 100 person-years in RCTs, and 1.26 per 100 person-years across combined RCT and LTE data. In network meta-analyses, the incidence of all malignancies including non-melanomatous skin cancers (NMSCs) was not significantly different between JAKi and placebo (IRR 0.71; 95% CI 0.44 to 1.15) or between JAKi and methotrexate (IRR 0.77; 95% CI 0.35 to 1.68). Compared with TNFi, however, JAKi were associated with an increased incidence of malignancy (IRR 1.50; 95% CI 1.16 to 1.94). Findings were consistent when analysing NMSC only and when analysing combined RCT/LTE data. CONCLUSIONS JAKi were associated with a higher incidence of malignancy compared with TNFi but not placebo or methotrexate. Cancers were rare events in all comparisons. PROSPERO REGISTRATION NUMBER CRD42022362630.
Collapse
Affiliation(s)
- Mark D Russell
- Centre for Rheumatic Diseases, King's College London, London, UK
| | | | - Edward Alveyn
- Centre for Rheumatic Diseases, King's College London, London, UK
| | - Olukemi Adeyemi
- Centre for Rheumatic Diseases, King's College London, London, UK
| | | | - Vishit Patel
- Centre for Rheumatic Diseases, King's College London, London, UK
| | - Maryam A Adas
- Centre for Rheumatic Diseases, King's College London, London, UK
| | - Fabiola Atzeni
- Rheumatology Unit, University of Messina, Messina, Italy
| | - Kenrick K H Ng
- Department of Medical Oncology, University College London, London, UK
| | | | - Sam Norton
- Centre for Rheumatic Diseases, King's College London, London, UK
| | - Andrew P Cope
- Centre for Rheumatic Diseases, King's College London, London, UK
| | - James B Galloway
- Centre for Rheumatic Diseases, King's College London, London, UK
| |
Collapse
|
9
|
Beydogan AB, Coskun Yazici ZM, Bolkent S. Influences of calorie restriction and lipopolysaccharide therapy on inflammation, cytokine response, and cell proliferation in pancreatic adenocarcinoma mouse model. J Biochem Mol Toxicol 2023; 37:e23250. [PMID: 36281497 DOI: 10.1002/jbt.23250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
The study aimed to investigate the effects of lipopolysaccharide (LPS) alone and in combination with calorie restriction (CR) on the pancreatic tissues in C57BL/6 mice modeled with pancreatic ductal adenocarcinoma (PDAC). Forty male C57BL/6 mice (10-13 weeks old) were divided into five groups; LPS, LPS + CR, PDAC, PDAC + LPS, and PDAC + LPS + CR. Nuclear factor kappa B (NF-κβ), interleukin-6 (IL-6), and c-Jun N-terminal kinases (JNK) mRNA expression levels were measured in pancreatic tissues. NF-κβ, IL-6, JNK, and proliferating cell nuclear antigen (PCNA) peptide levels were determined by immunohistochemistry. Oxidative stress markers and antioxidant enzyme activities were determined spectrophotometrically. TH1/TH2 cytokine measurements were determined by a flow cytometer. It was detected that the number of PCNA immune + cells in the PDAC + LPS + CR group was significantly lower than in the PDAC and PDAC + LPS groups (p < 0.01, p < 0.05 respectively). PDAC + LPS + CR group's plasma interferon-gamma (IFN-γ), IL-6, IL-2, tumor necrosis factor-alpha, IL-3, and IL-4 levels were found to be significantly lower than the PDAC group (p < 0.01, p < 0.001, p < 0.01, p < 0.05, p < 0.01, and p < 0.05 respectively). According to our findings, the combination of low-dose LPS and 40% CR was found to be more effective in PDAC model mice.
Collapse
Affiliation(s)
- Alisa B Beydogan
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zeynep M Coskun Yazici
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
10
|
Fang L, Liu K, Liu C, Wang X, Ma W, Xu W, Wu J, Sun C. Tumor accomplice: T cell exhaustion induced by chronic inflammation. Front Immunol 2022; 13:979116. [PMID: 36119037 PMCID: PMC9479340 DOI: 10.3389/fimmu.2022.979116] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The development and response to treatment of tumor are modulated by inflammation, and chronic inflammation promotes tumor progression and therapy resistance. This article summarizes the dynamic evolution of inflammation from acute to chronic in the process of tumor development, and its effect on T cells from activation to the promotion of exhaustion. We review the mechanisms by which inflammatory cells and inflammatory cytokines regulate T cell exhaustion and methods for targeting chronic inflammation to improve the efficacy of immunotherapy. It is great significance to refer to the specific state of inflammation and T cells at different stages of tumor development for accurate clinical decision-making of immunotherapy and improving the efficiency of tumor immunotherapy.
Collapse
Affiliation(s)
- Liguang Fang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunjing Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Xiaomin Wang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- *Correspondence: Changgang Sun,
| |
Collapse
|
11
|
Li T, Yan B, Xiao X, Zhou L, Zhang J, Yuan Q, Shan L, Wu H, Efferth T. Onset of p53/NF-κB signaling crosstalk in human melanoma cells in response to anti-cancer theabrownin. FASEB J 2022; 36:e22426. [PMID: 35779042 DOI: 10.1096/fj.202200261r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 12/27/2022]
Abstract
As a major tea component, theabrownin represents a promising anti-cancer candidate. However, its effect on the melanoma is unknown. To evaluate the in vitro and in vivo anti-melanoma efficacy of TB, we conducted cell viability, immunostaining, comet, and TUNEL assays on human A375 melanoma cells, and employed a zebrafish xenograft model of A375 cells. Real-time PCR (qPCR) and western blot were conducted to explore the molecular mechanisms of TB. In vitro, TB significantly inhibited the proliferation of A375 cells, and A375 cells showed the highest inhibitory rate among the other melanoma cell line (A875) and human dermal fibroblasts. TB triggered DNA damage and induced apoptosis of A375 cells and significantly inhibited the growth of A375 xenograft tumors in zebrafishes. Several key molecular events were activated by TB, including DNA damage-associated p53 and NF-κB pathways, through up-regulation of GADD45α, γ-H2A.X, phospho-ATM(p-ATM), phospho-ATR (p-ATR), phospho-p53 (p-p53), phospho-IKKα/β (p-IKKα/β), phospho-p65 (p-p65), etc. However, the TB-activated molecular events were counteracted by either knockdown of p53 or p65, and only dual knockdown of both p53 and p65 completed counteracted the anti-melanoma efficacy of TB. In conclusion, TB triggered DNA damage and thereby inhibited proliferation and induced cellular senescence and apoptosis of melanoma cells through mechanisms mediated by p53/NF-κB signaling crosstalk. This is the first report on the efficacy and mechanisms of TB on melanoma cells, making TB a promising candidate for anti-melanoma agent development.
Collapse
Affiliation(s)
- Ting Li
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Bo Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional cell preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Xiujuan Xiao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiling Wu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
12
|
Mulla SW, Venkatraman P. Novel Nexus with NFκB, β-catenin, and RB1 empowers PSMD10/Gankyrin to counteract TNF-α induced apoptosis establishing its oncogenic role. Int J Biochem Cell Biol 2022; 146:106209. [PMID: 35378311 DOI: 10.1016/j.biocel.2022.106209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/06/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
NFκB is a critical rapid-acting transcription factor that protects cancer cells from programmed cell death induced by stress or therapy. While NFκB works in nexus with non-classical oncoproteins such as STAT3 and AKT under a variety of conditions, it is a major antiapoptotic factor activated by TNF-α of the tumor microenvironment. Therefore, it is surprising that PSMD10, an oncoprotein overexpressed in several cancers and a marker of poor prognosis, is reported to inhibit the NFκB pathway. In this study, we explore the role of PSMD10 in cancer cells exposed to TNF-α. We screen several breast and colon cancer cell lines and select SW480, a colon cancer cell line highly resistant to TNF-α, and demonstrate that PSMD10 knockdown sensitizes these cells to TNF-α induced cell death. One of the mechanisms involves transcriptional regulation of β-catenin and RB1, two key colon cancer cell specific anti-apoptotic factors. Surprisingly, we find that PSMD10 is required for optimal phosphorylation and transcriptional activation of NFκB (RELA). Thus, upon PSMD10 knockdown, there is significant downregulation of anti-apoptotic NFκB target genes TNFAIP3 (A20), BIRC2 (cIAP1), BIRC3 (cIAP2), and XIAP. Our study, for the first time, shows that PSMD10 is required for the activation of the pro-survival arm via NFκB transcriptional activation to prevent cancer cells from succumbing to TNF-induced cell death. In addition by transcriptional regulation of two major antiapoptotic players RB1 and β-catenin, PSMD10 proves to be a coveted oncoprotein with a key role in tumorigenesis.
