1
|
Davis SS, Bassaro LR, Tuma PL. MAL2 and rab17 selectively redistribute invadopodia proteins to laterally-induced protrusions in hepatocellular carcinoma cells. Mol Biol Cell 2025; 36:ar26. [PMID: 39813085 PMCID: PMC11974961 DOI: 10.1091/mbc.e24-09-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
MAL2 (myelin and lymphocyte protein 2) and rab17 have been identified as hepatocellular carcinoma tumor suppressors. However, little is known how their functions in hepatic polarized protein sorting/trafficking translate into how they function in the epithelial-to-mesenchymal transition and/or the mesenchymal-to-epithelial transition in metastases. To investigate this, we expressed MAL2 and rab17 alone or together in hepatoma-derived Clone 9 cells (that lack endogenous MAL2 and rab17). Like MAL2, we found that rab17 expression led to the formation of actin- and cholesterol-dependent protrusions that correlated to its anti-oncogenic properties. MAL2 or rab17 selectively promoted the redistribution of invadopodia proteins to the protrusion tips that correlated with decreased matrix degradation. MAL2-mediated redistribution required a putative EVH1 recognition motif whereas rab17-mediated redistribution was GTP dependent. We also determined that MAL2 and rab17 interaction was GTP dependent, but not dependent on the MAL2 EVH1 recognition motifs, and that protrusions formed by their combined expression shared features of those induced by either alone. Finally, we report that MAL2 or rab17 can redirect trafficking of newly synthesized membrane proteins from the Golgi to the induced protrusions and that the EVH1 recognition motif was required in MAL2 and that rab17-mediated trafficking was GTP dependent.
Collapse
Affiliation(s)
- Saniya S. Davis
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Lauren. R. Bassaro
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Pamela L. Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064
| |
Collapse
|
2
|
Liu S, Shen G, Zhou X, Sun L, Yu L, Cao Y, Shu X, Ran Y. Hsp90 Promotes Gastric Cancer Cell Metastasis and Stemness by Regulating the Regional Distribution of Glycolysis-Related Metabolic Enzymes in the Cytoplasm. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310109. [PMID: 38874476 PMCID: PMC11434123 DOI: 10.1002/advs.202310109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/26/2024] [Indexed: 06/15/2024]
Abstract
Heat-shock protein 90 (Hsp90) plays a crucial role in tumorigenesis and tumor progression; however, its mechanism of action in gastric cancer (GC) remains unclear. Here, the role of Hsp90 in GC metabolism is the focus of this research. High expression of Hsp90 in GC tissues can interact with glycolysis, collectively affecting prognosis in clinical samples. Both in vitro and in vivo experiments demonstrate that Hsp90 is able to regulate the migration and stemness properties of GC cells. Metabolic phenotype analyses indicate that Hsp90 influences glycolytic metabolism. Mechanistically, Hsp90 interacts with glycolysis-related enzymes, forming multienzyme complexes to enhance glycolysis efficiency and yield. Additionally, Hsp90 binds to cytoskeleton-related proteins, regulating the regional distribution of glycolytic enzymes at the cell margin and lamellar pseudopods. This effect could lead to a local increase in efficient energy supply from glycolysis, further promoting epithelial-mesenchymal transition (EMT) and metastasis. In summary, Hsp90, through its interaction with metabolic enzymes related to glycolysis, forms multi-enzyme complexes and regulates regional distribution of glycolysis by dynamic cytoskeletal adjustments, thereby promoting the migration and stemness of GC cells. These conclusions also support the potential for a combined targeted approach involving Hsp90, glycolysis, and the cytoskeleton in clinical therapy.
Collapse
Affiliation(s)
- Shiya Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Gaigai Shen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuanyu Zhou
- Department of Epidemiology & Population Health, Stanford University of Medicine, Stanford, CA, 94305, USA
| | - Lixin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Long Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuanting Cao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiong Shu
- Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Yuliang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
3
|
Yoshie S, Murono S, Hazama A. Approach for Elucidating the Molecular Mechanism of Epithelial to Mesenchymal Transition in Fibrosis of Asthmatic Airway Remodeling Focusing on Cl - Channels. Int J Mol Sci 2023; 25:289. [PMID: 38203460 PMCID: PMC10779031 DOI: 10.3390/ijms25010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Airway remodeling caused by asthma is characterized by structural changes of subepithelial fibrosis, goblet cell metaplasia, submucosal gland hyperplasia, smooth muscle cell hyperplasia, and angiogenesis, leading to symptoms such as dyspnea, which cause marked quality of life deterioration. In particular, fibrosis exacerbated by asthma progression is reportedly mediated by epithelial-mesenchymal transition (EMT). It is well known that the molecular mechanism of EMT in fibrosis of asthmatic airway remodeling is closely associated with several signaling pathways, including the TGF-β1/Smad, TGF-β1/non-Smad, and Wnt/β-catenin signaling pathways. However, the molecular mechanism of EMT in fibrosis of asthmatic airway remodeling has not yet been fully clarified. Given that Cl- transport through Cl- channels causes passive water flow and consequent changes in cell volume, these channels may be considered to play a key role in EMT, which is characterized by significant morphological changes. In the present article, we highlight how EMT, which causes fibrosis and carcinogenesis in various tissues, is strongly associated with activation or inactivation of Cl- channels and discuss whether Cl- channels can lead to elucidation of the molecular mechanism of EMT in fibrosis of asthmatic airway remodeling.
