1
|
Rios MU, Stachera WE, Familiari NE, Brito C, Surrey T, Woodruff JB. In vitro reconstitution of minimal human centrosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639226. [PMID: 40027679 PMCID: PMC11870475 DOI: 10.1101/2025.02.20.639226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
CDK5RAP2/CEP215 is a key pericentriolar material (PCM) protein that recruits microtubule-nucleating factors at human centrosomes. Using an in vitro reconstitution system, we show that CDK5RAP2 is sufficient to form micron-scale scaffolds around a nanometer-scale nucleator in a PLK-1-regulated manner. CDK5RAP2 assemblies recruited and activated gamma tubulin ring complexes (γ-TuRCs) which, in the presence of α/β tubulin, generated microtubule asters. We found that F75 in CDK5RAP2 is partially needed to recruit γ-TuRC yet is indispensable for γ-TuRC activation. Furthermore, our system recapitulated key features of centrosome-amplified cancer cells. CDK5RAP2 scaffolds selectively recruited the molecular motor KifC1/HSET, which enhanced concentration of α/β tubulin, microtubule polymerization, and clustering of the assemblies. Our results highlight the specificity and selectivity of in vitro generated CDK5RAP2 scaffolds and identify a minimal set of components required for human centrosome assembly and function. This minimal centrosome model offers a powerful tool for studying centrosome biology and dysfunction in human health and disease.
Collapse
Affiliation(s)
- Manolo U. Rios
- Dept. of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Nicole E. Familiari
- Dept. of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Claudia Brito
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jeffrey B. Woodruff
- Dept. of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Dharmadhikari AV, Abad MA, Khan S, Maroofian R, Sands TT, Ullah F, Samejima I, Shen Y, Wear MA, Moore KE, Kondakova E, Mitina N, Schaub T, Lee GK, Umandap CH, Berger SM, Iglesias AD, Popp B, Abou Jamra R, Gabriel H, Rentas S, Rippert AL, Gray C, Izumi K, Conlin LK, Koboldt DC, Mosher TM, Hickey SE, Albert DVF, Norwood H, Lewanda AF, Dai H, Liu P, Mitani T, Marafi D, Eker HK, Pehlivan D, Posey JE, Lippa NC, Vena N, Heinzen EL, Goldstein DB, Mignot C, de Sainte Agathe JM, Al-Sannaa NA, Zamani M, Sadeghian S, Azizimalamiri R, Seifia T, Zaki MS, Abdel-Salam GMH, Abdel-Hamid MS, Alabdi L, Alkuraya FS, Dawoud H, Lofty A, Bauer P, Zifarelli G, Afzal E, Zafar F, Efthymiou S, Gossett D, Towne MC, Yeneabat R, Perez-Duenas B, Cazurro-Gutierrez A, Verdura E, Cantarin-Extremera V, Marques ADV, Helwak A, Tollervey D, Wontakal SN, Aggarwal VS, Rosenfeld JA, Tarabykin V, Ohta S, Lupski JR, Houlden H, Earnshaw WC, Davis EE, Jeyaprakash AA, Liao J. RNA methyltransferase SPOUT1/CENP-32 links mitotic spindle organization with the neurodevelopmental disorder SpADMiSS. Nat Commun 2025; 16:1703. [PMID: 39962046 PMCID: PMC11833075 DOI: 10.1038/s41467-025-56876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, here we identify 28 individuals with neurodevelopmental delays from 21 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants show reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicate that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 reveals that most disease-associated missense variants are located within the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants show reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS (SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.
Collapse
Affiliation(s)
- Avinash V Dharmadhikari
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Maria Alba Abad
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sheraz Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Human Molecular Genetics Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Reza Maroofian
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, WC1N 3BG, London, UK
| | - Tristan T Sands
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Farid Ullah
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Itaru Samejima
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Yanwen Shen
- Translational Research Center for the Nervous System, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China
- Faculty of Life and Health sciences, Shenzhen University of Advanced Technology, 518055, Shenzhen, Guangdong, China
- Department of Pediatrics, Chinese PLA General Hospital, Medical School of Chinese People's Liberation Army, 100853, Beijing, China
- Department of Pediatrics, Fujian Medical University Union Hospital, 350001, Fuzhou, China
| | - Martin A Wear
- Edinburgh Protein Production Facility (EPPF), University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Kiara E Moore
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elena Kondakova
- Institute of Neuroscience, Laboratory of Genetics of Brain Development, National Research Lobachevsky State University of Nizhny Novgorod, 603022, 23 Gagarin avenue, Nizhny, Novgorod, Russia
| | - Natalia Mitina
- Institute of Neuroscience, Laboratory of Genetics of Brain Development, National Research Lobachevsky State University of Nizhny Novgorod, 603022, 23 Gagarin avenue, Nizhny, Novgorod, Russia
| | - Theres Schaub
- Institute of Cell and Neurobiology, Charité Universitätsmedizin Berlin, 10117, Berlin, Charitéplatz 1, Germany
| | - Grace K Lee
- Personalized Care (PCARE) Program, Department of Pathology and Laboratory Medicine; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Christine H Umandap
- Medical Genetics, DMG Children's Rehabilitative Services, Phoenix, AZ, 85013, USA
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sara M Berger
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alejandro D Iglesias
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Stefan Rentas
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Alyssa L Rippert
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher Gray
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura K Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Division of Genetic & Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, OH, USA
| | - Dara V F Albert
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Division of Neurology, Nationwide Children's Hospital, Columbus, OH 43205, OH, USA
| | | | | | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | | | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Natalie C Lippa
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Natalie Vena
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Erin L Heinzen
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cyril Mignot
- Département de Génétique, APHP Sorbonne Université, 75013, Paris, France
| | | | | | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Saeid Sadeghian
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahere Seifia
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622, Cairo, Egypt
| | - Ghada M H Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622, Cairo, Egypt
| | - Lama Alabdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan Sami Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Heba Dawoud
- Pediatrics Department, Faculty of Medicine, Tanta University, El-Geesh Street, Tanta, 31527, Egypt
| | - Aya Lofty
- Pediatrics Department, Faculty of Medicine, Tanta University, El-Geesh Street, Tanta, 31527, Egypt
| | - Peter Bauer
- CENTOGENE GmbH, Am Strande 7, 18055, Rostock, Germany
| | | | - Erum Afzal
- Department of Development Pediatrics, The Children's Hospital and The Institute of Child Health, Multan, Pakistan
| | - Faisal Zafar
- Department of Development Pediatrics, The Children's Hospital and The Institute of Child Health, Multan, Pakistan
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, WC1N 3BG, London, UK
| | - Daniel Gossett
- Texas Child Neurology, Plano, TX, 75024, USA
- Neurology Consultants of Dallas, Dallas, TX, 75243, USA
| | | | - Raey Yeneabat
- Departments of Pathology and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Belen Perez-Duenas
- Department of Paediatric Neurology, Hospital Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Research Institute, Barcelona, Spain
- Department of Paediatrics, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Cazurro-Gutierrez
- Vall d'Hebron Research Institute, Barcelona, Spain
- Department of Paediatrics, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Edgard Verdura
- Vall d'Hebron Research Institute, Barcelona, Spain
- Molecular Biology CORE, Biomedical Diagnostic Center (CDB), Hospital, l Clínic de Barcelona, Barcelona, Spain
| | - Veronica Cantarin-Extremera
- Department of Paediatric Neurology, Hospital Infantil Niño Jesús, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER (GCV23/ER/3)), ISCIII, Madrid, Spain
| | - Ana do Vale Marques
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität, Munich, Germany
| | - Aleksandra Helwak
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - David Tollervey
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sandeep N Wontakal
- Departments of Pathology and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vimla S Aggarwal
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Victor Tarabykin
- Institute of Neuroscience, Laboratory of Genetics of Brain Development, National Research Lobachevsky State University of Nizhny Novgorod, 603022, 23 Gagarin avenue, Nizhny, Novgorod, Russia
- Institute of Cell and Neurobiology, Charité Universitätsmedizin Berlin, 10117, Berlin, Charitéplatz 1, Germany
| | - Shinya Ohta
- Institute for Genetic Medicine Pathophysiology, Hokkaido University, Sapporo, Japan
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, WC1N 3BG, London, UK
| | - William C Earnshaw
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - A Arockia Jeyaprakash
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.
- Molecular Biology CORE, Biomedical Diagnostic Center (CDB), Hospital, l Clínic de Barcelona, Barcelona, Spain.
| | - Jun Liao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Kang D, Shin B, Kim G, Hea JH, Sung YH, Rhee K. Roles of Cep215/Cdk5rap2 in establishing testicular architecture for mouse male germ cell development. FASEB J 2024; 38:e70188. [PMID: 39569992 PMCID: PMC11580613 DOI: 10.1096/fj.202401541r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
Cep215/Cdk5rap2 is a centrosome protein crucial for directing microtubule organization during cell division and morphology. Cep215 is a causal gene of autosomal recessive primary microcephaly type 3, characterized by a small brain size and a thin cerebral cortex. Despite previous attempts with Cep215 knockout (KO) mice to elucidate its developmental roles, interpreting their phenotypes remained challenging due to potential interference from alternative variants. Here, we generated KO mice completely lacking the Cep215 gene and investigated its specific contributions to male germ cell development. In the absence of Cep215, testis size decreased significantly, accompanied by a reduction in male germ cell numbers. Histological analyses unveiled the arrested development of male germ cells around the zygotene stage of meiosis. Concurrently, the formation of the blood-testis barrier (BTB) was impaired in Cep215 KO testes. These findings suggest that BTB failure contributes, at least partially, to male germ cell defects observed in Cep215 KO mice. We propose that the deletion of Cep215 may disrupt microtubule organization in Sertoli cells with a delay in spermatogonial stem cell mitosis, thereby impeding proper BTB formation.
