1
|
Daigh LH, Saha D, Rosenthal DL, Ferrick KR, Meyer T. Uncoupling of mTORC1 from E2F activity maintains DNA damage and senescence. Nat Commun 2024; 15:9181. [PMID: 39448567 PMCID: PMC11502682 DOI: 10.1038/s41467-024-52820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
DNA damage is a primary trigger for cellular senescence, which in turn causes organismal aging and is a promising target of anti-aging therapies. Most DNA damage occurs when DNA is fragile during DNA replication in S phase, but senescent cells maintain DNA damage long-after DNA replication has stopped. How senescent cells induce DNA damage and why senescent cells fail to repair damaged DNA remain open questions. Here, we combine reversible expression of the senescence-inducing CDK4/6 inhibitory protein p16INK4 (p16) with live single-cell analysis and show that sustained mTORC1 signaling triggers senescence in non-proliferating cells by increasing transcriptional DNA damage and inflammation signaling that persists after p16 is degraded. Strikingly, we show that activation of E2F transcriptional program, which is regulated by CDK4/6 activity and promotes expression of DNA repair proteins, repairs transcriptionally damaged DNA without requiring DNA replication. Together, our study suggests that senescence can be maintained by ongoing mTORC1-induced transcriptional DNA damage that cannot be sufficiently repaired without induction of protective E2F target genes.
Collapse
Affiliation(s)
- Leighton H Daigh
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Debarya Saha
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - David L Rosenthal
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Katherine R Ferrick
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Saha B, Haizel SA, Goss DJ. Mechanistic differences in eukaryotic initiation factor requirements for eIF4GI-driven cap-independent translation of structured mRNAs. J Biol Chem 2024; 300:107866. [PMID: 39384039 PMCID: PMC11570956 DOI: 10.1016/j.jbc.2024.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Protein translation is globally downregulated under stress conditions. Many proteins that are synthesized under stress conditions use a cap-independent translation initiation pathway. A subset of cellular mRNAs that encode for these proteins contain stable secondary structures within their 5'UTR, and initiate cap-independent translation using elements called cap-independent translation enhancers or internal ribosome entry sites within their 5'UTRs. The interaction among initiation factors such as eukaryotic initiation factor 4E (eIF4E), eIF4A, and eIF4GI, especially in regulating the eIF4F complex during noncanonical translation initiation of different 5'UTR mRNAs, is poorly understood. Here, equilibrium-binding assays, CD studies and in vitro translation assays were used to elucidate the recruitment of these initiation factors to the highly structured 5'UTRs of fibroblast-growth factor 9 (FGF-9) and hypoxia inducible factor 1 subunit alpha (HIF-1α) encoding mRNAs. We showed that eIF4A and eIF4E enhanced eIF4GI's binding affinity to the uncapped 5'UTR of HIF-1α mRNA, inducing conformational changes in the protein/RNA complex. In contrast, these factors have no effect on the binding of eIF4GI to the 5'UTR of FGF-9 mRNA. Recently, Izidoro et al. reported that the interaction of 42nt unstructured RNA to human eIF4F complex is dominated by eIF4E and ATP-bound state of eIF4A. Here, we show that structured 5'UTR mRNA binding mitigates this requirement. Based on these observations, we describe two possible cap-independent translation mechanisms for FGF-9 and HIF-1α encoding mRNAs used by cells to mitigate cellular stress conditions.
Collapse
Affiliation(s)
- Baishakhi Saha
- Department of Chemistry, Hunter College, City University of New York, New York, New York, USA
| | - Solomon A Haizel
- PhD. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA; Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - Dixie J Goss
- Department of Chemistry, Hunter College, City University of New York, New York, New York, USA; PhD. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA; PhD. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA.
| |
Collapse
|
3
|
Sen MG, Sanislav O, Fisher PR, Annesley SJ. The Multifaceted Interactions of Dictyostelium Atg1 with Mitochondrial Function, Endocytosis, Growth, and Development. Cells 2024; 13:1191. [PMID: 39056773 PMCID: PMC11274416 DOI: 10.3390/cells13141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Autophagy is a degradative recycling process central to the maintenance of homeostasis in all eukaryotes. By ensuring the degradation of damaged mitochondria, it plays a key role in maintaining mitochondrial health and function. Of the highly conserved autophagy proteins, autophagy-related protein 1 (Atg1) is essential to the process. The involvement of these proteins in intracellular signalling pathways, including those involving mitochondrial function, are still being elucidated. Here the role of Atg1 was investigated in the simple model organism Dictyostelium discoideum using an atg1 null mutant and mutants overexpressing or antisense-inhibiting atg1. When evaluated against the well-characterised outcomes of mitochondrial dysfunction in this model, altered atg1 expression resulted in an unconventional set of phenotypic outcomes in growth, endocytosis, multicellular development, and mitochondrial homeostasis. The findings here show that Atg1 is involved in a tightly regulated signal transduction pathway coordinating energy-consuming processes such as cell growth and multicellular development, along with nutrient status and energy production. Furthermore, Atg1's effects on energy homeostasis indicate a peripheral ancillary role in the mitochondrial signalling network, with effects on energy balance rather than direct effects on electron transport chain function. Further research is required to tease out these complex networks. Nevertheless, this study adds further evidence to the theory that autophagy and mitochondrial signalling are not opposing but rather linked, yet strictly controlled, homeostatic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Melbourne 3086, Australia; (M.G.S.); (O.S.); (P.R.F.)
| |
Collapse
|
4
|
Li S, Ouyang X, Sun H, Jin J, Chen Y, Li L, Wang Q, He Y, Wang J, Chen T, Zhong Q, Liang Y, Pierre P, Zou Q, Ye Y, Su B. DEPDC5 protects CD8 + T cells from ferroptosis by limiting mTORC1-mediated purine catabolism. Cell Discov 2024; 10:53. [PMID: 38763950 PMCID: PMC11102918 DOI: 10.1038/s41421-024-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/10/2024] [Indexed: 05/21/2024] Open
Abstract
Peripheral CD8+ T cell number is tightly controlled but the precise molecular mechanism regulating this process is still not fully understood. In this study, we found that epilepsy patients with loss of function mutation of DEPDC5 had reduced peripheral CD8+ T cells, and DEPDC5 expression positively correlated with tumor-infiltrating CD8+ T cells as well as overall cancer patient survival, indicating that DEPDC5 may control peripheral CD8+ T cell homeostasis. Significantly, mice with T cell-specific Depdc5 deletion also had reduced peripheral CD8+ T cells and impaired anti-tumor immunity. Mechanistically, Depdc5-deficient CD8+ T cells produced high levels of xanthine oxidase and lipid ROS due to hyper-mTORC1-induced expression of ATF4, leading to spontaneous ferroptosis. Together, our study links DEPDC5-mediated mTORC1 signaling with CD8+ T cell protection from ferroptosis, thereby revealing a novel strategy for enhancing anti-tumor immunity via suppression of ferroptosis.
Collapse
Affiliation(s)
- Song Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology and Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxing Ouyang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Chest Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology and Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingsi Jin
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology and Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology and Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qijun Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingzhong He
- Department of Neurology of Shanghai Children's Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiwen Wang
- Department of Neurology of Shanghai Children's Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tongxin Chen
- Department of Allergy and Immunology, Division of Immunology and Multidisciplinary Specialty Clinic, Institute of Pediatric Translational Medicine at Shanghai Children's Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Philippe Pierre
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, cedex 9, France
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Qiang Zou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology and Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Gastroenterology and Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Rawat SS, Laxmi A. Sugar signals pedal the cell cycle! FRONTIERS IN PLANT SCIENCE 2024; 15:1354561. [PMID: 38562561 PMCID: PMC10982403 DOI: 10.3389/fpls.2024.1354561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Cell cycle involves the sequential and reiterative progression of important events leading to cell division. Progression through a specific phase of the cell cycle is under the control of various factors. Since the cell cycle in multicellular eukaryotes responds to multiple extracellular mitogenic cues, its study in higher forms of life becomes all the more important. One such factor regulating cell cycle progression in plants is sugar signalling. Because the growth of organs depends on both cell growth and proliferation, sugars sensing and signalling are key control points linking sugar perception to regulation of downstream factors which facilitate these key developmental transitions. However, the basis of cell cycle control via sugars is intricate and demands exploration. This review deals with the information on sugar and TOR-SnRK1 signalling and how they manoeuvre various events of the cell cycle to ensure proper growth and development.
Collapse
Affiliation(s)
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
6
|
Schwarz LV, Sandri FK, Scariot F, Delamare APL, Valera MJ, Carrau F, Echeverrigaray S. High nitrogen concentration causes G2/M arrest in Hanseniaspora vineae. Yeast 2023; 40:640-650. [PMID: 37997429 DOI: 10.1002/yea.3911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Yeasts have been widely used as a model to better understand cell cycle mechanisms and how nutritional and genetic factors can impact cell cycle progression. While nitrogen scarcity is well known to modulate cell cycle progression, the relevance of nitrogen excess for microorganisms has been overlooked. In our previous work, we observed an absence of proper entry into the quiescent state in Hanseniaspora vineae and identified a potential link between this behavior and nitrogen availability. Furthermore, the Hanseniaspora genus has gained attention due to a significant loss of genes associated with DNA repair and cell cycle. Thus, the aim of our study was to investigate the effects of varying nitrogen concentrations on H. vineae's cell cycle progression. Our findings demonstrated that nitrogen excess, regardless of the source, disrupts cell cycle progression and induces G2/M arrest in H. vineae after reaching the stationary phase. Additionally, we observed a viability decline in H. vineae cells in an ammonium-dependent manner, accompanied by increased production of reactive oxygen species, mitochondrial hyperpolarization, intracellular acidification, and DNA fragmentation. Overall, our study highlights the events of the cell cycle arrest in H. vineae induced by nitrogen excess and attempts to elucidate the possible mechanism triggering this absence of proper entry into the quiescent state.