Collapse
Affiliation(s)
- Susumu Yoshie
- Department of Cellular and Integrative Physiology, Graduate School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Shigeyuki Murono
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Akihiro Hazama
- Department of Cellular and Integrative Physiology, Graduate School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
4
|
Sun Y, Du R, Shang Y, Liu C, Zheng L, Sun R, Wang Y, Lu G. Rho GTPase-activating protein 35 suppresses gastric cancer metastasis by regulating cytoskeleton reorganization and epithelial-to-mesenchymal transition. Bioengineered 2022; 13:14605-14615. [PMID: 35758029 PMCID: PMC9342288 DOI: 10.1080/21655979.2022.2092677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cytoskeletal reorganization and epithelial-to-mesenchymal transition (EMT) are key processes and typical characteristics of metastatic cancer cells. Rho GTPase‑activating protein 35 (ARHGAP35) is a GTPase-activating protein, which has a significant effect on cell motility. However, the particular function of ARHGAP35 in gastric cancer (GC) remains unknown. In the present study, the role of ARHGAP35 in GC was investigated by in vitro loss-of-function and gain-of-function experiments. Cytoskeletal reorganization in GC cells was evaluated using immunofluorescence staining and the protein expression levels of key molecules and active RhoA were detected by western blot analysis. Additionally, the clinical evaluation of proteins in human GC tissues was assessed by immunohistochemistry. The results showed that ARHGAP35, a tumor suppressor, was downregulated in GC tissues and its decreased expression was associated with the metastatic status of GC. Additionally, Transwell and wound healing assays demonstrated that ARHGAP35 knockdown promoted cell motility in vitro. However, the above effects were abrogated following ectopic ARHGAP35 expression. Furthermore, ARHGAP35 could affect cytoskeletal reorganization via directly regulating RhoA activation. In addition, ARHGAP35 upregulated E-cadherin and attenuated EMT in GC cells. Both ARHGAP35 and E-cadherin were associated with overall survival in patients with GC, while their combination allowed for an even greater capacity for distinguishing GC patients with different prognosis. Overall, the results of the current study suggested that ARHGAP35 could directly regulate cell morphology and motility via affecting cytoskeletal reorganization and EMT via targeting RhoA and E-cadherin, respectively. Targeting the ARHGAP35/RhoA/E-cadherin pathway could be a potential approach for treating GC.
Collapse
Affiliation(s)
- Yi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, shaanxi, China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, shaanxi, China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, shaanxi, China
| | - Changhao Liu
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, shaanxi, China
| | - Linhua Zheng
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, shaanxi, China
| | - Ruiqing Sun
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, shaanxi, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, shaanxi, China
| | - Guofang Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, shaanxi, China.,Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Phosphorylation and subcellular localization of human phospholipase A1, DDHD1/PA-PLA1. Methods Enzymol 2022; 675:235-273. [DOI: 10.1016/bs.mie.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Saviana M, Romano G, Le P, Acunzo M, Nana-Sinkam P. Extracellular Vesicles in Lung Cancer Metastasis and Their Clinical Applications. Cancers (Basel) 2021; 13:5633. [PMID: 34830787 PMCID: PMC8616161 DOI: 10.3390/cancers13225633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogenous membrane-encapsulated vesicles secreted by every cell into the extracellular environment. EVs carry bioactive molecules, including proteins, lipids, DNA, and different RNA forms, which can be internalized by recipient cells, thus altering their biological characteristics. Given that EVs are commonly found in most body fluids, they have been widely described as mediators of communication in several physiological and pathological processes, including cancer. Moreover, their easy detection in biofluids makes them potentially useful candidates as tumor biomarkers. In this manuscript, we review the current knowledge regarding EVs and non-coding RNAs and their role as drivers of the metastatic process in lung cancer. Furthermore, we present the most recent applications for EVs and non-coding RNAs as cancer therapeutics and their relevance as clinical biomarkers.
Collapse
Affiliation(s)
- Michela Saviana
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Giulia Romano
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Patricia Le
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Mario Acunzo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| |
Collapse
|
7
|
Chen S, Shen Z, Gao L, Yu S, Zhang P, Han Z, Kang M. TPM3 mediates epithelial-mesenchymal transition in esophageal cancer via MMP2/MMP9. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1338. [PMID: 34532475 PMCID: PMC8422148 DOI: 10.21037/atm-21-4043] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
Background Esophageal cancer (EC) is a malignant tumor with high mortality. Correlations have been found between the expression level of tropomyosin 3 (TPM3) and the depth of tumor invasion, lymph node metastasis, and the 5-year survival rate. However, the specific mechanisms underlying EC remain unclear. Methods Stably transfected TPM3-overexpresing and TPM3-knockdown esophageal squamous cell carcinoma (ESCC) cell lines (ECa109 and EC9706) were constructed, and the association between TPM3 and the proliferation, invasion, and migration of ESCC was investigated using molecular biology methods. The associations between TPM3 and matrix metalloproteinase (MMP)2/9 or epithelial-mesenchymal transition (EMT)-related proteins were verified, and the potential tumor-promoting mechanism was explored by Gelatin Zymography Experiment. Results TPM3 was found to promote the proliferation, migration, and metastatic potential of ESCC in vivo and in vitro, and stimulate the expression of MMP2/9 and certain EMT markers other than E-cadherin. The replenishment of MMP2/9 restored the malignant behavior of ESCC caused by TPM3. A gelatinase assay showed that the expression of TPM3 was related to the activity of MMP9. Conclusions TPM3 promoted proliferation, migration, and metastatic potential in EC cells. Additionally, TPM3 promoted the EMT process. This function may be achieved via the regulation the expression of MMP2/9.
Collapse
Affiliation(s)
- Sui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lei Gao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaobin Yu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ziyang Han
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Matsumoto N, Nemoto-Sasaki Y, Oka S, Arai S, Wada I, Yamashita A. Phosphorylation of human phospholipase A1 DDHD1 at newly identified phosphosites affects its subcellular localization. J Biol Chem 2021; 297:100851. [PMID: 34089703 PMCID: PMC8234217 DOI: 10.1016/j.jbc.2021.100851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Phospholipase A1 (PLA1) hydrolyzes the fatty acids of glycerophospholipids, which are structural components of the cellular membrane. Genetic mutations in DDHD1, an intracellular PLA1, result in hereditary spastic paraplegia (HSP) in humans. However, the regulation of DDHD1 activity has not yet been elucidated in detail. In the present study, we examined the phosphorylation of DDHD1 and identified the responsible protein kinases. We performed MALDI-TOF MS/MS analysis and Phos-tag SDS-PAGE in alanine-substitution mutants in HEK293 cells and revealed multiple phosphorylation sites in human DDHD1, primarily Ser8, Ser11, Ser723, and Ser727. The treatment of cells with a protein phosphatase inhibitor induced the hyperphosphorylation of DDHD1, suggesting that multisite phosphorylation occurred not only at these major, but also at minor sites. Site-specific kinase-substrate prediction algorithms and in vitro kinase analyses indicated that cyclin-dependent kinase CDK1/cyclin A2 phosphorylated Ser8, Ser11, and Ser727 in DDHD1 with a preference for Ser11 and that CDK5/p35 also phosphorylated Ser11 and Ser727 with a preference for Ser11. In addition, casein kinase CK2α1 was found to phosphorylate Ser104, although this was not a major phosphorylation site in cultivated HEK293 cells. The evaluation of the effects of phosphorylation revealed that the phosphorylation mimic mutants S11/727E exhibit only 20% reduction in PLA1 activity. However, the phosphorylation mimics were mainly localized to focal adhesions, whereas the phosphorylation-resistant mutants S11/727A were not. This suggested that phosphorylation alters the subcellular localization of DDHD1 without greatly affecting its PLA1 activity.