Collapse
Affiliation(s)
- Saim Wasi Mulla
- Protein Interactome Lab for Structural and Functional Biology, Tata Memorial Centre -Advanced Centre for Treatment Research and Education in Cancer (TMC-ACTREC), Navi Mumbai, India; Homi Bhabha National Institute, Department of Atomic Energy, Mumbai, India
| | - Prasanna Venkatraman
- Protein Interactome Lab for Structural and Functional Biology, Tata Memorial Centre -Advanced Centre for Treatment Research and Education in Cancer (TMC-ACTREC), Navi Mumbai, India; Homi Bhabha National Institute, Department of Atomic Energy, Mumbai, India.
| |
Collapse
|
13
|
Gutowska K, Kogut D, Kardynska M, Formanowicz P, Smieja J, Puszynski K. Petri nets and ODEs as complementary methods for comprehensive analysis on an example of the ATM-p53-NF-[Formula: see text]B signaling pathways. Sci Rep 2022; 12:1135. [PMID: 35064163 PMCID: PMC8782877 DOI: 10.1038/s41598-022-04849-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
Intracellular processes are cascades of biochemical reactions, triggered in response to various types of stimuli. Mathematical models describing their dynamics have become increasingly popular in recent years, as tools supporting experimental work in analysis of pathways and regulatory networks. Not only do they provide insights into general properties of these systems, but also help in specific tasks, such as search for drug molecular targets or treatment protocols. Different tools and methods are used to model complex biological systems. In this work, we focus on ordinary differential equations (ODEs) and Petri nets. We consider specific methods of analysis of such models, i.e., sensitivity analysis (SA) and significance analysis. So far, they have been applied separately, with different goals. In this paper, we show that they can complement each other, combining the sensitivity of ODE models and the significance analysis of Petri nets. The former is used to find parameters, whose change results in the greatest quantitative and qualitative changes in the model response, while the latter is a structural analysis and allows indicating the most important subprocesses in terms of information flow in Petri net. Ultimately, both methods facilitate finding the essential processes in a given signaling pathway or regulatory network and may be used to support medical therapy development. In the paper, the use of dual modeling is illustrated with an example of ATM/p53/NF-[Formula: see text]B pathway. Each method was applied to analyze this system, resulting in finding different subsets of important processes that might be prospective targets for changing this system behavior. While some of the processes were indicated in each of the approaches, others were found by one method only and would be missed if only that method was applied. This leads to the conclusion about the complementarity of the methods under investigation. The dual modeling approach of comprehensive structural and parametric analysis yields results that would not be possible if these two modeling approaches were applied separately. The combined approach, proposed in this paper, facilitates finding not only key processes, with which significant parameters are associated, but also significant modules, corresponding to subsystems of regulatory networks. The results provide broader insight into therapy targets in diseases in which the natural control of intracellular processes is disturbed, leading to the development of more effective therapies in medicine.
Collapse
Affiliation(s)
- Kaja Gutowska
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Daria Kogut
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Malgorzata Kardynska
- Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Piotr Formanowicz
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jaroslaw Smieja
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Krzysztof Puszynski
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| |
Collapse
|
14
|
Honarmand Tamizkar K, Badrlou E, Aslani T, Brand S, Arsang-Jang S, Ghafouri-Fard S, Taheri M. Dysregulation of NF-κB-Associated LncRNAs in Autism Spectrum Disorder. Front Mol Neurosci 2021; 14:747785. [PMID: 34658787 PMCID: PMC8512169 DOI: 10.3389/fnmol.2021.747785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/01/2021] [Indexed: 12/05/2022] Open
Abstract
Autism spectrum disorder (ASD) is a long-standing neurodevelopmental condition with prominent effects on social behavior of affected children. This disorder has been linked with neuroinflammatory responses. NF-κB has been shown to affect these responses in the orbitofrontal cortex of patients with ASD, thus being implicated in the pathogenesis of ASD. We measured expression of some NF-κB-associated lncRNAs and mRNAs (DILC, ANRIL, PACER, CHAST, ADINR, DICER1-AS1, HNF1A-AS1, NKILA, ATG5 and CEBPA) in the peripheral blood of ASD kids vs. healthy children. Expression quantities of ADINR, ANRIL, DILC, NKILA and CHAST were meaningfully higher in ASD cases compared with healthy kids (Posterior Beta = 1.402, P value < 0.0001; Posterior Beta = 2.959, P value < 0.0001; Posterior Beta = 0.882, P value = 0.012; Posterior Beta = 1.461, P value < 0.0001; Posterior Beta = 0.541, P value = 0.043, respectively). The Bonferroni corrected P values for these lncRNAs remained significant except for CHAST and DILC. Expression levels of other genes were not considerably different between cases and controls. Expressions of ATG5, DICER-AS1 and DILC were correlated with age of ASD patients (P < 0.0001). Among ASD cases, the most robust correlation has been detected between ADINR and NKILA (r = 0.87, P < 0.0001). Expression of none of genes has been correlated with age of healthy children. Among this group of children, expression levels of ADINR and CHAST were robustly correlated (r = 0.83, P < 0.0001). ANRIL had the greatest AUC value (AUC = 0.857), thus the best diagnostic power among the assessed genes. NKILA ranked the second position in this regard (AUC = 0.757). Thus, NF-κB-associated lncRNAs might partake in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Kasra Honarmand Tamizkar
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Badrlou
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Termeh Aslani
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Serge Brand
- Center for Affective, Stress and Sleep Research, Psychiatric Clinics, University of Basel, Basel, Switzerland.,Division of Sport Science and Psychosocial Health, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland.,Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Sleep Disorder Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Cancer Gene therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran
| | - Soudeh Ghafouri-Fard
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Liu S, Gu L, Wu N, Song J, Yan J, Yang S, Feng Y, Wang Z, Wang L, Zhang Y, Jin Y. Overexpression of DTL enhances cell motility and promotes tumor metastasis in cervical adenocarcinoma by inducing RAC1-JNK-FOXO1 axis. Cell Death Dis 2021; 12:929. [PMID: 34635635 PMCID: PMC8505428 DOI: 10.1038/s41419-021-04179-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022]
Abstract
Cervical adenocarcinoma is an important disease that affects young women and it has a high mortality and poor prognosis. Denticleless E3 ubiquitin protein ligase homolog (DTL) gene with oncogenic function has been evaluated in several cancers. Through this study, we aimed to clarify the clinical and molecular characteristics of cervical adenocarcinoma involving overexpression of DTL and elucidate its molecular mechanism. Bioinformatics analysis was performed through multiple databases. RNA sequencing was used to obtain differentially expressed genes after DTL was overexpressed in cells. The role of DTL in cervical adenocarcinoma was explored through in vitro and in vivo experiments. We found that DTL has an unfavorable prognostic implication for patients with cervical adenocarcinoma. Overexpression of DTL induced the migration and invasion of tumor cells in vitro and promoted intra-pulmonary metastasis in vivo. In addition, DTL activated JNK through RAC1 and upregulated FOXO1 to induce epithelial-mesenchymal transition, and the migration and invasion of tumor cells. Therefore, we conclude that overexpression of DTL enhanced cell motility and promoted tumor metastasis of cervical adenocarcinoma by regulating the RAC1-JNK-FOXO1 axis. These results suggest that DTL may become a potential therapeutic target for antitumor metastasis of cervical adenocarcinoma.
Collapse
Affiliation(s)
- Sijia Liu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Lina Gu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Nan Wu
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, 150081, China
| | - Jiayu Song
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Jiazhuo Yan
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Yue Feng
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Zhao Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Le Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Yunyan Zhang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China.
| | - Yan Jin
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
16
|
Zarin B, Rafiee L, Daneshpajouhnejad P, Haghjooy Javanmard S. A review on the role of CAFs and CAF-derived exosomes in progression and metastasis of digestive system cancers. Tumour Biol 2021; 43:141-157. [PMID: 34420992 DOI: 10.3233/tub-200075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancers evolve as a result of the accelerated proliferation of cancer cells in a complicated, enriched, and active microenvironment. Tumor microenvironment (TME) components are the master regulators of any step of cancer development. The tumor microenvironment is composed of many cellular and noncellular components that contribute to the evolution of cancer cells. Cancer-associated fibroblasts (CAFs) are activated fibroblasts in the TME that implicate in tumor progression and metastasis dissemination through secretion of oncogenic factors which are carried to the secondary metastatic sites through exosomes. In this review, we aimed to assess the role of CAF-derived exosomes in TME construction and pre-metastatic niche formation in different cancers of the digestive system in order to better understand some important mechanisms of metastasis and provide possible targets for clinical intervention. This review article is divided into two thematic parts explaining the general mechanisms of pre-metastatic niche formation and metastasis and the role of CAF-derived exosomes in different digestive system cancers including colorectal, gastric, esophageal, pancreatic, and liver cancers.
Collapse
Affiliation(s)
- Bahare Zarin
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Xiao W, Zhou H, Chen B, Shen B, Zhou J. miR-582-5p inhibits migration and chemo-resistant capabilities of colorectal cancer cells by targeting TNKS2. Genes Genomics 2021; 44:747-756. [PMID: 34357507 DOI: 10.1007/s13258-021-01141-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Metastasis and chemo-resistance are still important factors that limit the overall efficacy of colorectal cancer treatment. Understanding the detailed molecular mechanism and identifying potential biomarkers are of great value in prognosis prediction and risk stratification. OBJECTIVE We investigated the role of miR-582-5p in colorectal cancer pathogenesis, progression and chemo-resistance. Furthermore, we explored the underlying molecular mechanism of miR-582-5p in modulation of malignant behaviors of colorectal cancer cells. METHODS Clinical samples and colorectal cancer cell lines were applied to explore miR-582-5p expression level and its significance on tumor cell metastasis and chemo-resistance. Transwell study and cellular survivability study were performed to explore the influences of miR-582-5p expression modulation on tumor cell chemo-resistance and invasion/migration. Dual-luciferase reporter gene assay was conducted to explore the influences of miR-582-5p on its target gene TNKS2. RESULTS Colorectal cancer patients with lymph node or distal organ metastatic diseases exhibited significantly lower level of miR-582-5p. In vitro studies have indicated that miR-582-5p inhibition significantly increased migration and chemo-resistant capabilities of tumor cells. And dual-luciferase reporter gene assay demonstrated that miR-582-5p exhibited its influences on the biological behavior of tumor cells by targeting TNKS2. CONCLUSIONS Our study demonstrated for the first time that miR-582-5p played an important role for colorectal tumor cell metastasis and chemo-resistance. Our research also indicated that miR-582-5p and its target gene TNKS2 could be novel biomarkers for metastatic disease prediction, overall prognosis evaluation, as well as potential therapeutic target for colorectal cancer patients.