Collapse
Affiliation(s)
- Luisa Vivian Schwarz
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fernanda Knaach Sandri
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fernando Scariot
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | | | - Maria Jose Valera
- Enology and Fermentation Biotechnology Area, Departamento Ciencia y Tecnología Alimentos, Facultad de Química, Universidad de la Republica, Montevideo, Uruguay
| | - Francisco Carrau
- Enology and Fermentation Biotechnology Area, Departamento Ciencia y Tecnología Alimentos, Facultad de Química, Universidad de la Republica, Montevideo, Uruguay
| | - Sergio Echeverrigaray
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Casagrande S, Loveland JL, Oefele M, Boner W, Lupi S, Stier A, Hau M. Dietary nucleotides can prevent glucocorticoid-induced telomere attrition in a fast-growing wild vertebrate. Mol Ecol 2023; 32:5429-5447. [PMID: 37658759 DOI: 10.1111/mec.17114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Telomeres are chromosome protectors that shorten during eukaryotic cell replication and in stressful conditions. Developing individuals are susceptible to telomere erosion when their growth is fast and resources are limited. This is critical because the rate of telomere attrition in early life is linked to health and life span of adults. The metabolic telomere attrition hypothesis (MeTA) suggests that telomere dynamics can respond to biochemical signals conveying information about the organism's energetic state. Among these signals are glucocorticoids, hormones that promote catabolic processes, potentially impairing costly telomere maintenance, and nucleotides, which activate anabolic pathways through the cellular enzyme target of rapamycin (TOR), thus preventing telomere attrition. During the energetically demanding growth phase, the regulation of telomeres in response to two contrasting signals - one promoting telomere maintenance and the other attrition - provides an ideal experimental setting to test the MeTA. We studied nestlings of a rapidly developing free-living passerine, the great tit (Parus major), that either received glucocorticoids (Cort-chicks), nucleotides (Nuc-chicks) or a combination of both (NucCort-chicks), comparing these with controls (Cnt-chicks). As expected, Cort-chicks showed telomere attrition, while NucCort- and Nuc-chicks did not. NucCort-chicks was the only group showing increased expression of a proxy for TOR activation (the gene TELO2), of mitochondrial enzymes linked to ATP production (cytochrome oxidase and ATP-synthase) and a higher efficiency in aerobically producing ATP. NucCort-chicks had also a higher expression of telomere maintenance genes (shelterin protein TERF2 and telomerase TERT) and of enzymatic antioxidant genes (glutathione peroxidase and superoxide dismutase). The findings show that nucleotide availability is crucial for preventing telomere erosion during fast growth in stressful environments.
Collapse
Affiliation(s)
- Stefania Casagrande
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, Seewiesen, Germany
| | - Jasmine L Loveland
- Department of Cognitive and Behavioral Biology, University of Vienna, Vienna, Austria
| | - Marlene Oefele
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, Seewiesen, Germany
| | - Winnie Boner
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Sara Lupi
- Konrad Lorenz Institute of Ethology, Vienna, Austria
| | - Antoine Stier
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR7178, Strasbourg, France
- Department of Biology, University of Turku, Turku, Finland
| | - Michaela Hau
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, Seewiesen, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| |
Collapse
|
8
|
Okoro OE, Camera E, Flori E, Ottaviani M. Insulin and the sebaceous gland function. Front Physiol 2023; 14:1252972. [PMID: 37727660 PMCID: PMC10505787 DOI: 10.3389/fphys.2023.1252972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
Insulin affects metabolic processes in different organs, including the skin. The sebaceous gland (SG) is an important appendage in the skin, which responds to insulin-mediated signals, either directly or through the insulin growth factor 1 (IGF-1) axis. Insulin cues are differently translated into the activation of metabolic processes depending on several factors, including glucose levels, receptor sensitivity, and sebocyte differentiation. The effects of diet on both the physiological function and pathological conditions of the SG have been linked to pathways activated by insulin and IGF-1. Experimental evidence and theoretical speculations support the association of insulin resistance with acne vulgaris, which is a major disorder of the SG. In this review, we examined the effects of insulin on the SG function and their implications in the pathogenesis of acne.
Collapse
Affiliation(s)
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
9
|
ERGİN ORDU T, GÖNCÜ E. Investigation of the effects of starvation stress in the midgut of the silkworm Bombyx mori. COMMAGENE JOURNAL OF BIOLOGY 2023. [DOI: 10.31594/commagene.1225101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
During their evolution, organisms have developed various mechanisms to adapt to changing nutritional conditions such as mobilization of storage molecules and activation of autophagy. In this study, the mechanism of adaptive responses in the midgut of the silkworm Bombyx mori L., 1758 (Lepidoptera: Bombycidae) larvae, which were starved for different days, was investigated. The study was carried out at the Insect Physiology Research Laboratory and Silkworm Culture Laboratory at Ege University between 2018 and 2020. For this purpose, the histological structure of the midgut was examined using hematoxylin&eosin staining and its protein, sugar, glycogen, and lipid contents were determined. As autophagy markers, lysosomal enzyme activities were measured and expressions of autophagy-related genes (mTOR, ATG8, and ATG12) were analyzed by qRT-PCR. The results showed that, depending on the time of onset of starvation stress, autophagy plays no role as an adaptive response under starvation conditions or occurs at a much more moderate level than autophagy which happens as part of cell death during larval-pupal metamorphosis.
Collapse
Affiliation(s)
- Tuğçe ERGİN ORDU
- EGE UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF BIOLOGY, DEPARTMENT OF ZOOLOGY
| | - Ebru GÖNCÜ
- EGE UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF BIOLOGY, DEPARTMENT OF ZOOLOGY
| |
Collapse
|
10
|
Loan Young T, Chang Wang K, James Varley A, Li B. Clinical Delivery of Circular RNA: Lessons Learned from RNA Drug Development. Adv Drug Deliv Rev 2023; 197:114826. [PMID: 37088404 DOI: 10.1016/j.addr.2023.114826] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Circular RNAs (circRNA) represent a distinct class of covalently closed-loop RNA molecules, which play diverse roles in regulating biological processes and disease states. The enhanced stability of synthetic circRNAs compared to their linear counterparts has recently garnered considerable research interest, paving the way for new therapeutic applications. While clinical circRNA technology is still in its early stages, significant advancements in mRNA technology offer valuable insights into its potential future applications. Two primary obstacles that must be addressed are the development of efficient production methods and the optimization of delivery systems. To expedite progress in this area, this review aims to provide an overview of the current state of knowledge on circRNA structure and function, outline recent techniques for synthesizing circRNAs, highlight key delivery strategies and applications, and discuss the current challenges and future prospects in the field of circRNA-based therapeutics.
Collapse
Affiliation(s)
- Tiana Loan Young
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Kevin Chang Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Andrew James Varley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Bowen Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3M2, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada.
| |
Collapse
|
11
|
Navarro‐Velasco GY, Di Pietro A, López‐Berges MS. Constitutive activation of TORC1 signalling attenuates virulence in the cross-kingdom fungal pathogen Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2023; 24:289-301. [PMID: 36840362 PMCID: PMC10013769 DOI: 10.1111/mpp.13292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
The filamentous fungus Fusarium oxysporum causes vascular wilt disease in a wide range of plant species and opportunistic infections in humans. Previous work suggested that invasive growth in this pathogen is controlled by environmental cues such as pH and nutrient status. Here we investigated the role of Target Of Rapamycin Complex 1 (TORC1), a global regulator of eukaryotic cell growth and development. Inactivation of the negative regulator Tuberous Sclerosis Complex 2 (Tsc2), but not constitutive activation of the positive regulator Gtr1, in F. oxysporum resulted in inappropriate activation of TORC1 signalling under nutrient-limiting conditions. The tsc2Δ mutants showed reduced colony growth on minimal medium with different nitrogen sources and increased sensitivity to cell wall or high temperature stress. Furthermore, these mutants were impaired in invasive hyphal growth across cellophane membranes and exhibited a marked decrease in virulence, both on tomato plants and on the invertebrate animal host Galleria mellonella. Importantly, invasive hyphal growth in tsc2Δ strains was rescued by rapamycin-mediated inhibition of TORC1. Collectively, these results reveal a key role of TORC1 signalling in the development and pathogenicity of F. oxysporum and suggest new potential targets for controlling fungal infections.
Collapse
Affiliation(s)
- Gesabel Yaneth Navarro‐Velasco
- Departamento de GenéticaUniversidad de CórdobaCórdobaSpain
- Present address:
Centro de Investigación e Información de Medicamentos y Tóxicos, Facultad de MedicinaUniversidad de PanamáPanama CityPanama
| | | | | |
Collapse
|
12
|
Jiao W, Ding W, Rollins JA, Liu J, Zhang Y, Zhang X, Pan H. Cross-Talk and Multiple Control of Target of Rapamycin (TOR) in Sclerotinia sclerotiorum. Microbiol Spectr 2023; 11:e0001323. [PMID: 36943069 PMCID: PMC10100786 DOI: 10.1128/spectrum.00013-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
Sclerotinia sclerotiorum is a necrotrophic phytopathogenic fungus that cross-talks with its hosts for control of cell-death pathways for colonization. Target of rapamycin (TOR) is a central regulator that controls cell growth, intracellular metabolism, and stress responses in a variety of eukaryotes, but little is known about TOR signaling in S. sclerotiorum. In this study, we identified a conserved TOR signaling pathway and characterized SsTOR as a critical component of this pathway. Hyphal growth of S. sclerotiorum was retarded by silencing SsTOR, moreover, sclerotia and compound appressoria formation were severely disrupted. Notably, pathogenicity assays of strains shows that the virulence of the SsTOR-silenced strains were dramatically decreased. SsTOR was determined to participate in cell wall integrity (CWI) by regulating the phosphorylation level of SsSmk3, a core MAP kinase in the CWI pathway. Importantly, the inactivation of SsTOR induced autophagy in S. sclerotiorum potentially through SsAtg1 and SsAtg13. Taken together, our results suggest that SsTOR is a global regulator controlling cell growth, stress responses, cell wall integrity, autophagy, and virulence of S. sclerotiorum. IMPORTANCE TOR is a conserved protein kinase that regulates cell growth and metabolism in response to growth factors and nutrient abundance. Here, we used gene silencing to characterize SsTOR, which is a critical component of TOR signaling pathway. SsTOR-silenced strains have limited mycelium growth, and the virulence of the SsTOR-silenced strains was decreased. Phosphorylation analysis indicated that SsTOR influenced CWI by regulating the phosphorylation level of SsSmk3. Autophagy is essential to preserve cellular homeostasis in response to cellular and environmental stresses. Inactivation of SsTOR induced autophagy in S. sclerotiorum potentially through SsAtg1 and SsAtg13. These findings further indicated that SsTOR is a global regulator of the growth, development, and pathogenicity of S. sclerotiorum in multiple ways.
Collapse
Affiliation(s)
- Wenli Jiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Weichen Ding
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jeffrey A. Rollins
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
13
|
Luo W, Adamska JZ, Li C, Verma R, Liu Q, Hagan T, Wimmers F, Gupta S, Feng Y, Jiang W, Zhou J, Valore E, Wang Y, Trisal M, Subramaniam S, Osborne TF, Pulendran B. SREBP signaling is essential for effective B cell responses. Nat Immunol 2023; 24:337-348. [PMID: 36577930 PMCID: PMC10928801 DOI: 10.1038/s41590-022-01376-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/31/2022] [Indexed: 12/29/2022]
Abstract
Our previous study using systems vaccinology identified an association between the sterol regulatory binding protein (SREBP) pathway and humoral immune response to vaccination in humans. To investigate the role of SREBP signaling in modulating immune responses, we generated mice with B cell- or CD11c+ antigen-presenting cell (APC)-specific deletion of SCAP, an essential regulator of SREBP signaling. Ablation of SCAP in CD11c+ APCs had no effect on immune responses. In contrast, SREBP signaling in B cells was critical for antibody responses, as well as the generation of germinal centers,memory B cells and bone marrow plasma cells. SREBP signaling was required for metabolic reprogramming in activated B cells. Upon mitogen stimulation, SCAP-deficient B cells could not proliferate and had decreased lipid rafts. Deletion of SCAP in germinal center B cells using AID-Cre decreased lipid raft content and cell cycle progression. These studies provide mechanistic insights coupling sterol metabolism with the quality and longevity of humoral immunity.