Collapse
Affiliation(s)
- Naoki Matsumoto
- Faculty of Pharma-Science, Teikyo University, Itabashi-Ku, Tokyo, Japan
| | | | - Saori Oka
- Faculty of Pharma-Science, Teikyo University, Itabashi-Ku, Tokyo, Japan
| | - Seisuke Arai
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Atsushi Yamashita
- Faculty of Pharma-Science, Teikyo University, Itabashi-Ku, Tokyo, Japan.
| |
Collapse
|
9
|
Cao H, Qiang L, Chen J, Johnson KM, McNiven MA, Razidlo GL. Synergistic metalloproteinase-based remodeling of matrix by pancreatic tumor and stromal cells. PLoS One 2021; 16:e0248111. [PMID: 33740019 PMCID: PMC7978280 DOI: 10.1371/journal.pone.0248111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 02/20/2021] [Indexed: 11/22/2022] Open
Abstract
The process by which tumor cells mechanically invade through the surrounding stroma into peripheral tissues is an essential component of metastatic dissemination. Matrix metalloproteinase (MMP)-mediated extracellular matrix (ECM) degradation plays an important role in this invasive process. Defining the contribution and interaction between these MMPs during invasion remains a key interest in the development of targeted anti-metastatic therapies. In this study we have utilized multiple different stromal fibroblasts and tumor cells to define the relative contributions between cancer cells and stromal cells during MMP-dependent matrix remodeling and pancreatic (PDAC) tumor cell invasion. We find that tumor cells co-cultured with the conditioned medium from stromal fibroblasts exhibited a substantial increase in invadopodial-based matrix degradation and transwell invasion. This increase is dependent on pro-MMP2 expressed and secreted by stromal fibroblasts. Further, the pro-MMP2 from the stromal fibroblasts is activated by MT1-MMP expressed on the tumor cells. Depletion of MT1-MMP, the known activator of MMP2, in tumor cells largely blocked matrix remodeling, even in the presence of stromal cell medium. In summary, these findings implicate an important interplay between MT1-MMP from tumor cells and MMP2 from fibroblasts as a key component for ECM remodeling and invasion.
Collapse
Affiliation(s)
- Hong Cao
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Li Qiang
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jing Chen
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Katherine M. Johnson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mark A. McNiven
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (GLR); (MAM)
| | - Gina L. Razidlo
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (GLR); (MAM)
| |
Collapse
|
10
|
Pathophysiology of Lung Disease and Wound Repair in Cystic Fibrosis. PATHOPHYSIOLOGY 2021; 28:155-188. [PMID: 35366275 PMCID: PMC8830450 DOI: 10.3390/pathophysiology28010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive, life-threatening condition affecting many organs and tissues, the lung disease being the chief cause of morbidity and mortality. Mutations affecting the CF Transmembrane Conductance Regulator (CFTR) gene determine the expression of a dysfunctional protein that, in turn, triggers a pathophysiological cascade, leading to airway epithelium injury and remodeling. In vitro and in vivo studies point to a dysregulated regeneration and wound repair in CF airways, to be traced back to epithelial CFTR lack/dysfunction. Subsequent altered ion/fluid fluxes and/or signaling result in reduced cell migration and proliferation. Furthermore, the epithelial-mesenchymal transition appears to be partially triggered in CF, contributing to wound closure alteration. Finally, we pose our attention to diverse approaches to tackle this defect, discussing the therapeutic role of protease inhibitors, CFTR modulators and mesenchymal stem cells. Although the pathophysiology of wound repair in CF has been disclosed in some mechanisms, further studies are warranted to understand the cellular and molecular events in more details and to better address therapeutic interventions.
Collapse
|
11
|
Masi I, Caprara V, Bagnato A, Rosanò L. Tumor Cellular and Microenvironmental Cues Controlling Invadopodia Formation. Front Cell Dev Biol 2020; 8:584181. [PMID: 33178698 PMCID: PMC7593604 DOI: 10.3389/fcell.2020.584181] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
During the metastatic progression, invading cells might achieve degradation and subsequent invasion into the extracellular matrix (ECM) and the underlying vasculature using invadopodia, F-actin-based and force-supporting protrusive membrane structures, operating focalized proteolysis. Their formation is a dynamic process requiring the combined and synergistic activity of ECM-modifying proteins with cellular receptors, and the interplay with factors from the tumor microenvironment (TME). Significant advances have been made in understanding how invadopodia are assembled and how they progress in degradative protrusions, as well as their disassembly, and the cooperation between cellular signals and ECM conditions governing invadopodia formation and activity, holding promise to translation into the identification of molecular targets for therapeutic interventions. These findings have revealed the existence of biochemical and mechanical interactions not only between the actin cores of invadopodia and specific intracellular structures, including the cell nucleus, the microtubular network, and vesicular trafficking players, but also with elements of the TME, such as stromal cells, ECM components, mechanical forces, and metabolic conditions. These interactions reflect the complexity and intricate regulation of invadopodia and suggest that many aspects of their formation and function remain to be determined. In this review, we will provide a brief description of invadopodia and tackle the most recent findings on their regulation by cellular signaling as well as by inputs from the TME. The identification and interplay between these inputs will offer a deeper mechanistic understanding of cell invasion during the metastatic process and will help the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Ilenia Masi
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.,Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| |
Collapse
|
12
|
Vuoso DC, D'Angelo S, Ferraro R, Caserta S, Guido S, Cammarota M, Porcelli M, Cacciapuoti G. Annurca apple polyphenol extract promotes mesenchymal-to-epithelial transition and inhibits migration in triple-negative breast cancer cells through ROS/JNK signaling. Sci Rep 2020; 10:15921. [PMID: 32985606 PMCID: PMC7522716 DOI: 10.1038/s41598-020-73092-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
Aberrant activation of epithelial-to-mesenchymal transition has been shown to correlate with triple-negative breast cancer (TNBC) progression and metastasis. Thus, the induction of the reverse process might offer promising opportunities to restrain TNBC metastatic spreading and related mortality. Recently, the Annurca apple polyphenol extract (APE) has been highlighted as a multi-faceted agent that selectively kills TNBC cells by ROS generation and sustained JNK activation. Here, by qualitatively and quantitatively monitoring the real-time movements of live cells we provided the first evidence that APE inhibited the migration of MDA-MB-231 and MDA-MB-468 TNBC cells and downregulated metalloproteinase-2 and metalloproteinase-9. In MDA-MB-231 cells APE decreased SMAD-2/3 and p-SMAD-2/3 levels, increased E-cadherin/N-cadherin protein ratio, induced the switch from N-cadherin to E-cadherin expression and greatly reduced vimentin levels. Confocal and scanning electron microscopy imaging of APE-treated MDA-MB-231 cells evidenced a significant cytoskeletal vimentin and filamentous actin reorganization and revealed considerable changes in cell morphology highlighting an evident transition from the mesenchymal to epithelial phenotype with decreased migratory features. Notably, all these events were reverted by N-acetyl-l-cysteine and JNK inhibitor SP600125 furnishing evidence that APE exerted its effects through the activation of ROS/JNK signaling. The overall data highlighted APE as a potential preventing agent for TNBC metastasis.