Collapse
Affiliation(s)
- Donghee Kang
- Department of Biological SciencesSeoul National UniversitySeoulKorea
| | - Byungho Shin
- Department of Biological SciencesSeoul National UniversitySeoulKorea
| | - Gyeong‐Nam Kim
- Department of Cell and Genetic EngineeringAsan Medical Center, University of Ulsan College of MedicineSeoulKorea
- Asan Institute for Life Sciences, ConveRgence mEDIcine research cenTer (CREDIT)Asan Medical CenterSeoulKorea
| | - Ji Hwa Hea
- Department of Cell and Genetic EngineeringAsan Medical Center, University of Ulsan College of MedicineSeoulKorea
- Asan Institute for Life Sciences, ConveRgence mEDIcine research cenTer (CREDIT)Asan Medical CenterSeoulKorea
| | - Young Hoon Sung
- Department of Cell and Genetic EngineeringAsan Medical Center, University of Ulsan College of MedicineSeoulKorea
- Asan Institute for Life Sciences, ConveRgence mEDIcine research cenTer (CREDIT)Asan Medical CenterSeoulKorea
| | - Kunsoo Rhee
- Department of Biological SciencesSeoul National UniversitySeoulKorea
| |
Collapse
|
4
|
Morozov YM, Rakic P. Lateral expansion of the mammalian cerebral cortex is related to anchorage of centrosomes in apical neural progenitors. Cereb Cortex 2024; 34:bhae293. [PMID: 39024157 PMCID: PMC11485267 DOI: 10.1093/cercor/bhae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
The centrosome is the main microtubule organizing center in stem cells, and its mother centriole, anchored to the cell membrane, serves as the basal body of the primary cilium. Prolonged anchorage of centrosomes and primary cilia to the apical segment of the membrane of apical neural progenitor cells is considered vital for interkinetic nuclear translocation and repetitive cycling in the ventricular zone. In contrast, the basolateral anchorage of primary cilia has been regarded as the first step in delamination and conversion of apical to basal neural progenitor cells or neurons. Using electron microscopy analysis of serial sections, we show that centrosomes, in a fraction of cells, anchor to the basolateral cell membrane immediately after cell division and before development of cilia. In other cells, centrosomes situate freely in the cytoplasm, increasing their probability of subsequent apical anchorage. In mice, anchored centrosomes in the cells shortly after mitosis predominate during the entire cerebral neurogenesis, whereas in macaque monkeys, cytoplasmic centrosomes are more numerous. Species-specific differences in the ratio of anchored and free cytoplasmic centrosomes appear to be related to prolonged neurogenesis in the ventricular zone that is essential for lateral expansion of the cerebral cortex in primates.
Collapse
Affiliation(s)
- Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, 333 Cedar Street, SHM, C-303, New Haven, CT 06510, United States
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, 333 Cedar Street, SHM, C-303, New Haven, CT 06510, United States
| |
Collapse
|
5
|
Vial Y, Nardelli J, Bonnard AA, Rousselot J, Souyri M, Gressens P, Cavé H, Drunat S. Mcph1, mutated in primary microcephaly, is also crucial for erythropoiesis. EMBO Rep 2024; 25:2418-2440. [PMID: 38605277 PMCID: PMC11094029 DOI: 10.1038/s44319-024-00123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Microcephaly is a common feature in inherited bone marrow failure syndromes, prompting investigations into shared pathways between neurogenesis and hematopoiesis. To understand this association, we studied the role of the microcephaly gene Mcph1 in hematological development. Our research revealed that Mcph1-knockout mice exhibited congenital macrocytic anemia due to impaired terminal erythroid differentiation during fetal development. Anemia's cause is a failure to complete cell division, evident from tetraploid erythroid progenitors with DNA content exceeding 4n. Gene expression profiling demonstrated activation of the p53 pathway in Mcph1-deficient erythroid precursors, leading to overexpression of Cdkn1a/p21, a major mediator of p53-dependent cell cycle arrest. Surprisingly, fetal brain analysis revealed hypertrophied binucleated neuroprogenitors overexpressing p21 in Mcph1-knockout mice, indicating a shared pathophysiological mechanism underlying both erythroid and neurological defects. However, inactivating p53 in Mcph1-/- mice failed to reverse anemia and microcephaly, suggesting that p53 activation in Mcph1-deficient cells resulted from their proliferation defect rather than causing it. These findings shed new light on Mcph1's function in fetal hematopoietic development, emphasizing the impact of disrupted cell division on neurogenesis and erythropoiesis - a common limiting pathway.
Collapse
Affiliation(s)
- Yoann Vial
- Université Paris Cité, Institut de Recherche Saint-Louis, Inserm UMR_S1131, F-75010, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Laboratoire de Génétique Moléculaire, F-75019, Paris, France
| | | | - Adeline A Bonnard
- Université Paris Cité, Institut de Recherche Saint-Louis, Inserm UMR_S1131, F-75010, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Laboratoire de Génétique Moléculaire, F-75019, Paris, France
| | - Justine Rousselot
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Laboratoire de Génétique Moléculaire, F-75019, Paris, France
| | - Michèle Souyri
- Université Paris Cité, Institut de Recherche Saint-Louis, Inserm UMR_S1131, F-75010, Paris, France
| | - Pierre Gressens
- Université Paris Cité, NeuroDiderot, Inserm, F-75019, Paris, France
| | - Hélène Cavé
- Université Paris Cité, Institut de Recherche Saint-Louis, Inserm UMR_S1131, F-75010, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Laboratoire de Génétique Moléculaire, F-75019, Paris, France
| | - Séverine Drunat
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Laboratoire de Génétique Moléculaire, F-75019, Paris, France.
- Université Paris Cité, NeuroDiderot, Inserm, F-75019, Paris, France.
| |
Collapse
|
6
|
Dharmadhikari AV, Abad MA, Khan S, Maroofian R, Sands TT, Ullah F, Samejima I, Wear MA, Moore KE, Kondakova E, Mitina N, Schaub T, Lee GK, Umandap CH, Berger SM, Iglesias AD, Popp B, Jamra RA, Gabriel H, Rentas S, Rippert AL, Izumi K, Conlin LK, Koboldt DC, Mosher TM, Hickey SE, Albert DVF, Norwood H, Lewanda AF, Dai H, Liu P, Mitani T, Marafi D, Pehlivan D, Posey JE, Lippa N, Vena N, Heinzen EL, Goldstein DB, Mignot C, de Sainte Agathe JM, Al-Sannaa NA, Zamani M, Sadeghian S, Azizimalamiri R, Seifia T, Zaki MS, Abdel-Salam GMH, Abdel-Hamid M, Alabdi L, Alkuraya FS, Dawoud H, Lofty A, Bauer P, Zifarelli G, Afzal E, Zafar F, Efthymiou S, Gossett D, Towne MC, Yeneabat R, Wontakal SN, Aggarwal VS, Rosenfeld JA, Tarabykin V, Ohta S, Lupski JR, Houlden H, Earnshaw WC, Davis EE, Jeyaprakash AA, Liao J. RNA methyltransferase SPOUT1/CENP-32 links mitotic spindle organization with the neurodevelopmental disorder SpADMiSS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.09.23300329. [PMID: 38260255 PMCID: PMC10802637 DOI: 10.1101/2024.01.09.23300329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, we identified 24 individuals with neurodevelopmental delays from 18 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants showed reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicated that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 revealed that most disease-associated missense variants mapped to the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants had reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS ( SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.
Collapse
|
7
|
Du Z, Zang Z, Luo J, Liu T, Yang L, Cai Y, Wang L, Zhang D, Zhao J, Gao J, Lv K, Wang L, Li H, Gong H, Fan X. Chronic exposure to (2 R,6 R)-hydroxynorketamine induces developmental neurotoxicity in hESC-derived cerebral organoids. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131379. [PMID: 37054645 DOI: 10.1016/j.jhazmat.2023.131379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
(R,S)-ketamine (ketamine) has been increasingly used recreationally and medicinally worldwide; however, it cannot be removed by conventional wastewater treatment plants. Both ketamine and its metabolite norketamine have been frequently detected to a significant degree in effluents, aquatic, and even atmospheric environments, which may pose risks to organisms and humans via drinking water and aerosols. Ketamine has been shown to affect the brain development of unborn babies, while it is still elusive whether (2 R,6 R)-hydroxynorketamine (HNK) induces similar neurotoxicity. Here, we investigated the neurotoxic effect of (2 R,6 R)-HNK exposure at the early stages of gestation by applying human cerebral organoids derived from human embryonic stem cells (hESCs). Short-term (2 R,6 R)-HNK exposure did not significantly affect the development of cerebral organoids, but chronic high-concentration (2 R,6 R)-HNK exposure at day 16 inhibited the expansion of organoids by suppressing the proliferation and augmentation of neural precursor cells (NPCs). Notably, the division mode of apical radial glia was unexpectedly switched from vertical to horizontal division planes following chronic (2 R,6 R)-HNK exposure in cerebral organoids. Chronic (2 R,6 R)-HNK exposure at day 44 mainly inhibited the differentiation but not the proliferation of NPCs. Overall, our findings indicate that (2 R,6 R)-HNK administration leads to the abnormal development of cortical organoids, which may be mediated by inhibiting HDAC2. Future clinical studies are needed to explore the neurotoxic effects of (2 R,6 R)-HNK on the early development of the human brain.