Collapse
Affiliation(s)
- Wei Luo
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Julia Z Adamska
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Chunfeng Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Rohit Verma
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Qing Liu
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Thomas Hagan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Shakti Gupta
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Wenxia Jiang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiehao Zhou
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erika Valore
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Yanli Wang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Meera Trisal
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Timothy F Osborne
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother 2022; 156:113808. [DOI: 10.1016/j.biopha.2022.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
15
|
Xiang L, Disasa D, Liu Y, Fujii R, Yang M, Wu E, Matsuura A, Qi J. Gentirigeoside B from Gentiana rigescens Franch Prolongs Yeast Lifespan via Inhibition of TORC1/Sch9/Rim15/Msn Signaling Pathway and Modification of Oxidative Stress and Autophagy. Antioxidants (Basel) 2022; 11:antiox11122373. [PMID: 36552582 PMCID: PMC9774393 DOI: 10.3390/antiox11122373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Gentirigeoside B (GTS B) is a dammaren-type triterpenoid glycoside isolated from G. rigescens Franch, a traditional Chinese medicinal plant. In the present study, the evaluation of the anti-aging effect and action mechanism analysis for this compound were conducted. GTS B significantly extended the replicative lifespan and chronological lifespan of yeast at doses of 1, 3 and 10 μM. Furthermore, the inhibition of Sch9 and activity increase of Rim15, Msn2 proteins which located downstream of TORC1 signaling pathway were observed after treatment with GTS B. Additionally, autophagy of yeast was increased. In addition, GTS B significantly improved survival rate of yeast under oxidative stress conditions as well as reduced the levels of ROS and MDA. It also increased the gene expression and enzymatic activities of key anti-oxidative enzymes such as Sod1, Sod2, Cat and Gpx. However, this molecule failed to extend the lifespan of yeast mutants such as ∆cat, ∆gpx, ∆sod1, ∆sod2, ∆skn7 and ∆uth1. These results suggested that GTS B exerts an anti-aging effect via inhibition of the TORC1/Sch9/Rim15/Msn signaling pathway and enhancement of autophagy. Therefore, GTS B may be a promising candidate molecule to develop leading compounds for the treatment of aging and age-related disorders.
Collapse
Affiliation(s)
- Lan Xiang
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hang Road, Hangzhou 310058, China
- Correspondence: (L.X.); (J.Q.); Tel.: +86-571-88208627 (J.Q.)
| | - Dejene Disasa
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hang Road, Hangzhou 310058, China
| | - Yanan Liu
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hang Road, Hangzhou 310058, China
| | - Rui Fujii
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Mengya Yang
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hang Road, Hangzhou 310058, China
| | - Enchan Wu
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hang Road, Hangzhou 310058, China
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Jianhua Qi
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hang Road, Hangzhou 310058, China
- Correspondence: (L.X.); (J.Q.); Tel.: +86-571-88208627 (J.Q.)
| |
Collapse
|
16
|
Schoonover MG, Chilson EC, Strome ED. Heterozygous Mutations in Aromatic Amino Acid Synthesis Genes Trigger TOR Pathway Activation in Saccharomyces cerevisiae.. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000685. [PMID: 36468155 PMCID: PMC9713580 DOI: 10.17912/micropub.biology.000685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 01/25/2023]
Abstract
The highly conserved complexes of Target of Rapamycin (TORC1 and TORC2) are central regulators to many vital cellular processes including growth and autophagy in response to nutrient availability. Previous research has extensively elucidated exogenous nutrient control on TORC1/TORC2; however, little is known about the potential alteration of nutrient pools from mutations in biosynthesis pathways and their impact on Tor pathway activity. Here, we analyze the impacts of heterozygous mutations in aromatic amino acid biosynthesis genes on TOR signaling via differential expression of genes downstream of TORC1 and autophagy induction for TORC1 and TORC2 activity.
Collapse
|
17
|
Matos-Perdomo E, Santana-Sosa S, Ayra-Plasencia J, Medina-Suárez S, Machín F. The vacuole shapes the nucleus and the ribosomal DNA loop during mitotic delays. Life Sci Alliance 2022; 5:5/10/e202101161. [PMID: 35961781 PMCID: PMC9375157 DOI: 10.26508/lsa.202101161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Chromosome structuring and condensation is one of the main features of mitosis. Here, Matos-Perdomo et al show how the nuclear envelope reshapes around the vacuole to give rise to the outstanding ribosomal DNA loop in budding yeast. The ribosomal DNA (rDNA) array of Saccharomyces cerevisiae has served as a model to address chromosome organization. In cells arrested before anaphase (mid-M), the rDNA acquires a highly structured chromosomal organization referred to as the rDNA loop, whose length can double the cell diameter. Previous works established that complexes such as condensin and cohesin are essential to attain this structure. Here, we report that the rDNA loop adopts distinct presentations that arise as spatial adaptations to changes in the nuclear morphology triggered during mid-M arrests. Interestingly, the formation of the rDNA loop results in the appearance of a space under the loop (SUL) which is devoid of nuclear components yet colocalizes with the vacuole. We show that the rDNA-associated nuclear envelope (NE) often reshapes into a ladle to accommodate the vacuole in the SUL, with the nucleus becoming bilobed and doughnut-shaped. Finally, we demonstrate that the formation of the rDNA loop and the SUL require TORC1, membrane synthesis and functional vacuoles, yet is independent of nucleus–vacuole junctions and rDNA-NE tethering.
Collapse
Affiliation(s)
- Emiliano Matos-Perdomo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Silvia Santana-Sosa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jessel Ayra-Plasencia
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Sara Medina-Suárez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain .,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Santa María de Guía, Spain
| |
Collapse
|
18
|
Yang Y, Huang P, Ma Y, Jiang R, Jiang C, Wang G. Insights into intracellular signaling network in Fusarium species. Int J Biol Macromol 2022; 222:1007-1014. [PMID: 36179869 DOI: 10.1016/j.ijbiomac.2022.09.211] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
Fusarium is a large genus of filamentous fungi including numerous important plant pathogens. In addition to causing huge economic losses of crops, some Fusarium species produce a wide range of mycotoxins in cereal crops that affect human and animal health. The intracellular signaling in Fusarium plays an important role in growth, sexual and asexual developments, pathogenesis, and mycotoxin biosynthesis. In this review, we highlight the recent advances and provide insight into signal sensing and transduction in Fusarium species. G protein-coupled receptors and other conserved membrane receptors mediate recognition of environmental cues and activate complex intracellular signaling. Once activated, the cAMP-PKA and three well-conserved MAP kinase pathways activate downstream transcriptional regulatory networks. The functions of individual signaling pathways have been well characterized in a variety of Fusarium species, showing the conserved components with diverged functions. Furthermore, these signaling pathways crosstalk and coordinately regulate various fungal development and infection-related morphogenesis.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Yutong Ma
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Ruoxuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China.
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
He B, Wang Z, Moreau R. Chylomicron production is repressed by RPTOR knockdown, R-α-lipoic acid and 4-phenylbutyric acid in human enterocyte-like Caco-2 cells. J Nutr Biochem 2022; 108:109087. [PMID: 35691593 DOI: 10.1016/j.jnutbio.2022.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/28/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
Although the role of mechanistic target of rapamycin complex 1 (mTORC1) in lipid metabolism has been the subject of previous research, its function in chylomicron production is not known. In this study, we created three stable human colorectal adenocarcinoma Caco-2 cell lines exhibiting normal, low or high mTORC1 kinase activity, and used these cells to investigate the consequences of manipulating mTORC1 activity on enterocyte differentiation and chylomicron-like particle production. Constitutively active mTORC1 induced Caco-2 cell proliferation and differentiation (as judged by alkaline phosphatase activity) but weakened transepithelial electrical resistance (TEER). Repressed mTORC1 activity due to the knockdown of RPTOR significantly decreased the expression of lipogenic genes FASN, DGAT1 and DGAT2, lipoprotein assembly genes APOB and MTTP, reduced protein expression of APOB, MTTP and FASN, downregulated the gene expression of very long-chain fatty acyl-CoA ligase (FATP2), acyl-CoA binding protein (DBI), and prechylomicron transport vesicle-associated proteins VAMP7 (vesicle-associated membrane protein 7) and SAR1B (secretion associated Ras related GTPase 1B) resulting in the repression of apoB-containing triacylglycerol-rich lipoprotein secretion. Exposure of Caco-2 cells harboring a constitutively active mTORC1 to short-chain fatty acid derivatives, R-α-lipoic acid and 4-phenylbutyric acid, downregulated chylomicron-like particle secretion by interfering with the lipidation and assembly of the particles, and concomitantly repressed mTORC1 activity with no change to Raptor abundance or PRAS40 (Thr246) phosphorylation. R-α-lipoic acid and 4-phenylbutyric acid may be useful to mitigate intestinal lipoprotein overproduction and associated postprandial inflammation.
Collapse
Affiliation(s)
- Bo He
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Zhigang Wang
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
20
|
Chen SY, Wang J, Jia F, Shen ZD, Zhang WB, Wang YX, Ren KF, Fu GS, Ji J. Bioinspired NO release coating enhances endothelial cells and inhibits smooth muscle cells. J Mater Chem B 2022; 10:2454-2462. [PMID: 34698745 DOI: 10.1039/d1tb01828k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thrombus and restenosis after stent implantation are the major complications because traditional drugs such as rapamycin delay the process of endothelialization. Nitric oxide (NO) is mainly produced by endothelial nitric oxide synthase (eNOS) on the membrane of endothelial cells (ECs) in the cardiovascular system and plays an important role in vasomotor function. It strongly inhibits the proliferation of smooth muscle cells (SMCs) and ameliorates endothelial function when ECs get hurt. Inspired by this, introducing NO to traditional stent coating may alleviate endothelial insufficiency caused by rapamycin. Here, we introduced SNAP as the NO donor, mimicking how NO affects in vivo, into rapamycin coating to alleviate endothelial damage while inhibiting SMC proliferation. Through wicking effects, SNAP was absorbed into a hierarchical coating that had an upper porous layer and a dense polymer layer with rapamycin at the bottom. Cells were cultured on the coatings, and it was observed that the injured ECs were restored while the growth of SMCs further diminished. Genome analysis was conducted to further clarify possible signaling pathways: the effect of cell growth attenuated by NO may cause by affecting cell cycle and enhancing inflammation. These findings supported the idea that introducing NO to traditional drug-eluting stents alleviates incomplete endothelialization and further inhibits the stenosis caused by the proliferation of SMCs.
