1
|
Rasmussen M, Jin JP. Mechanoregulation and function of calponin and transgelin. BIOPHYSICS REVIEWS 2024; 5:011302. [PMID: 38515654 PMCID: PMC10954348 DOI: 10.1063/5.0176784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
It is well known that chemical energy can be converted to mechanical force in biological systems by motor proteins such as myosin ATPase. It is also broadly observed that constant/static mechanical signals potently induce cellular responses. However, the mechanisms that cells sense and convert the mechanical force into biochemical signals are not well understood. Calponin and transgelin are a family of homologous proteins that participate in the regulation of actin-activated myosin motor activity. An isoform of calponin, calponin 2, has been shown to regulate cytoskeleton-based cell motility functions under mechanical signaling. The expression of the calponin 2 gene and the turnover of calponin 2 protein are both under mechanoregulation. The regulation and function of calponin 2 has physiological and pathological significance, as shown in platelet adhesion, inflammatory arthritis, arterial atherosclerosis, calcific aortic valve disease, post-surgical fibrotic peritoneal adhesion, chronic proteinuria, ovarian insufficiency, and tumor metastasis. The levels of calponin 2 vary in different cell types, reflecting adaptations to specific tissue environments and functional states. The present review focuses on the mechanoregulation of calponin and transgelin family proteins to explore how cells sense steady tension and convert the force signal to biochemical activities. Our objective is to present a current knowledge basis for further investigations to establish the function and mechanisms of calponin and transgelin in cellular mechanoregulation.
Collapse
Affiliation(s)
- Monica Rasmussen
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, Florida 33101, USA
| | - J.-P. Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60612, USA
| |
Collapse
|
2
|
Guan G, Cannon RD, Coates DE, Mei L. Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Genes (Basel) 2023; 14:272. [PMID: 36833199 PMCID: PMC9957420 DOI: 10.3390/genes14020272] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The mechanical properties of cells are important in tissue homeostasis and enable cell growth, division, migration and the epithelial-mesenchymal transition. Mechanical properties are determined to a large extent by the cytoskeleton. The cytoskeleton is a complex and dynamic network composed of microfilaments, intermediate filaments and microtubules. These cellular structures confer both cell shape and mechanical properties. The architecture of the networks formed by the cytoskeleton is regulated by several pathways, a key one being the Rho-kinase/ROCK signaling pathway. This review describes the role of ROCK (Rho-associated coiled-coil forming kinase) and how it mediates effects on the key components of the cytoskeleton that are critical for cell behaviour.
Collapse
Affiliation(s)
- Guangzhao Guan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Dawn E. Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Li Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
3
|
Wang X, Li L, Shao Y, Wei J, Song R, Zheng S, Li Y, Song F. Effects of the Laplace pressure on the cells during cytokinesis. iScience 2021; 24:102945. [PMID: 34458697 PMCID: PMC8377492 DOI: 10.1016/j.isci.2021.102945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/28/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Abstract
The Laplace pressure is one of the most fundamental regulators that determine cell shape and function, and thus has been receiving widespread attention. Here, we systemically investigate the effect of the Laplace pressure on the shape and function of the cells during cytokinesis. We find that the Laplace pressure during cytokinesis can directly control the distribution and size of cell blebbing and adjust the symmetry of cell division by virtue of changing the characteristics of cell blebbing. Further, we demonstrate that the Laplace pressure changes the structural uniformity of cell boundary to regulate the symmetry of cell division. Our findings provide further insights as to the important role of the Laplace pressure in regulating the symmetry of cell division during cytokinesis.
Collapse
Affiliation(s)
- Xiaohuan Wang
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingfeng Shao
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiachen Wei
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruopu Song
- School of Life Science and Health, Northeastern University, Shenyang 110169, China
| | - Songjie Zheng
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqiao Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Lee Y, Shivashankar GV. Analysis of transcriptional modules during human fibroblast ageing. Sci Rep 2020; 10:19086. [PMID: 33154459 PMCID: PMC7645754 DOI: 10.1038/s41598-020-76117-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
For systematic identification of transcription signatures of human cell aging, we carried out Weighted Gene Co-expression Network Analysis (WGCNA) with the RNA-sequencing data generated with young to old human dermal fibroblasts. By relating the modules to the donor's traits, we uncovered the natural aging- and premature aging disease-associated modules. The STRING functional association networks built with the core module memberships provided a systematic overview of genome-wide transcriptional changes upon aging. We validated the selected candidates via quantitative reverse transcription PCR (RT-qPCR) assay with young and aged human fibroblasts, and uncovered several genes involved in ECM, cell, and nuclear mechanics as a potential aging biomarker. Collectively, our study not only provides a snapshot of functional changes during human fibroblast aging but also presents potential aging markers that are relevant to cell mechanics.
Collapse
Affiliation(s)
- Yaelim Lee
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore. .,FIRC Institute for Molecular Oncology (IFOM), Milan, Italy. .,Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zürich, Switzerland. .,Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
5
|
Abstract
Just as it is important to understand the cell biology of signaling pathways, it is valuable also to understand mechanical forces in cells. The field of mechanobiology has a rich history, including study of cellular mechanics during mitosis and meiosis in echinoderm oocytes and zygotes dating back to the 1930s. This chapter addresses the use of micropipette aspiration (MPA) to assess cellular mechanics, specifically cortical tension, in mammalian oocytes.
Collapse
Affiliation(s)
- Janice P Evans
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Combining confocal and atomic force microscopy to quantify single-virus binding to mammalian cell surfaces. Nat Protoc 2017; 12:2275-2292. [PMID: 28981124 DOI: 10.1038/nprot.2017.112] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Over the past five years, atomic force microscopy (AFM)-based approaches have evolved into a powerful multiparametric tool set capable of imaging the surfaces of biological samples ranging from single receptors to membranes and tissues. One of these approaches, force-distance curve-based AFM (FD-based AFM), uses a probing tip functionalized with a ligand to image living cells at high-resolution and simultaneously localize and characterize specific ligand-receptor binding events. Analyzing data from FD-based AFM experiments using appropriate probabilistic models allows quantification of the kinetic and thermodynamic parameters that describe the free-energy landscape of the ligand-receptor bond. We have recently developed an FD-based AFM approach to quantify the binding events of single enveloped viruses to surface receptors of living animal cells while simultaneously observing them by fluorescence microscopy. This approach has provided insights into the early stages of the interaction between a virus and a cell. Applied to a model virus, we probed the specific interaction with cells expressing viral cognate receptors and measured the affinity of the interaction. Furthermore, we observed that the virus rapidly established specific multivalent interactions and found that each bond formed in sequence strengthened the attachment of the virus to the cell. Here we describe detailed procedures for probing the specific interactions of viruses with living cells; these procedures cover tip preparation, cell sample preparation, step-by-step FD-based AFM imaging and data analysis. Experienced microscopists should be able to master the entire set of protocols in 1 month.