Collapse
Affiliation(s)
- Zhulin Du
- School of Life Sciences, Chongqing University, Chongqing, China, Chongqing 401331, China; Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhenle Zang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Jing Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Ling Yang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Liuyongwei Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Dandan Zhang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Jinghui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Keyi Lv
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 40037, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| |
Collapse
|
8
|
Iegiani G, Ferraro A, Pallavicini G, Di Cunto F. The impact of TP53 activation and apoptosis in primary hereditary microcephaly. Front Neurosci 2023; 17:1220010. [PMID: 37457016 PMCID: PMC10338886 DOI: 10.3389/fnins.2023.1220010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a constellation of disorders that share significant brain size reduction and mild to moderate intellectual disability, which may be accompanied by a large variety of more invalidating clinical signs. Extensive neural progenitor cells (NPC) proliferation and differentiation are essential to determine brain final size. Accordingly, the 30 MCPH loci mapped so far (MCPH1-MCPH30) encode for proteins involved in microtubule and spindle organization, centriole biogenesis, nuclear envelope, DNA replication and repair, underscoring that a wide variety of cellular processes is required for sustaining NPC expansion during development. Current models propose that altered balance between symmetric and asymmetric division, as well as premature differentiation, are the main mechanisms leading to MCPH. Although studies of cellular alterations in microcephaly models have constantly shown the co-existence of high DNA damage and apoptosis levels, these mechanisms are less considered as primary factors. In this review we highlight how the molecular and cellular events produced by mutation of the majority of MCPH genes may converge on apoptotic death of NPCs and neurons, via TP53 activation. We propose that these mechanisms should be more carefully considered in the alterations of the sophisticated equilibrium between proliferation, differentiation and death produced by MCPH gene mutations. In consideration of the potential druggability of cell apoptotic pathways, a better understanding of their role in MCPH may significantly facilitate the development of translational approaches.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Alessia Ferraro
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Gianmarco Pallavicini
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Ferdinando Di Cunto
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| |
Collapse
|
9
|
Abstract
The centrosome, consisting of centrioles and the associated pericentriolar material, is the main microtubule-organizing centre (MTOC) in animal cells. During most of interphase, the two centrosomes of a cell are joined together by centrosome cohesion into one MTOC. The most dominant element of centrosome cohesion is the centrosome linker, an interdigitating, fibrous network formed by the protein C-Nap1 anchoring a number of coiled-coil proteins including rootletin to the proximal end of centrioles. Alternatively, centrosomes can be kept together by the action of the minus end directed kinesin motor protein KIFC3 that works on interdigitating microtubules organized by both centrosomes and probably by the actin network. Although cells connect the two interphase centrosomes by several mechanisms into one MTOC, the general importance of centrosome cohesion, particularly for an organism, is still largely unclear. In this article, we review the functions of the centrosome linker and discuss how centrosome cohesion defects can lead to diseases.
Collapse
Affiliation(s)
- Hairuo Dang
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg 69120, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and
| |
Collapse
|
10
|
Komarasamy TV, Adnan NAA, James W, Balasubramaniam VRMT. Zika Virus Neuropathogenesis: The Different Brain Cells, Host Factors and Mechanisms Involved. Front Immunol 2022; 13:773191. [PMID: 35371036 PMCID: PMC8966389 DOI: 10.3389/fimmu.2022.773191] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV), despite being discovered six decades earlier, became a major health concern only after an epidemic in French Polynesia and an increase in the number of microcephaly cases in Brazil. Substantial evidence has been found to support the link between ZIKV and neurological complications in infants. The virus targets various cells in the brain, including radial glial cells, neural progenitor cells (NPCs), astrocytes, microglial and glioblastoma stem cells. It affects the brain cells by exploiting different mechanisms, mainly through apoptosis and cell cycle dysregulation. The modulation of host immune response and the inflammatory process has also been demonstrated to play a critical role in ZIKV induced neurological complications. In addition to that, different ZIKV strains have exhibited specific neurotropism and unique molecular mechanisms. This review provides a comprehensive and up-to-date overview of ZIKV-induced neuroimmunopathogenesis by dissecting its main target cells in the brain, and the underlying cellular and molecular mechanisms. We highlighted the roles of the different ZIKV host factors and how they exploit specific host factors through various mechanisms. Overall, it covers key components for understanding the crosstalk between ZIKV and the brain.
Collapse
Affiliation(s)
- Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Nur Amelia Azreen Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - William James
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Vinod R M T Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
11
|
Abstract
The centrosome is a multifunctional organelle that is known primarily for its microtubule organising function. Centrosomal defects caused by changes in centrosomal structure or number have been associated with human diseases ranging from congenital defects to cancer. We are only beginning to appreciate how the non-microtubule organising roles of the centrosome are related to these clinical conditions. In this review, we will discuss the historical evidence that led to the proposal that the centrosome participates in cell cycle regulation. We then summarize the body of work that describes the involvement of the mammalian centrosome in triggering cell cycle progression and checkpoint signalling. Then we will highlight work from the fission yeast model organism, revealing the molecular details that explain how the spindle pole body (SPB, the yeast functional equivalent of the centrosome), participates in these cell cycle transitions. Importantly, we will discuss some of the emerging questions from recent discoveries related to the role of the centrosome as a cell cycle regulator.
Collapse
|
12
|
Wang YS, Chen C, Ahmad MJ, Chen F, Ding ZM, Yang SJ, Chen YW, Duan ZQ, Liu M, Liang AX, He CJ, Hua GH, Huo LJ. WDR62 regulates mouse oocyte meiotic maturation related to p-JNK and H3K9 trimethylation. Int J Biochem Cell Biol 2022; 144:106169. [PMID: 35093571 DOI: 10.1016/j.biocel.2022.106169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/01/2023]
Abstract
WDR62 (WD40-repeat protein 62) participates in diverse biological process, especially mitotic spindle organization via regulating centriole biogenesis and the function of centriole-associated protein. However, the role of WDR62 exerts in spindle assembly and meiotic progression control in oocytes lacking typical centrosomes remains obscure. In a previous study, we reported that WDR62 is involved in spindle migration and asymmetric cytokinesis in mouse oocyte meiosis. In the current study, another novel function of WDR62 regulating cell cycle progression through meiotic spindle formation during oocyte meiotic maturation was found. Knockdown of WDR62 through siRNA microinjection disrupted the meiotic cell cycle and induced metaphase-I (MI) arrest coupled with severe spindle abnormality, chromosome misalignment, and aneuploid generation. Moreover, WDR62 depletion induced defective kinetochore-microtubule attachments (K-MT) and activated spindle assembly checkpoint (SAC), which could trigger the arrest of meiotic progression. Further study demonstrated that depletion of WDR62 was associated with an aberrant location of p-JNK and reduced its expression level; concomitantly, status of H3K9 trimethylation was also altered. In addition, phenotypes similar to WDR62 depletion were observed during the function-loss analysis of p-JNK using a specific inhibitor (SP600125), which signifies that WDR62 is important for spindle organization and meiotic progression, and this function might be via its regulation of p-JNK. In conclusion, this study revealed that WDR62 functions in multiple ways during oocyte meiotic maturation, which could be related to p-JNK and H3K9 trimethylation.
Collapse
Affiliation(s)
- Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chao Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yang-Wu Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chang-Jiu He
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Guo-Hua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
13
|
Zaqout S, Kaindl AM. Autosomal Recessive Primary Microcephaly: Not Just a Small Brain. Front Cell Dev Biol 2022; 9:784700. [PMID: 35111754 PMCID: PMC8802810 DOI: 10.3389/fcell.2021.784700] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
Microcephaly or reduced head circumference results from a multitude of abnormal developmental processes affecting brain growth and/or leading to brain atrophy. Autosomal recessive primary microcephaly (MCPH) is the prototype of isolated primary (congenital) microcephaly, affecting predominantly the cerebral cortex. For MCPH, an accelerating number of mutated genes emerge annually, and they are involved in crucial steps of neurogenesis. In this review article, we provide a deeper look into the microcephalic MCPH brain. We explore cytoarchitecture focusing on the cerebral cortex and discuss diverse processes occurring at the level of neural progenitors, early generated and mature neurons, and glial cells. We aim to thereby give an overview of current knowledge in MCPH phenotype and normal brain growth.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Angela M. Kaindl
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Allen GE, Dhanda AS, Julian LM. Emerging Methods in Modeling Brain Development and Disease with Human Pluripotent Stem Cells. Methods Mol Biol 2022; 2515:319-342. [PMID: 35776361 DOI: 10.1007/978-1-0716-2409-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Nobel Prize-winning discovery that human somatic cells can be readily reprogrammed into pluripotent cells has revolutionized our potential to understand the human brain. The rapid technological progression of this field has made it possible to easily obtain human neural cells and even intact tissues, offering invaluable resources to model human brain development. In this chapter, we present a brief history of hPSC-based approaches to study brain development and then, provide new insights into neurological diseases, focusing on those driven by aberrant cell death. Furthermore, we will shed light on the latest technologies and highlight the methods that researchers can use to employ established hPSC approaches in their research. Our intention is to demonstrate that hPSC-based modeling is a technical approach accessible to all researchers who seek a deeper understanding of the human brain.
Collapse
Affiliation(s)
- George E Allen
- Department of Biological Sciences; Centre for Cell Biology, Development, and Disease, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Aaron S Dhanda
- Department of Biological Sciences; Centre for Cell Biology, Development, and Disease, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences; Centre for Cell Biology, Development, and Disease, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
15
|
Buchwalter RA, Ogden SC, York SB, Sun L, Zheng C, Hammack C, Cheng Y, Chen JV, Cone AS, Meckes DG, Tang H, Megraw TL. Coordination of Zika Virus Infection and Viroplasm Organization by Microtubules and Microtubule-Organizing Centers. Cells 2021; 10:3335. [PMID: 34943843 PMCID: PMC8699624 DOI: 10.3390/cells10123335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) became a global health concern in 2016 due to its links to congenital microcephaly and other birth defects. Flaviviruses, including ZIKV, reorganize the endoplasmic reticulum (ER) to form a viroplasm, a compartment where virus particles are assembled. Microtubules (MTs) and microtubule-organizing centers (MTOCs) coordinate structural and trafficking functions in the cell, and MTs also support replication of flaviviruses. Here we investigated the roles of MTs and the cell's MTOCs on ZIKV viroplasm organization and virus production. We show that a toroidal-shaped viroplasm forms upon ZIKV infection, and MTs are organized at the viroplasm core and surrounding the viroplasm. We show that MTs are necessary for viroplasm organization and impact infectious virus production. In addition, the centrosome and the Golgi MTOC are closely associated with the viroplasm, and the centrosome coordinates the organization of the ZIKV viroplasm toroidal structure. Surprisingly, viroplasm formation and virus production are not significantly impaired when infected cells have no centrosomes and impaired Golgi MTOC, and we show that MTs are anchored to the viroplasm surface in these cells. We propose that the viroplasm is a site of MT organization, and the MTs organized at the viroplasm are sufficient for efficient virus production.