Collapse
Affiliation(s)
- Daniela Cristina Vuoso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Stefania D'Angelo
- Department of Motor Sciences and Wellness, "Parthenope" University, Via Medina 40, 80133, Naples, Italy
| | - Rosalia Ferraro
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy.,CEINGE Advanced Biotechnologies, 80145, Naples, Italy
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy.,CEINGE Advanced Biotechnologies, 80145, Naples, Italy
| | - Stefano Guido
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy.,CEINGE Advanced Biotechnologies, 80145, Naples, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Luciano Armanni 5, 80138, Naples, Italy
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Giovanna Cacciapuoti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
13
|
Haider P, Kral-Pointner JB, Mayer J, Richter M, Kaun C, Brostjan C, Eilenberg W, Fischer MB, Speidl WS, Hengstenberg C, Huber K, Wojta J, Hohensinner P. Neutrophil Extracellular Trap Degradation by Differently Polarized Macrophage Subsets. Arterioscler Thromb Vasc Biol 2020; 40:2265-2278. [PMID: 32673525 PMCID: PMC7447175 DOI: 10.1161/atvbaha.120.314883] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Supplemental Digital Content is available in the text. Macrophages are immune cells, capable to remodel the extracellular matrix, which can harbor extracellular DNA incorporated into neutrophil extracellular traps (NETs). To study the breakdown of NETs we studied the capability of macrophage subsets to degrade these structures in vitro and in vivo in a murine thrombosis model. Furthermore, we analyzed human abdominal aortic aneurysm samples in support of our in vitro and in vivo results.
Collapse
Affiliation(s)
- Patrick Haider
- From the Division of Cardiology, Department of Medicine II (P. Haider, J.B.K.-P., J.M., M.R., C.K., W.S.S., C.H., J.W., P. Hohensinner), Medical University of Vienna, Austria
| | - Julia B Kral-Pointner
- From the Division of Cardiology, Department of Medicine II (P. Haider, J.B.K.-P., J.M., M.R., C.K., W.S.S., C.H., J.W., P. Hohensinner), Medical University of Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Austria (J.B.K.-P., J.W.)
| | - Julia Mayer
- From the Division of Cardiology, Department of Medicine II (P. Haider, J.B.K.-P., J.M., M.R., C.K., W.S.S., C.H., J.W., P. Hohensinner), Medical University of Vienna, Austria
| | - Manuela Richter
- From the Division of Cardiology, Department of Medicine II (P. Haider, J.B.K.-P., J.M., M.R., C.K., W.S.S., C.H., J.W., P. Hohensinner), Medical University of Vienna, Austria
| | - Christoph Kaun
- From the Division of Cardiology, Department of Medicine II (P. Haider, J.B.K.-P., J.M., M.R., C.K., W.S.S., C.H., J.W., P. Hohensinner), Medical University of Vienna, Austria
| | - Christine Brostjan
- Division of Vascular Surgery and Surgical Research Laboratories, Department of Surgery (C.B., W.E.), Medical University of Vienna, Austria
| | - Wolf Eilenberg
- Division of Vascular Surgery and Surgical Research Laboratories, Department of Surgery (C.B., W.E.), Medical University of Vienna, Austria
| | - Michael B Fischer
- Department of Blood Group Serology and Transfusion Medicine (M.B.F.), Medical University of Vienna, Austria.,Department of Biomedical Research, Danube University Krems, Austria (M.B.F.)
| | - Walter S Speidl
- From the Division of Cardiology, Department of Medicine II (P. Haider, J.B.K.-P., J.M., M.R., C.K., W.S.S., C.H., J.W., P. Hohensinner), Medical University of Vienna, Austria
| | - Christian Hengstenberg
- From the Division of Cardiology, Department of Medicine II (P. Haider, J.B.K.-P., J.M., M.R., C.K., W.S.S., C.H., J.W., P. Hohensinner), Medical University of Vienna, Austria
| | - Kurt Huber
- Wilhelminenhospital, 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Vienna, Austria (K.H.).,Sigmund Freud University, Medical Faculty, Vienna, Austria (K.H.)
| | - Johann Wojta
- From the Division of Cardiology, Department of Medicine II (P. Haider, J.B.K.-P., J.M., M.R., C.K., W.S.S., C.H., J.W., P. Hohensinner), Medical University of Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Austria (J.B.K.-P., J.W.).,Medical University of Vienna, Core Facilities, Austria (J.W.)