Collapse
|
7
|
Hecht FM, Rheinlaender J, Schierbaum N, Goldmann WH, Fabry B, Schäffer TE. Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale. SOFT MATTER 2015; 11:4584-4591. [PMID: 25891371 DOI: 10.1039/c4sm02718c] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We developed force clamp force mapping (FCFM), an atomic force microscopy (AFM) technique for measuring the viscoelastic creep behavior of live cells with sub-micrometer spatial resolution. FCFM combines force-distance curves with an added force clamp phase during tip-sample contact. From the creep behavior measured during the force clamp phase, quantitative viscoelastic sample properties are extracted. We validate FCFM on soft polyacrylamide gels. We find that the creep behavior of living cells conforms to a power-law material model. By recording short (50-60 ms) force clamp measurements in rapid succession, we generate, for the first time, two-dimensional maps of power-law exponent and modulus scaling parameter. Although these maps reveal large spatial variations of both parameters across the cell surface, we obtain robust mean values from the several hundreds of measurements performed on each cell. Measurements on mouse embryonic fibroblasts show that the mean power-law exponents and the mean modulus scaling parameters differ greatly among individual cells, but both parameters are highly correlated: stiffer cells consistently show a smaller power-law exponent. This correlation allows us to distinguish between wild-type cells and cells that lack vinculin, a dominant protein of the focal adhesion complex, even though the mean values of viscoelastic properties between wildtype and knockout cells did not differ significantly. Therefore, FCFM spatially resolves viscoelastic sample properties and can uncover subtle mechanical signatures of proteins in living cells.
Collapse
Affiliation(s)
- Fabian M Hecht
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Johannes Rheinlaender
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Nicolas Schierbaum
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Wolfgang H Goldmann
- Department of Physics, University of Erlangen-Nuremberg, Henkestraße 91, 91052 Erlangen, Germany
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Henkestraße 91, 91052 Erlangen, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| |
Collapse
|
8
|
Modeling large-scale dynamic processes in the cell: polarization, waves, and division. Q Rev Biophys 2015; 47:221-48. [PMID: 25124728 DOI: 10.1017/s0033583514000079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The past decade has witnessed significant developments in molecular biology techniques, fluorescent labeling, and super-resolution microscopy, and together these advances have vastly increased our quantitative understanding of the cell. This detailed knowledge has concomitantly opened the door for biophysical modeling on a cellular scale. There have been comprehensive models produced describing many processes such as motility, transport, gene regulation, and chemotaxis. However, in this review we focus on a specific set of phenomena, namely cell polarization, F-actin waves, and cytokinesis. In each case, we compare and contrast various published models, highlight the relevant aspects of the biology, and provide a sense of the direction in which the field is moving.
Collapse
|
9
|
Robinson DN. 14-3-3, an integrator of cell mechanics and cytokinesis. Small GTPases 2014; 1:165-169. [PMID: 21686271 DOI: 10.4161/sgtp.1.3.14432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 11/19/2022] Open
Abstract
One of the goals of understanding cytokinesis is to uncover the molecular regulation of the cellular mechanical properties that drive cell shape change. Such regulatory pathways are likely to be used at multiple stages of a cell's life, but are highly featured during cell division. Recently, we demonstrated that 14-3-3 (encoded by a single gene in the social amoeba Dictyostelium discoideum) serves to integrate key cytoskeletal components-microtubules, Rac and myosin II-to control cell mechanics and cytokinesis. As 14-3-3 proteins are frequently altered in a variety of human tumors, we extend these observations to suggest possible additional roles for how 14-3-3 proteins may contribute to tumorigenesis.
Collapse
Affiliation(s)
- Douglas N Robinson
- Departments of Cell Biology; Pharmacology and Molecular Sciences; Johns Hopkins University School of Medicine; Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore, MD USA
| |
Collapse
|
10
|
Renshaw MJ, Liu J, Lavoie BD, Wilde A. Anillin-dependent organization of septin filaments promotes intercellular bridge elongation and Chmp4B targeting to the abscission site. Open Biol 2014; 4:130190. [PMID: 24451548 PMCID: PMC3909275 DOI: 10.1098/rsob.130190] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The final step of cytokinesis is abscission when the intercellular bridge (ICB) linking the two new daughter cells is broken. Correct construction of the ICB is crucial for the assembly of factors involved in abscission, a failure in which results in aneuploidy. Using live imaging and subdiffraction microscopy, we identify new anillin–septin cytoskeleton-dependent stages in ICB formation and maturation. We show that after the formation of an initial ICB, septin filaments drive ICB elongation during which tubules containing anillin–septin rings are extruded from the ICB. Septins then generate sites of further constriction within the mature ICB from which they are subsequently removed. The action of the anillin–septin complex during ICB maturation also primes the ICB for the future assembly of the ESCRT III component Chmp4B at the abscission site. These studies suggest that the sequential action of distinct contractile machineries coordinates the formation of the abscission site and the successful completion of cytokinesis.