Collapse
Affiliation(s)
- Rebecca A. Buchwalter
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Sarah C. Ogden
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Sara B. York
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Li Sun
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Chunfeng Zheng
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Christy Hammack
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Yichen Cheng
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Jieyan V. Chen
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Allaura S. Cone
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - David G. Meckes
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Timothy L. Megraw
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| |
Collapse
|
16
|
González-Martínez J, Cwetsch AW, Martínez-Alonso D, López-Sainz LR, Almagro J, Melati A, Gómez J, Pérez-Martínez M, Megías D, Boskovic J, Gilabert-Juan J, Graña-Castro O, Pierani A, Behrens A, Ortega S, Malumbres M. Deficient adaptation to centrosome duplication defects in neural progenitors causes microcephaly and subcortical heterotopias. JCI Insight 2021; 6:e146364. [PMID: 34237032 PMCID: PMC8409993 DOI: 10.1172/jci.insight.146364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that — whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development — lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development.
Collapse
Affiliation(s)
- José González-Martínez
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Andrzej W Cwetsch
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Imagine Institute of Genetic Diseases, University of Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris, INSERM U-1266, University of Paris, Paris, France
| | - Diego Martínez-Alonso
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Luis R López-Sainz
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anna Melati
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | - Javier Gilabert-Juan
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,University of Paris, NeuroDiderot, Inserm, Paris, France
| | | | - Alessandra Pierani
- Imagine Institute of Genetic Diseases, University of Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris, INSERM U-1266, University of Paris, Paris, France
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.,Faculty of Life Sciences, King's College London, Guy's Campus, London, United Kingdom
| | | | - Marcos Malumbres
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
17
|
Vasquez-Limeta A, Loncarek J. Human centrosome organization and function in interphase and mitosis. Semin Cell Dev Biol 2021; 117:30-41. [PMID: 33836946 DOI: 10.1016/j.semcdb.2021.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/15/2023]
Abstract
Centrosomes were first described by Edouard Van Beneden and named and linked to chromosome segregation by Theodor Boveri around 1870. In the 1960-1980s, electron microscopy studies have revealed the remarkable ultrastructure of a centriole -- a nine-fold symmetrical microtubular assembly that resides within a centrosome and organizes it. Less than two decades ago, proteomics and genomic screens conducted in multiple species identified hundreds of centriole and centrosome core proteins and revealed the evolutionarily conserved nature of the centriole assembly pathway. And now, super resolution microscopy approaches and improvements in cryo-tomography are bringing an unparalleled nanoscale-detailed picture of the centriole and centrosome architecture. In this chapter, we summarize the current knowledge about the architecture of human centrioles. We discuss the structured organization of centrosome components in interphase, focusing on localization/function relationship. We discuss the process of centrosome maturation and mitotic spindle pole assembly in centriolar and acentriolar cells, emphasizing recent literature.
Collapse
Affiliation(s)
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, NIH/NCI, Frederick 21702, MD, USA.
| |
Collapse
|
18
|
|
19
|
Quezada S, van de Looij Y, Hale N, Rana S, Sizonenko SV, Gilchrist C, Castillo-Melendez M, Tolcos M, Walker DW. Genetic and microstructural differences in the cortical plate of gyri and sulci during gyrification in fetal sheep. Cereb Cortex 2020; 30:6169-6190. [PMID: 32609332 DOI: 10.1093/cercor/bhaa171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/28/2022] Open
Abstract
Gyrification of the cerebral cortex is a developmentally important process, but the mechanisms that drive cortical folding are not fully known. Theories propose that changes within the cortical plate (CP) cause gyrification, yet differences between the CP below gyri and sulci have not been investigated. Here we report genetic and microstructural differences in the CP below gyri and sulci assessed before (at 70 days of gestational age [GA] 70), during (GA 90), and after (GA 110) gyrification in fetal sheep. The areal density of BDNF, CDK5, and NeuroD6 immunopositive cells were increased, and HDAC5 and MeCP2 mRNA levels were decreased in the CP below gyri compared with sulci during gyrification, but not before. Only the areal density of BDNF-immunopositive cells remained increased after gyrification. MAP2 immunoreactivity and neurite outgrowth were also increased in the CP below gyri compared with sulci at GA 90, and this was associated with microstructural changes assessed via diffusion tensor imaging and neurite orientation dispersion and density imaging at GA 98. Differential neurite outgrowth may therefore explain the localized changes in CP architecture that result in gyrification.
Collapse
Affiliation(s)
- Sebastian Quezada
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Yohan van de Looij
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland.,Functional and Metabolic Imaging Lab, Federal Institute of Technology of Lausanne, Lausanne 1015, Switzerland
| | - Nadia Hale
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shreya Rana
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Stéphane V Sizonenko
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland
| | - Courtney Gilchrist
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia.,Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Mary Tolcos
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
20
|
Zhou X, Zhi Y, Yu J, Xu D. The Yin and Yang of Autosomal Recessive Primary Microcephaly Genes: Insights from Neurogenesis and Carcinogenesis. Int J Mol Sci 2020; 21:ijms21051691. [PMID: 32121580 PMCID: PMC7084222 DOI: 10.3390/ijms21051691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022] Open
Abstract
The stem cells of neurogenesis and carcinogenesis share many properties, including proliferative rate, an extensive replicative potential, the potential to generate different cell types of a given tissue, and an ability to independently migrate to a damaged area. This is also evidenced by the common molecular principles regulating key processes associated with cell division and apoptosis. Autosomal recessive primary microcephaly (MCPH) is a neurogenic mitotic disorder that is characterized by decreased brain size and mental retardation. Until now, a total of 25 genes have been identified that are known to be associated with MCPH. The inactivation (yin) of most MCPH genes leads to neurogenesis defects, while the upregulation (yang) of some MCPH genes is associated with different kinds of carcinogenesis. Here, we try to summarize the roles of MCPH genes in these two diseases and explore the underlying mechanisms, which will help us to explore new, attractive approaches to targeting tumor cells that are resistant to the current therapies.
Collapse
Affiliation(s)
- Xiaokun Zhou
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Yiqiang Zhi
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Dan Xu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Correspondence: ; Tel.: +86-17085937559
| |
Collapse
|
21
|
Nasser H, Vera L, Elmaleh-Bergès M, Steindl K, Letard P, Teissier N, Ernault A, Guimiot F, Afenjar A, Moutard ML, Héron D, Alembik Y, Momtchilova M, Milani P, Kubis N, Pouvreau N, Zollino M, Guilmin Crepon S, Kaguelidou F, Gressens P, Verloes A, Rauch A, El Ghouzzi V, Drunat S, Passemard S. CDK5RAP2 primary microcephaly is associated with hypothalamic, retinal and cochlear developmental defects. J Med Genet 2020; 57:389-399. [PMID: 32015000 DOI: 10.1136/jmedgenet-2019-106474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Primary hereditary microcephaly (MCPH) comprises a large group of autosomal recessive disorders mainly affecting cortical development and resulting in a congenital impairment of brain growth. Despite the identification of >25 causal genes so far, it remains a challenge to distinguish between different MCPH forms at the clinical level. METHODS 7 patients with newly identified mutations in CDK5RAP2 (MCPH3) were investigated by performing prospective, extensive and systematic clinical, MRI, psychomotor, neurosensory and cognitive examinations under similar conditions. RESULTS All patients displayed neurosensory defects in addition to microcephaly. Small cochlea with incomplete partition type II was found in all cases and was associated with progressive deafness in 4 of them. Furthermore, the CDK5RAP2 protein was specifically identified in the developing cochlea from human fetal tissues. Microphthalmia was also present in all patients along with retinal pigmentation changes and lipofuscin deposits. Finally, hypothalamic anomalies consisting of interhypothalamic adhesions, a congenital midline defect usually associated with holoprosencephaly, was detected in 5 cases. CONCLUSION This is the first report indicating that CDK5RAP2 not only governs brain size but also plays a role in ocular and cochlear development and is necessary for hypothalamic nuclear separation at the midline. Our data indicate that CDK5RAP2 should be considered as a potential gene associated with deafness and forme fruste of holoprosencephaly. These children should be given neurosensory follow-up to prevent additional comorbidities and allow them reaching their full educational potential. TRIAL REGISTRATION NUMBER NCT01565005.