Collapse
Affiliation(s)
- Weixing Xiao
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, No. 1501 Zhongshan East Road, Jiaxing, 314000, Zhejiang, China
| | - Haijun Zhou
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, No. 1501 Zhongshan East Road, Jiaxing, 314000, Zhejiang, China.
| | - Bingrong Chen
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, No. 1501 Zhongshan East Road, Jiaxing, 314000, Zhejiang, China
| | - Bin Shen
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, No. 1501 Zhongshan East Road, Jiaxing, 314000, Zhejiang, China
| | - Jun Zhou
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, No. 1501 Zhongshan East Road, Jiaxing, 314000, Zhejiang, China
| |
Collapse
|
18
|
Polyphenol Containing Sorghum Brans Exhibit an Anti-Cancer Effect in Apc Min/+ Mice Treated with Dextran Sodium Sulfate. Int J Mol Sci 2021; 22:ijms22158286. [PMID: 34361052 PMCID: PMC8347436 DOI: 10.3390/ijms22158286] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Colon cancer (CC) is considered a high-risk cancer in developed countries. Its etiology is correlated with a high consumption of red meat and low consumption of plant-based foods, including whole grains. Sorghum bran is rich in polyphenols. This study aimed to determine whether different high-phenolic sorghum brans suppress tumor formation in a genetic CC rodent model and elucidate mechanisms. Tissue culture experiments used colorectal cancer cell lines SW480, HCT-116 and Caco-2 and measured protein expression, and protein activity. The animal model used in this study was APC Min+/mouse model combined with dextram sodium sulfate. High phenolic sorghum bran extract treatment resulted in the inhibition of proliferation and induced apoptosis in CC cell lines. Treatment with high phenolic sorghum bran extracts repressed TNF-α-stimulated NF-κB transactivation and IGF-1-stimulated PI3K/AKT pathway via the downregulation of β-catenin transactivation. Furthermore, high-phenolic sorghum bran extracts activated AMPK and autophagy. Feeding with high-phenolic sorghum bran for 6 weeks significantly suppressed tumor formation in an APC Min/+ dextran sodium sulfate promoted CC mouse model. Our data demonstrates the potential application of high-phenolic sorghum bran as a functional food for the prevention of CC.
Collapse
|
19
|
Li Q, Liang J, Fu N, Han Y, Qin J. A Ketogenic Diet and the Treatment of Autism Spectrum Disorder. Front Pediatr 2021; 9:650624. [PMID: 34046374 PMCID: PMC8146910 DOI: 10.3389/fped.2021.650624] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/29/2021] [Indexed: 01/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by stereotyped behavior and deficits in communication and social interaction. There are no curative treatments for children with ASD. The ketogenic diet (KD) is a high-fat, appropriate-protein, and low-carbohydrate diet that mimics the fasting state of the body and is proven beneficial in drug-resistant epilepsy and some other brain diseases. An increasing number of studies demonstrated that a KD improved autistic behavior, but the underlying mechanisms are not known. We reviewed the neuroprotective role of a KD in ASD, which is likely mediated via improvements in energy metabolism, reductions in antioxidative stress levels, control of neurotransmitters, inhibition of the mammalian target of rapamycin (mTOR) signaling pathway, and modulation of the gut microbiota. A KD is likely a safe and effective treatment for ASD.
Collapse
Affiliation(s)
- Qinrui Li
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Jingjing Liang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Na Fu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Ying Han
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
20
|
Sharma V, Montano MM. Non-epigenetic induction of HEXIM1 by DNMT1 inhibitors and functional relevance. Sci Rep 2020; 10:21015. [PMID: 33273553 PMCID: PMC7713402 DOI: 10.1038/s41598-020-78058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022] Open
Abstract
We have been studying the role of Hexamethylene bisacetamide (HMBA) Induced Protein 1 (HEXIM1) as a tumor suppressor whose expression is decreased in breast and prostate cancer. The anti-cancer actions of HEXIM1 in melanomas and AML have been reported by other groups. Previous studies have shown that 5-Aza-2'deoxycytidine (5-AzadC), a DNMT1 inhibitor, induces re-expression of tumor suppressor genes by removing/erasing methylation marks from their promoters. Our studies highlighted another mechanism wherein 5-AzadC induced DNA damage, which then resulted in enhanced occupancy of NF-ĸB, P-TEFb, and serine 2 phosphorylated RNA Polymerase II on the HEXIM1 gene. As a consequence, 5-AzadC induced HEXIM1 expression in prostate cancer cell lines and triple negative breast cancers. 5-AzadC-induced DNA damage enhanced P-TEFb occupancy via a mechanism that involved activation of ATR and ATM and induction of NF-ĸB recruitment to the HEXIM1 promoter. Downregulation of NF-ĸB attenuated 5-AzadC-induced HEXIM1 expression in prostate and breast cancer cells. The functional relevance of 5-AzadC-induced HEXIM1 expression is revealed by studies showing the HEXIM1 is required for the induction of apoptosis. Collectively, our findings support a non-epigenetic mechanism for 5-AzadC-induced re-expression of HEXIM1 protein, and may contribute to the clinical efficacy of 5-AzadC.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Monica M Montano
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA.
| |
Collapse
|
21
|
Almoiliqy M, Wen J, Xu B, Sun YC, Lian MQ, Li YL, Qaed E, Al-Azab M, Chen DP, Shopit A, Wang L, Sun PY, Lin Y. Cinnamaldehyde protects against rat intestinal ischemia/reperfusion injuries by synergistic inhibition of NF-κB and p53. Acta Pharmacol Sin 2020; 41:1208-1222. [PMID: 32238887 PMCID: PMC7609352 DOI: 10.1038/s41401-020-0359-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
Our preliminary study shows that cinnamaldehyde (CA) could protect against intestinal ischemia/reperfusion (I/R) injuries, in which p53 and NF-κB p65 play a synergistic role. In this study, we conducted in vivo and in vitro experiments to verify this proposal. SD rats were pretreated with CA (10 or 40 mg · kg−1 · d−1, ig) for 3 days, then subjected to 1 h mesenteric ischemia followed by 2 h reperfusion. CA pretreatment dose-dependently ameliorated morphological damage and reduced inflammation evidenced by decreased TNF-α, IL-1β, and IL-6 levels and MPO activity in I/R-treated intestinal tissues. CA pretreatment also attenuated oxidative stress through restoring SOD, GSH, LDH, and MDA levels in I/R-treated intestinal tissues. Furthermore, CA pretreatment significantly reduced the expression of inflammation/apoptosis-related NF-κB p65, IKKβ, IK-α, and NF-κB p50, and downregulated apoptotic protein expression including p53, Bax, caspase-9 and caspase-3, and restoring Bcl-2, in I/R-treated intestinal tissues. We pretreated IEC-6 cells in vitro with CA for 24 h, followed by 4 h hypoxia and 3 h reoxygenation (H/R) incubation. Pretreatment with CA (3.125, 6.25, and 12.5 μmol · L−1) significantly reversed H/R-induced reduction of IEC-6 cell viability. CA pretreatment significantly suppressed oxidative stress, NF-κB activation and apoptosis in H/R-treated IEC-6 cells. Moreover, CA pretreatment significantly reversed mitochondrial dysfunction in H/R-treated IEC-6 cells. CA pretreatment inhibited the nuclear translocation of p53 and NF-κB p65 in H/R-treated IEC-6 cells. Double knockdown or overexpression of p53 and NF-κB p65 caused a synergistic reduction or elevation of p53 compared with knockdown or overexpression of p53 or NF-κB p65 alone. In H/R-treated IEC-6 cells with double knockdown or overexpression of NF-κB p65 and p53, CA pretreatment caused neither further decrease nor increase of NF-κB p65 or p53 expression, suggesting that CA-induced synergistic inhibition on both NF-κB and p53 played a key role in ameliorating intestinal I/R injuries. Finally, we used immunoprecipitation assay to demonstrate an interaction between p53 and NF-κB p65, showing the basis for CA-induced synergistic inhibition. Our results provide valuable information for further studies.
Collapse
|
22
|
Deamidation Shunts RelA from Mediating Inflammation to Aerobic Glycolysis. Cell Metab 2020; 31:937-955.e7. [PMID: 32325032 PMCID: PMC7257911 DOI: 10.1016/j.cmet.2020.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/15/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
Cell proliferation and inflammation are two metabolically demanding biological processes. How these competing processes are selectively executed in the same cell remains unknown. Here, we report that the enzyme carbamoyl-phosphate synthetase, aspartyl transcarbamoylase, and dihydroorotase (CAD) deamidates the RelA subunit of NF-κB in cancer cells to promote aerobic glycolysis and fuel cell proliferation in tumorigenesis. This post-translational modification switches RelA function from mediating the expression of NF-κB-responsive genes to that of glycolytic enzymes, thus shunting the cell's inflammatory response to aerobic glycolysis. Further, we profiled diverse human cancer cell lines and found that high CAD expression and a subset of RELA mutations correlated with RelA deamidation. And by use of inhibitors of key glycolytic enzymes, we validated the pivotal role of RelA deamidation in tumorigenesis of cancer cell lines. This work illuminates a mechanism by which protein deamidation selectively specifies gene expression and consequent biological processes.
Collapse
|
23
|
Date Y, Ito K. Oncogenic RUNX3: A Link between p53 Deficiency and MYC Dysregulation. Mol Cells 2020; 43:176-181. [PMID: 31991537 PMCID: PMC7057839 DOI: 10.14348/molcells.2019.0285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
The RUNX transcription factors serve as master regulators of development and are frequently dysregulated in human cancers. Among the three family members, RUNX3 is the least studied, and has long been considered to be a tumor-suppressor gene in human cancers. This idea is mainly based on the observation that RUNX3 is inactivated by genetic/epigenetic alterations or protein mislocalization during the initiation of tumorigenesis. Recently, this paradigm has been challenged, as several lines of evidence have shown that RUNX3 is upregulated over the course of tumor development. Resolving this paradox and understanding how a single gene can exhibit both oncogenic and tumor-suppressive properties is essential for successful drug targeting of RUNX. We propose a simple explanation for the duality of RUNX3: p53 status. In this model, p53 deficiency causes RUNX3 to become an oncogene, resulting in aberrant upregulation of MYC.