Collapse
Affiliation(s)
- Matthew J Renshaw
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
11
|
Poirier CC, Ng WP, Robinson DN, Iglesias PA. Deconvolution of the cellular force-generating subsystems that govern cytokinesis furrow ingression. PLoS Comput Biol 2012; 8:e1002467. [PMID: 22570593 PMCID: PMC3343096 DOI: 10.1371/journal.pcbi.1002467] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 02/24/2012] [Indexed: 01/14/2023] Open
Abstract
Cytokinesis occurs through the coordinated action of several biochemically-mediated stresses acting on the cytoskeleton. Here, we develop a computational model of cellular mechanics, and using a large number of experimentally measured biophysical parameters, we simulate cell division under a number of different scenarios. We demonstrate that traction-mediated protrusive forces or contractile forces due to myosin II are sufficient to initiate furrow ingression. Furthermore, we show that passive forces due to the cell's cortical tension and surface curvature allow the furrow to complete ingression. We compare quantitatively the furrow thinning trajectories obtained from simulation with those observed experimentally in both wild-type and myosin II null Dictyostelium cells. Our simulations highlight the relative contributions of different biomechanical subsystems to cell shape progression during cell division. Cytokinesis, the physical separation of a mother cell into two daughter cells, requires force to deform the cell. Though there is ample evidence in many systems that myosin II provides some of this force, it is also well known that some cell types can divide in the absence of myosin II. To elucidate the mechanisms by which cells control furrow ingression, we developed a computational model of cellular dynamics during cytokinesis in the social amoeba, Dictyostelium discoideum. We took advantage of a large number of experimentally measured parameters and well-characterized furrow ingression dynamics for a number of different strains. Our simulations demonstrate that there are distinct phases of cytokinesis. Myosin II plays a role providing the stress that initiates furrow ingression. In its absence, however, this force can be supplied by a combination of adhesion and protrusion-mediated stresses. Thereafter, Laplace-like pressures take over and provide stresses that enable the cell to divide. Overall, we show how various mechanical parameters quantitatively impact furrow ingression kinetics, accounting for the cytokinesis dynamics of wild type and mutant cell-lines.
Collapse
Affiliation(s)
- Christopher C Poirier
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | | | | |
Collapse
|
12
|
Separation anxiety: stress, tension and cytokinesis. Exp Cell Res 2012; 318:1428-34. [PMID: 22487096 DOI: 10.1016/j.yexcr.2012.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 01/07/2023]
Abstract
Cytokinesis, the physical separation of a mother cell into two daughter cells, progresses through a series of well-defined changes in morphology. These changes involve distinct biochemical and mechanical processes. Here, we review the mechanical features of cells during cytokinesis, discussing both the material properties as well as sources of stresses, both active and passive, which lead to the observed changes in morphology. We also describe a mechanosensory feedback control system that regulates protein localization and shape progression during cytokinesis.
Collapse
|
13
|
Koyama H, Umeda T, Nakamura K, Higuchi T, Kimura A. A high-resolution shape fitting and simulation demonstrated equatorial cell surface softening during cytokinesis and its promotive role in cytokinesis. PLoS One 2012; 7:e31607. [PMID: 22359606 PMCID: PMC3281004 DOI: 10.1371/journal.pone.0031607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/10/2012] [Indexed: 11/17/2022] Open
Abstract
Different models for animal cell cytokinesis posit that the stiffness of the equatorial cortex is either increased or decreased relative to the stiffness of the polar cortex. A recent work has suggested that the critical cytokinesis signaling complex centralspindlin may reduce the stiffness of the equatorial cortex by inactivating the small GTPase Rac. To determine if such a reduction occurs and if it depends on centralspindlin, we devised a method to estimate cortical bending stiffness with high spatio-temporal resolution from in vivo cell shapes. Using the early Caenorhabditis elegans embryo as a model, we show that the stiffness of the equatorial cell surface is reduced during cytokinesis, whereas the stiffness of the polar cell surface remains stiff. The equatorial reduction of stiffness was compromised in cells with a mutation in the gene encoding the ZEN-4/kinesin-6 subunit of centralspindlin. Theoretical modeling showed that the absence of the equatorial reduction of stiffness could explain the arrest of furrow ingression in the mutant. By contrast, the equatorial reduction of stiffness was sufficient to generate a cleavage furrow even without the constriction force of the contractile ring. In this regime, the contractile ring had a supportive contribution to furrow ingression. We conclude that stiffness is reduced around the equator in a centralspindlin-dependent manner. In addition, computational modeling suggests that proper regulation of stiffness could be sufficient for cleavage furrow ingression.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Cell Architecture Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Japan
| | | | | | | | | |
Collapse
|
14
|
Evans JP, Robinson DN. The spatial and mechanical challenges of female meiosis. Mol Reprod Dev 2011; 78:769-77. [PMID: 21774026 PMCID: PMC3196790 DOI: 10.1002/mrd.21358] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/15/2011] [Indexed: 12/31/2022]
Abstract
Recent work shows that cytokinesis and other cellular morphogenesis events are tuned by an interplay among biochemical signals, cell shape, and cellular mechanics. In cytokinesis, this includes cross-talk between the cortical cytoskeleton and the mitotic spindle in coordination with cell cycle control, resulting in characteristic changes in cellular morphology and mechanics through metaphase and cytokinesis. The changes in cellular mechanics affect not just overall cell shape, but also mitotic spindle morphology and function. This review will address how these principles apply to oocytes undergoing the asymmetric cell divisions of meiosis I and II. The biochemical signals that regulate cell cycle timing during meiotic maturation and egg activation are crucial for temporal control of meiosis. Spatial control of the meiotic divisions is also important, ensuring that the chromosomes are segregated evenly and that meiotic division is clearly asymmetric, yielding two daughter cells - oocyte and polar body - with enormous volume differences. In contrast to mitotic cells, the oocyte does not undergo overt changes in cell shape with its progression through meiosis, but instead maintains a relatively round morphology with the exception of very localized changes at the time of polar body emission. Placement of the metaphase-I and -II spindles at the oocyte periphery is clearly important for normal polar body emission, although this is likely not the only control element. Here, consideration is given to how cellular mechanics could contribute to successful mammalian female meiosis, ultimately affecting egg quality and competence to form a healthy embryo.