Collapse
Affiliation(s)
- Sheng-Yu Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-da Shen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Wen-Bin Zhang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - You-Xiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke-Feng Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guo-Sheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Jian Ji
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
21
|
Alves AN, Sgrò CM, Piper MDW, Mirth CK. Target of Rapamycin Drives Unequal Responses to Essential Amino Acid Depletion for Egg Laying in Drosophila Melanogaster. Front Cell Dev Biol 2022; 10:822685. [PMID: 35252188 PMCID: PMC8888975 DOI: 10.3389/fcell.2022.822685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 11/15/2022] Open
Abstract
Nutrition shapes a broad range of life-history traits, ultimately impacting animal fitness. A key fitness-related trait, female fecundity is well known to change as a function of diet. In particular, the availability of dietary protein is one of the main drivers of egg production, and in the absence of essential amino acids egg laying declines. However, it is unclear whether all essential amino acids have the same impact on phenotypes like fecundity. Using a holidic diet, we fed adult female Drosophila melanogaster diets that contained all necessary nutrients except one of the 10 essential amino acids and assessed the effects on egg production. For most essential amino acids, depleting a single amino acid induced as rapid a decline in egg production as when there were no amino acids in the diet. However, when either methionine or histidine were excluded from the diet, egg production declined more slowly. Next, we tested whether GCN2 and TOR mediated this difference in response across amino acids. While mutations in GCN2 did not eliminate the differences in the rates of decline in egg laying among amino acid drop-out diets, we found that inhibiting TOR signalling caused egg laying to decline rapidly for all drop-out diets. TOR signalling does this by regulating the yolk-forming stages of egg chamber development. Our results suggest that amino acids differ in their ability to induce signalling via the TOR pathway. This is important because if phenotypes differ in sensitivity to individual amino acids, this generates the potential for mismatches between the output of a pathway and the animal's true nutritional status.
Collapse
|
22
|
Translational control of E2f1 regulates the Drosophila cell cycle. Proc Natl Acad Sci U S A 2022; 119:2113704119. [PMID: 35074910 PMCID: PMC8795540 DOI: 10.1073/pnas.2113704119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
E2F transcription factors are master regulators of the eukaryotic cell cycle. In Drosophila, the sole activating E2F, E2F1, is both required for and sufficient to promote G1→S progression. E2F1 activity is regulated both by binding to RB Family repressors and by posttranscriptional control of E2F1 protein levels by the EGFR and TOR signaling pathways. Here, we investigate cis-regulatory elements in the E2f1 messenger RNA (mRNA) that enable E2f1 translation to respond to these signals and promote mitotic proliferation of wing imaginal disc and intestinal stem cells. We show that small upstream open reading frames (uORFs) in the 5' untranslated region (UTR) of the E2f1 mRNA limit its translation, impacting rates of cell proliferation. E2f1 transgenes lacking these 5'UTR uORFs caused TOR-independent expression and excess cell proliferation, suggesting that TOR activity can bypass uORF-mediated translational repression. EGFR signaling also enhanced translation but through a mechanism less dependent on 5'UTR uORFs. Further, we mapped a region in the E2f1 mRNA that contains a translational enhancer, which may also be targeted by TOR signaling. This study reveals translational control mechanisms through which growth signaling regulates cell cycle progression.
Collapse
|
23
|
Séité S, Harrison MC, Sillam-Dussès D, Lupoli R, Van Dooren TJM, Robert A, Poissonnier LA, Lemainque A, Renault D, Acket S, Andrieu M, Viscarra J, Sul HS, de Beer ZW, Bornberg-Bauer E, Vasseur-Cognet M. Lifespan prolonging mechanisms and insulin upregulation without fat accumulation in long-lived reproductives of a higher termite. Commun Biol 2022; 5:44. [PMID: 35027667 PMCID: PMC8758687 DOI: 10.1038/s42003-021-02974-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Kings and queens of eusocial termites can live for decades, while queens sustain a nearly maximal fertility. To investigate the molecular mechanisms underlying their long lifespan, we carried out transcriptomics, lipidomics and metabolomics in Macrotermes natalensis on sterile short-lived workers, long-lived kings and five stages spanning twenty years of adult queen maturation. Reproductives share gene expression differences from workers in agreement with a reduction of several aging-related processes, involving upregulation of DNA damage repair and mitochondrial functions. Anti-oxidant gene expression is downregulated, while peroxidability of membranes in queens decreases. Against expectations, we observed an upregulated gene expression in fat bodies of reproductives of several components of the IIS pathway, including an insulin-like peptide, Ilp9. This pattern does not lead to deleterious fat storage in physogastric queens, while simple sugars dominate in their hemolymph and large amounts of resources are allocated towards oogenesis. Our findings support the notion that all processes causing aging need to be addressed simultaneously in order to prevent it.
Collapse
Affiliation(s)
- Sarah Séité
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAe 1392, Paris 7 113, Institute of Ecology and Environmental Sciences of Paris, Bondy, France
- University of Paris-Est, Créteil, France
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - David Sillam-Dussès
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology, UR4443, Villetaneuse, France
| | - Roland Lupoli
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAe 1392, Paris 7 113, Institute of Ecology and Environmental Sciences of Paris, Bondy, France
- University of Paris-Est, Créteil, France
| | - Tom J M Van Dooren
- UMR UPMC 113, IRD 242, UPEC, CNRS 7618, INRA 1392, PARIS 7 113, Institute of Ecology and Environmental Sciences of Paris, Paris, France
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Alain Robert
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology, UR4443, Villetaneuse, France
| | - Laure-Anne Poissonnier
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Arnaud Lemainque
- Genoscope, François-Jacob Institute of Biology, Alternative Energies and Atomic Energy Commission, University of Paris-Saclay, Evry, France
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystems, biodiversity, evolution) - UMR, 6553, Rennes, France
- University Institute of France, Paris, France
| | - Sébastien Acket
- University of Technology of Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Royallieu research Center, Compiègne, France
| | - Muriel Andrieu
- Cochin Institute, UMR INSERM U1016, CNRS 8104, University of Paris Descartes, CYBIO Platform, Paris, France
| | - José Viscarra
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Mireille Vasseur-Cognet
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAe 1392, Paris 7 113, Institute of Ecology and Environmental Sciences of Paris, Bondy, France.
- University of Paris-Est, Créteil, France.
- INSERM, Paris, France.
| |
Collapse
|
24
|
Li L, Zhu T, Song Y, Luo X, Datla R, Ren M. Target of rapamycin controls hyphal growth and pathogenicity through FoTIP4 in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2021; 22:1239-1255. [PMID: 34288333 PMCID: PMC8435236 DOI: 10.1111/mpp.13108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 05/07/2023]
Abstract
Fusarium oxysporum is the causal agent of the devastating Fusarium wilt by invading and colonizing the vascular system in various plants, resulting in substantial economic losses worldwide. Target of rapamycin (TOR) is a central regulator that controls intracellular metabolism, cell growth, and stress responses in eukaryotes, but little is known about TOR signalling in F. oxysporum. In this study, we identified conserved FoTOR signalling pathway components including FoTORC1 and FoTORC2. Pharmacological assays showed that F. oxysporum is hypersensitive to rapamycin in the presence of FoFKBP12 while the deletion mutant strain ΔFofkbp12 is insensitive to rapamycin. Transcriptomic data indicated that FoTOR signalling controls multiple metabolic processes including ribosome biogenesis and cell wall-degrading enzymes (CWDEs). Genetic analysis revealed that FoTOR1 interacting protein 4 (FoTIP4) acts as a new component of FoTOR signalling to regulate hyphal growth and pathogenicity of F. oxysporum. Importantly, transcript levels of genes associated with ribosome biogenesis and CWDEs were dramatically downregulated in the ΔFotip4 mutant strain. Electrophoretic mobility shift assays showed that FoTIP4 can bind to the promoters of ribosome biogenesis- and CWDE-related genes to positively regulate the expression of these genes. These results suggest that FoTOR signalling plays central roles in regulating hyphal growth and pathogenicity of F. oxysporum and provide new insights into FoTOR1 as a target for controlling and preventing Fusarium wilt in plants.
Collapse
Affiliation(s)
- Linxuan Li
- Institute of Urban AgricultureChinese Academy of Agricultural SciencesChengdu National Agricultural Science and Technology CenterChengduChina
| | - Tingting Zhu
- Institute of Urban AgricultureChinese Academy of Agricultural SciencesChengdu National Agricultural Science and Technology CenterChengduChina
| | - Yun Song
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- School of Life SciencesLiaocheng UniversityLiaochengChina
| | - Xiumei Luo
- Institute of Urban AgricultureChinese Academy of Agricultural SciencesChengdu National Agricultural Science and Technology CenterChengduChina
| | - Raju Datla
- Global Institute for Food Security in SaskatoonUniversity of SaskatchewanSaskatoonCanada
| | - Maozhi Ren
- Institute of Urban AgricultureChinese Academy of Agricultural SciencesChengdu National Agricultural Science and Technology CenterChengduChina
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| |
Collapse
|
25
|
Szabo Z, Koczka V, Marosvolgyi T, Szabo E, Frank E, Polyak E, Fekete K, Erdelyi A, Verzar Z, Figler M. Possible Biochemical Processes Underlying the Positive Health Effects of Plant-Based Diets-A Narrative Review. Nutrients 2021; 13:2593. [PMID: 34444753 PMCID: PMC8398942 DOI: 10.3390/nu13082593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Plant-based diets are becoming more popular for many reasons, and epidemiological as well as clinical data also suggest that a well-balanced vegan diet can be adopted for the prevention, and in some cases, in the treatment of many diseases. In this narrative review, we provide an overview of the relationships between these diets and various conditions and their potential biochemical background. As whole plant foods are very rich in food-derived antioxidants and other phytochemicals, they have many positive physiological effects on different aspects of health. In the background of the beneficial health effects, several biochemical processes could stand, including the reduced formation of trimethylamine oxide (TMAO) or decreased serum insulin-like growth factor 1 (IGF-1) levels and altered signaling pathways such as mechanistic target of rapamycin (mTOR). In addition, the composition of plant-based diets may play a role in preventing lipotoxicity, avoiding N-glycolylneuraminic acid (Neu5Gc), and reducing foodborne endotoxin intake. In this article, we attempt to draw attention to the growing knowledge about these diets and provide starting points for further research.
Collapse
Affiliation(s)
- Zoltan Szabo
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Viktor Koczka
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary; (V.K.); (E.S.)