Collapse
Affiliation(s)
- Yuki Date
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| |
Collapse
|
24
|
Khan H, Ullah H, Castilho PCMF, Gomila AS, D'Onofrio G, Filosa R, Wang F, Nabavi SM, Daglia M, Silva AS, Rengasamy KRR, Ou J, Zou X, Xiao J, Cao H. Targeting NF-κB signaling pathway in cancer by dietary polyphenols. Crit Rev Food Sci Nutr 2019; 60:2790-2800. [PMID: 31512490 DOI: 10.1080/10408398.2019.1661827] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Being a transcription factor, NF-κB regulates gene expressions involving cell survival and proliferation, drug resistance, metastasis, and angiogenesis. The activation of NF-κB plays a central role in the development of inflammation and cancer. Thus, the down-regulation of NF-κB may be an exciting target in prevention and treatment of cancer. NF-κB could act as a tumor activator or tumor suppressant decided by the site of action (organ). Polyphenols are widely distributed in plant species, consumption of which have been documented to negatively regulate the NF-κB signaling pathway. They depress the phosphorylation of kinases, inhibit NF-κB translocate into the nucleus as well as interfere interactions between NF-κB and DNA. Through inhibition of NF-κB, polyphenols downregulate inflammatory cascade, induce apoptosis and decrease cell proliferation and metastasis. This review highlights the anticancer effects of polyphenols on the basis of NF-κB signaling pathway regulation.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Antoni Sureda Gomila
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition, CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| | - Grazia D'Onofrio
- Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Complex Unit of Geriatrics, San Giovanni Rotondo, Italy
| | - Rosanna Filosa
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
- Consorzio Sannio Tech, Apollosa, Italy
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research, Vairão, Vila do Conde, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| | - Kannan R R Rengasamy
- Department of Bio-resources and Food Science, Konkuk University, Seoul, South Korea
| | - Juanying Ou
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Xiaobo Zou
- Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
- Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang, China
| | - Hui Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
25
|
Voce DJ, Bernal GM, Wu L, Crawley CD, Zhang W, Mansour NM, Cahill KE, Szymura SJ, Uppal A, Raleigh DR, Spretz R, Nunez L, Larsen G, Khodarev NN, Weichselbaum RR, Yamini B. Temozolomide Treatment Induces lncRNA MALAT1 in an NF-κB and p53 Codependent Manner in Glioblastoma. Cancer Res 2019; 79:2536-2548. [PMID: 30940658 DOI: 10.1158/0008-5472.can-18-2170] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/17/2019] [Accepted: 03/28/2019] [Indexed: 01/03/2023]
Abstract
Alkylating chemotherapy is a central component of the management of glioblastoma (GBM). Among the factors that regulate the response to alkylation damage, NF-κB acts to both promote and block cytotoxicity. In this study, we used genome-wide expression analysis in U87 GBM to identify NF-κB-dependent factors altered in response to temozolomide and found the long noncoding RNA (lncRNA) MALAT1 as one of the most significantly upregulated. In addition, we demonstrated that MALAT1 expression was coregulated by p50 (p105) and p53 via novel κB- and p53-binding sites in the proximal MALAT1 coding region. Temozolomide treatment inhibited p50 recruitment to its cognate element as a function of Ser329 phosphorylation while concomitantly increasing p53 recruitment. Moreover, luciferase reporter studies demonstrated that both κB and p53 cis-elements were required for efficient transactivation in response to temozolomide. Depletion of MALAT1 sensitized patient-derived GBM cells to temozolomide cytotoxicity, and in vivo delivery of nanoparticle-encapsulated anti-MALAT1 siRNA increased the efficacy of temozolomide in mice bearing intracranial GBM xenografts. Despite these observations, in situ hybridization of GBM specimens and analysis of publicly available datasets revealed that MALAT1 expression within GBM tissue was not prognostic of overall survival. Together, these findings support MALAT1 as a target for chemosensitization of GBM and identify p50 and p52 as primary regulators of this ncRNA. SIGNIFICANCE: These findings identify NF-κB and p53 as regulators of the lncRNA MALAT1 and suggest MALAT1 as a potential target for the chemosensitization of GBM.
Collapse
Affiliation(s)
- David J Voce
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Giovanna M Bernal
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Longtao Wu
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Clayton D Crawley
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Wei Zhang
- Department of Preventative Medicine, Northwestern University, Chicago, Illinois
| | - Nassir M Mansour
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Kirk E Cahill
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Szymon J Szymura
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Abhineet Uppal
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - David R Raleigh
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | | | - Luis Nunez
- LNK Chemsolutions LLC, Lincoln, Nebraska
| | | | - Nikolai N Khodarev
- Department of Radiation and Cellular Oncology, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Bakhtiar Yamini
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
26
|
ERK2 regulates epithelial-to-mesenchymal plasticity through DOCK10-dependent Rac1/FoxO1 activation. Proc Natl Acad Sci U S A 2019; 116:2967-2976. [PMID: 30728292 DOI: 10.1073/pnas.1811923116] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ERK is a key coordinator of the epithelial-to-mesenchymal transition (EMT) in that a variety of EMT-inducing factors activate signaling pathways that converge on ERK to regulate EMT transcription programs. However, the mechanisms by which ERK controls the EMT program are not well understood. Through an analysis of the global changes of gene expression mediated by ERK2, we identified the transcription factor FoxO1 as a potential mediator of ERK2-induced EMT, and thus we investigated the mechanism by which ERK2 regulates FoxO1. Additionally, our analysis revealed that ERK2 induced the expression of Dock10, a Rac1/Cdc42 GEF, during EMT. We demonstrate that the activation of the Rac1/JNK signaling axis downstream of Dock10 leads to an increase in FoxO1 expression and EMT. Taken together, our study uncovers mechanisms by which epithelial cells acquire less proliferative but more migratory mesenchymal properties and reveals potential therapeutic targets for cancers evolving into a metastatic disease state.
Collapse
|
27
|
Really interesting new gene finger protein 121 is a tumor suppressor of renal cell carcinoma. Gene 2018; 676:322-328. [DOI: 10.1016/j.gene.2018.08.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 12/23/2022]
|
28
|
Peters KM, Carlson BA, Gladyshev VN, Tsuji PA. Selenoproteins in colon cancer. Free Radic Biol Med 2018; 127:14-25. [PMID: 29793041 PMCID: PMC6168369 DOI: 10.1016/j.freeradbiomed.2018.05.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 02/07/2023]
Abstract
Selenocysteine-containing proteins (selenoproteins) have been implicated in the regulation of various cell signaling pathways, many of which are linked to colorectal malignancies. In this in-depth excurse into the selenoprotein literature, we review possible roles for human selenoproteins in colorectal cancer, focusing on the typical hallmarks of cancer cells and their tumor-enabling characteristics. Human genome studies of single nucleotide polymorphisms in various genes coding for selenoproteins have revealed potential involvement of glutathione peroxidases, thioredoxin reductases, and other proteins. Cell culture studies with targeted down-regulation of selenoproteins and studies utilizing knockout/transgenic animal models have helped elucidate the potential roles of individual selenoproteins in this malignancy. Those selenoproteins, for which strong links to development or progression of colorectal cancer have been described, may be potential future targets for clinical interventions.
Collapse
Affiliation(s)
- Kristin M Peters
- Dept. of Biological Sciences, Towson University, 8000 York Rd, Towson, MD 21252, United States.
| | - Bradley A Carlson
- National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States.
| | - Vadim N Gladyshev
- Dept. of Medicine, Brigham & Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| | - Petra A Tsuji
- Dept. of Biological Sciences, Towson University, 8000 York Rd, Towson, MD 21252, United States.
| |
Collapse
|
29
|
Barabutis N, Schally AV, Siejka A. P53, GHRH, inflammation and cancer. EBioMedicine 2018; 37:557-562. [PMID: 30344124 PMCID: PMC6284454 DOI: 10.1016/j.ebiom.2018.10.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022] Open
Abstract
P53 is a transcription factor very often mutated in malignancies. It functions towards the regulation of important cellular activities, such as cell cycle, senescence and apoptosis. Since inflammation and cancer are strongly associated through common pathways, P53 can suppress inflammation in a plethora of human tissues. Growth Hormone - Releasing Hormone is a hypothalamic peptide with a great capacity to affect the complex networks of cellular regulation via GHRH - specific receptors. GHRH antagonistic and agonistic analogs have been developed for clinical applications, including treatment of benign prostatic hyperplasia, breast, prostate and lung cancers, diabetes and neurodegenerative diseases. The epicenter of the current manuscript is the protective role of P53 against inflammation and cancer and emphasizes the p53 – mediated beneficial effects of GHRH antagonists in various human diseases. Inflammation is tightly associated with cancer. GHRH antagonists induce P53 expression. P53 exerts a protective effect against cancer and inflammation.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| | - Andrew V Schally
- Department of Pathology and Divisions of Hematology/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33156, USA; Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33156, USA
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Poland
| |
Collapse
|
30
|
Krishnaswamy S, Bukhari I, Mohammed AK, Amer OE, Tripathi G, Alokail MS, Al-Daghri NM. Identification of the splice variants of Recepteur d'Origine nantais (RON) in lung cancer cell lines. Gene 2018; 679:335-340. [PMID: 30223007 DOI: 10.1016/j.gene.2018.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
RON receptor tyrosine kinase is a transmembrane protein directly involved in suppression of inflammation and its aberrant expression linked to cancers and metastasis. Efforts to block deregulated RON signaling in tumors using small molecule kinase inhibitors or antibodies have been complicated by the presence of unknown number/types of isoforms of RON, which, despite being structurally similar, localize differently and mediate varied functions. Current study was designed to identify the splice variants of RON transcripts formed by skipping of sequences between exons 9 and 14 for better understanding of isoform specific RON signaling in cancers. PCR amplification and bi-directional sequencing of a 901 bp cDNA sequence located between exons 9 to 14 of RON from lung cancer cell lines revealed the presence of two splicing variants formed by skipping of exons 11 and 11-13. Each of these transcripts was found in more than one cell line. Expressed sequence tag (EST) database search indicated that the splicing variant lacking exons 11-13 was a novel one. Here we conclude that the splice variants of RON lacking exon 11 and exons 11-13 were detected in several lung cancer cell lines. Novel variant formed by skipping exons 11-13, the sequence of which code for transmembrane region, is predicted to code for a truncated isoform that may be secreted out. Tumors may antagonize the ligand dependent anti-inflammatory function of wild-type RON by secreting out the ligand binding isoforms.