Collapse
Affiliation(s)
- Janice P Evans
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
15
|
Subramanian G, Picu CR. Mechanics of three-dimensional, nonbonded random fiber networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:056120. [PMID: 21728618 DOI: 10.1103/physreve.83.056120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Indexed: 05/31/2023]
Abstract
The mechanical behavior of an ensemble of athermal fibers forming a nonbonded network subjected to triaxial compression is studied using a numerical model. The response exhibits a power law dependence of stress on the dilatation strain and hysteresis upon loading and unloading. A stable hysteresis loop results after the first loading and unloading cycle. In the early stages of compaction, strain energy is associated primarily with the bending of fibers, while at higher densities, it is stored primarily in the axial deformation mode. It is shown that the exponent of the power law, and the partition of energy in the axial and bending modes depends on the ratio of the bending to axial stiffness of the fibers. Accounting for interfiber friction does not change the functional form of the stress-strain relationship or the exponent. The central feature that distinguishes the mechanics of this system from that of bonded random networks is the relative sliding at contacts and the ensuing fiber rearrangements. We show that suppressing sliding leads to a much stiffer response. The results indicate that the value of the exponent of the stress-strain power law is determined not only by fiber bending and the formation of new contacts, but also by the relative sliding and axial deformation of fibers.
Collapse
Affiliation(s)
- Gopinath Subramanian
- Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
| | | |
Collapse
|
16
|
Clark AG, Paluch E. Mechanics and regulation of cell shape during the cell cycle. Results Probl Cell Differ 2011; 53:31-73. [PMID: 21630140 DOI: 10.1007/978-3-642-19065-0_3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many cell types undergo dramatic changes in shape throughout the cell cycle. For individual cells, a tight control of cell shape is crucial during cell division, but also in interphase, for example during cell migration. Moreover, cell cycle-related cell shape changes have been shown to be important for tissue morphogenesis in a number of developmental contexts. Cell shape is the physical result of cellular mechanical properties and of the forces exerted on the cell. An understanding of the causes and repercussions of cell shape changes thus requires knowledge of both the molecular regulation of cellular mechanics and how specific changes in cell mechanics in turn effect global shape changes. In this chapter, we provide an overview of the current knowledge on the control of cell morphology, both in terms of general cell mechanics and specifically during the cell cycle.
Collapse
Affiliation(s)
- Andrew G Clark
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|
17
|
Larson SM, Lee HJ, Hung PH, Matthews LM, Robinson DN, Evans JP. Cortical mechanics and meiosis II completion in mammalian oocytes are mediated by myosin-II and Ezrin-Radixin-Moesin (ERM) proteins. Mol Biol Cell 2010; 21:3182-92. [PMID: 20660156 PMCID: PMC2938384 DOI: 10.1091/mbc.e10-01-0066] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 07/01/2010] [Accepted: 07/12/2010] [Indexed: 11/11/2022] Open
Abstract
Cell division is inherently mechanical, with cell mechanics being a critical determinant governing the cell shape changes that accompany progression through the cell cycle. The mechanical properties of symmetrically dividing mitotic cells have been well characterized, whereas the contribution of cellular mechanics to the strikingly asymmetric divisions of female meiosis is very poorly understood. Progression of the mammalian oocyte through meiosis involves remodeling of the cortex and proper orientation of the meiotic spindle, and thus we hypothesized that cortical tension and stiffness would change through meiotic maturation and fertilization to facilitate and/or direct cellular remodeling. This work shows that tension in mouse oocytes drops about sixfold during meiotic maturation from prophase I to metaphase II and then increases ∼1.6-fold upon fertilization. The metaphase II egg is polarized, with tension differing ∼2.5-fold between the cortex over the meiotic spindle and the opposite cortex, suggesting that meiotic maturation is accompanied by assembly of a cortical domain with stiffer mechanics as part of the process to achieve asymmetric cytokinesis. We further demonstrate that actin, myosin-II, and the ERM (Ezrin/Radixin/Moesin) family of proteins are enriched in complementary cortical domains and mediate cellular mechanics in mammalian eggs. Manipulation of actin, myosin-II, and ERM function alters tension levels and also is associated with dramatic spindle abnormalities with completion of meiosis II after fertilization. Thus, myosin-II and ERM proteins modulate mechanical properties in oocytes, contributing to cell polarity and to completion of meiosis.
Collapse
Affiliation(s)
- Stephanie M. Larson
- *Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and
| | - Hyo J. Lee
- *Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and
| | - Pei-hsuan Hung
- *Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and
| | - Lauren M. Matthews
- *Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and
| | - Douglas N. Robinson
- Department of Cell Biology, and
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Janice P. Evans
- *Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and
| |
Collapse
|
18
|
Gillo D, Gilboa B, Gurka R, Bernheim-Groswasser A. The fusion of actin bundles driven by interacting motor proteins. Phys Biol 2009; 6:036003. [PMID: 19411736 DOI: 10.1088/1478-3975/6/3/036003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cooperative action of many molecular motors is essential for dynamic processes such as cell motility and mitosis. This action can be studied by using motility assays which track the motion of cytoskeletal filaments over a surface coated with motor proteins. Here, we propose to use a motility assay consisting of a-polar actin bundles subjected to the action of myosin II motors where no external loading is applied. In this work we focus on those bundles undergoing fusion with other nearby bundles. Specifically, we investigate the role of the bundles' dimension on the transition from bidirectional to directional motion and on the properties of their motion during fusion. Our experimental data reveal that only small bundles exhibit dynamic transition to directional motion, implying that the forces acting on them exceed the threshold value necessary to induce the transition. Moreover, these bundles accelerate along their trajectory, suggesting that the forces acting on them increase while approaching each other. We show that these forces do not originate from external loading but rather arise from the action of the motors on the bundles. These forces are transmitted through the medium over micron-scale distances without being cut off. Moreover, we show that the forces propagate to distances that are proportional to the size of the bundles, or equivalently, to the number of motors, which they interact with.