Collapse
Affiliation(s)
- Hala Nasser
- Département de Génétique, APHP, Hopital Robert Debré, 75019 Paris, France.,Service des Explorations Fonctionnelles, APHP, Hopital Robert Debré, 75019 Paris, France
| | - Liza Vera
- Service d'Ophtalmologie, APHP, Hopital Robert Debré, 75019 Paris, France
| | | | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Pascaline Letard
- Département de Génétique, APHP, Hopital Robert Debré, 75019 Paris, France.,Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Service d'Anatomopathologie, Hopital Jean Verdier, APHP, Bondy, France.,Université Paris 13, 93140 Bondy, France
| | - Natacha Teissier
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Service d'ORL, APHP, Hopital Robert Debré, 75019 Paris, France
| | - Anais Ernault
- Département de Génétique, APHP, Hopital Robert Debré, 75019 Paris, France
| | - Fabien Guimiot
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Service de Foetopathologie, APHP, Hopital Robert Debré, 75019 Paris, France
| | - Alexandra Afenjar
- CRMR déficiences intellectuelles de causes rares, Département de génétique, Sorbonne Université, APHP, Hôpital Trousseau, 75012 Paris, France
| | | | - Delphine Héron
- Département de Génétique, APHP, Hopital La Pitié-Salpetriere, 75013 Paris, France
| | - Yves Alembik
- Service de Génétique Médicale, CHU de Strasbourg, Hopital de Hautepierre, 67200 Strasbourg, France
| | | | - Paolo Milani
- Service des Explorations Fonctionnelles, APHP, Hopital Lariboisière, 75010 Paris, France
| | - Nathalie Kubis
- Service des Explorations Fonctionnelles, APHP, Hopital Lariboisière, 75010 Paris, France
| | - Nathalie Pouvreau
- Département de Génétique, APHP, Hopital Robert Debré, 75019 Paris, France
| | - Marcella Zollino
- Universita Cattolica Sacro Cuore Istituto di Medicina Genomica, Roma, Italy.,Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | | | - Florentia Kaguelidou
- Université de Paris, Centre d'Investigation Clinique, CIC 1426, INSERM, APHP, Hopital Robert Debré, 75019 Paris, France
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Center for Developing Brain, King's College, St. Thomas' Campus, London, United Kingdom
| | - Alain Verloes
- Département de Génétique, APHP, Hopital Robert Debré, 75019 Paris, France.,Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,European Reference Network ERN ITHACA, 75019 Paris, France
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | | | - Severine Drunat
- Département de Génétique, APHP, Hopital Robert Debré, 75019 Paris, France.,Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,European Reference Network ERN ITHACA, 75019 Paris, France
| | - Sandrine Passemard
- Département de Génétique, APHP, Hopital Robert Debré, 75019 Paris, France .,Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,European Reference Network ERN ITHACA, 75019 Paris, France.,Service de Neuropédiatrie, APHP, Hopital Robert Debré, 75019 Paris, France
| |
Collapse
|
22
|
|
23
|
Wang YS, Jiao XF, Chen F, Wu D, Ding ZM, Miao YL, Huo LJ. WDR62 is a novel participator in spindle migration and asymmetric cytokinesis during mouse oocyte meiotic maturation. Exp Cell Res 2019; 387:111773. [PMID: 31836472 DOI: 10.1016/j.yexcr.2019.111773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023]
Abstract
In female meiosis, oocyte meiotic maturation is a form of asymmetric cell division, producing the first polar body and a large oocyte, in which the asymmetry of oocyte meiotic division depends on spindle migration and positioning, and cortical polarization. In this study, we conclude that WDR62 (WD40-repeat protein 62) plays an important role in asymmetric meiotic division during mouse oocyte maturation. Our initial study demonstrated that WDR62 mainly co-localized with chromosomes during mouse oocyte meiotic maturation. Interference of Wdr62 by siRNA microinjection did not affect germinal vesicle breakdown (GVBD) but compromised the first polar body extrusion (PBE) with the large polar bodies generated, which is coupled with a higher incidence of spindle abnormality and chromosome misalignment. Further analysis concluded that loss of WDR62 blocked asymmetric spindle positioning and actin cap formation, which should be responsible for large polar body extrusion. Moreover, WDR62 decline intervened with the Arp2/3 complex, an upstream regulator for the cortical actin. Besides for p-MAPK, a critical regulator for the asymmetric division of oocyte, WDR62-depleted oocytes showed perturbation only in localization pattern but not expression level. In summary, our study defines WDR62 as an essential cytoskeletal regulator of spindle migration and asymmetric division during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan, 430070, Hubei, China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan, 430070, Hubei, China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan, 430070, Hubei, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan, 430070, Hubei, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan, 430070, Hubei, China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan, 430070, Hubei, China.
| |
Collapse
|
24
|
Vandervore LV, Schot R, Kasteleijn E, Oegema R, Stouffs K, Gheldof A, Grochowska MM, van der Sterre MLT, van Unen LMA, Wilke M, Elfferich P, van der Spek PJ, Heijsman D, Grandone A, Demmers JAA, Dekkers DHW, Slotman JA, Kremers GJ, Schaaf GJ, Masius RG, van Essen AJ, Rump P, van Haeringen A, Peeters E, Altunoglu U, Kalayci T, Poot RA, Dobyns WB, Bahi-Buisson N, Verheijen FW, Jansen AC, Mancini GMS. Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics. Brain 2019; 142:867-884. [PMID: 30879067 PMCID: PMC6439326 DOI: 10.1093/brain/awz045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/26/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.
Collapse
Affiliation(s)
- Laura V Vandervore
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Esmee Kasteleijn
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Renske Oegema
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Department of Pathology, Clinical Bio-informatics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Katrien Stouffs
- Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Alexander Gheldof
- Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Martyna M Grochowska
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Marianne L T van der Sterre
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Leontine M A van Unen
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Peter Elfferich
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Peter J van der Spek
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli studi della Campania "L. Vanvitelli", Naples, Italy
| | - Daphne Heijsman
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli studi della Campania "L. Vanvitelli", Naples, Italy
| | - Anna Grandone
- Department of Molecular Genetics, Proteomics Center, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Department of Pathology, Optical Imaging Center, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Department of Pathology, Optical Imaging Center, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Johan A Slotman
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center (Erasmus MC), 3015 CN Rotterdam, The Netherlands
| | - Gert-Jan Kremers
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center (Erasmus MC), 3015 CN Rotterdam, The Netherlands
| | - Gerben J Schaaf
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, RB, Groningen, The Netherlands
| | - Roy G Masius
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Anton J van Essen
- Department of Clinical Genetics, LUMC, Leiden University Medical Center, Postzone K-5-R, Postbus 9600, RC Leiden, The Netherlands
| | - Patrick Rump
- Department of Clinical Genetics, LUMC, Leiden University Medical Center, Postzone K-5-R, Postbus 9600, RC Leiden, The Netherlands
| | - Arie van Haeringen
- Department of Pediatric Neurology, Juliana Hospital, Els Borst-Eilersplein 275, 2545 AA Den Haag, The Netherlands
| | - Els Peeters
- Department of Medical genetics, Istanbul Medical Faculty, Istanbul University, Topkapı Mahallesi, Turgut Özal Millet Cd, 34093 Fatih/İstanbul, Turkey
| | - Umut Altunoglu
- Department of Cell biology, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Tugba Kalayci
- Department of Cell biology, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Raymond A Poot
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Imagine Institute, INSERM UMR-1163, Laboratory Genetics and Embryology of Congenital Malformations, Paris Descartes University, Institut des Maladies Génétiques 24, Boulevard de Montparnasse, Paris, France
| | - Nadia Bahi-Buisson
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Brussels, Belgium
| | - Frans W Verheijen
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Anna C Jansen
- Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| |
Collapse
|
25
|
Duerinckx S, Jacquemin V, Drunat S, Vial Y, Passemard S, Perazzolo C, Massart A, Soblet J, Racapé J, Desmyter L, Badoer C, Papadimitriou S, Le Borgne YA, Lefort A, Libert F, De Maertelaer V, Rooman M, Costagliola S, Verloes A, Lenaerts T, Pirson I, Abramowicz M. Digenic inheritance of human primary microcephaly delineates centrosomal and non-centrosomal pathways. Hum Mutat 2019; 41:512-524. [PMID: 31696992 PMCID: PMC7496698 DOI: 10.1002/humu.23948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 12/30/2022]
Abstract
Primary microcephaly (PM) is characterized by a small head since birth and is vastly heterogeneous both genetically and phenotypically. While most cases are monogenic, genetic interactions between Aspm and Wdr62 have recently been described in a mouse model of PM. Here, we used two complementary, holistic in vivo approaches: high throughput DNA sequencing of multiple PM genes in human patients with PM, and genome‐edited zebrafish modeling for the digenic inheritance of PM. Exomes of patients with PM showed a significant burden of variants in 75 PM genes, that persisted after removing monogenic causes of PM (e.g., biallelic pathogenic variants in CEP152). This observation was replicated in an independent cohort of patients with PM, where a PM gene panel showed in addition that the burden was carried by six centrosomal genes. Allelic frequencies were consistent with digenic inheritance. In zebrafish, non‐centrosomal gene casc5 −/− produced a severe PM phenotype, that was not modified by centrosomal genes aspm or wdr62 invalidation. A digenic, quadriallelic PM phenotype was produced by aspm and wdr62. Our observations provide strong evidence for digenic inheritance of human PM, involving centrosomal genes. Absence of genetic interaction between casc5 and aspm or wdr62 further delineates centrosomal and non‐centrosomal pathways in PM.
Collapse
Affiliation(s)
- Sarah Duerinckx
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | - Valérie Jacquemin
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Séverine Drunat
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France.,INSERM UMR 1141, Université de Paris Diderot, Paris, France
| | - Yoann Vial
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France.,INSERM UMR 1141, Université de Paris Diderot, Paris, France
| | - Sandrine Passemard
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France.,INSERM UMR 1141, Université de Paris Diderot, Paris, France
| | - Camille Perazzolo
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Annick Massart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Soblet
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium.,Department of Genetics, ULB Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, ULB Center of Human Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Judith Racapé
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Desmyter
- Department of Genetics, ULB Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Cindy Badoer
- Department of Genetics, ULB Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sofia Papadimitriou
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium.,Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium.,Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yann-Aël Le Borgne
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Lefort
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Frédérick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Viviane De Maertelaer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Verloes
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France.,INSERM UMR 1141, Université de Paris Diderot, Paris, France
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium.,Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium.,Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Pirson
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Marc Abramowicz
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium.,Present Address: Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Loss of SMPD4 Causes a Developmental Disorder Characterized by Microcephaly and Congenital Arthrogryposis. Am J Hum Genet 2019; 105:689-705. [PMID: 31495489 DOI: 10.1016/j.ajhg.2019.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4). Overexpression of human Myc-tagged SMPD4 showed localization both to the outer nuclear envelope and the ER and additionally revealed interactions with several nuclear pore complex proteins by proteomics analysis. Fibroblasts from affected individuals showed ER cisternae abnormalities, suspected for increased autophagy, and were more susceptible to apoptosis under stress conditions, while treatment with siSMPD4 caused delayed cell cycle progression. Our data show that SMPD4 links homeostasis of membrane sphingolipids to cell fate by regulating the cross-talk between the ER and the outer nuclear envelope, while its loss reveals a pathogenic mechanism in microcephaly.