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary
| | - Tamas Marosvolgyi
- Institute of Bioanalysis, Medical School, University of Pecs, 7624 Pecs, Hungary;
- Szentagothai Research Center, University of Pecs, 7624 Pecs, Hungary
| | - Eva Szabo
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary; (V.K.); (E.S.)
| | - Eszter Frank
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Eva Polyak
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Kata Fekete
- Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Attila Erdelyi
- Institute of Health Insurance, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary;
| | - Zsofia Verzar
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Maria Figler
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
- 2nd Department of Internal Medicine and Nephrology Centre, Clinical Centre, University of Pecs, 7624 Pecs, Hungary
| |
Collapse
|
26
|
Xu Q, Liu Q, Chen Z, Yue Y, Liu Y, Zhao Y, Zhou DX. Histone deacetylases control lysine acetylation of ribosomal proteins in rice. Nucleic Acids Res 2021; 49:4613-4628. [PMID: 33836077 PMCID: PMC8096213 DOI: 10.1093/nar/gkab244] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023] Open
Abstract
Lysine acetylation (Kac) is well known to occur in histones for chromatin function and epigenetic regulation. In addition to histones, Kac is also detected in a large number of proteins with diverse biological functions. However, Kac function and regulatory mechanism for most proteins are unclear. In this work, we studied mutation effects of rice genes encoding cytoplasm-localized histone deacetylases (HDAC) on protein acetylome and found that the HDAC protein HDA714 was a major deacetylase of the rice non-histone proteins including many ribosomal proteins (r-proteins) and translation factors that were extensively acetylated. HDA714 loss-of-function mutations increased Kac levels but reduced abundance of r-proteins. In vitro and in vivo experiments showed that HDA714 interacted with r-proteins and reduced their Kac. Substitutions of lysine by arginine (depleting Kac) in several r-proteins enhance, while mutations of lysine to glutamine (mimicking Kac) decrease their stability in transient expression system. Ribo-seq analysis revealed that the hda714 mutations resulted in increased ribosome stalling frequency. Collectively, the results uncover Kac as a functional posttranslational modification of r-proteins which is controlled by histone deacetylases, extending the role of Kac in gene expression to protein translational regulation.
Collapse
Affiliation(s)
- Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhengting Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yuan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.,Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
27
|
Hu X, Kong L, Xiao C, Zhu Q, Song Z. The AMPK-mTOR signaling pathway is involved in regulation of food intake in the hypothalamus of stressed chickens. Comp Biochem Physiol A Mol Integr Physiol 2021; 258:110979. [PMID: 33991669 DOI: 10.1016/j.cbpa.2021.110979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
Glucocorticoids (GCs) can stimulate the appetite and AMPK in broilers. The activation of hypothalamic mTOR has been proposed as an important anorexigenic signal. However, inhibitory effect of AMPK activity on appetite and AMPK downstream signaling pathway under stress has not been reported. In this study, we performed an intracerebroventricular (icv) injection of compound C, an AMPK inhibitor, in GC-treated birds to explore the regulatory mechanism on appetite and AMPK downstream signaling pathway. A total of 48 7-day-old broilers, which had received an icv cannula, were randomly subjected to one of two treatments: subcutaneous injection of dexamethasone (DEX) or saline. After 3 days of continuous DEX injection, chicks of each group received an icv injection with either compound C (6 μg/2 μL) or vehicle (dimethyl sulfoxide, 2 μL). The results showed that body weight gain was reduced by the DEX treatment. Compared with the control, icv injection of compound C reduced feed intake at 0.5-1.5 h. In the DEX-treated group, the inhibitory effect of compound C on appetite remained apparent at 0.5-1 h. The DEX treatment increased the gene expression of liver kinase B1 (LKB1), neuropeptide Y (NPY), and decreased p-mTOR protein level. In stressed broilers, inhibition of AMPK relieved the decreased mTOR activity. A significant interaction was noted in DEX and compound C on protein expression of phospho-AMPK. Taken together, in stressed broilers, the central injection of compound C could inhibit central AMPK activity and reduce appetite, in which the AMPK/mTOR signaling pathway might be involved.
Collapse
Affiliation(s)
- Xiyi Hu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Linglian Kong
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chuanpi Xiao
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Qidong Zhu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
28
|
Stępień Ł, Lalak-Kańczugowska J. Signaling pathways involved in virulence and stress response of plant-pathogenic Fusarium species. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Singh CP. Role of microRNAs in insect-baculovirus interactions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103459. [PMID: 32961323 DOI: 10.1016/j.ibmb.2020.103459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) constitute a novel class of gene expression regulators and are found to be involved in regulating a wide range of biological processes such as development, cell cycle, metabolism, apoptosis, immunity, host-pathogen interactions etc. Generally miRNAs negatively regulate the gene expression at the post-transcriptional level by binding to the complementary target mRNA sequences. These tiny molecules are abundantly found in higher eukaryotes and viruses. Most of the DNA viruses of animals and insects encode miRNAs including baculoviruses. Baculoviruses are the insect-specific viruses that cause severe infection and mortality mainly in insect larvae of the order Lepidoptera, Diptera, and Hymenoptera. These enveloped viruses have multiple applications in biotechnology and biological pest control methods. For a better understanding of baculoviruses, it is necessary to elucidate the molecular basis of insect-baculovirus interactions. Recent advancement in the technologies for studying the gene expression has accelerated the discovery of new players in the insect-baculovirus interactions. MiRNAs are the emerging and fate-determining players of host-viral interactions. The long history of host and virus co-evolution suggests that the virus keeps on evolving its arsenals to succeed in infection whereas the host continues investing in antiviral defense mechanisms. In this review, I aim to highlight the recent information and understanding of the baculovirus-encoding miRNAs and their functions in regulating viral as well as host genes. Additionally, insect-derived miRNAs response to baculovirus infection is also discussed. A detailed critical view about the regulatory roles of miRNAs in insect-baculovirus interactions will help us to understand molecular networks amid these interactions and develop a sustainable antiviral strategy.
Collapse
Affiliation(s)
- C P Singh
- Department of Botany, University of Rajasthan, Jaipur, 302004, Rajasthan, India.
| |
Collapse
|
30
|
Zhu H, Zheng S, Xu J, Wu Q, Song Q, Ge L. The Amino Acid-Mediated TOR Pathway Regulates Reproductive Potential and Population Growth in Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae). Front Physiol 2020; 11:617237. [PMID: 33329069 PMCID: PMC7733968 DOI: 10.3389/fphys.2020.617237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
The predatory mirid bug, Cyrtorhinus lividipennis Reuter, feeds on brown planthopper (BPH) eggs that are deposited on rice and gramineous plants surrounding rice fields. The development and reproduction of C. lividipennis are inhibited by feeding on BPH eggs from gramineous species, and the underlining regulatory mechanism for this phenomenon is unclear. In the present study, HPLC-MS/MS analysis revealed that the concentrations of six amino acids (AAs:Ala, Arg, Ser, Lys, Thr, and Pro) were significantly higher in rice than in five gramineous species. When C. lividipennis fed on gramineous plants with BPH eggs, expression of several genes in the target of rapamycin (TOR) pathway (Rheb, TOR, and S6K) were significantly lower than that in the insects fed on rice plants with BPH eggs. Treatment of C. lividipennis females with rapamycin, dsRheb, dsTOR, or dsS6K caused a decrease in Rheb, TOR, and S6K expression, and these effects were partially rescued by the juvenile hormone (JH) analog, methoprene. Dietary dsTOR treatment significantly influenced a number of physiological parameters and resulted in impaired predatory capacity, fecundity, and population growth. This study indicates that these six AAs play an important role in the mediated-TOR pathway, which in turn regulates vitellogenin (Vg) synthesis, reproduction, and population growth in C. lividipennis.
Collapse
Affiliation(s)
- Haowen Zhu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Sui Zheng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jinming Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qing Wu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Linquan Ge
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
31
|
Lu J, Temp U, Müller-Hartmann A, Esser J, Grönke S, Partridge L. Sestrin is a key regulator of stem cell function and lifespan in response to dietary amino acids. ACTA ACUST UNITED AC 2020; 1:60-72. [PMID: 37117991 DOI: 10.1038/s43587-020-00001-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023]
Abstract
Dietary restriction (DR) promotes healthy aging in diverse species. Essential amino acids play a key role, but the molecular mechanisms are unknown. The evolutionarily conserved Sestrin protein, an inhibitor of activity of the target of rapamycin complex 1 (TORC1), has recently been discovered as a sensor of amino acids in vitro. Here, we show that Sestrin null mutant flies have a blunted response of lifespan to DR. A mutant Sestrin fly line, with blocked amino acid binding and TORC1 activation, showed delayed development, reduced fecundity, extended lifespan and protection against lifespan-shortening, high-protein diets. Sestrin mediated reduced intestinal stem cell activity and gut cell turnover from DR, and stem cell proliferation in response to dietary amino acids, by regulating the TOR pathway and autophagy. Sestrin expression in intestinal stem cells was sufficient to maintain gut homeostasis and extend lifespan. Sestrin is thus a molecular link between dietary amino acids, stem cell function and longevity.
Collapse
|
32
|
Leucine-Rich Diet Modulates the Metabolomic and Proteomic Profile of Skeletal Muscle during Cancer Cachexia. Cancers (Basel) 2020; 12:cancers12071880. [PMID: 32668598 PMCID: PMC7408981 DOI: 10.3390/cancers12071880] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Cancer-cachexia induces a variety of metabolic disorders, including skeletal muscle imbalance. Alternative therapy, as nutritional supplementation with leucine, shows a modulatory effect over tumour damage in vivo and in vitro. Method: Adult rats distributed into Control (C), Walker tumour-bearing (W), control fed a leucine-rich diet (L), and tumour-bearing fed a leucine-rich diet (WL) groups had the gastrocnemius muscle metabolomic and proteomic assays performed in parallel to in vitro assays. Results: W group presented an affected muscle metabolomic and proteomic profile mainly related to energy generation and carbohydrates catabolic processes, but leucine-supplemented group (WL) recovered the energy production. In vitro assay showed that cell proliferation, mitochondria number and oxygen consumption were higher under leucine effect than the tumour influence. Muscle proteomics results showed that the main affected cell component was mitochondria, leading to an impacted energy generation, including impairment in proteins of the tricarboxylic cycle and carbohydrates catabolic processes, which were modulated and improved by leucine treatment. Conclusion: In summary, we showed a beneficial effect of leucine upon mitochondria, providing information about the muscle glycolytic pathways used by this amino acid, where it can be associated with the preservation of morphometric parameters and consequent protection against the effects of cachexia.
Collapse
|
33
|
Han B, Zhang T, Feng Y, Liu X, Zhang L, Chen H, Zeng F, Wang M, Liu C, Li Y, Cui J, Li Z, Mao J. Two insulin receptors coordinate oogenesis and oviposition via two pathways in the green lacewing, Chrysopa pallens. JOURNAL OF INSECT PHYSIOLOGY 2020; 123:104049. [PMID: 32199917 DOI: 10.1016/j.jinsphys.2020.104049] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Insulin signalling in insects, as in mammals, regulates various physiological functions, such as reproduction. However, the molecular mechanism by which insulin signals orchestrate ovarian stem cell proliferation, vitellogenesis, and oviposition remains elusive. Here, we investigate the functions of the phosphoinositide 3-kinase (PI3K)-serine/threonine kinase (Akt) pathway, GTPase Ras/mitogen-activated protein kinase (MAPK) pathway, and their downstream messengers in a natural predator, Chrysopa pallens, by the RNAi method. When C. pallens vitellogenin gene 1 (CpVg1) expression was knocked down, the follicle maturation was arrested and total fecundity was reduced. Silencing C. pallens insulin receptor 1 (CpInR1) suppressed Vg transcription and reduced egg mass and hatching rate. Depletion of C. pallens insulin receptor 2 (CpInR2) transcripts lowered Vg transcript level, hampered ovarian development and decreased reproductive output. Knockdown of C. pallens Akt (CpAkt) and C. pallens extracellular-signal-regulated kinase (Cperk) caused phenotypes similar to those caused by knockdown of CpInR2. Disruption of C. pallens transcription factor forkhead box O (CpFoxO) expression caused no significant effects on ovarian development, but sharply impaired total fecundity. Interference with the expression of C. pallens target of rapamycin (CpTor) gene and C. pallens cAMP-response element binding protein (CpCreb) gene led to a down-regulation of Vg transcription, blocking of ovariole growth, and decrease in egg quality. These results suggested the two CpInRs orchestrate oogenesis and oviposition via two signalling pathways to guarantee natural reproduction in the green lacewing, C. pallens.