Collapse
Affiliation(s)
- David Gillo
- Department of Chemical Engineering Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
19
|
Zidovska A, Ewert KK, Quispe J, Carragher B, Potter CS, Safinya CR. Block liposomes vesicles of charged lipids with distinctly shaped nanoscale sphere-, pear-, tube-, or rod-segments. Methods Enzymol 2009; 465:111-28. [PMID: 19913164 DOI: 10.1016/s0076-6879(09)65006-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We describe the preparation and characterization of block liposomes, a new class of liquid (chain-melted) vesicles, from mixtures of the highly charged (+16 e) multivalent cationic lipid MVLBG2 and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC). Block liposomes (BLs) consist of distinct spherical, tubular vesicles, and cylindrical micelles that remain connected, forming a single liposome. This is in contrast to typical liposome systems, where distinctly shaped liposomes are macroscopically separated. In a narrow composition range (8-10 mol% MVLBG2), an abundance of micrometer-scale BLs (typically sphere-tube-sphere triblocks) is observed. Cryo-TEM reveals that BLs are also present at the nanometer scale, where the blocks consist of distinctly shaped nanoscale spheres, pears, tubes, or rods. Pear-tube diblock and pear-tube-pear triblock liposomes contain nanotubes with inner lumen diameter 10-50 nm. In addition, sphere-rod diblock liposomes are present, containing rigid micellar nanorods approximately 4 nm in diameter and several microm in length. Block liposomes may find a range of applications in chemical and nucleic acid delivery and as building blocks in the design of templates for hierarchical structures.
Collapse
Affiliation(s)
- Alexandra Zidovska
- Materials Department, University of California at Santa Barbara, Santa Barbara, California, USA
| | | | | | | | | | | |
Collapse
|
20
|
Yang L, Effler JC, Kutscher BL, Sullivan SE, Robinson DN, Iglesias PA. Modeling cellular deformations using the level set formalism. BMC SYSTEMS BIOLOGY 2008; 2:68. [PMID: 18652669 PMCID: PMC2535594 DOI: 10.1186/1752-0509-2-68] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 07/24/2008] [Indexed: 01/09/2023]
Abstract
Background Many cellular processes involve substantial shape changes. Traditional simulations of these cell shape changes require that grids and boundaries be moved as the cell's shape evolves. Here we demonstrate that accurate cell shape changes can be recreated using level set methods (LSM), in which the cellular shape is defined implicitly, thereby eschewing the need for updating boundaries. Results We obtain a viscoelastic model of Dictyostelium cells using micropipette aspiration and show how this viscoelastic model can be incorporated into LSM simulations to recreate the observed protrusion of cells into the micropipette faithfully. We also demonstrate the use of our techniques by simulating the cell shape changes elicited by the chemotactic response to an external chemoattractant gradient. Conclusion Our results provide a simple but effective means of incorporating cellular deformations into mathematical simulations of cell signaling. Such methods will be useful for simulating important cellular events such as chemotaxis and cytokinesis.
Collapse
Affiliation(s)
- Liu Yang
- Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Mendoza M, Barral Y. Cytokinesis: keeping ring and membrane together. Curr Biol 2008; 18:R479-80. [PMID: 18522821 DOI: 10.1016/j.cub.2008.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
During cytokinesis, the actomyosin contractile ring drives ingression of the overlying plasma membrane. A recent study has provided mechanistic insight into how the contractile ring might contribute to membrane ingression.
Collapse
Affiliation(s)
- Manuel Mendoza
- ETH Zurich, Institute of Biochemistry, HPM D14, Schafmattstrasse 18, 8093 Zürich, Switzerland.
| | | |
Collapse
|
22
|
Reichl EM, Ren Y, Morphew MK, Delannoy M, Effler JC, Girard KD, Divi S, Iglesias PA, Kuo SC, Robinson DN. Interactions between myosin and actin crosslinkers control cytokinesis contractility dynamics and mechanics. Curr Biol 2008; 18:471-80. [PMID: 18372178 PMCID: PMC2361134 DOI: 10.1016/j.cub.2008.02.056] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/18/2008] [Accepted: 02/19/2008] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Contractile networks are fundamental to many cellular functions, particularly cytokinesis and cell motility. Contractile networks depend on myosin-II mechanochemistry to generate sliding force on the actin polymers. However, to be contractile, the networks must also be crosslinked by crosslinking proteins, and to change the shape of the cell, the network must be linked to the plasma membrane. Discerning how this integrated network operates is essential for understanding cytokinesis contractility and shape control. Here, we analyzed the cytoskeletal network that drives furrow ingression in Dictyostelium. RESULTS We establish that the actin polymers are assembled into a meshwork and that myosin-II does not assemble into a discrete ring in the Dictyostelium cleavage furrow of adherent cells. We show that myosin-II generates regional mechanics by increasing cleavage furrow stiffness and slows furrow ingression during late cytokinesis as compared to myoII nulls. Actin crosslinkers dynacortin and fimbrin similarly slow furrow ingression and contribute to cell mechanics in a myosin-II-dependent manner. By using FRAP, we show that the actin crosslinkers have slower kinetics in the cleavage furrow cortex than in the pole, that their kinetics differ between wild-type and myoII null cells, and that the protein dynamics of each crosslinker correlate with its impact on cortical mechanics. CONCLUSIONS These observations suggest that myosin-II along with actin crosslinkers establish local cortical tension and elasticity, allowing for contractility independent of a circumferential cytoskeletal array. Furthermore, myosin-II and actin crosslinkers may influence each other as they modulate the dynamics and mechanics of cell-shape change.
Collapse
Affiliation(s)
- Elizabeth M Reichl
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mukhina S, Wang YL, Murata-Hori M. Alpha-actinin is required for tightly regulated remodeling of the actin cortical network during cytokinesis. Dev Cell 2007; 13:554-65. [PMID: 17925230 PMCID: PMC2093944 DOI: 10.1016/j.devcel.2007.08.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 06/12/2007] [Accepted: 08/06/2007] [Indexed: 11/29/2022]
Abstract
Localization of the actin crosslinking protein, alpha-actinin, to the cleavage furrow has been previously reported. However, its functions during cytokinesis remain poorly understood. We have analyzed the functions of alpha-actinin during cytokinesis by a combination of molecular manipulations and imaging-based techniques. alpha-actinin gradually dissipated from the cleavage furrow as cytokinesis progressed. Overexpression of alpha-actinin caused increased accumulation of actin filaments because of inhibition of actin turnover, leading to cytokinesis failure. Global depletion of alpha-actinin by siRNA caused a decrease in the density of actin filaments throughout the cell cortex, surprisingly inducing accelerated cytokinesis and ectopic furrows. Local ablation of alpha-actinin induced accelerated cytokinesis specifically at the site of irradiation. Neither overexpression nor depletion of alpha-actinin had an apparent effect on myosin II organization. We conclude that cytokinesis in mammalian cells requires tightly regulated remodeling of the cortical actin network mediated by alpha-actinin in coordination with actomyosin-based cortical contractions.