| | - Philipp Hohensinner
- From the Division of Cardiology, Department of Medicine II (P. Haider, J.B.K.-P., J.M., M.R., C.K., W.S.S., C.H., J.W., P. Hohensinner), Medical University of Vienna, Austria
| |
Collapse
|
14
|
Nasrollahzadeh E, Razi S, Keshavarz-Fathi M, Mazzone M, Rezaei N. Pro-tumorigenic functions of macrophages at the primary, invasive and metastatic tumor site. Cancer Immunol Immunother 2020; 69:1673-1697. [PMID: 32500231 DOI: 10.1007/s00262-020-02616-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment (TME) not only facilitates cancer progression from the early formation to distant metastasis, but also it differs itself from time to time alongside the tumor evolution. Tumor-associated macrophages (TAMs), whether as pre-existing tissue-resident macrophages or recruited monocytes, are an inseparable part of this microenvironment. As their parents are broadly classified into a dichotomic, simplistic M1 and M2 subtypes, TAMs also exert paradoxical and diverse phenotypes as they are settled in different regions of TME and receive different microenvironmental signals. Briefly, M1 macrophages induce an inflammatory precancerous niche and flame the early oncogenic mutations, whereas their M2 counterparts are reprogrammed to release various growth factors and providing an immunosuppressive state in TME as long as abetting hypoxic cancer cells to set up a new vasculature. Further, they mediate stromal micro-invasion and co-migrate with invasive cancer cells to invade the vascular wall and neural sheath, while another subtype of TAMs prepares suitable niches much earlier than metastatic cells arrive at the target tissues. Accordingly, at the neoplastic transformation, during the benign-to-malignant transition and through the metastatic cascade, macrophages are involved in shaping the primary, micro-invasive and pre-metastatic TMEs. Whether their behavioral plasticity is derived from distinct genotypes or is fueled by microenvironmental cues, it could define these cells as remarkably interesting therapeutic targets.
Collapse
Affiliation(s)
- Elaheh Nasrollahzadeh
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer Biology, VIB, KU Leuven, Louvain, B3000, Belgium
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
15
|
Abstract
The glycolytic phenotype of the Warburg effect is associated with acidification of the tumor microenvironment. In this review, we describe how acidification of the tumor microenvironment may increase the invasive and degradative phenotype of cancer cells. As a template of an extracellular acidic microenvironment that is linked to proteolysis, we use the resorptive pit formed between osteoclasts and bone. We describe similar changes that have been observed in cancer cells in response to an acidic microenvironment and that are associated with proteolysis and invasive and metastatic phenotypes. This includes consideration of changes observed in the intracellular trafficking of vesicles, i.e., lysosomes and exosomes, and in specialized regions of the membrane, i.e., invadopodia and caveolae. Cancer-associated cells are known to affect what is generally referred to as tumor proteolysis but little direct evidence for this being regulated by acidosis; we describe potential links that should be verified.
Collapse
|
16
|
Hsu KS, Otsu W, Li Y, Wang HC, Chen S, Tsang SH, Chuang JZ, Sung CH. CLIC4 regulates late endosomal trafficking and matrix degradation activity of MMP14 at focal adhesions in RPE cells. Sci Rep 2019; 9:12247. [PMID: 31439888 PMCID: PMC6706427 DOI: 10.1038/s41598-019-48438-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Dysregulation in the extracellular matrix (ECM) microenvironment surrounding the retinal pigment epithelium (RPE) has been implicated in the etiology of proliferative vitreoretinopathy and age-related macular degeneration. The regulation of ECM remodeling by RPE cells is not well understood. We show that membrane-type matrix metalloproteinase 14 (MMP14) is central to ECM degradation at the focal adhesions in human ARPE19 cells. The matrix degradative activity, but not the assembly, of the focal adhesion is regulated by chloride intracellular channel 4 (CLIC4). CLIC4 is co-localized with MMP14 in the late endosome. CLIC4 regulates the proper sorting of MMP14 into the lumen of the late endosome and its proteolytic activation in lipid rafts. CLIC4 has the newly-identified “late domain” motif that binds to MMP14 and to Tsg101, a component of the endosomal sorting complex required for transport (ESCRT) complex. Unlike the late domain mutant CLIC4, wild-type CLIC4 can rescue the late endosomal sorting defect of MMP14. Finally, CLIC4 knockdown inhibits the apical secretion of MMP2 in polarized human RPE monolayers. These results, taken together, demonstrate that CLIC4 is a novel matrix microenvironment modulator and a novel regulator for late endosomal cargo sorting. Moreover, the late endosomal sorting of MMP14 actively regulates its surface activation in RPE cells.
Collapse
Affiliation(s)
- Kuo-Shun Hsu
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA.,Department of Surgery, Colorectal Service and Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wataru Otsu
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA.,Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Yao Li
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Heuy-Ching Wang
- Ocular Trauma Task Area, US Army Institute of Surgical Research, Joint Base San Antonio-Fort Sam Houston, TX, San Antonio, USA
| | - Shuibing Chen
- Department of Surgery and Department of Biochemistry, Weill Medical College of Cornell University, New York, NY, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology & Cell Biology, and Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA. .,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
17
|
Peláez R, Pariente A, Pérez-Sala Á, Larrayoz IM. Integrins: Moonlighting Proteins in Invadosome Formation. Cancers (Basel) 2019; 11:cancers11050615. [PMID: 31052560 PMCID: PMC6562994 DOI: 10.3390/cancers11050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/24/2022] Open
Abstract
Invadopodia are actin-rich protrusions developed by transformed cells in 2D/3D environments that are implicated in extracellular matrix (ECM) remodeling and degradation. These structures have an undoubted association with cancer invasion and metastasis because invadopodium formation in vivo is a key step for intra/extravasation of tumor cells. Invadopodia are closely related to other actin-rich structures known as podosomes, which are typical structures of normal cells necessary for different physiological processes during development and organogenesis. Invadopodia and podosomes are included in the general term 'invadosomes,' as they both appear as actin puncta on plasma membranes next to extracellular matrix metalloproteinases, although organization, regulation, and function are slightly different. Integrins are transmembrane proteins implicated in cell-cell and cell-matrix interactions and other important processes such as molecular signaling, mechano-transduction, and cell functions, e.g., adhesion, migration, or invasion. It is noteworthy that integrin expression is altered in many tumors, and other pathologies such as cardiovascular or immune dysfunctions. Over the last few years, growing evidence has suggested a role of integrins in the formation of invadopodia. However, their implication in invadopodia formation and adhesion to the ECM is still not well known. This review focuses on the role of integrins in invadopodium formation and provides a general overview of the involvement of these proteins in the mechanisms of metastasis, taking into account classic research through to the latest and most advanced work in the field.