Collapse
Affiliation(s)
- Benfeng Han
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tingting Zhang
- School of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Yanjiao Feng
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaopin Liu
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lisheng Zhang
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongyin Chen
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fanrong Zeng
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengqing Wang
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chenxi Liu
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuyan Li
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinjie Cui
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| | - Jianjun Mao
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
34
|
Xiong F, Liu M, Zhuo F, Yin H, Deng K, Feng S, Liu Y, Luo X, Feng L, Zhang S, Li Z, Ren M. Host-induced gene silencing of BcTOR in Botrytis cinerea enhances plant resistance to grey mould. MOLECULAR PLANT PATHOLOGY 2019; 20:1722-1739. [PMID: 31622007 PMCID: PMC6859489 DOI: 10.1111/mpp.12873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Botrytis cinerea is the causal agent of grey mould for more than 200 plant species, including economically important vegetables, fruits and crops, which leads to economic losses worldwide. Target of rapamycin (TOR) acts a master regulator to control cell growth and proliferation by integrating nutrient, energy and growth factors in eukaryotic species, but little is known about whether TOR can function as a practicable target in the control of plant fungal pathogens. Here, we characterize TOR signalling of B. cinerea in the regulation of growth and pathogenicity as well as its potential value in genetic engineering for crop protection by bioinformatics analysis, pharmacological assays, biochemistry and genetics approaches. The results show that conserved TOR signalling occurs, and a functional FK506-binding protein 12 kD (FKBP12) mediates the interaction between rapamycin and B. cinerea TOR (BcTOR). RNA sequencing (RNA-Seq) analysis revealed that BcTOR displayed conserved functions, particularly in controlling growth and metabolism. Furthermore, pathogenicity assay showed that BcTOR inhibition efficiently reduces the infection of B. cinerea in plant leaves of Arabidopsis and potato or tomato fruits. Additionally, transgenic plants expressing double-stranded RNA of BcTOR through the host-induced gene silencing method could produce abundant small RNAs targeting BcTOR, and significantly block the occurrence of grey mould in potato and tomato. Taken together, our results suggest that BcTOR is an efficient target for genetic engineering in control of grey mould, and also a potential and promising target applied in the biocontrol of plant fungal pathogens.
Collapse
Affiliation(s)
- Fangjie Xiong
- School of Life SciencesChongqing UniversityChongqing401331China
- Key Laboratory of Plant Hormone and Developmental Regulation of ChongqingChongqing401331China
| | - Mei Liu
- School of Life SciencesChongqing UniversityChongqing401331China
- Key Laboratory of Plant Hormone and Developmental Regulation of ChongqingChongqing401331China
| | - Fengping Zhuo
- School of Life SciencesChongqing UniversityChongqing401331China
- Key Laboratory of Plant Hormone and Developmental Regulation of ChongqingChongqing401331China
- School of Chemistry and Chemical EngineeringChongqing University of Science and TechnologyChongqing401331China
| | - Huan Yin
- School of Life SciencesChongqing UniversityChongqing401331China
- Key Laboratory of Plant Hormone and Developmental Regulation of ChongqingChongqing401331China
| | - Kexuan Deng
- School of Life SciencesChongqing UniversityChongqing401331China
- Key Laboratory of Plant Hormone and Developmental Regulation of ChongqingChongqing401331China
| | - Shun Feng
- School of Life SciencesChongqing UniversityChongqing401331China
- Key Laboratory of Plant Hormone and Developmental Regulation of ChongqingChongqing401331China
| | - Yudong Liu
- School of Life SciencesChongqing UniversityChongqing401331China
- Key Laboratory of Plant Hormone and Developmental Regulation of ChongqingChongqing401331China
| | - Xiumei Luo
- School of Life SciencesChongqing UniversityChongqing401331China
- Key Laboratory of Plant Hormone and Developmental Regulation of ChongqingChongqing401331China
| | - Li Feng
- School of Life SciencesChongqing UniversityChongqing401331China
- Key Laboratory of Plant Hormone and Developmental Regulation of ChongqingChongqing401331China
| | - Shumin Zhang
- School of Life SciencesChongqing UniversityChongqing401331China
- Key Laboratory of Plant Hormone and Developmental Regulation of ChongqingChongqing401331China
| | - Zhengguo Li
- School of Life SciencesChongqing UniversityChongqing401331China
- Key Laboratory of Plant Hormone and Developmental Regulation of ChongqingChongqing401331China
| | - Maozhi Ren
- School of Life SciencesChongqing UniversityChongqing401331China
- Key Laboratory of Plant Hormone and Developmental Regulation of ChongqingChongqing401331China
- Institute of Urban AgricultureChinese Academy of Agricultural Sciences/National Chengdu Agricultural Science and Technology CenterChengdu610000China
| |
Collapse
|
35
|
CD98hc (SLC3A2) sustains amino acid and nucleotide availability for cell cycle progression. Sci Rep 2019; 9:14065. [PMID: 31575908 PMCID: PMC6773781 DOI: 10.1038/s41598-019-50547-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
CD98 heavy chain (CD98hc) forms heteromeric amino acid (AA) transporters by interacting with different light chains. Cancer cells overexpress CD98hc-transporters in order to meet their increased nutritional and antioxidant demands, since they provide branched-chain AA (BCAA) and aromatic AA (AAA) availability while protecting cells from oxidative stress. Here we show that BCAA and AAA shortage phenocopies the inhibition of mTORC1 signalling, protein synthesis and cell proliferation caused by CD98hc ablation. Furthermore, our data indicate that CD98hc sustains glucose uptake and glycolysis, and, as a consequence, the pentose phosphate pathway (PPP). Thus, loss of CD98hc triggers a dramatic reduction in the nucleotide pool, which leads to replicative stress in these cells, as evidenced by the enhanced DNA Damage Response (DDR), S-phase delay and diminished rate of mitosis, all recovered by nucleoside supplementation. In addition, proper BCAA and AAA availability sustains the expression of the enzyme ribonucleotide reductase. In this regard, BCAA and AAA shortage results in decreased content of deoxynucleotides that triggers replicative stress, also recovered by nucleoside supplementation. On the basis of our findings, we conclude that CD98hc plays a central role in AA and glucose cellular nutrition, redox homeostasis and nucleotide availability, all key for cell proliferation.
Collapse
|
36
|
Brunk CF, Martin WF. Archaeal Histone Contributions to the Origin of Eukaryotes. Trends Microbiol 2019; 27:703-714. [PMID: 31076245 DOI: 10.1016/j.tim.2019.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
The eukaryotic lineage arose from bacterial and archaeal cells that underwent a symbiotic merger. At the origin of the eukaryote lineage, the bacterial partner contributed genes, metabolic energy, and the building blocks of the endomembrane system. What did the archaeal partner donate that made the eukaryotic experiment a success? The archaeal partner provided the potential for complex information processing. Archaeal histones were crucial in that regard by providing the basic functional unit with which eukaryotes organize DNA into nucleosomes, exert epigenetic control of gene expression, transcribe genes with CCAAT-box promoters, and a manifest cell cycle with condensed chromosomes. While mitochondrial energy lifted energetic constraints on eukaryotic protein production, histone-based chromatin organization paved the path to eukaryotic genome complexity, a critical hurdle en route to the evolution of complex cells.
Collapse
Affiliation(s)
- Clifford F Brunk
- Department of Ecology and Evolutionary Biology and Molecular Biology Institute University of California Los Angeles, Los Angeles, USA
| | - William F Martin
- Institute of Molecular Evolution Heinrich-Heine-Universitaet Duesseldorf, Dusseldorf, Germany.
| |
Collapse
|
37
|
Ahmad Z, Magyar Z, Bögre L, Papdi C. Cell cycle control by the target of rapamycin signalling pathway in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2275-2284. [PMID: 30918972 DOI: 10.1093/jxb/erz140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Cells need to ensure a sufficient nutrient and energy supply before committing to proliferate. In response to positive mitogenic signals, such as light, sugar availability, and hormones, the target of rapamycin (TOR) signalling pathway promotes cell growth that connects to the entry and passage through the cell division cycle via multiple signalling mechanisms. Here, we summarize current understanding of cell cycle regulation by the RBR-E2F regulatory hub and the DREAM-like complexes, and highlight possible functional relationships between these regulators and TOR signalling. A genetic screen recently uncovered a downstream signalling component to TOR that regulates cell proliferation, YAK1, a member of the dual specificity tyrosine phosphorylation-regulated kinase (DYRK) family. YAK1 activates the plant-specific SIAMESE-RELATED (SMR) cyclin-dependent kinase inhibitors and therefore could be important to regulate both the CDKA-RBR-E2F pathway to control the G1/S transition and the mitotic CDKB1;1 to control the G2/M transition. TOR, as a master regulator of both protein synthesis-driven cell growth and cell proliferation is also central for cell size homeostasis. We conclude the review by briefly highlighting the potential applications of combining TOR and cell cycle knowledge in the context of ensuring future food security.
Collapse
Affiliation(s)
- Zaki Ahmad
- School of Biological Sciences, Bourne Laboratory. Royal Holloway, University of London, Egham, Surrey, UK
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences Szeged, Hungary
| | - László Bögre
- School of Biological Sciences, Bourne Laboratory. Royal Holloway, University of London, Egham, Surrey, UK
| | - Csaba Papdi
- School of Biological Sciences, Bourne Laboratory. Royal Holloway, University of London, Egham, Surrey, UK
| |
Collapse
|
38
|
Li L, Zhu T, Song Y, Luo X, Feng L, Zhuo F, Li F, Ren M. Functional Characterization of Target of Rapamycin Signaling in Verticillium dahliae. Front Microbiol 2019; 10:501. [PMID: 30918504 PMCID: PMC6424901 DOI: 10.3389/fmicb.2019.00501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
More than 200 plants have been suffering from Verticillium wilt caused by Verticillium dahliae (V. dahliae) across the world. The target of rapamycin (TOR) is a lethal gene and controls cell growth and development in various eukaryotes, but little is known about TOR signaling in V. dahliae. Here, we found that V. dahliae strain is hypersensitive to rapamycin in the presence of rapamycin binding protein VdFKBP12 while the deletion mutant aaavdfkbp12 is insensitive to rapamycin. Heterologous expressing VdFKBP12 in Arabidopsis conferred rapamycin sensitivity, indicating that VdFKBP12 can bridge the interaction between rapamycin and TOR across species. The key across species of TOR complex 1 (TORC1) and TORC2 have been identified in V. dahliae, suggesting that TOR signaling pathway is evolutionarily conserved in eukaryotic species. Furthermore, the RNA-seq analysis showed that ribosomal biogenesis, RNA polymerase II transcription factors and many metabolic processes were significantly suppressed in rapamycin treated cells of V. dahliae. Importantly, transcript levels of genes associated with cell wall degrading enzymes (CWEDs) were dramatically down-regulated in TOR-inhibited cells. Further infection assay showed that the pathogenicity of V. dahliae and occurrence of Verticillium wilt can be blocked in the presence of rapamycin. These observations suggested that VdTOR is a key target of V. dahliae for controlling and preventing Verticillium wilt in plants.