Collapse
Affiliation(s)
- Soundararajan Krishnaswamy
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia
| | - Ihtisham Bukhari
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Translational Research Institute, School of Medicine, Henan Provincial People's Hospital, Henan University, Zhengzhou, China
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Osama Emam Amer
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia
| | - Gyanendra Tripathi
- Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Majed S Alokail
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia
| | - Nasser M Al-Daghri
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
31
|
Wang Y, Liu Y, Li Z, Yan X, Huang C, Ye X, Sun X, Qin S, Zhong X, Zeng C, Liu D, Zou X, Liu Y, Wu J, Wen Z, Yang G, Jing C, Wei X. Association Between MALAT1 and THRIL Polymorphisms and Precancerous Cervical Lesions. Genet Test Mol Biomarkers 2018; 22:509-517. [PMID: 30188187 DOI: 10.1089/gtmb.2018.0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The occurrence of cervical cancer is a complex process, for which human papillomavirus (HPV) infection is a risk factor, although not all women infected with HPV will develop the disease. Knockout of mammalian lung metastasis associated transcript 1 (MALAT1) is associated with increased risk for several cancer types, whereas the long non-coding RNA (lncRNA) THRIL is essential for induction of tumor necrosis factor-α expression, which plays important roles in HPV infection. MATERIALS AND METHODS To investigate the effects of polymorphisms in the lncRNAs MALAT1 and THRIL on the susceptibility to precancerous cervical lesions, 12 single nucleotide polymorphisms (SNPs) were analyzed from 164 cervical precancerous lesion cases and 428 controls. Gene-gene and gene-environment interactions and haplotype associations were also evaluated. RESULTS We found a significantly decreased risk of precancerous cervical lesions for the THRIL rs7133268 AG genotype (odds ratio adjusted = 0.63, 95% confidence interval: 0.42-0.94, p = 0.025). Multifactor dimensionality reduction analysis identified a significant two-locus interaction model involved in HPV infection and THRIL rs7133268 (training balanced accuracy = 0.6957, testing balanced accuracy = 0.6948, cross-validation consistency = 10/10, p = 0.0046). Other SNPs, including the two identified for MALAT1, were not significantly related to the risk of precancerous cervical lesions. CONCLUSION Our results suggest that the rs7133268 polymorphism of the lncRNA THRIL gene can reduce the genetic susceptibility of precancerous cervical lesions and in turn reduce the risk of HPV infection.
Collapse
Affiliation(s)
- Yao Wang
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China .,2 Guangdong Women and Children Hospital , Guangzhou, China
| | - Yang Liu
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Zhongyi Li
- 2 Guangdong Women and Children Hospital , Guangzhou, China .,3 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xiumin Yan
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China .,2 Guangdong Women and Children Hospital , Guangzhou, China
| | - Chuican Huang
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China .,2 Guangdong Women and Children Hospital , Guangzhou, China
| | - Xingguang Ye
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Xiuhong Sun
- 2 Guangdong Women and Children Hospital , Guangzhou, China .,3 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Shuang Qin
- 2 Guangdong Women and Children Hospital , Guangzhou, China .,3 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xingming Zhong
- 2 Guangdong Women and Children Hospital , Guangzhou, China
| | - Chengli Zeng
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Dandan Liu
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Xiaoqian Zou
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Yumei Liu
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Jing Wu
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Zihao Wen
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Guang Yang
- 4 Department of Pathogen Biology, School of Medicine, Jinan University , Guangzhou, China .,5 Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou, China
| | - Chunxia Jing
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China .,5 Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou, China
| | - Xiangcai Wei
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China .,2 Guangdong Women and Children Hospital , Guangzhou, China
| |
Collapse
|
32
|
Prescott JA, Cook SJ. Targeting IKKβ in Cancer: Challenges and Opportunities for the Therapeutic Utilisation of IKKβ Inhibitors. Cells 2018; 7:cells7090115. [PMID: 30142927 PMCID: PMC6162708 DOI: 10.3390/cells7090115] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
Deregulated NF-κB signalling is implicated in the pathogenesis of numerous human inflammatory disorders and malignancies. Consequently, the NF-κB pathway has attracted attention as an attractive therapeutic target for drug discovery. As the primary, druggable mediator of canonical NF-κB signalling the IKKβ protein kinase has been the historical focus of drug development pipelines. Thousands of compounds with activity against IKKβ have been characterised, with many demonstrating promising efficacy in pre-clinical models of cancer and inflammatory disease. However, severe on-target toxicities and other safety concerns associated with systemic IKKβ inhibition have thus far prevented the clinical approval of any IKKβ inhibitors. This review will discuss the potential reasons for the lack of clinical success of IKKβ inhibitors to date, the challenges associated with their therapeutic use, realistic opportunities for their future utilisation, and the alternative strategies to inhibit NF-κB signalling that may overcome some of the limitations associated with IKKβ inhibition.
Collapse
Affiliation(s)
- Jack A Prescott
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
33
|
TRIM8 regulated autophagy modulates the level of cleaved Caspase-3 subunit to inhibit genotoxic stress induced cell death. Cell Signal 2018; 48:1-12. [DOI: 10.1016/j.cellsig.2018.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023]
|
34
|
Gu L, Wang Z, Zuo J, Li H, Zha L. Prognostic significance of NF-κB expression in non-small cell lung cancer: A meta-analysis. PLoS One 2018; 13:e0198223. [PMID: 29813121 PMCID: PMC5973575 DOI: 10.1371/journal.pone.0198223] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/15/2018] [Indexed: 11/19/2022] Open
Abstract
Nuclear factor kappa B (NF-κB), a key nuclear transcription factor, is associated with prognosis in a variety of human cancers. However, the clinical value of NF-κB in non-small cell lung cancer (NSCLC) is still controversial. Therefore, the aim of this meta-analysis was to obtain an accurate evaluation of the relationship between NF-κB expression and survival prognosis of NSCLC patients based on published articles. PubMed, EMBASE and Web of Science databases were systematically searched for potential articles. A total of 1159 patients from 7 eligible studies comparing prognostic significance of NF-κB expression levels in NSCLC were included in our meta-analysis. I2 statistic and P value were performed to evaluate heterogeneity. The results of analysis were presented as hazard ratio (HR) or odds ratios (OR) with 95% confidence interval (95% CI). Subgroup analysis based on ethnicity of NSCLC patients and NF-kB cellular localization within cancer cells were conducted to illustrate the potential discrepancy. Significant heterogeneity was considered at I2>50% and P<0.05, and random-effects model was used. The combined results indicated that higher NF-κB expression was associated with shorter overall survival (OS) of NSCLC patients (HR = 2.78, 95% CI = 1.51–5.12, P = 0.001). Moreover, NF-κB expression was closely associated with tumor stage (HR = 0.32, 95% CI = 0.18–0.57, P<0.0001), lymph node metastasis (HR = 0.56, 95% CI = 0.38–0.83, P = 0.004) and 5-year OS for NSCLC patients (OR = 1.83, 95% CI = 1.02–3.31, P = 0.04). We conclude that NF-κB expression may be a potential unfavorable prognostic marker for NSCLC patients.
Collapse
Affiliation(s)
- Lijun Gu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Zhiyan Wang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Jing Zuo
- Nanlou Health Care Department, Chinese PLA General Hospital, Beijing, China
| | - Hongmei Li
- Clinical Center of Spaceport, Chinese PLA General Hospital, Beijing, China
- Clinical Center of Spaceport, The 309th Hospital of People's Liberation Army, Beijing, China
- * E-mail: (HL); (LZ)
| | - Lin Zha
- Clinical Center of Spaceport, Chinese PLA General Hospital, Beijing, China
- Clinical Center of Spaceport, The 309th Hospital of People's Liberation Army, Beijing, China
- * E-mail: (HL); (LZ)
| |
Collapse
|
35
|
Otkur W, Liu W, Wang J, Jia X, Huang D, Wang F, Hayashi T, Tashiro SI, Onodera S, Ikejima T. Sub-lethal ultraviolet B irradiation and Poly I:C treatment synergistically induced apoptosis of HaCaT cells through NF-κB pathway. Mol Immunol 2018; 99:19-29. [PMID: 29674236 DOI: 10.1016/j.molimm.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/24/2018] [Accepted: 04/02/2018] [Indexed: 12/23/2022]
Abstract
Ultraviolet B (UVB) irradiation exerts multiple effects on skin cells, inducing apoptosis, senescence and carcinogenesis. Toll-like receptor 3, a member of pattern recognition receptors, is reported to initiate inflammation by recognizing double-strand RNA (dsRNA) released from UVB-irradiated cells. It has not been studied, however, whether apoptosis induction in UVB irradiation is attributed to TLR3 activation. Here, we report on the pro-apoptotic role of TLR3 in UVB-irradiated epidermal cells. Poly I:C, an analogue of dsRNA that activates TLR3, was used in combination with sub-lethal UVB (4.8 mJ/cm2) irradiation for investigating the effects of TLR3 activation on human immortalized keratinocyte HaCaT cells. Although sub-lethal dose of either Poly I:C or UVB alone did not induce cell death, UVB-Poly I:C co-treatment synergistically induced cell death by activation of caspase-3 and cleavages of ICAD and PARP, with apoptotic features when stained with Annexin V/PI or Hoechst 33342. Treatment with pan-caspase inhibitor, Z-VAD, attenuated UVB-Poly I:C-induced cell death. Silencing TLR3 by siRNA rescued HaCaT cells from UVB-Poly I:C-induced apoptosis. NF-κB, a major downstream component of TLR3 pathway, that usually negatively regulates the classical TLR3 apoptotic pathway, was analyzed by western blotting and immunofluorescence confocal microscopy. The results indicate to our surprise that NF-κB is translocated to nucleus in the cells co-treated with UVB-Poly I:C. The nuclear translocation of NF-κB is attenuated by TLR3 silencing. Treatment with BAY, an inhibitor of NF-κB pathway, blocked UVB-Poly I:C-induced apoptosis. Therefore, we conclude that NF-κB pathway plays a cytotoxic role in UVB-Poly I:C-treated HaCaT cells, mediating TLR3-related apoptosis.