Collapse
|
27
|
Asai Y, Fukuchi K, Tanno Y, Koitabashi-Kiyozuka S, Kiyozuka T, Noda Y, Matsumura R, Koizumi T, Watanabe A, Nagata K, Watanabe Y, Terada Y. Aurora B kinase activity is regulated by SET/TAF1 on Sgo2 at the inner centromere. J Cell Biol 2019; 218:3223-3236. [PMID: 31527146 PMCID: PMC6781429 DOI: 10.1083/jcb.201811060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/19/2019] [Accepted: 07/09/2019] [Indexed: 01/23/2023] Open
Abstract
Phosphorylation of kinetochore proteins destabilizes improper kinetochore–microtubule attachments. Asai et al. find that SET/TAF1, an inhibitor of the PP2A phosphatase, binds shugoshin 2 and corrects erroneous kinetochore–microtubule attachment by maintaining Aurora B kinase activity. Therefore, SET has a key role in establishing chromosome bi-orientation by balancing Aurora B and PP2A activity. The accurate regulation of phosphorylation at the kinetochore is essential for establishing chromosome bi-orientation. Phosphorylation of kinetochore proteins by the Aurora B kinase destabilizes improper kinetochore–microtubule attachments, whereas the phosphatase PP2A has a counteracting role. Imbalanced phosphoregulation leads to error-prone chromosome segregation and aneuploidy, a hallmark of cancer cells. However, little is known about the molecular events that control the balance of phosphorylation at the kinetochore. Here, we show that localization of SET/TAF1, an oncogene product, to centromeres maintains Aurora B kinase activity by inhibiting PP2A, thereby correcting erroneous kinetochore–microtubule attachment. SET localizes at the inner centromere by interacting directly with shugoshin 2, with SET levels declining at increased distances between kinetochore pairs, leading to establishment of chromosome bi-orientation. Moreover, SET overexpression induces chromosomal instability by disrupting kinetochore–microtubule attachment. Thus, our findings reveal the novel role of SET in fine-tuning the phosphorylation level at the kinetochore by balancing the activities of Aurora B and PP2A.
Collapse
Affiliation(s)
- Yuichiro Asai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Koh Fukuchi
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuji Tanno
- Bioscience Department, Veritas Corporation, Tokyo, Japan
| | - Saki Koitabashi-Kiyozuka
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Tatsuyuki Kiyozuka
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuko Noda
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Rieko Matsumura
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Tetsuo Koizumi
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Atsushi Watanabe
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Yasuhiko Terada
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
28
|
Zaqout S, Ravindran E, Stoltenburg‐Didinger G, Kaindl AM. Congenital microcephaly‐linked CDK5RAP2 affects eye development. Ann Hum Genet 2019; 84:87-91. [DOI: 10.1111/ahg.12343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 07/08/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Sami Zaqout
- Institute of Cell and Neurobiology Charité – Universitätsmedizin Berlin Berlin Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ) Charité – Universitätsmedizin Berlin Berlin Germany
- Department of Pediatric Neurology Charité – Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
- Basic Medical Science Department, College of Medicine, QU Health Qatar University
| | - Ethiraj Ravindran
- Institute of Cell and Neurobiology Charité – Universitätsmedizin Berlin Berlin Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ) Charité – Universitätsmedizin Berlin Berlin Germany
- Department of Pediatric Neurology Charité – Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| | | | - Angela M. Kaindl
- Institute of Cell and Neurobiology Charité – Universitätsmedizin Berlin Berlin Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ) Charité – Universitätsmedizin Berlin Berlin Germany
- Department of Pediatric Neurology Charité – Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| |
Collapse
|
29
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
30
|
Zhang W, Yang SL, Yang M, Herrlinger S, Shao Q, Collar JL, Fierro E, Shi Y, Liu A, Lu H, Herring BE, Guo ML, Buch S, Zhao Z, Xu J, Lu Z, Chen JF. Modeling microcephaly with cerebral organoids reveals a WDR62-CEP170-KIF2A pathway promoting cilium disassembly in neural progenitors. Nat Commun 2019; 10:2612. [PMID: 31197141 PMCID: PMC6565620 DOI: 10.1038/s41467-019-10497-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/26/2019] [Indexed: 01/31/2023] Open
Abstract
Primary microcephaly is caused by mutations in genes encoding centrosomal proteins including WDR62 and KIF2A. However, mechanisms underlying human microcephaly remain elusive. By creating mutant mice and human cerebral organoids, here we found that WDR62 deletion resulted in a reduction in the size of mouse brains and organoids due to the disruption of neural progenitor cells (NPCs), including outer radial glia (oRG). WDR62 ablation led to retarded cilium disassembly, long cilium, and delayed cell cycle progression leading to decreased proliferation and premature differentiation of NPCs. Mechanistically, WDR62 interacts with and promotes CEP170’s localization to the basal body of primary cilium, where CEP170 recruits microtubule-depolymerizing factor KIF2A to disassemble cilium. WDR62 depletion reduced KIF2A’s basal body localization, and enhanced KIF2A expression partially rescued deficits in cilium length and NPC proliferation. Thus, modeling microcephaly with cerebral organoids and mice reveals a WDR62-CEP170-KIF2A pathway promoting cilium disassembly, disruption of which contributes to microcephaly. Mutations in WDR62 are the second most common genetic cause of autosomal recessive primary microcephaly, yet the molecular mechanisms underlying this pathogenesis remain unclear. Here, authors demonstrate that WDR62 depletion leads to neural precursor cell depletion and microcephaly via WDR62-CEP170-KIF2A pathway that promotes cilium disassembly.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Si-Lu Yang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Mei Yang
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | | | - Qiang Shao
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - John L Collar
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Edgar Fierro
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Yanhong Shi
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Aimin Liu
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hui Lu
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20037, USA
| | - Bruce E Herring
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, 90033, USA.
| |
Collapse
|
31
|
Ito D, Zitouni S, Jana SC, Duarte P, Surkont J, Carvalho-Santos Z, Pereira-Leal JB, Ferreira MG, Bettencourt-Dias M. Pericentrin-mediated SAS-6 recruitment promotes centriole assembly. eLife 2019; 8:41418. [PMID: 31182187 PMCID: PMC6559791 DOI: 10.7554/elife.41418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
The centrosome is composed of two centrioles surrounded by a microtubule-nucleating pericentriolar material (PCM). Although centrioles are known to regulate PCM assembly, it is less known whether and how the PCM contributes to centriole assembly. Here we investigate the interaction between centriole components and the PCM by taking advantage of fission yeast, which has a centriole-free, PCM-containing centrosome, the SPB. Surprisingly, we observed that several ectopically-expressed animal centriole components such as SAS-6 are recruited to the SPB. We revealed that a conserved PCM component, Pcp1/pericentrin, interacts with and recruits SAS-6. This interaction is conserved and important for centriole assembly, particularly its elongation. We further explored how yeasts kept this interaction even after centriole loss and showed that the conserved calmodulin-binding region of Pcp1/pericentrin is critical for SAS-6 interaction. Our work suggests that the PCM not only recruits and concentrates microtubule-nucleators, but also the centriole assembly machinery, promoting biogenesis close by.
Collapse
Affiliation(s)
- Daisuke Ito
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - José B Pereira-Leal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Ophiomics, Precision Medicine, Lisboa, Portugal
| | - Miguel Godinho Ferreira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Institute for Research on Cancer and Aging of Nice (IRCAN), INSERM U1081 UMR7284 CNRS, Nice, France
| | | |
Collapse
|
32
|
Kuhlwilm M, Boeckx C. A catalog of single nucleotide changes distinguishing modern humans from archaic hominins. Sci Rep 2019; 9:8463. [PMID: 31186485 PMCID: PMC6560109 DOI: 10.1038/s41598-019-44877-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Throughout the past decade, studying ancient genomes has provided unique insights into human prehistory, and differences between modern humans and other branches like Neanderthals can enrich our understanding of the molecular basis of unique modern human traits. Modern human variation and the interactions between different hominin lineages are now well studied, making it reasonable to go beyond fixed genetic changes and explore changes that are observed at high frequency in present-day humans. Here, we identify 571 genes with non-synonymous changes at high frequency. We suggest that molecular mechanisms in cell division and networks affecting cellular features of neurons were prominently modified by these changes. Complex phenotypes in brain growth trajectory and cognitive traits are likely influenced by these networks and other non-coding changes presented here. We propose that at least some of these changes contributed to uniquely human traits, and should be prioritized for experimental validation.
Collapse
Affiliation(s)
- Martin Kuhlwilm
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Barcelona, Spain
| | - Cedric Boeckx
- ICREA, Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- UB Institute of Complex Systems, Barcelona, Spain.
| |
Collapse
|
33
|
Li G, Jin D, Zhong TP. Tubgcp3 Is Required for Retinal Progenitor Cell Proliferation During Zebrafish Development. Front Mol Neurosci 2019; 12:126. [PMID: 31178691 PMCID: PMC6543929 DOI: 10.3389/fnmol.2019.00126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
The centrosomal protein γ-tubulin complex protein 3 (Tubgcp3/GCP3) is required for the assembly of γ-tubulin small complexes (γ-TuSCs) and γ-tubulin ring complexes (γ-TuRCs), which play critical roles in mitotic spindle formation during mitosis. However, its function in vertebrate embryonic development is unknown. Here, we generated the zebrafish tubgcp3 mutants using the CRISPR/Cas9 system and found that the tubgcp3 mutants exhibited the small eye phenotype. Tubgcp3 is required for the cell cycle progression of retinal progenitor cells (RPCs), and its depletion caused cell cycle arrest in the mitotic (M) phase. The M-phase arrested RPCs exhibited aberrant monopolar spindles and abnormal distributed centrioles and γ-tubulin. Moreover, these RPCs underwent apoptosis finally. Our study provides the in vivo model for the functional study of Tubgcp3 and sheds light on the roles of centrosomal γ-tubulin complexes in vertebrate development.