Collapse
Affiliation(s)
- Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ana Pariente
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Álvaro Pérez-Sala
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| |
Collapse
|
18
|
Kryczka J, Papiewska-Pajak I, Kowalska MA, Boncela J. Cathepsin B Is Upregulated and Mediates ECM Degradation in Colon Adenocarcinoma HT29 Cells Overexpressing Snail. Cells 2019; 8:cells8030203. [PMID: 30818851 PMCID: PMC6468499 DOI: 10.3390/cells8030203] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
During tumor development and ongoing metastasis the acquisition of mesenchymal cell traits by epithelial carcinoma cells is achieved through a programmed phenotypic shift called the epithelial-to-mesenchymal transition, EMT. EMT contributes to increased cancer cell motility and invasiveness mainly through invadosomes, the adhesion structures that accompany the mesenchymal migration. The invadosomes and their associated proteases restrict protease activity to areas of the cell in direct contact with the ECM, thus precisely controlling cell invasion. Our data prove that Snail-overexpressing HT-29 cells that imitate the phenotype of colon cancer cells in the early stage of the EMT showed an increase in the expression and pericellular activity of cathepsin B. It appears that the pericellular localization of cathepsin B, also observed in colon and rectum adenocarcinoma tissue samples, plays a key role in its function.
Collapse
Affiliation(s)
- Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| | | | - M Anna Kowalska
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| |
Collapse
|
19
|
Qiang L, Cao H, Chen J, Weller SG, Krueger EW, Zhang L, Razidlo GL, McNiven MA. Pancreatic tumor cell metastasis is restricted by MT1-MMP binding protein MTCBP-1. J Cell Biol 2018; 218:317-332. [PMID: 30487181 PMCID: PMC6314558 DOI: 10.1083/jcb.201802032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/28/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Tumor cells utilize invadopodia to remodel the surrounding stroma during metastatic invasion. Qiang et al. demonstrate that MTCBP-1 significantly attenuates invadopodia formation and function by binding MT1-MMP and preventing the interaction of MT1-MMP with the actin cytoskeleton. The process by which tumor cells mechanically invade through surrounding stroma into peripheral tissues is an essential component of metastatic dissemination. The directed recruitment of the metalloproteinase MT1-MMP to invadopodia plays a critical role in this invasive process. Here, we provide mechanistic insight into MT1-MMP cytoplasmic tail binding protein 1 (MTCBP-1) with respect to invadopodia formation, matrix remodeling, and invasion by pancreatic tumor cells. MTCBP-1 localizes to invadopodia and interacts with MT1-MMP. We find that this interaction displaces MT1-MMP from invadopodia, thereby attenuating their number and function and reducing the capacity of tumor cells to degrade matrix. Further, we observe an inverse correlation between MTCBP-1 and MT1-MMP expression both in cultured cell lines and human pancreatic tumors. Consistently, MTCBP-1–expressing cells show decreased ability to invade in vitro and metastasize in vivo. These findings implicate MTCBP-1 as an inhibitor of the metastatic process.
Collapse
Affiliation(s)
- Li Qiang
- Biochemistry and Molecular Biology Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| | - Hong Cao
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Jing Chen
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Shaun G Weller
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Eugene W Krueger
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Lizhi Zhang
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN
| | - Gina L Razidlo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN.,Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN .,Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
20
|
Poltavets V, Kochetkova M, Pitson SM, Samuel MS. The Role of the Extracellular Matrix and Its Molecular and Cellular Regulators in Cancer Cell Plasticity. Front Oncol 2018; 8:431. [PMID: 30356678 PMCID: PMC6189298 DOI: 10.3389/fonc.2018.00431] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
The microenvironment encompasses all components of a tumor other than the cancer cells themselves. It is highly heterogenous, comprising a cellular component that includes immune cells, fibroblasts, adipocytes, and endothelial cells, and a non-cellular component, which is a meshwork of polymeric proteins and accessory molecules, termed the extracellular matrix (ECM). The ECM provides both a biochemical and biomechanical context within which cancer cells exist. Cancer progression is dependent on the ability of cancer cells to traverse the ECM barrier, access the circulation and establish distal metastases. Communication between cancer cells and the microenvironment is therefore an important aspect of tumor progression. Significant progress has been made in identifying the molecular mechanisms that enable cancer cells to subvert the immune component of the microenvironment to facilitate tumor growth and spread. While much less is known about how the tumor cells adapt to changes in the ECM nor indeed how they influence ECM structure and composition, the importance of the ECM to cancer progression is now well established. Plasticity refers to the ability of cancer cells to modify their physiological characteristics, permitting them to survive hostile microenvironments and resist therapy. Examples include the acquisition of stemness characteristics and the epithelial-mesenchymal and mesenchymal-epithelial transitions. There is emerging evidence that the biochemical and biomechanical properties of the ECM influence cancer cell plasticity and vice versa. Outstanding challenges for the field remain the identification of the cellular mechanisms by which cancer cells establish tumor-promoting ECM characteristics and delineating the key molecular mechanisms underlying ECM-induced cancer cell plasticity. Here we summarize the current state of understanding about the relationships between cancer cells and the main stromal cell types of the microenvironment that determine ECM characteristics, and the key molecular pathways that govern this three-way interaction to regulate cancer cell plasticity. We postulate that a comprehensive understanding of this dynamic system will be required to fully exploit opportunities for targeting the ECM regulators of cancer cell plasticity.