Collapse
Affiliation(s)
- Wuxiyar Otkur
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weiwei Liu
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinda Wang
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xingfan Jia
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dianchao Huang
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fang Wang
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shin-Ichi Tashiro
- Department of Medical Education & Primary Care, Kyoto Prefectural University of Medicine, Kajiicho 465, Kamikyo-ku, Kyoto City, Kyoto 602-8566, Japan
| | - Satoshi Onodera
- Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Takashi Ikejima
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
36
|
Kardyńska M, Paszek A, Śmieja J, Spiller D, Widłak W, White MRH, Paszek P, Kimmel M. Quantitative analysis reveals crosstalk mechanisms of heat shock-induced attenuation of NF-κB signaling at the single cell level. PLoS Comput Biol 2018; 14:e1006130. [PMID: 29708974 PMCID: PMC5945226 DOI: 10.1371/journal.pcbi.1006130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/10/2018] [Accepted: 04/10/2018] [Indexed: 11/22/2022] Open
Abstract
Elevated temperature induces the heat shock (HS) response, which modulates cell proliferation, apoptosis, the immune and inflammatory responses. However, specific mechanisms linking the HS response pathways to major cellular signaling systems are not fully understood. Here we used integrated computational and experimental approaches to quantitatively analyze the crosstalk mechanisms between the HS-response and a master regulator of inflammation, cell proliferation, and apoptosis the Nuclear Factor κB (NF-κB) system. We found that populations of human osteosarcoma cells, exposed to a clinically relevant 43°C HS had an attenuated NF-κB p65 response to Tumor Necrosis Factor α (TNFα) treatment. The degree of inhibition of the NF-κB response depended on the HS exposure time. Mathematical modeling of single cells indicated that individual crosstalk mechanisms differentially encode HS-mediated NF-κB responses while being consistent with the observed population-level responses. In particular "all-or-nothing" encoding mechanisms were involved in the HS-dependent regulation of the IKK activity and IκBα phosphorylation, while others involving transport were "analogue". In order to discriminate between these mechanisms, we used live-cell imaging of nuclear translocations of the NF-κB p65 subunit. The single cell responses exhibited "all-or-nothing" encoding. While most cells did not respond to TNFα stimulation after a 60 min HS, 27% showed responses similar to those not receiving HS. We further demonstrated experimentally and theoretically that the predicted inhibition of IKK activity was consistent with the observed HS-dependent depletion of the IKKα and IKKβ subunits in whole cell lysates. However, a combination of "all-or-nothing" crosstalk mechanisms was required to completely recapitulate the single cell data. We postulate therefore that the heterogeneity of the single cell responses might be explained by the cell-intrinsic variability of HS-modulated IKK signaling. In summary, we show that high temperature modulates NF-κB responses in single cells in a complex and unintuitive manner, which needs to be considered in hyperthermia-based treatment strategies.
Collapse
Affiliation(s)
| | - Anna Paszek
- Systems Engineering Group, Silesian University of Technology, Gliwice, Poland
- System Microscopy Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Maria Skłodowska-Curie Institute–Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Jarosław Śmieja
- Systems Engineering Group, Silesian University of Technology, Gliwice, Poland
| | - David Spiller
- System Microscopy Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Wiesława Widłak
- Maria Skłodowska-Curie Institute–Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Michael R. H. White
- System Microscopy Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pawel Paszek
- System Microscopy Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Marek Kimmel
- Systems Engineering Group, Silesian University of Technology, Gliwice, Poland
- Departments of Statistics and Bioengineering, Rice University, Houston, TX, United States of America
| |
Collapse
|
37
|
Roles of NF-κB Signaling in the Regulation of miRNAs Impacting on Inflammation in Cancer. Biomedicines 2018; 6:biomedicines6020040. [PMID: 29601548 PMCID: PMC6027290 DOI: 10.3390/biomedicines6020040] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
The NF-κB family of transcription factors regulate the expression of genes encoding proteins and microRNAs (miRNA, miR) precursors that may either positively or negatively regulate a variety of biological processes such as cell cycle progression, cell survival, and cell differentiation. The NF-κB-miRNA transcriptional regulatory network has been implicated in the regulation of proinflammatory, immune, and stress-like responses. Gene regulation by miRNAs has emerged as an additional epigenetic mechanism at the post-transcriptional level. The expression of miRNAs can be regulated by specific transcription factors (TFs), including the NF-κB TF family, and vice versa. The interplay between TFs and miRNAs creates positive or negative feedback loops and also regulatory networks, which can control cell fate. In the current review, we discuss the impact of NF-κB-miRNA interplay and feedback loops and networks impacting on inflammation in cancer. We provide several paradigms of specific NF-κB-miRNA networks that can regulate inflammation linked to cancer. For example, the NF-κB-miR-146 and NF-κB-miR-155 networks fine-tune the activity, intensity, and duration of inflammation, while the NF-κB-miR-21 and NF-κB-miR-181b-1 amplifying loops link inflammation to cancer; and p53- or NF-κB-regulated miRNAs interconnect these pathways and may shift the balance to cancer development or tumor suppression. The availability of genomic data may be useful to verify and find novel interactions, and provide a catalogue of 162 miRNAs targeting and 40 miRNAs possibly regulated by NF-κB. We propose that studying active TF-miRNA transcriptional regulatory networks such as NF-κB-miRNA networks in specific cancer types can contribute to our further understanding of the regulatory interplay between inflammation and cancer, and also perhaps lead to the development of pharmacologically novel therapeutic approaches to combat cancer.
Collapse
|
38
|
Guzman S, Brackstone M, Radovick S, Babwah AV, Bhattacharya MM. KISS1/KISS1R in Cancer: Friend or Foe? Front Endocrinol (Lausanne) 2018; 9:437. [PMID: 30123188 PMCID: PMC6085450 DOI: 10.3389/fendo.2018.00437] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
The KISS1 gene encodes KISS1, a protein that is rapidly processed in serum into smaller but biologically active peptides called kisspeptins (KPs). KISS1 and the KPs signal via the G-protein coupled receptor KISS1R. While KISS1 and KPs are recognized as potent positive regulators of the reproductive neuroendocrine axis in mammals, the first reported role for KISS1 was that of metastasis suppression in melanoma. Since then, it has become apparent that KISS1, KPs, and KISS1R regulate the development and progression of several cancers but interestingly, while these molecules act as suppressors of tumorigenesis and metastasis in many cancers, in breast and liver cancer they function as promoters. Thus, they join a small but growing number of molecules that exhibit dual roles in cancer highlighting the importance of studying cancer in context. Given their roles, KISS1, KPs and KISS1R represent important molecules in the development of novel therapies and/or as prognostic markers in treating cancer. However, getting to that point requires a detailed understanding of the relationship between these molecules and different cancers. The purpose of this review is therefore to highlight and discuss the clinical studies that have begun describing this relationship in varying cancer types including breast, liver, pancreatic, colorectal, bladder, and ovarian. An emerging theme from the reviewed studies is that the relationship between these molecules and a given cancer is complex and affected by many factors such as the micro-environment and steroid receptor status of the cancer cell. Our review and discussion of these important clinical studies should serve as a valuable resource in the successful development of future clinical studies.