Collapse
Affiliation(s)
- Guobao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Daqing Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Tao P Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
34
|
Uzquiano A, Francis F. Rotatin' the phenotypes. Brain 2019; 142:834-838. [PMID: 30946475 DOI: 10.1093/brain/awz048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ana Uzquiano
- Sorbonne Université, UMR-S 1270, F-75005, Paris.,Inserm U 1270, Paris, France.,Institut du Fer a Moulin, Paris, France
| | - Fiona Francis
- Sorbonne Université, UMR-S 1270, F-75005, Paris.,Inserm U 1270, Paris, France.,Institut du Fer a Moulin, Paris, France
| |
Collapse
|
35
|
Karzbrun E, Reiner O. Brain Organoids-A Bottom-Up Approach for Studying Human Neurodevelopment. Bioengineering (Basel) 2019; 6:E9. [PMID: 30669275 PMCID: PMC6466401 DOI: 10.3390/bioengineering6010009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Brain organoids have recently emerged as a three-dimensional tissue culture platform to study the principles of neurodevelopment and morphogenesis. Importantly, brain organoids can be derived from human stem cells, and thus offer a model system for early human brain development and human specific disorders. However, there are still major differences between the in vitro systems and in vivo development. This is in part due to the challenge of engineering a suitable culture platform that will support proper development. In this review, we discuss the similarities and differences of human brain organoid systems in comparison to embryonic development. We then describe how organoids are used to model neurodevelopmental diseases. Finally, we describe challenges in organoid systems and how to approach these challenges using complementary bioengineering techniques.
Collapse
Affiliation(s)
- Eyal Karzbrun
- Kavli Institute for Theoretical Physics and Department of Physics, University of California, Santa Barbara, CA 93106, USA.
| | - Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
36
|
Scarpa E, Finet C, Blanchard GB, Sanson B. Actomyosin-Driven Tension at Compartmental Boundaries Orients Cell Division Independently of Cell Geometry In Vivo. Dev Cell 2018; 47:727-740.e6. [PMID: 30503752 PMCID: PMC6302072 DOI: 10.1016/j.devcel.2018.10.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/07/2018] [Accepted: 10/30/2018] [Indexed: 11/29/2022]
Abstract
Cell shape is known to influence the plane of cell division. In vitro, mechanical constraints can also orient mitoses; however, in vivo it is not clear whether tension can orient the mitotic spindle directly, because tissue-scale forces can change cell shape. During segmentation of the Drosophila embryo, actomyosin is enriched along compartment boundaries forming supracellular cables that keep cells segregated into distinct compartments. Here, we show that these actomyosin cables orient the planar division of boundary cells perpendicular to the boundaries. This bias overrides the influence of cell shape, when cells are mildly elongated. By decreasing actomyosin cable tension with laser ablation or, conversely, ectopically increasing tension with laser wounding, we demonstrate that local tension is necessary and sufficient to orient mitoses in vivo. This involves capture of the spindle pole by the actomyosin cortex. These findings highlight the importance of actomyosin-mediated tension in spindle orientation in vivo.
Collapse
Affiliation(s)
- Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Cédric Finet
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
37
|
Quezada S, Castillo-Melendez M, Walker DW, Tolcos M. Development of the cerebral cortex and the effect of the intrauterine environment. J Physiol 2018; 596:5665-5674. [PMID: 30325048 DOI: 10.1113/jp277151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
The human brain is one of the most complex structures currently under study. Its external shape is highly convoluted, with folds and valleys over the entire surface of the cortex. Disruption of the normal pattern of folding is associated with a number of abnormal neurological outcomes, some serious for the individual. Most of our knowledge of the normal development and folding of the cerebral cortex (gyrification) focuses on the internal, biological (i.e. genetically driven) mechanisms of the brain that drive gyrification. However, the impact of an adverse intrauterine and maternal physiological environment on cortical folding during fetal development has been understudied. Accumulating evidence suggests that the state of the intrauterine and maternal environment can have a significant impact on gyrification of the fetal cerebral cortex. This review summarises our current knowledge of how development in a suboptimal intrauterine and maternal environment can affect the normal development of the folded cerebral cortex.
Collapse
Affiliation(s)
- Sebastian Quezada
- Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3168.,The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Melbourne, Australia, 3168
| | - Margie Castillo-Melendez
- Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3168.,The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Melbourne, Australia, 3168
| | - David W Walker
- School of Health & Biomedical Sciences, RMIT University, Plenty Rd., Bundoora, Melbourne, Australia, 3083
| | - Mary Tolcos
- School of Health & Biomedical Sciences, RMIT University, Plenty Rd., Bundoora, Melbourne, Australia, 3083
| |
Collapse
|
38
|
Müller R, Stumpf M, Wehrstedt R, Sukumaran SK, Karow MA, Marko M, Noegel AA, Eichinger L. The regulatory subunit phr2AB of Dictyostelium discoideum phosphatase PP2A interacts with the centrosomal protein CEP161, a CDK5RAP2 ortholog. Genes Cells 2018; 23:923-931. [PMID: 30133996 DOI: 10.1111/gtc.12637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022]
Abstract
phr2AB is the regulatory subunit of the Dictyostelium discoideum phosphatase PP2A and is the ortholog of the human B55 regulatory subunit of PP2A. phr2AB was isolated as a binding partner of the centrosomal protein CEP161, an ortholog of mammalian CDK5RAP2. CEP161 is presumably a phosphoprotein and a component of the Hippo pathway. The interaction site was located in the N-terminal half of CEP161 which encompasses the γTURC binding domain in CEP161. This binding domain is responsible for binding of the γ-tubulin ring complex which allows microtubule nucleation at the centrosome. GFP-tagged phr2AB is diffusely distributed throughout the cell and enriched at the centrosome. Ectopic expression of phr2AB as GFP fusion protein led to multinucleation, aberrant nucleus centrosome ratios and an altered sensitivity to okadaic acid. Some of these features were also affected in cells over-expressing domains of CEP161 and in cells from patients suffering from primary microcephaly, which carried a mutated CDK5RAP2 gene.
Collapse
Affiliation(s)
- Rolf Müller
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Maria Stumpf
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Regina Wehrstedt
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Salil K Sukumaran
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Malte A Karow
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Marija Marko
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Angelika A Noegel
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ludwig Eichinger
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
39
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
40
|
Ito D, Bettencourt-Dias M. Centrosome Remodelling in Evolution. Cells 2018; 7:E71. [PMID: 29986477 PMCID: PMC6070874 DOI: 10.3390/cells7070071] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/27/2018] [Accepted: 07/04/2018] [Indexed: 11/16/2022] Open
Abstract
The centrosome is the major microtubule organizing centre (MTOC) in animal cells. The canonical centrosome is composed of two centrioles surrounded by a pericentriolar matrix (PCM). In contrast, yeasts and amoebozoa have lost centrioles and possess acentriolar centrosomes—called the spindle pole body (SPB) and the nucleus-associated body (NAB), respectively. Despite the difference in their structures, centriolar centrosomes and SPBs not only share components but also common biogenesis regulators. In this review, we focus on the SPB and speculate how its structures evolved from the ancestral centrosome. Phylogenetic distribution of molecular components suggests that yeasts gained specific SPB components upon loss of centrioles but maintained PCM components associated with the structure. It is possible that the PCM structure remained even after centrosome remodelling due to its indispensable function to nucleate microtubules. We propose that the yeast SPB has been formed by a step-wise process; (1) an SPB-like precursor structure appeared on the ancestral centriolar centrosome; (2) it interacted with the PCM and the nuclear envelope; and (3) it replaced the roles of centrioles. Acentriolar centrosomes should continue to be a great model to understand how centrosomes evolved and how centrosome biogenesis is regulated.
Collapse
Affiliation(s)
- Daisuke Ito
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | | |
Collapse
|
41
|
Evaluation of the association of single nucleotide polymorphisms in DDP4 and CDK5RAP2 genes with rheumatoid arthritis susceptibility in Iranian population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
42
|
Abstract
Primary microcephaly (MCPH, for "microcephaly primary hereditary") is a disorder of brain development that results in a head circumference more than 3 standard deviations below the mean for age and gender. It has a wide variety of causes, including toxic exposures, in utero infections, and metabolic conditions. While the genetic microcephaly syndromes are relatively rare, studying these syndromes can reveal molecular mechanisms that are critical in the regulation of neural progenitor cells, brain size, and human brain evolution. Many of the causative genes for MCPH encode centrosomal proteins involved in centriole biogenesis. However, other MCPH genes fall under different mechanistic categories, notably DNA replication and repair. Recent gene discoveries and functional studies have implicated novel cellular processes, such as cytokinesis, centromere and kinetochore function, transmembrane or intracellular transport, Wnt signaling, and autophagy, as well as the apical polarity complex. Thus, MCPH genes implicate a wide variety of molecular and cellular mechanisms in the regulation of cerebral cortical size during development.
Collapse
Affiliation(s)
- Divya Jayaraman
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, Massachusetts 02115, USA.,Current affiliation: Boston Combined Residency Program (Child Neurology), Boston Children's Hospital, Boston, Massachusetts 02115, USA;
| | - Byoung-Il Bae
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
43
|
Shintomi M, Shiratori M, Negishi L, Terada Y. Identification of Cep169-interacting proteins and the in vivo modification sites of Cep169 via proteomic analysis. Biochem Biophys Res Commun 2018; 495:2275-2281. [PMID: 29269292 DOI: 10.1016/j.bbrc.2017.12.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/17/2017] [Indexed: 11/16/2022]
Abstract
Cep169 is a microtubule plus-end tracking and centrosomal protein that interacts with CDK5RAP2. Cep169 is known to regulate microtubule dynamics and stability; however, its other cellular functions remain largely elusive. In this study, we identified novel Cep169-interacting proteins from HeLa cell extracts. Proteomic analysis via LC-MS/MS helped to identify approximately 400 novel Cep169-interacting proteins, including centrosomal proteins, cilium proteins, microtubule-associating proteins, and several E3 ubiquitin ligases. In addition, we identified in vivo posttranslational modification sites of Cep169, namely, 27 phosphorylation sites, five methylation sites, and four ubiquitination sites. Of these, 14 phosphorylated residues corresponding to the consensus Cdk phosphorylation sites may be required for Cdk1-mediated dissociation of Cep169 from the centrosome during mitosis and Cdk regulation during the G1/S phase. Furthermore, siRNA-induced Cep169 depletion was found to inhibit the growth of RPE1 cells. Our findings suggest that Cep169 regulates cell growth by interacting with multiple proteins.