Collapse
Affiliation(s)
- Valentina Poltavets
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Marina Kochetkova
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
21
|
Morris HT, Fort L, Spence HJ, Patel R, Vincent DF, Park JH, Snapper SB, Carey FA, Sansom OJ, Machesky LM. Loss of N-WASP drives early progression in an Apc model of intestinal tumourigenesis. J Pathol 2018; 245:337-348. [PMID: 29672847 PMCID: PMC6033012 DOI: 10.1002/path.5086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/15/2018] [Accepted: 04/12/2018] [Indexed: 01/23/2023]
Abstract
N-WASP (WASL) is a widely expressed cytoskeletal signalling and scaffold protein also implicated in regulation of Wnt signalling and homeostatic maintenance of skin epithelial architecture. N-WASP mediates invasion of cancer cells in vitro and its depletion reduces invasion and metastatic dissemination of breast cancer. Given this role in cancer invasion and universal expression in the gastrointestinal tract, we explored a role for N-WASP in the initiation and progression of colorectal cancer. While deletion of N-wasp is not detectably harmful in the murine intestinal tract, numbers of Paneth cells increased, indicating potential changes in the stem cell niche, and migration up the crypt-villus axis was enhanced. Loss of N-wasp promoted adenoma formation in an adenomatous polyposis coli (Apc) deletion model of intestinal tumourigenesis. Thus, we establish a tumour suppressive role of N-WASP in early intestinal carcinogenesis despite its later pro-invasive role in other cancers. Our study highlights that while the actin cytoskeletal machinery promotes invasion of cancer cells, it also maintains normal epithelial tissue function and thus may have tumour suppressive roles in pre-neoplastic tissues. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Adenomatous Polyposis Coli/genetics
- Adenomatous Polyposis Coli/metabolism
- Adenomatous Polyposis Coli/pathology
- Aged
- Animals
- Cell Differentiation
- Cell Movement
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colon/metabolism
- Colon/pathology
- DNA Mismatch Repair
- Disease Models, Animal
- Disease Progression
- Female
- Genes, APC
- Genes, Tumor Suppressor
- Genetic Predisposition to Disease
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Neoplasm Invasiveness
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Paneth Cells/metabolism
- Paneth Cells/pathology
- Phenotype
- Stem Cell Niche
- Tumor Microenvironment
- Wiskott-Aldrich Syndrome Protein, Neuronal/deficiency
- Wiskott-Aldrich Syndrome Protein, Neuronal/genetics
Collapse
Affiliation(s)
| | - Loic Fort
- Cancer Research UK Beatson InstituteBearsden, GlasgowUK
| | | | - Rachana Patel
- Cancer Research UK Beatson InstituteBearsden, GlasgowUK
| | | | - James H Park
- Academic Unit of Surgery, School of Medicine, Dentistry and NursingUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Scott B Snapper
- Harvard Medical School and Boston Children's HospitalDivision of Gastroenterology, Hepatology and NutritionBostonMassachusettsUSA
| | | | - Owen J Sansom
- Cancer Research UK Beatson InstituteBearsden, GlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowBearsden, GlasgowUK
| | - Laura M Machesky
- Cancer Research UK Beatson InstituteBearsden, GlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowBearsden, GlasgowUK
| |
Collapse
|
22
|
Choi S, Bhagwat AM, Al Mismar R, Goswami N, Ben Hamidane H, Sun L, Graumann J. Proteomic profiling of human cancer pseudopodia for the identification of anti-metastatic drug candidates. Sci Rep 2018; 8:5858. [PMID: 29643415 PMCID: PMC5895739 DOI: 10.1038/s41598-018-24256-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023] Open
Abstract
Cancer metastasis causes approximately 90% of all cancer-related death and independent of the advancement of cancer therapy, a majority of late stage patients suffers from metastatic cancer. Metastasis implies cancer cell migration and invasion throughout the body. Migration requires the formation of pseudopodia in the direction of movement, but a detailed understanding of this process and accordingly strategies of prevention remain elusive. Here, we use quantitative proteomic profiling of human cancer pseudopodia to examine this mechanisms essential to metastasis formation, and identify potential candidates for pharmacological interference with the process. We demonstrate that Prohibitins (PHBs) are significantly enriched in the pseudopodia fraction derived from cancer cells, and knockdown of PHBs, as well as their chemical inhibition through Rocaglamide (Roc-A), efficiently reduces cancer cell migration.
Collapse
Affiliation(s)
- Sunkyu Choi
- Research Division, Weill Cornell Medicine - Qatar, Doha, State of Qatar
| | - Aditya M Bhagwat
- Research Division, Weill Cornell Medicine - Qatar, Doha, State of Qatar
| | - Rasha Al Mismar
- Research Division, Weill Cornell Medicine - Qatar, Doha, State of Qatar
| | - Neha Goswami
- Research Division, Weill Cornell Medicine - Qatar, Doha, State of Qatar
| | | | - Lu Sun
- Research Division, Weill Cornell Medicine - Qatar, Doha, State of Qatar
| | - Johannes Graumann
- Research Division, Weill Cornell Medicine - Qatar, Doha, State of Qatar. .,Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
23
|
Camuglia JM, Mandigo TR, Moschella R, Mark J, Hudson CH, Sheen D, Folker ES. An RNAi based screen in Drosophila larvae identifies fascin as a regulator of myoblast fusion and myotendinous junction structure. Skelet Muscle 2018; 8:12. [PMID: 29625624 PMCID: PMC5889537 DOI: 10.1186/s13395-018-0159-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/22/2018] [Indexed: 02/08/2023] Open
Abstract
Background A strength of Drosophila as a model system is its utility as a tool to screen for novel regulators of various functional and developmental processes. However, the utility of Drosophila as a screening tool is dependent on the speed and simplicity of the assay used. Methods Here, we use larval locomotion as an assay to identify novel regulators of skeletal muscle function. We combined this assay with muscle-specific depletion of 82 genes to identify genes that impact muscle function by their expression in muscle cells. The data from the screen were supported with characterization of the muscle pattern in embryos and larvae that had disrupted expression of the strongest hit from the screen. Results With this assay, we showed that 12/82 tested genes regulate muscle function. Intriguingly, the disruption of five genes caused an increase in muscle function, illustrating that mechanisms that reduce muscle function exist and that the larval locomotion assay is sufficiently quantitative to identify conditions that both increase and decrease muscle function. We extended the data from this screen and tested the mechanism by which the strongest hit, fascin, impacted muscle function. Compared to controls, animals in which fascin expression was disrupted with either a mutant allele or muscle-specific expression of RNAi had fewer muscles, smaller muscles, muscles with fewer nuclei, and muscles with disrupted myotendinous junctions. However, expression of RNAi against fascin only after the muscle had finished embryonic development did not recapitulate any of these phenotypes. Conclusions These data suggest that muscle function is reduced due to impaired myoblast fusion, muscle growth, and muscle attachment. Together, these data demonstrate the utility of Drosophila larval locomotion as an assay for the identification of novel regulators of muscle development and implicate fascin as necessary for embryonic muscle development. Electronic supplementary material The online version of this article (10.1186/s13395-018-0159-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Torrey R Mandigo