Collapse
Affiliation(s)
- Stephania Guzman
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Muriel Brackstone
- Division of Surgical Oncology, The University of Western Ontario, London, ON, Canada
| | - Sally Radovick
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Andy V. Babwah
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Moshmi M. Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
- Cancer Institute of New Jersey, New Brunswick, NJ, United States
- *Correspondence: Moshmi M. Bhattacharya
| |
Collapse
|
39
|
Vasu KK, Digwal CS, Pandya AN, Pandya DH, Sharma JA, Patel S, Agarwal M. Imidazo[1,2- a ]pyridines linked with thiazoles/thiophene motif through keto spacer as potential cytotoxic agents and NF-κB inhibitors. Bioorg Med Chem Lett 2017; 27:5463-5466. [DOI: 10.1016/j.bmcl.2017.10.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/05/2017] [Accepted: 10/25/2017] [Indexed: 01/03/2023]
|
40
|
Velloso FJ, Bianco AFR, Farias JO, Torres NEC, Ferruzo PYM, Anschau V, Jesus-Ferreira HC, Chang THT, Sogayar MC, Zerbini LF, Correa RG. The crossroads of breast cancer progression: insights into the modulation of major signaling pathways. Onco Targets Ther 2017; 10:5491-5524. [PMID: 29200866 PMCID: PMC5701508 DOI: 10.2147/ott.s142154] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is the disease with highest public health impact in developed countries. Particularly, breast cancer has the highest incidence in women worldwide and the fifth highest mortality in the globe, imposing a significant social and economic burden to society. The disease has a complex heterogeneous etiology, being associated with several risk factors that range from lifestyle to age and family history. Breast cancer is usually classified according to the site of tumor occurrence and gene expression profiling. Although mutations in a few key genes, such as BRCA1 and BRCA2, are associated with high breast cancer risk, the large majority of breast cancer cases are related to mutated genes of low penetrance, which are frequently altered in the whole population. Therefore, understanding the molecular basis of breast cancer, including the several deregulated genes and related pathways linked to this pathology, is essential to ensure advances in early tumor detection and prevention. In this review, we outline key cellular pathways whose deregulation has been associated with breast cancer, leading to alterations in cell proliferation, apoptosis, and the delicate hormonal balance of breast tissue cells. Therefore, here we describe some potential breast cancer-related nodes and signaling concepts linked to the disease, which can be positively translated into novel therapeutic approaches and predictive biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | - Valesca Anschau
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Ted Hung-Tse Chang
- Cancer Genomics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | | | - Luiz F Zerbini
- Cancer Genomics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Ricardo G Correa
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
41
|
Tilborghs S, Corthouts J, Verhoeven Y, Arias D, Rolfo C, Trinh XB, van Dam PA. The role of Nuclear Factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol 2017; 120:141-150. [PMID: 29198328 DOI: 10.1016/j.critrevonc.2017.11.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/01/2017] [Indexed: 12/27/2022] Open
Abstract
Background The Nuclear Factor kappaB (NF-kB) family consists of transcription factors that play a complex and essential role in the regulation of immune responses and inflammation. NF-kB has recently generated considerable interest as it has been implicated in human cancer initiation, progression and resistance to treatment. In the present comprehensive review the different aspects of NF-kB signaling in the carcinogenesis of cancer of the uterine cervix are discussed. NF-kB functions as part of a network, which determines the pattern of its effects on the expression of several other genes (such as crosstalks with reactive oxygen species, p53, STAT3 and miRNAS) and thus its function. Activation of NF-kB triggered by a HPV infection is playing an important role in the innate and adaptive immune response of the host. The virus induces down regulation of NF-kB to liquidate the inhibitory activity for its replication triggered by the immune system leading a status of persistant HPV infection. During the progression to high grade intraepithelial neoplasia and cervical cancer NF-KB becomes constitutionally activated again. Mutations in NF-kB genes are rare in solid tumors but mutations of upstream signaling molecules such as RAS, EGFR, PGF, HER2 have been implicated in elevated NF-kB signaling. NF-kB can stimulate transcription of proliferation regulating genes (eg. cyclin D1 and c-myc), genes involved in metastasis, VEGF dependent angiogenesis and cell immortality by telomerase. NF-kB activation can also induce the expression of activation-induced cytodine deaminase (AID) and the APOBEC proteins, providing a mechanistic link between the NF-kB pathway and mutagenic characteristic of cervical cancer. Inhibition of NF-kB has the potential to be used to reverse resistance to radiotherapy and systemic anti-cancer medication, but currently no clinicaly active NF-kB targeting strategies are available.
Collapse
Affiliation(s)
- Sam Tilborghs
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Jerome Corthouts
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Yannick Verhoeven
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - David Arias
- Phase I - Early Clinical Trials Unit & Center for Oncological Research (CORE), Antwerp University, Belgium
| | - Christian Rolfo
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Phase I - Early Clinical Trials Unit & Center for Oncological Research (CORE), Antwerp University, Belgium
| | - Xuan Bich Trinh
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Gynecologic Oncology Unit, Antwerp University Hospital & Centre of Oncologic Research (CORE), Antwerp University, Belgium
| | - Peter A van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Gynecologic Oncology Unit, Antwerp University Hospital & Centre of Oncologic Research (CORE), Antwerp University, Belgium.
| |
Collapse
|
42
|
Sznarkowska A, Kostecka A, Meller K, Bielawski KP. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget 2017; 8:15996-16016. [PMID: 27911871 PMCID: PMC5362541 DOI: 10.18632/oncotarget.13723] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
All classic, non-surgical anticancer approaches like chemotherapy, radiotherapy or photodynamic therapy kill cancer cells by inducing severe oxidative stress. Even tough chemo- and radiotherapy are still a gold standard in cancer treatment, the identification of non-toxic compounds that enhance their selectivity, would allow for lowering their doses, reduce side effects and risk of second cancers. Many natural products have the ability to sensitize cancer cells to oxidative stress induced by chemo- and radiotherapy by limiting antioxidant capacity of cancer cells. Blocking antioxidant defense in tumors decreases their ability to balance oxidative insult and results in cell death. Though one should bear in mind that the same natural compound often exerts both anti-oxidant and pro-oxidant properties, depending on concentration used, cell type, exposure time and environmental conditions. Here we present a comprehensive overview of natural products that inhibit major antioxidant defense mechanisms in cancer cells and discuss their potential in clinical application.
Collapse
Affiliation(s)
- Alicja Sznarkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Anna Kostecka
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Meller
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Piotr Bielawski
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
43
|
Li D, Tomljenovic L, Li Y, Shaw CA. RETRACTED: Subcutaneous injections of aluminum at vaccine adjuvant levels activate innate immune genes in mouse brain that are homologous with biomarkers of autism. J Inorg Biochem 2017; 177:39-54. [PMID: 28923356 DOI: 10.1016/j.jinorgbio.2017.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Dan Li
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lucija Tomljenovic
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yongling Li
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Shaw
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Program in Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
44
|
Vaisitti T, Gaudino F, Ouk S, Moscvin M, Vitale N, Serra S, Arruga F, Zakrzewski JL, Liou HC, Allan JN, Furman RR, Deaglio S. Targeting metabolism and survival in chronic lymphocytic leukemia and Richter syndrome cells by a novel NF-κB inhibitor. Haematologica 2017; 102:1878-1889. [PMID: 28860341 PMCID: PMC5664392 DOI: 10.3324/haematol.2017.173419] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/28/2017] [Indexed: 02/04/2023] Open
Abstract
IT-901 is a novel and selective NF-κB inhibitor with promising activity in pre-clinical models. Here we show that treatment of chronic lymphocytic leukemia cells (CLL) with IT-901 effectively interrupts NF-κB transcriptional activity. CLL cells exposed to the drug display elevated mitochondrial reactive oxygen species, which damage mitochondria, limit oxidative phosphorylation and ATP production, and activate intrinsic apoptosis. Inhibition of NF-κB signaling in stromal and myeloid cells, both tumor-supportive elements, fails to induce apoptosis, but impairs NF-κB-driven expression of molecules involved in cell-cell contacts and immune responses, essential elements in creating a pro-leukemic niche. The consequence is that accessory cells do not protect CLL cells from IT-901-induced apoptosis. In this context, IT-901 shows synergistic activity with ibrutinib, arguing in favor of combination strategies. IT-901 is also effective in primary cells from patients with Richter syndrome (RS). Its anti-tumor properties are confirmed in xenograft models of CLL and in RS patient-derived xenografts, with documented NF-κB inhibition and significant reduction of tumor burden. Together, these results provide pre-clinical proof of principle for IT-901 as a potential new drug in CLL and RS.
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Italy .,Italian Institute for Genomic Medicine, Turin, Italy
| | - Federica Gaudino
- Department of Medical Sciences, University of Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | | | - Maria Moscvin
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Nicoletta Vitale
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Italy
| | - Sara Serra
- Department of Medical Sciences, University of Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | | | | | | | - John N Allan
- CLL Research Center, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Richard R Furman
- CLL Research Center, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Italy .,Italian Institute for Genomic Medicine, Turin, Italy
| |
Collapse
|
45
|
Wu YH, Huang YF, Chang TH, Chou CY. Activation of TWIST1 by COL11A1 promotes chemoresistance and inhibits apoptosis in ovarian cancer cells by modulating NF-κB-mediated IKKβ expression. Int J Cancer 2017; 141:2305-2317. [PMID: 28815582 DOI: 10.1002/ijc.30932] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
We have shown that collagen type XI alpha 1 (COL11A1) promotes ovarian cancer progression and is associated with chemoresistance to cisplatin and paclitaxel in ovarian cancer cells. Here, we demonstrate how COL11A1 regulates twist family basic helix-loop-helix transcription factor 1-related protein 1 (TWIST1) to induce chemoresistance and inhibit apoptosis in ovarian cancer cells. Small interfering RNA-mediated reduction in COL11A1 protein levels increased the chemosensitivity to cisplatin and paclitaxel via downregulated TWIST1 expression. TWIST1 messenger RNA levels positively associated with COL11A1 messenger RNA expression levels in ovarian tumors. High TWIST1 expression levels were significantly associated with a progression-free interval of ≤ 6 months (p = 0.001) and death (p = 0.040). In addition, patients with high TWIST1 mRNA levels had significantly shorter 5-year overall-survival (p = 0.004) and progression-free survival (p = 0.009) rates, compared to patients with low TWIST1 levels. Increased TWIST1 expression caused by COL11A1-induced transcription of the inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ) gene occurred via increased SP1 phosphorylation and binding to the IKKβ promoter. COL11A1-mediated nuclear factor-kappa B activation, via transcriptional activation of IKKβ, promoted TWIST1, Mcl-1, and GAS6 expression, which were associated with chemoresistance and anti-apoptosis in ovarian cancer cells. We suggest that IKKβ and TWIST1 can potentially be targeted in patients with COL11A1-positive ovarian cancer.