Collapse
Affiliation(s)
- Svetlana Mukhina
- Mammalian Cell Biology Group, Temasek Life Sciences Laboratory, The National University of Singapore, 1 Research Link, 117604, Singapore
| | - Yu-li Wang
- Department of Physiology, University of Massachusetts Medical School, 377 Plantation St., Worcester, MA, 01605, USA
| | - Maki Murata-Hori
- Mammalian Cell Biology Group, Temasek Life Sciences Laboratory, The National University of Singapore, 1 Research Link, 117604, Singapore
- Department of Biological Sciences, The National University of Singapore, 1 Research Link, 117604, Singapore
| |
Collapse
|
24
|
Johnson GJ, Leis LA, Krumwiede MD, White JG. The critical role of myosin IIA in platelet internal contraction. J Thromb Haemost 2007; 5:1516-29. [PMID: 17488351 DOI: 10.1111/j.1538-7836.2007.02611.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Shape change and centralization of granules surrounded by a microtubular coil (internal contraction) are among the earliest morphologic changes observed following platelet activation. Myosin IIA contributes to initiation of platelet shape change, but its role in internal contraction has not been defined. OBJECTIVE To define the contribution of myosin IIA to platelet internal contraction. METHODS Aspirin-treated platelets suspended in calcium-free buffer were activated with a low concentration (25 nm) of the thromboxane A(2) analog U46619 which initiated shape change and internal contraction via a Rho kinase pathway. Shape change and internal contraction were assessed by aggregometry and transmission electron microscopy (TEM), and Rho activation and myosin regulatory light chain (MRLC) phosphorylation were studied concurrently. RESULTS AND CONCLUSIONS Low-concentration blebbistatin (10 microm) inhibited internal contraction in the majority of platelets with minimal inhibition of shape change without significant suppression of MRLC phosphorylation. Higher blebbistatin concentrations (25-100 microm) produced concentration-dependent inhibition of aggregation, shape change, Rho activation, and MRLC phosphorylation. These data demonstrate: (i) direct platelet myosin IIA participation in internal contraction; and (ii) inhibition of Rho activation and MRLC phosphorylation by >10 microm blebbistatin.
Collapse
Affiliation(s)
- G J Johnson
- Hematology/Oncology, Veterans Affairs Medical Center, Minneapolis, MN 55417, USA. mailto:
| | | | | | | |
Collapse
|
25
|
Urven LE, Yabe T, Pelegri F. A role for non-muscle myosin II function in furrow maturation in the early zebrafish embryo. J Cell Sci 2007; 119:4342-52. [PMID: 17038547 DOI: 10.1242/jcs.03197] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cytokinesis in early zebrafish embryos involves coordinated changes in the f-actin- and microtubule-based cytoskeleton, and the recruitment of adhesion junction components to the furrow. We show that exposure to inhibitors of non-muscle myosin II function does not affect furrow ingression during the early cleavage cycles but interferes with the recruitment of pericleavage f-actin and cortical beta-catenin aggregates to the furrow, as well as the remodeling of the furrow microtubule array. This remodeling is in turn required for the distal aggregation of the zebrafish germ plasm. Embryos with reduced myosin activity also exhibit at late stages of cytokinesis a stabilized contractile ring apparatus that appears as a ladder-like pattern of short f-actin cables, supporting a role for myosin function in the disassembly of the contractile ring after furrow formation. Our studies support a role for myosin function in furrow maturation that is independent of furrow ingression and which is essential for the recruitment of furrow components and the remodeling of the cytoskeleton during cytokinesis.
Collapse
Affiliation(s)
- Lance E Urven
- Laboratory of Genetics, University of Wisconsin - Madison, WI 53706, USA
| | | | | |
Collapse
|
26
|
Effler JC, Iglesias PA, Robinson DN. A mechanosensory system controls cell shape changes during mitosis. Cell Cycle 2007; 6:30-5. [PMID: 17245114 PMCID: PMC4638380 DOI: 10.4161/cc.6.1.3674] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Essential life processes are heavily controlled by a variety of positive and negative feedback systems. Cytokinesis failure, ultimately leading to aneuploidy, is appreciated as an early step in tumor formation in mammals and is deleterious for all cells. Further, the growing list of cancer predisposition mutations includes a number of genes whose proteins control mitosis and/or cytokinesis. Cytokinesis shape control is also an important part of pattern formation and cell-type specialization during multi-cellular development. Inherently mechanical, we hypothesized that mechanosensing and mechanical feedback are fundamental for cytokinesis shape regulation. Using mechanical perturbation, we identified a mechanosensory control system that monitors shape progression during cytokinesis. In this review, we summarize these findings and their implications for cytokinesis regulation and for understanding the cytoskeletal system architecture that governs shape control.