Collapse
Affiliation(s)
- Linxuan Li
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Tingting Zhu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yun Song
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiumei Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Li Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Fengping Zhuo
- School of Life Sciences, Chongqing University, Chongqing, China.,School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
39
|
Velazquez MA, Fleming TP, Watkins AJ. Periconceptional environment and the developmental origins of disease. J Endocrinol 2019; 242:T33-T49. [PMID: 30707679 DOI: 10.1530/joe-18-0676] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/01/2019] [Indexed: 01/08/2023]
Abstract
The concept emerging from Professor David Barker’s seminal research on the developmental origins of later-life disease has progressed in many directions since it was first published. One critical question being when during gestation might environment alter the developmental programme with such enduring consequences. Here, we review the growing consensus from clinical and animal research that the period around conception, embracing gamete maturation and early embryogenesis might be the most vulnerable period. We focus on four types of environmental exposure shown to modify periconceptional reproduction and offspring development and health: maternal overnutrition and obesity; maternal undernutrition; paternal diet and health; and assisted reproductive technology. These conditions may act through diverse epigenetic, cellular and physiological mechanisms to alter gene expression and cellular signalling and function in the conceptus affecting offspring growth and metabolism leading to increased risk for cardiometabolic and neurological disease in later life.
Collapse
Affiliation(s)
- Miguel A Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
| | - Tom P Fleming
- Biological Sciences, University of Southampton, Southampton, United Kingdom of Great Britain and Northern Ireland
| | - Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
40
|
Werth EG, McConnell EW, Couso Lianez I, Perrine Z, Crespo JL, Umen JG, Hicks LM. Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: from known homologs to new targets. THE NEW PHYTOLOGIST 2019; 221:247-260. [PMID: 30040123 DOI: 10.1111/nph.15339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/11/2018] [Indexed: 05/20/2023]
Abstract
Target of rapamycin (TOR) kinase is a conserved regulator of cell growth whose activity is modulated in response to nutrients, energy and stress. Key proteins involved in the pathway are conserved in the model photosynthetic microalga Chlamydomonas reinhardtii, but the substrates of TOR kinase and downstream signaling network have not been elucidated. Our study provides a new resource for investigating the phosphorylation networks governed by the TOR kinase pathway in Chlamydomonas. We used quantitative phosphoproteomics to investigate the effects of inhibiting Chlamydomonas TOR kinase on dynamic protein phosphorylation. Wild-type and AZD-insensitive Chlamydomonas strains were treated with TOR-specific chemical inhibitors (rapamycin, AZD8055 and Torin1), after which differentially affected phosphosites were identified. Our quantitative phosphoproteomic dataset comprised 2547 unique phosphosites from 1432 different proteins. Inhibition of TOR kinase caused significant quantitative changes in phosphorylation at 258 phosphosites, from 219 unique phosphopeptides. Our results include Chlamydomonas homologs of TOR signaling-related proteins, including a site on RPS6 with a decrease in phosphorylation. Additionally, phosphosites on proteins involved in translation and carotenoid biosynthesis were identified. Follow-up experiments guided by these phosphoproteomic findings in lycopene beta/epsilon cyclase showed that carotenoid levels are affected by TORC1 inhibition and carotenoid production is under TOR control in algae.
Collapse
Affiliation(s)
- Emily G Werth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Evan W McConnell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Inmaculada Couso Lianez
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Zoee Perrine
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jose L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| | - James G Umen
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
41
|
Liang H, Nie J, Van Skike CE, Valentine JM, Orr ME. Mammalian Target of Rapamycin at the Crossroad Between Alzheimer's Disease and Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:185-225. [PMID: 31062331 DOI: 10.1007/978-981-13-3540-2_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that Alzheimer's disease may manifest as a metabolic disorder with pathology and/or dysfunction in numerous tissues. Adults with Alzheimer's disease suffer with significantly more comorbidities than demographically matched Medicare beneficiaries (Zhao et al, BMC Health Serv Res 8:108, 2008b). Reciprocally, comorbid health conditions increase the risk of developing Alzheimer's disease (Haaksma et al, PLoS One 12(5):e0177044, 2017). Type 2 diabetes mellitus is especially notable as the disease shares many overlapping pathologies observed in patients with Alzheimer's disease, including hyperglycemia, hyperinsulinemia, insulin resistance, glucose intolerance, dyslipidemia, inflammation, and cognitive dysfunction, as described in Chap. 8 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al, Neurology 53(9):1937-1942, 1999; Voisin et al, Rev Med Interne 24(Suppl 3):288s-291s, 2003; Janson et al. Diabetes 53(2):474-481, 2004; Ristow M, J Mol Med (Berl) 82(8):510-529, 2004; Whitmer et al, BMJ 330(7504):1360, 2005, Curr Alzheimer Res 4(2):103-109, 2007; Ohara et al, Neurology 77(12):1126-1134, 2011). Although nondiabetic older adults also experience age-related cognitive decline, diabetes is uniquely associated with a twofold increased risk of Alzheimer's disease, as described in Chap. 2 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al. Neurology 53(9):1937-1942, 1999; Ohara et al, Neurology 77(12):1126-1134, 2011). Good glycemic control has been shown to improve cognitive status (Cukierman-et al, Diabetes Care 32(2):221-226, 2009), and the use of insulin sensitizers is correlated with a lower rate of cognitive decline in older adults (Morris JK, Burns JM, Curr Neurol Neurosci Rep 12(5):520-527, 2012). At the molecular level, the mechanistic/mammalian target of rapamycin (mTOR) plays a key role in maintaining energy homeostasis. Nutrient availability and cellular stress information, both extracellular and intracellular, are integrated and transduced through mTOR signaling pathways. Aberrant regulation of mTOR occurs in the brains of patients with Alzheimer's disease and in numerous tissues of individuals with type 2 diabetes (Mannaa et al, J Mol Med (Berl) 91(10):1167-1175, 2013). Moreover, modulating mTOR activity with a pharmacological inhibitor, rapamycin, provides wide-ranging health benefits, including healthy life span extension in numerous model organisms (Vellai et al, Nature 426(6967):620, 2003; Jia et al, Development 131(16):3897-3906, 2004; Kapahi et al, Curr Biol 14(10):885-890, 2004; Kaeberlein et al, Science 310(5751):1193-1196, 2005; Powers et al, Genes Dev 20(2):174-184, 2006; Harrison et al, Nature 460(7253):392-395, 2009; Selman et al, Science 326(5949):140-144, 2009; Sharp ZD, Strong R, J Gerontol A Biol Sci Med Sci 65(6):580-589, 2010), which underscores its importance to overall organismal health and longevity. In this chapter, we discuss the physiological role of mTOR signaling and the consequences of mTOR dysregulation in the brain and peripheral tissues, with emphasis on its relevance to the development of Alzheimer's disease and link to type 2 diabetes.
Collapse
Affiliation(s)
- Hanyu Liang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Joseph M Valentine
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Miranda E Orr
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- San Antonio Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, San Antonio, TX, USA.
| |
Collapse
|
42
|
Clatici VG, Voicu C, Voaides C, Roseanu A, Icriverzi M, Jurcoane S. Diseases of Civilization - Cancer, Diabetes, Obesity and Acne - the Implication of Milk, IGF-1 and mTORC1. MAEDICA 2018; 13:273-281. [PMID: 30774725 PMCID: PMC6362881 DOI: 10.26574/maedica.2018.13.4.273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nutrition and food are one of the most complex aspects of human lives, being influenced by biochemical, psychological, social and cultural factors. The Western diet is the prototype of modern dietary pattern and is mainly characterized by the intake of large amounts of red meat, dairy products, refined grains and sugar. Large amounts of scientific evidence positively correlate Western diet to acne, obesity, diabetes, heart disease and cancer, the so-called "diseases of civilization". The pathophysiological common ground of all these pathologies is the IGF-1 and mTORC pathways, which will be disscussed further in this paper.
Collapse
Affiliation(s)
| | | | | | - Anca Roseanu
- Department of Ligand-Receptor Interaction, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Madalina Icriverzi
- Department of Ligand-Receptor Interaction, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | | |
Collapse
|
43
|
Xue B, Li FC, Tian JH, Li JX, Cheng XY, Hu JH, Hu JS, Li B. Titanium nanoparticles influence the Akt/Tor signal pathway in the silkworm, Bombyx mori, silk gland. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21470. [PMID: 29709078 DOI: 10.1002/arch.21470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Various nanoparticles, such as silver nanoparticles (AgNPs) and titanium nanoparticles (TiO2 NPs) are increasingly used in industrial processes. Because they are released into the environment, research into their influence on the biosphere is necessary. Among its other effects, dietary TiO2 NPs promotes silk protein synthesis in silkworms, which prompted our hypothesis that TiO2 NPs influence protein kinase B (Akt)/Target of rapamycin (Tor) signaling pathway (Akt/Tor) signaling in their silk glands. The Akt/Tor signaling pathway is a principle connector integrating cellular reactions to growth factors, metabolites, nutrients, protein synthesis, and stress. We tested our hypothesis by determining the influence of dietary TiO2 NPs (for 72 h) and, separately, of two Akt/Tor pathway inhibitors (LY294002 and rapamycin) on expression of Akt/Tor signaling pathway genes and proteins in the silk glands. TiO2 NPs treatments led to increased accumulation of mRNAs for Akt, Tor1 and Tor2 by 1.6-, 12.1-, and 4.8-fold. Dietary inhibitors led to 2.6- to 4-fold increases in mRNAs encoding Akt and substantial decreases in mRNAs encoding Tor1 and Tor2. Western blot analysis showed that dietary TiO2 NPs increased the phosphorylation of Akt and its downstream proteins. LY294002 treatments led to inhibition of Akt phosphorylation and its downstream proteins and rapamycin treatments similarly inhibited the phosphorylation of Tor-linked downstream proteins. These findings support our hypothesis that TiO2 NPs influence Akt/Tor signaling in silk glands. The significance of this work is identification of specific sites of TiO2 NPs actions.