Collapse
Affiliation(s)
- Yi-Hui Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Fang Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
46
|
Slattery ML, Herrick JS, Mullany LE, Samowitz WS, Sevens JR, Sakoda L, Wolff RK. The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer. Genes Chromosomes Cancer 2017; 56:769-787. [PMID: 28675510 PMCID: PMC5597468 DOI: 10.1002/gcc.22481] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 12/14/2022] Open
Abstract
Tumor suppressor genes (TSGs) and oncogenes (OG) are involved in carcinogenesis. MiRNAs also contribute to cellular pathways leading to cancer. We use data from 217 colorectal cancer (CRC) cases to evaluate differences in TSGs and OGs expression between paired CRC and normal mucosa and evaluate how TSGs and OGs are associated with miRNAs. Gene expression data from RNA-Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were used. We focus on genes most strongly associated with CRC (fold change (FC) of ≥1.5 or ≤0.67) that were statistically significant after adjustment for multiple comparisons. Of the 74 TSGs evaluated, 22 were associated with carcinoma/normal mucosa differential expression. Ten TSGs were up-regulated (FAM123B, RB1, TP53, RUNX1, MSH2, BRCA1, BRCA2, SOX9, NPM1, and RNF43); six TSGs were down-regulated (PAX5, IZKF1, GATA3, PRDM1, TET2, and CYLD); four were associated with MSI tumors (MLH1, PTCH1, and CEBPA down-regulated and MSH6 up-regulated); and two were associated with MSS tumors (PHF6 and ASXL1 up-regulated). Thirteen of these TSGs were associated with 44 miRNAs. Twenty-seven of the 59 OGs evaluated were dysregulated: 14 down-regulated (KLF4, BCL2, SSETBP1, FGFR2, TSHR, MPL, KIT, PDGFRA, GNA11, GATA2, FGFR3, AR, CSF1R, and JAK3), seven up-regulated (DNMT1, EZH2, PTPN11, SKP2, CCND1, MET, and MYC); three down-regulated for MSI (FLT3, CARD11, and ALK); two up-regulated for MSI (IDH2 and HRAS); and one up-regulated with MSS tumors (CTNNB1). These findings suggest possible co-regulatory function between TSGs, OGs, and miRNAs, involving both direct and indirect associations that operate through feedback and feedforward loops.
Collapse
Affiliation(s)
| | | | - Lila E Mullany
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - John R Sevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah
| | - Lori Sakoda
- Kaiser Permanente Medical Research Program, Oakland, California
| | - Roger K Wolff
- Department of Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
47
|
Chen J, Stark LA. Aspirin Prevention of Colorectal Cancer: Focus on NF-κB Signalling and the Nucleolus. Biomedicines 2017; 5:biomedicines5030043. [PMID: 28718829 PMCID: PMC5618301 DOI: 10.3390/biomedicines5030043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
Overwhelming evidence indicates that aspirin and related non-steroidal anti-inflammatory drugs (NSAIDs) have anti-tumour activity and the potential to prevent cancer, particularly colorectal cancer. However, the mechanisms underlying this effect remain hypothetical. Dysregulation of the nuclear factor-kappaB (NF-κB) transcription factor is a common event in many cancer types which contributes to tumour initiation and progression by driving expression of pro-proliferative/anti-apoptotic genes. In this review, we will focus on the current knowledge regarding NSAID effects on the NF-κB signalling pathway in pre-cancerous and cancerous lesions, and the evidence that these effects contribute to the anti-tumour activity of the agents. The nuclear organelle, the nucleolus, is emerging as a central regulator of transcription factor activity and cell growth and death. Nucleolar function is dysregulated in the majority of cancers which promotes cancer growth through direct and indirect mechanisms. Hence, this organelle is emerging as a promising target for novel therapeutic agents. Here, we will also discuss evidence for crosstalk between the NF-κB pathway and nucleoli, the role that this cross-talk has in the anti-tumour effects of NSAIDs and ways forward to exploit this crosstalk for therapeutic purpose.
Collapse
Affiliation(s)
- Jingyu Chen
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Rd., Edinburgh, Scotland EH4 2XU, UK.
| | - Lesley A Stark
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Rd., Edinburgh, Scotland EH4 2XU, UK.
| |
Collapse
|
48
|
Stolle AS, Norkowski S, Körner B, Schmitz J, Lüken L, Frankenberg M, Rüter C, Schmidt MA. T3SS-Independent Uptake of the Short-Trip Toxin-Related Recombinant NleC Effector of Enteropathogenic Escherichia coli Leads to NF-κB p65 Cleavage. Front Cell Infect Microbiol 2017; 7:119. [PMID: 28451521 PMCID: PMC5390045 DOI: 10.3389/fcimb.2017.00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/23/2017] [Indexed: 12/15/2022] Open
Abstract
Effector proteins secreted by the type 3 secretion system (T3SS) of pathogenic bacteria have been shown to precisely modulate important signaling cascades of the host for the benefit of the pathogens. Among others, the non-LEE encoded T3SS effector protein NleC of enteropathogenic Escherichia coli (EPEC) is a Zn-dependent metalloprotease and suppresses innate immune responses by directly targeting the NF-κB signaling pathway. Many pathogenic bacteria release potent bacterial toxins of the A-B type, which-in contrast to the direct cytoplasmic injection of T3SS effector proteins-are released first into the environment. In this study, we found that NleC displays characteristics of bacterial A-B toxins, when applied to eukaryotic cells as a recombinant protein. Although lacking a B subunit, that typically mediates the uptake of toxins, recombinant NleC (rNleC) induces endocytosis via lipid rafts and follows the endosomal-lysosomal pathway. The conformation of rNleC is altered by low pH to facilitate its escape from acidified endosomes. This is reminiscent of the homologous A-B toxin AIP56 of the fish pathogen Photobacterium damselae piscicida (Phdp). The recombinant protease NleC is functional inside eukaryotic cells and cleaves p65 of the NF-κB pathway. Here, we describe the endocytic uptake mechanism of rNleC, characterize its intracellular trafficking and demonstrate that its specific activity of cleaving p65 requires activation of host cells e.g., by IL1β. Further, we propose an evolutionary link between some T3SS effector proteins and bacterial toxins from apparently unrelated bacteria. In summary, these properties might suggest rNleC as an interesting candidate for future applications as a potential therapeutic against immune disorders.
Collapse
Affiliation(s)
- Anne-Sophie Stolle
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Stefanie Norkowski
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Britta Körner
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Lena Lüken
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Maj Frankenberg
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Christian Rüter
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| |
Collapse
|
49
|
Khan Z, Khan AA, Yadav H, Prasad GBKS, Bisen PS. Survivin, a molecular target for therapeutic interventions in squamous cell carcinoma. Cell Mol Biol Lett 2017; 22:8. [PMID: 28536639 PMCID: PMC5415770 DOI: 10.1186/s11658-017-0038-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Squamous cell carcinoma (SCC) is the most common cancer worldwide. The treatment of locally advanced disease generally requires various combinations of radiotherapy, surgery, and systemic therapy. Despite aggressive multimodal treatment, most of the patients relapse. Identification of molecules that sustain cancer cell growth and survival has made molecular targeting a feasible therapeutic strategy. Survivin is a member of the Inhibitor of Apoptosis Protein (IAP) family, which is overexpressed in most of the malignancies including SCC and totally absent in most of the normal tissues. This feature makes survivin an ideal target for cancer therapy. It orchestrates several important mechanisms to support cancer cell survival including inhibition of apoptosis and regulation of cell division. Overexpression of survivin in tumors is also associated with poor prognosis, aggressive tumor behavior, resistance to therapy, and high tumor recurrence. Various strategies have been developed to target survivin expression in cancer cells, and their effects on apoptosis induction and tumor growth attenuation have been demonstrated. In this review, we discuss recent advances in therapeutic potential of survivin in cancer treatment.
Collapse
Affiliation(s)
- Zakir Khan
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474001 MP India.,Department of Biomedical Sciences, Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Abdul Arif Khan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hariom Yadav
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | | | - Prakash Singh Bisen
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474001 MP India
| |
Collapse
|
50
|
Zhai H, Shi Y, Chen X, Wang J, Lu Y, Zhang F, Liu Z, Lei T, Fan D. CacyBP/SIP promotes the proliferation of colon cancer cells. PLoS One 2017; 12:e0169959. [PMID: 28196083 PMCID: PMC5308830 DOI: 10.1371/journal.pone.0169959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/25/2016] [Indexed: 01/30/2023] Open
Abstract
CacyBP/SIP is a component of the ubiquitin pathway and is overexpressed in several transformed tumor tissues, including colon cancer, which is one of the most common cancers worldwide. It is unknown whether CacyBP/SIP promotes the proliferation of colon cancer cells. This study examined the expression level, subcellular localization, and binding activity of CacyBP/SIP in human colon cancer cells in the presence and absence of the hormone gastrin. We found that CacyBP/SIP was expressed in a high percentage of colon cancer cells, but not in normal colonic surface epithelium. CacyBP/SIP promoted the cell proliferation of colon cancer cells under both basal and gastrin stimulated conditions as shown by knockdown studies. Gastrin stimulation triggered the translocation of CacyBP/SIP to the nucleus, and enhanced interaction between CacyBP/SIP and SKP1, a key component of ubiquitination pathway which further mediated the proteasome-dependent degradation of p27kip1 protein. The gastrin induced reduction in p27kip1 was prevented when cells were treated with the proteasome inhibitor MG132. These results suggest that CacyBP/SIP may be promoting growth of colon cancer cells by enhancing ubiquitin-mediated degradation of p27kip1.
Collapse
Affiliation(s)
- Huihong Zhai
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiong Chen
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jun Wang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Faming Zhang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhengxiong Liu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ting Lei
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail:
| |
Collapse
|