Collapse
Affiliation(s)
- Janet C. Effler
- Department of Cell Biology, Johns Hopkins University School of Medicine; Baltimore, Maryland USA
- Department of Electrical and Computer Engineering; Johns Hopkins University; Whiting School of Engineering; Baltimore, Maryland USA
| | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering; Johns Hopkins University; Whiting School of Engineering; Baltimore, Maryland USA
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine; Baltimore, Maryland USA
| |
Collapse
|
27
|
Octtaviani E, Effler JC, Robinson DN. Enlazin, a natural fusion of two classes of canonical cytoskeletal proteins, contributes to cytokinesis dynamics. Mol Biol Cell 2006; 17:5275-86. [PMID: 17050732 PMCID: PMC1679690 DOI: 10.1091/mbc.e06-08-0767] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 09/28/2006] [Accepted: 10/05/2006] [Indexed: 11/11/2022] Open
Abstract
Cytokinesis requires a complex network of equatorial and global proteins to regulate cell shape changes. Here, using interaction genetics, we report the first characterization of a novel protein, enlazin. Enlazin is a natural fusion of two canonical classes of actin-associated proteins, the ezrin-radixin-moesin family and fimbrin, and it is localized to actin-rich structures. A fragment of enlazin, enl-tr, was isolated as a genetic suppressor of the cytokinesis defect of cortexillin-I mutants. Expression of enl-tr disrupts expression of endogenous enlazin, indicating that enl-tr functions as a dominant-negative lesion. Enlazin is distributed globally during cytokinesis and is required for cortical tension and cell adhesion. Consistent with a role in cell mechanics, inhibition of enlazin in a cortexillin-I background restores cytokinesis furrowing dynamics and suppresses the growth-in-suspension defect. However, as expected for a role in cell adhesion, inhibiting enlazin in a myosin-II background induces a synthetic cytokinesis phenotype, frequently arresting furrow ingression at the dumbbell shape and/or causing recession of the furrow. Thus, enlazin has roles in cell mechanics and adhesion, and these roles seem to be differentially significant for cytokinesis, depending on the genetic background.
Collapse
Affiliation(s)
- Edelyn Octtaviani
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Janet C. Effler
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| |
Collapse
|
28
|
Ralston KS, Lerner AG, Diener DR, Hill KL. Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system. EUKARYOTIC CELL 2006; 5:696-711. [PMID: 16607017 PMCID: PMC1459671 DOI: 10.1128/ec.5.4.696-711.2006] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The flagellum of Trypanosoma brucei is a multifunctional organelle with critical roles in motility and other aspects of the trypanosome life cycle. Trypanin is a flagellar protein required for directional cell motility, but its molecular function is unknown. Recently, a trypanin homologue in Chlamydomonas reinhardtii was reported to be part of a dynein regulatory complex (DRC) that transmits regulatory signals from central pair microtubules and radial spokes to axonemal dynein. DRC genes were identified as extragenic suppressors of central pair and/or radial spoke mutations. We used RNA interference to ablate expression of radial spoke (RSP3) and central pair (PF16) components individually or in combination with trypanin. Both rsp3 and pf16 single knockdown mutants are immotile, with severely defective flagellar beat. In the case of rsp3, this loss of motility is correlated with the loss of radial spokes, while in the case of pf16 the loss of motility correlates with an aberrant orientation of the central pair microtubules within the axoneme. Genetic interaction between trypanin and PF16 is demonstrated by the finding that loss of trypanin suppresses the pf16 beat defect, indicating that the DRC represents an evolutionarily conserved strategy for dynein regulation. Surprisingly, we discovered that four independent mutants with an impaired flagellar beat all fail in the final stage of cytokinesis, indicating that flagellar motility is necessary for normal cell division in T. brucei. These findings present the first evidence that flagellar beating is important for cell division and open the opportunity to exploit enzymatic activities that drive flagellar beat as drug targets for the treatment of African sleeping sickness.
Collapse
Affiliation(s)
- Katherine S Ralston
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 609 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
29
|
Effler JC, Kee YS, Berk JM, Tran MN, Iglesias PA, Robinson DN. Mitosis-specific mechanosensing and contractile-protein redistribution control cell shape. Curr Biol 2006; 16:1962-7. [PMID: 17027494 PMCID: PMC2474462 DOI: 10.1016/j.cub.2006.08.027] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/08/2006] [Accepted: 08/09/2006] [Indexed: 11/21/2022]
Abstract
Because cell-division failure is deleterious, promoting tumorigenesis in mammals, cells utilize numerous mechanisms to control their cell-cycle progression. Though cell division is considered a well-ordered sequence of biochemical events, cytokinesis, an inherently mechanical process, must also be mechanically controlled to ensure that two equivalent daughter cells are produced with high fidelity. Given that cells respond to their mechanical environment, we hypothesized that cells utilize mechanosensing and mechanical feedback to sense and correct shape asymmetries during cytokinesis. Because the mitotic spindle and myosin II are vital to cell division, we explored their roles in responding to shape perturbations during cell division. We demonstrate that the contractile proteins myosin II and cortexillin I redistribute in response to intrinsic and externally induced shape asymmetries. In early cytokinesis, mechanical load overrides spindle cues and slows cytokinesis progression while contractile proteins accumulate and correct shape asymmetries. In late cytokinesis, mechanical perturbation also directs contractile proteins but without apparently disrupting cytokinesis. Significantly, this response only occurs during anaphase through cytokinesis, does not require microtubules, and is independent of spindle orientation, but is dependent on myosin II. Our data provide evidence for a mechanosensory system that directs contractile proteins to regulate cell shape during mitosis.