Collapse
Affiliation(s)
- Miyuki Shintomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan; Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Mikihiro Shiratori
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Lumi Negishi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Yasuhiko Terada
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan.
| |
Collapse
|
44
|
Duerinckx S, Abramowicz M. The genetics of congenitally small brains. Semin Cell Dev Biol 2017; 76:76-85. [PMID: 28912110 DOI: 10.1016/j.semcdb.2017.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Primary microcephaly (PM) refers to a congenitally small brain, resulting from insufficient prenatal production of neurons, and serves as a model disease for brain volumic development. Known PM genes delineate several cellular pathways, among which the centriole duplication pathway, which provide interesting clues about the cellular mechanisms involved. The general interest of the genetic dissection of PM is illustrated by the convergence of Zika virus infection and PM gene mutations on congenital microcephaly, with CENPJ/CPAP emerging as a key target. Physical (protein-protein) and genetic (digenic inheritance) interactions of Wdr62 and Aspm have been demonstrated in mice, and should now be sought in humans using high throughput parallel sequencing of multiple PM genes in PM patients and control subjects, in order to categorize mutually interacting genes, hence delineating functional pathways in vivo in humans.
Collapse
Affiliation(s)
- Sarah Duerinckx
- IRIBHM, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Marc Abramowicz
- IRIBHM, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium; Department of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| |
Collapse
|
45
|
Lee CT, Bendriem RM, Wu WW, Shen RF. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. J Biomed Sci 2017; 24:59. [PMID: 28822354 PMCID: PMC5563385 DOI: 10.1186/s12929-017-0362-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) brain organoids derived from human pluripotent stem cells (hPSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), appear to recapitulate the brain's 3D cytoarchitectural arrangement and provide new opportunities to explore disease pathogenesis in the human brain. Human iPSC (hiPSC) reprogramming methods, combined with 3D brain organoid tools, may allow patient-derived organoids to serve as a preclinical platform to bridge the translational gap between animal models and human clinical trials. Studies using patient-derived brain organoids have already revealed novel insights into molecular and genetic mechanisms of certain complex human neurological disorders such as microcephaly, autism, and Alzheimer's disease. Furthermore, the combination of hiPSC technology and small-molecule high-throughput screening (HTS) facilitates the development of novel pharmacotherapeutic strategies, while transcriptome sequencing enables the transcriptional profiling of patient-derived brain organoids. Finally, the addition of CRISPR/Cas9 genome editing provides incredible potential for personalized cell replacement therapy with genetically corrected hiPSCs. This review describes the history and current state of 3D brain organoid differentiation strategies, a survey of applications of organoids towards studies of neurodevelopmental and neurodegenerative disorders, and the challenges associated with their use as in vitro models of neurological disorders.
Collapse
Affiliation(s)
- Chun-Ting Lee
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD 20993 USA
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Building 52, Rm 1121, 10903 New Hampshire Avenue, Silver Spring, MD 20993 USA
| | - Raphael M. Bendriem
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021 USA
| | - Wells W. Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD 20993 USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD 20993 USA
| |
Collapse
|
46
|
Poulton JS, Cuningham JC, Peifer M. Centrosome and spindle assembly checkpoint loss leads to neural apoptosis and reduced brain size. J Cell Biol 2017; 216:1255-1265. [PMID: 28351851 PMCID: PMC5412557 DOI: 10.1083/jcb.201607022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 01/05/2017] [Accepted: 02/13/2017] [Indexed: 01/14/2023] Open
Abstract
Accurate mitotic spindle assembly is critical for mitotic fidelity and organismal development. Multiple processes coordinate spindle assembly and chromosome segregation. Two key components are centrosomes and the spindle assembly checkpoint (SAC), and mutations affecting either can cause human microcephaly. In vivo studies in Drosophila melanogaster found that loss of either component alone is well tolerated in the developing brain, in contrast to epithelial tissues of the imaginal discs. In this study, we reveal that one reason for that tolerance is the compensatory relationship between centrosomes and the SAC. In the absence of both centrosomes and the SAC, brain cells, including neural stem cells, experience massive errors in mitosis, leading to increased cell death, which reduces the neural progenitor pool and severely disrupts brain development. However, our data also demonstrate that neural cells are much more tolerant of aneuploidy than epithelial cells. Our data provide novel insights into the mechanisms by which different tissues manage genome stability and parallels with human microcephaly.
Collapse
Affiliation(s)
- John S Poulton
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 .,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - John C Cuningham
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 .,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
47
|
CDK5RAP2 Is Required to Maintain the Germ Cell Pool during Embryonic Development. Stem Cell Reports 2017; 8:198-204. [PMID: 28162995 PMCID: PMC5312265 DOI: 10.1016/j.stemcr.2017.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 11/23/2022] Open
Abstract
Gene products linked to microcephaly have been studied foremost for their role in brain development, while their function in the development of other organs has been largely neglected. Here, we report the critical role of Cdk5rap2 in maintaining the germ cell pool during embryonic development. We highlight that infertility in Cdk5rap2 mutant mice is secondary to a lack of spermatogenic cells in adult mice as a result of an early developmental defect in the germ cells through mitotic delay, prolonged cell cycle, and apoptosis. Microcephaly-linked protein CDK5RAP2 is also key for germ cell development Cdk5rap2 mutant mice display early germ cell depletion and subsequent sterility Cdk5rap2 mutant germ cells undergo mitotic delay, prolonged cell cycle, and apoptosis
Collapse
|
48
|
Tungadi EA, Ito A, Kiyomitsu T, Goshima G. Human microcephaly ASPM protein is a spindle pole-focusing factor that functions redundantly with CDK5RAP2. J Cell Sci 2017; 130:3676-3684. [DOI: 10.1242/jcs.203703] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/31/2017] [Indexed: 12/30/2022] Open
Abstract
Nonsense mutations in the ASPM gene have been most frequently identified among familial microcephaly patients. Depletion of the Drosophila orthologue causes spindle pole unfocusing during mitosis in multiple cell types. However, it remains unknown whether human ASPM has a similar function. Here, using CRISPR-based gene knockout (KO) and RNA interference combined with auxin-inducible degron, we show that ASPM functions in spindle pole organisation during mitotic metaphase redundantly with another microcephaly protein CDK5RAP2 (also called CEP215) in human tissue culture cells. Deletion of the ASPM gene alone did not affect spindle morphology or mitotic progression. However, when the pericentriolar material protein CDK5RAP2 was depleted in ASPM KO cells, spindle poles were unfocused during prometaphase and anaphase onset was significantly delayed. The phenotypic analysis of CDK5RAP2-depleted cells suggested that the pole-focusing function of CDK5RAP2 is independent of its known function to localise the kinesin-14 motor HSET or activate the γ-tubulin complex. Finally, a hypomorphic mutation identified in ASPM microcephaly patients similarly caused spindle pole unfocusing in the absence of CDK5RAP2, suggesting a possible link between spindle pole disorganisation and microcephaly.
Collapse
Affiliation(s)
- Elsa A. Tungadi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ami Ito
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tomomi Kiyomitsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
49
|
Jayaraman D, Kodani A, Gonzalez DM, Mancias JD, Mochida GH, Vagnoni C, Johnson J, Krogan N, Harper JW, Reiter JF, Yu TW, Bae BI, Walsh CA. Microcephaly Proteins Wdr62 and Aspm Define a Mother Centriole Complex Regulating Centriole Biogenesis, Apical Complex, and Cell Fate. Neuron 2016; 92:813-828. [PMID: 27974163 DOI: 10.1016/j.neuron.2016.09.056] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 06/13/2016] [Accepted: 09/19/2016] [Indexed: 01/11/2023]
Abstract
Mutations in several genes encoding centrosomal proteins dramatically decrease the size of the human brain. We show that Aspm (abnormal spindle-like, microcephaly-associated) and Wdr62 (WD repeat-containing protein 62) interact genetically to control brain size, with mice lacking Wdr62, Aspm, or both showing gene dose-related centriole duplication defects that parallel the severity of the microcephaly and increased ectopic basal progenitors, suggesting premature delamination from the ventricular zone. Wdr62 and Aspm localize to the proximal end of the mother centriole and interact physically, with Wdr62 required for Aspm localization, and both proteins, as well as microcephaly protein Cep63, required to localize CENPJ/CPAP/Sas-4, a final common target. Unexpectedly, Aspm and Wdr62 are required for normal apical complex localization and apical epithelial structure, providing a plausible unifying mechanism for the premature delamination and precocious differentiation of progenitors. Together, our results reveal links among centrioles, apical proteins, and cell fate, and illuminate how alterations in these interactions can dynamically regulate brain size.
Collapse
Affiliation(s)
- Divya Jayaraman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Kodani
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dilenny M Gonzalez
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Joseph D Mancias
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ganeshwaran H Mochida
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Pediatric Neurology Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cristiana Vagnoni
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Jeffrey Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Timothy W Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA.
| | - Byoung-Il Bae
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Rutherford EL, Lowery LA. Exploring the developmental mechanisms underlying Wolf-Hirschhorn Syndrome: Evidence for defects in neural crest cell migration. Dev Biol 2016; 420:1-10. [PMID: 27777068 PMCID: PMC5193094 DOI: 10.1016/j.ydbio.2016.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/03/2016] [Accepted: 10/18/2016] [Indexed: 01/20/2023]
Abstract
Wolf-Hirschhorn Syndrome (WHS) is a neurodevelopmental disorder characterized by mental retardation, craniofacial malformation, and defects in skeletal and heart development. The syndrome is associated with irregularities on the short arm of chromosome 4, including deletions of varying sizes and microduplications. Many of these genotypic aberrations in humans have been correlated with the classic WHS phenotype, and animal models have provided a context for mapping these genetic irregularities to specific phenotypes; however, there remains a significant knowledge gap concerning the cell biological mechanisms underlying these phenotypes. This review summarizes literature that has made recent contributions to this topic, drawing from the vast body of knowledge detailing the genetic particularities of the disorder and the more limited pool of information on its cell biology. Finally, we propose a novel characterization for WHS as a pathophysiology owing in part to defects in neural crest cell motility and migration during development.
Collapse
Affiliation(s)
- Erin L Rutherford
- Boston College, Department of Biology, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, United States
| | - Laura Anne Lowery
- Boston College, Department of Biology, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, United States.
| |
Collapse
|