Collapse
Affiliation(s)
- Bin Xue
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Fan-Chi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jiang-Hai Tian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jin-Xin Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Xiao-Yu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jia-Huan Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jing-Sheng Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, P.R. China
| |
Collapse
|
44
|
González-García I, Martínez de Morentin PB, Estévez-Salguero Á, Contreras C, Romero-Picó A, Fernø J, Nogueiras R, Diéguez C, Tena-Sempere M, Tovar S, López M. mTOR signaling in the arcuate nucleus of the hypothalamus mediates the anorectic action of estradiol. J Endocrinol 2018; 238:177-186. [PMID: 29914932 PMCID: PMC6055430 DOI: 10.1530/joe-18-0190] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Abstract
Current evidence suggests that estradiol (E2), the main ovarian steroid, modulates energy balance by regulating both feeding and energy expenditure at the central level, through the energy sensor AMP-activated protein kinase (AMPK). We hypothesized that the hypothalamic mechanistic target of rapamycin (mTOR) pathway, a well-established nutrient sensor and modulator of appetite and puberty, could also mediate the anorectic effect of E2. Our data showed that ovariectomy (OVX) elicited a marked downregulation of the mTOR signaling in the arcuate nucleus of the hypothalamus (ARC), an effect that was reversed by either E2 replacement or central estrogen receptor alpha (ERα) agonism. The significance of this molecular signaling was given by the genetic inactivation of S6 kinase B1 (S6K1, a key downstream mTOR effector) in the ARC, which prevented the E2-induced hypophagia and weight loss. Overall, these data indicate that E2 induces hypophagia through modulation of mTOR pathway in the ARC.
Collapse
Affiliation(s)
- Ismael González-García
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Pablo B Martínez de Morentin
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Ánxela Estévez-Salguero
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Amparo Romero-Picó
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone LaboratoryHaukeland University Hospital, Bergen, Norway
- KG Jebsen Center for Diabetes ResearchDepartment of Clinical Science, University of Bergen, Bergen, Norway
| | - Rubén Nogueiras
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Carlos Diéguez
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Manuel Tena-Sempere
- Department of Cell BiologyPhysiology and Immunology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina SofíaCórdoba, Spain
- FiDiPro ProgramUniversity of Turku, Turku, Finland
| | - Sulay Tovar
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Miguel López
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| |
Collapse
|
45
|
Bøe CA, Håland TW, Boye E, Syljuåsen RG, Grallert B. A novel role for ATR/Rad3 in G1 phase. Sci Rep 2018; 8:6880. [PMID: 29720710 PMCID: PMC5931961 DOI: 10.1038/s41598-018-25238-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/12/2018] [Indexed: 12/29/2022] Open
Abstract
Checkpoint kinases are important in cellular surveillance pathways that help cells to cope with DNA damage and protect their genomes. In cycling cells, DNA replication is one of the most sensitive processes and therefore all organisms carefully regulate replication initiation and progression. The checkpoint kinase ATR plays important roles both in response to DNA damage and replication stress, and ATR inhibitors are currently in clinical trials for cancer treatment. Therefore, it is important to understand the roles of ATR in detail. Here we show that the fission yeast homologue Rad3 and the human ATR regulate events also in G1 phase in an unperturbed cell cycle. Rad3Δ mutants or human cells exposed to ATR inhibitor in G1 enter S phase prematurely, which results in increased DNA damage. Furthermore, ATR inhibition in a single G1 reduces clonogenic survival, demonstrating that long-term effects of ATR inhibition during G1 are deleterious for the cell. Interestingly, ATR inhibition through G1 and S phase reduces survival in an additive manner, strongly arguing that different functions of ATR are targeted in the different cell-cycle phases. We propose that potential effects of ATR inhibitors in G1 should be considered when designing future treatment protocols with such inhibitors.
Collapse
Affiliation(s)
- Cathrine A Bøe
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tine W Håland
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Erik Boye
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Randi G Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Beáta Grallert
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
46
|
Pai GM, Zielinski A, Koalick D, Ludwig K, Wang ZQ, Borgmann K, Pospiech H, Rubio I. TSC loss distorts DNA replication programme and sensitises cells to genotoxic stress. Oncotarget 2018; 7:85365-85380. [PMID: 27863419 PMCID: PMC5356742 DOI: 10.18632/oncotarget.13378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 10/26/2016] [Indexed: 01/14/2023] Open
Abstract
Tuberous Sclerosis (TSC) is characterized by exorbitant mTORC1 signalling and manifests as non-malignant, apoptosis-prone neoplasia. Previous reports have shown that TSC-/- cells are highly susceptible to mild, innocuous doses of genotoxic stress, which drive TSC-/- cells into apoptotic death. It has been argued that this hypersensitivity to stress derives from a metabolic/energetic shortfall in TSC-/- cells, but how metabolic dysregulation affects the DNA damage response and cell cycle alterations in TSC-/- cells exposed to genotoxic stress is not understood. We report here the occurrence of futile checkpoint responses and an unusual type of replicative stress (RS) in TSC1-/- fibroblasts exposed to low-dose genotoxins. This RS is characterized by elevated nucleotide incorporation rates despite only modest origin over-firing. Strikingly, an increased propensity for asymmetric fork progression and profuse chromosomal aberrations upon mild DNA damage confirmed that TSC loss indeed proved detrimental to stress adaptation. We conclude that low stress tolerance of TSC-/- cells manifests at the level of DNA replication control, imposing strong negative selection on genomic instability that could in turn detain TSC-mutant tumours benign.
Collapse
Affiliation(s)
- Govind M Pai
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, 07745 Jena, Germany
| | - Alexandra Zielinski
- Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Germany, 20246 Hamburg, Germany
| | - Dennis Koalick
- Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Kristin Ludwig
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, 07745 Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Germany, 20246 Hamburg, Germany
| | - Helmut Pospiech
- Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, 07745 Jena, Germany
| |
Collapse
|
47
|
Cao X, Huang Y, Xia D, Qiu Z, Shen X, Guo X, Zhao Q. BmNPV-miR-415 up-regulates the expression of TOR2 via Bmo-miR-5738. Saudi J Biol Sci 2017; 24:1614-1619. [PMID: 30294230 PMCID: PMC6169442 DOI: 10.1016/j.sjbs.2015.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 09/10/2015] [Accepted: 09/13/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as key players in host-pathogen interaction and many virus-encoded miRNAs have been identified (computationally and/or experimentally) in a variety of organisms. A novel Bombyx mori nucleopolyhedrosis virus (BmNPV)-encoded miRNA miR-415 was previously identified through high-throughput sequencing. In this study, a BmNPV-miR-415 expression vector was constructed and transfected into BmN cells. The differentially expressed protein target of rapamycin isoform 2 (TOR2) was observed through two-dimensional gel electrophoresis and mass spectrometry. Results showed that TOR2 is not directly a target gene of BmNPV-miR-415, but its expression is up-regulated by BmNPV-miR-415 via Bmo-miR-5738, which could be induced by BmNPV.
Collapse
Affiliation(s)
- Xueliang Cao
- Jiangsu University of Science and Technology, Zhenjiang City 212018, Jiangsu Province, PR China
- Dezhou College, Dezhou City 253023, Shandong Province, PR China
| | - Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang City 471003, Henan Province, PR China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang City 212018, Jiangsu Province, PR China
| | - Dingguo Xia
- Jiangsu University of Science and Technology, Zhenjiang City 212018, Jiangsu Province, PR China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang City 212018, Jiangsu Province, PR China
| | - Zhiyong Qiu
- Jiangsu University of Science and Technology, Zhenjiang City 212018, Jiangsu Province, PR China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang City 212018, Jiangsu Province, PR China
| | - Xingjia Shen
- Jiangsu University of Science and Technology, Zhenjiang City 212018, Jiangsu Province, PR China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang City 212018, Jiangsu Province, PR China
| | - Xijie Guo
- Jiangsu University of Science and Technology, Zhenjiang City 212018, Jiangsu Province, PR China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang City 212018, Jiangsu Province, PR China
| | - Qiaoling Zhao
- Jiangsu University of Science and Technology, Zhenjiang City 212018, Jiangsu Province, PR China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang City 212018, Jiangsu Province, PR China
| |
Collapse
|
48
|
Mirdamadi Y, Bommhardt U, Goihl A, Guttek K, Zouboulis CC, Quist S, Gollnick H. Insulin and Insulin-like growth factor-1 can activate the phosphoinositide-3-kinase /Akt/FoxO1 pathway in T cells in vitro. DERMATO-ENDOCRINOLOGY 2017; 9:e1356518. [PMID: 29484090 PMCID: PMC5821168 DOI: 10.1080/19381980.2017.1356518] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023]
Abstract
Hyper-glycemic food increases insulin-like growth factor 1 (IGF-1) and insulin signaling and regulates endocrine responses and thereby may modulate the course of acne. Inflammation and adaptive immune responses have a pivotal role in all stages of acne. Recent hypothesis suggests that hyperglycemic food reduces nuclear forkhead box-O1 (FoxO1) transcription factor and may eventually induces acne. The aim of our study was to investigate the role of IGF-1 and insulin on the phosphoinositide-3-kinase (PI3K)/Akt/FoxO1 pathway in human primary T cells and on the molecular functions of T cells in vitro. T cells were stimulated with 0.001 μM IGF-1 or 1 μM insulin +/- 20 μM PI3K inhibitor LY294002. T cells were also exposed to SZ95 sebocyte supernatants which were pre-stimulated with IGF-1 or insulin. We found that 0.001 µM IGF-1 and 1 µM insulin activate the PI3K pathway in T cells leading to up-regulation of p-Akt and p-FoxO1 at 15 and 30 minutes. Nuclear FoxO1 was decreased and FoxO transcriptional activity was reduced. 0.001 µM IGF-1 and 1 µM insulin increased T cell proliferation but have no significant effect on Toll-like receptor2/4 (TLR) expression. Interestingly, supernatants from IGF-1- or insulin-stimulated sebocytes activated the PI3K pathway in T cells but reduced T cell proliferation. Taken together, this study helps to support that high glycemic load diet may contribute to induce activation of the PI3K pathway and increase of proliferation in human primary T cells. Factors secreted by IGF-1- and insulin-stimulated sebocytes induce the PI3K pathway in T cells and reduce T cell proliferation, which probably can reflect a protective mechanism of the sebaceous gland basal cells.
Collapse
Affiliation(s)
- Yasaman Mirdamadi
- Department of Dermatology and Venereology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Alexander Goihl
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Sven Quist
- Department of Dermatology and Venereology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Harald Gollnick
- Department of Dermatology and Venereology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
49
|
Affiliation(s)
- Bogdan Beirowski
- a Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo , NY , USA.,b Department of Biochemistry , Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo , NY , USA
| | - Keit Men Wong
- a Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo , NY , USA
| |
Collapse
|
50
|
Ewald JC, Kuehne A, Zamboni N, Skotheim JM. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression. Mol Cell 2017; 62:532-45. [PMID: 27203178 DOI: 10.1016/j.molcel.2016.02.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/26/2015] [Accepted: 02/11/2016] [Indexed: 01/12/2023]
Abstract
Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation.
Collapse
Affiliation(s)
- Jennifer C Ewald
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Andreas Kuehne
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program Systems Biology, Life Science Zurich Graduate School, 8057 Zurich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|