Collapse
Affiliation(s)
- Janet C. Effler
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205
- Department of Electrical and Computer Engineering, Johns Hopkins University Whiting School of Engineering, 725 N. Wolfe St., Baltimore, MD 21205
| | - Yee-Seir Kee
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205
| | - Jason M. Berk
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205
| | - Minhchau N. Tran
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205
| | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University Whiting School of Engineering, 725 N. Wolfe St., Baltimore, MD 21205
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205
| |
Collapse
|
30
|
Chen XW, Inoue M, Hsu SC, Saltiel AR. RalA-exocyst-dependent recycling endosome trafficking is required for the completion of cytokinesis. J Biol Chem 2006; 281:38609-16. [PMID: 17028198 DOI: 10.1074/jbc.m512847200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, recycling endosome-mediated trafficking contributes to the completion of cytokinesis, in a manner under the control of the centrosome. We report that the exocyst complex and its interacting GTPase RalA play a critical role in this polarized trafficking process. RalA resides in the recycling endosome and relocates from the pericentrosomal region to key cytokinetic structures including the cleavage furrow, and later, the abscission site. This event is coupled to the dynamic redistribution of the exocyst proteins. These associate with the centrosome in interphase and concentrate on the central spindle/midbody during cytokinesis. Disruption of RalA-exocyst function leads to cytokinesis failure in late stages, particularly abscission, resembling the cytokinesis defects induced by loss of centrosome function. These data suggest that RalA and the exocyst may regulate vesicle delivery to the centrosome-related abscission site during the terminal stage of cytokinesis, implicating RalA as a critical regulator of cell cycle progression.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
31
|
Qi J, Chi L, Maloney M, Yang X, Bynum D, Banes AJ. Interleukin-1β Increases Elasticity of Human Bioartificial Tendons. ACTA ACUST UNITED AC 2006; 12:2913-25. [PMID: 17518659 DOI: 10.1089/ten.2006.12.2913] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stiffness is an important mechanical property of connective tissues, especially for tissues subjected to cyclic strain in vivo, such as tendons. Therefore, modulation of material properties of native or engineered tissues is an important consideration for tissue repair. Interleukin 1-beta (IL-1beta) is a cytokine most often associated in connective tissues with induction of matrix metalloproteinases and matrix destruction. However, IL-1beta may also be involved in constructive remodeling and confer a cell survival value to tenocytes. In this study, we investigated the effects of IL-1beta on the properties of human tenocyte-populated bioartificial tendons (BATs) fabricated in a novel three-dimensional (3D) culture system. IL-1beta treatment reduced the ultimate tensile strength and elastic modulus of BATs and increased the maximum strain. IL-1beta at low doses (1, 10 pM) upregulated elastin expression and at a high dose (100 pM) downregulated type I collagen expression. Matrix metalloproteinases, which are involved in matrix remodeling, were also upregulated by IL-1beta. The increased elasticity prevented BATs from rupture caused by applied strain. The results in this study suggest that IL-1beta may act as a defense/survival factor in response to applied mechanical loading. The balance between cell intrinsic strain and external matrix strain is important for maintaining the integrity of tendons.
Collapse
Affiliation(s)
- Jie Qi
- Flexcell International Corp., Hillsborough, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
32
|
Lucero A, Stack C, Bresnick AR, Shuster CB. A global, myosin light chain kinase-dependent increase in myosin II contractility accompanies the metaphase-anaphase transition in sea urchin eggs. Mol Biol Cell 2006; 17:4093-104. [PMID: 16837551 PMCID: PMC1593176 DOI: 10.1091/mbc.e06-02-0119] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 06/15/2006] [Accepted: 07/05/2006] [Indexed: 11/11/2022] Open
Abstract
Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase-anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase-anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus.
Collapse
Affiliation(s)
- Amy Lucero
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Remodeling of cell membranes takes place during motile processes such as cell migration and cell division. Defects of proteins involved in membrane dynamics, including clathrin and dynamin, disrupt cytokinesis. To understand the function of clathrin-containing structures (CCS) in cytokinesis, we have expressed a green fluorescent protein (GFP) fusion protein of clathrin light chain a (GFP-clathrin) in NRK epithelial cells and recorded images of dividing cells near the ventral surface with a spinning disk confocal microscope. Punctate GFP-CCS underwent dynamic appearance and disappearance throughout the ventral surface. Following anaphase onset, GFP-CCS between separated chromosomes migrated toward the equator and subsequently disappeared in the equatorial region. Movements outside separating chromosomes were mostly random, similar to what was observed in interphase cells. Directional movements toward the furrow were dependent on both actin filaments and microtubules, while the appearance/disappearance of CCS was dependent on actin filaments but not on microtubules. These results suggest that CCS are involved in remodeling the plasma membrane along the equator during cytokinesis. Clathrin-containing structures may also play a role in transporting signaling or structural components into the cleavage furrow.
Collapse
Affiliation(s)
- Anne K Warner
- Department of Physiology, University of Massachusetts Medical School, 377 Plantation Street, Worcester, MA 01605, USA
| | | | | |
Collapse
|
34
|
Wang YL. The mechanism of cortical ingression during early cytokinesis: thinking beyond the contractile ring hypothesis. Trends Cell Biol 2005; 15:581-8. [PMID: 16209923 DOI: 10.1016/j.tcb.2005.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 08/22/2005] [Accepted: 09/20/2005] [Indexed: 11/24/2022]
Abstract
Owing to the rapid advances in genomic, proteomic and imaging technologies, the field of cytokinesis has seen rapid advances during the past decade. However, the basic model for the early stage of ingression, known as the contractile ring hypothesis, remains largely unchanged. From recent observations, it is becoming clear that early cytokinesis of animal cells involves a more extensive set of events, both temporally and spatially, than what is encompassed by the original contractile ring hypothesis. Activities relevant to cytokinesis, such as cortical contraction, can initiate well before onset of anaphase. Furthermore, equatorial ingression can involve multiple events in different regions of the cortex, including the establishment of anterior-posterior polarity, the modulation of cortical deformability, the expansion and compression of the cell cortex, and forces directed towards the interior of the cell or away from the equator. In this article (which is part of the Cytokinesis series), I evaluate critically key observations on when, where and how early ingression of animal cells takes place.
Collapse
Affiliation(s)
- Yu-li Wang
- University of Massachusetts Medical School, 377 Plantation Street, Suite 327, Worcester, MA 01605, USA.
| |
Collapse
|
35
|
Zhang W, Robinson DN. Balance of actively generated contractile and resistive forces controls cytokinesis dynamics. Proc Natl Acad Sci U S A 2005; 102:7186-91. [PMID: 15870188 PMCID: PMC1129136 DOI: 10.1073/pnas.0502545102] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytokinesis, the fission of a mother cell into two daughter cells, is a simple and dramatic cell shape change. Here, we examine the dynamics of cytokinesis by using a combination of microscopy, dynamic measurements, and genetic analysis. We find that cytokinesis proceeds through a single sequence of shape changes, but the kinetics of the transformation from one shape to another differs dramatically between strains. We interpret the measurements in a simple and quantitative manner by using a previously uncharacterized analytic model. From the analysis, wild-type cytokinesis appears to proceed through an active, extremely regulated process in which globally distributed proteins generate resistive forces that slow the rate of furrow ingression. Finally, we propose that, in addition to myosin II, a Laplace pressure, resulting from material properties and the geometry of the dividing cell, generates force to help drive furrow ingression late in cytokinesis.
Collapse
Affiliation(s)
- Wendy Zhang
- Department of Physics, James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|