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | | | - Jenna Mark
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | | | - Derek Sheen
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Eric S Folker
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
24
|
Sebrell TA, Sidar B, Bruns R, Wilkinson RA, Wiedenheft B, Taylor PJ, Perrino BA, Samuelson LC, Wilking JN, Bimczok D. Live imaging analysis of human gastric epithelial spheroids reveals spontaneous rupture, rotation and fusion events. Cell Tissue Res 2018; 371:293-307. [PMID: 29178040 PMCID: PMC5785432 DOI: 10.1007/s00441-017-2726-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/27/2017] [Indexed: 01/16/2023]
Abstract
Three-dimensional cultures of primary epithelial cells including organoids, enteroids and epithelial spheroids have become increasingly popular for studies of gastrointestinal development, mucosal immunology and epithelial infection. However, little is known about the behavior of these complex cultures in their three-dimensional culture matrix. Therefore, we performed extended time-lapse imaging analysis (up to 4 days) of human gastric epithelial spheroids generated from adult tissue samples in order to visualize the dynamics of the spheroids in detail. Human gastric epithelial spheroids cultured in our laboratory grew to an average diameter of 443.9 ± 34.6 μm after 12 days, with the largest spheroids reaching diameters of >1000 μm. Live imaging analysis revealed that spheroid growth was associated with cyclic rupture of the epithelial shell at a frequency of 0.32 ± 0.1/day, which led to the release of luminal contents. Spheroid rupture usually resulted in an initial collapse, followed by spontaneous re-formation of the spheres. Moreover, spheroids frequently rotated around their axes within the Matrigel matrix, possibly propelled by basolateral pseudopodia-like formations of the epithelial cells. Interestingly, adjacent spheroids occasionally underwent luminal fusion, as visualized by injection of individual spheroids with FITC-Dextran (4 kDa). In summary, our analysis revealed unexpected dynamics in human gastric spheroids that challenge our current view of cultured epithelia as static entities and that may need to be considered when performing spheroid infection experiments.
Collapse
Affiliation(s)
- T Andrew Sebrell
- Department of Microbiology and Immunology, Montana State University, 960 Technology Blvd., Bozeman, MT, 59717, USA
| | - Barkan Sidar
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Rachel Bruns
- Department of Microbiology and Immunology, Montana State University, 960 Technology Blvd., Bozeman, MT, 59717, USA
| | - Royce A Wilkinson
- Department of Microbiology and Immunology, Montana State University, 960 Technology Blvd., Bozeman, MT, 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, 960 Technology Blvd., Bozeman, MT, 59717, USA
| | | | - Brian A Perrino
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James N Wilking
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, 960 Technology Blvd., Bozeman, MT, 59717, USA.
| |
Collapse
|
25
|
Lima CR, Gomes CC, Santos MF. Role of microRNAs in endocrine cancer metastasis. Mol Cell Endocrinol 2017; 456:62-75. [PMID: 28322989 DOI: 10.1016/j.mce.2017.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
The deregulation of transcription and processing of microRNAs (miRNAs), as well as their function, has been involved in the pathogenesis of several human diseases, including cancer. Despite advances in therapeutic approaches, cancer still represents one of the major health problems worldwide. Cancer metastasis is an aggravating factor in tumor progression, related to increased treatment complexity and a worse prognosis. After more than one decade of extensive studies of miRNAs, the fundamental role of these molecules in cancer progression and metastasis is beginning to be elucidated. Recent evidences have demonstrated a significant role of miRNAs on the metastatic cascade, acting either as pro-metastatic or anti-metastatic. They are involved in distinct steps of metastasis including epithelial-to-mesenchymal transition, migration/invasion, anoikis survival, and distant organ colonization. Studies on the roles of miRNAs in cancer have focused mainly on two fronts: the establishment of a miRNA signature for different tumors, which may aid in early diagnosis using these miRNAs as markers, and functional studies of specific miRNAs, determining their targets, function and regulation. Functional miRNA studies on endocrine cancers are still scarce and represent an important area of research, since some tumors, although not frequent, present a high mortality rate. Among the endocrine tumors, thyroid cancer is the most common and best studied. Several miRNAs show lowered expression in endocrine cancers (i.e. miR-200s, miR-126, miR-7, miR-29a, miR-30a, miR-137, miR-206, miR-101, miR-613, miR-539, miR-205, miR-9, miR-195), while others are commonly overexpressed (i.e. miR-21, miR-183, miR-31, miR-let7b, miR-584, miR-146b, miR-221, miR-222, miR-25, miR-595). Additionally, some miRNAs were found in serum exosomes (miR-151, miR-145, miR-31), potentially serving as diagnostic tools. In this review, we summarize studies concerning the discovery and functions of miRNAs and their regulatory roles in endocrine cancer metastasis, which may contribute for the finding of novel therapeutic targets. The review focus on miRNAs with at least some identified targets, with established functions and, if possible, upstream regulation.
Collapse
Affiliation(s)
- Cilene Rebouças Lima
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Cibele Crastequini Gomes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Marinilce Fagundes Santos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
26
|
Wu Q, Ouyang C, Xie L, Ling Y, Huang T. The ROCK inhibitor, thiazovivin, inhibits human corneal endothelial‑to‑mesenchymal transition/epithelial‑to‑mesenchymal transition and increases ionic transporter expression. Int J Mol Med 2017; 40:1009-1018. [PMID: 28849097 PMCID: PMC5593453 DOI: 10.3892/ijmm.2017.3103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
Corneal diseases exhibit a high prevalence and are prone to cause blindness; furthermore, maintaining the morphology and ionic transporter expression in corneal endothelial cells (CECs) is crucial for treatment of these diseases. This study aimed to investigate the effects of the novel Rho associated coiled-coil containing protein kinase (ROCK) inhibitor, thiazovivin (2,4‑disubstituted thiazole, TZV), on human corneal endothelial‑to‑mesenchymal transition/epithelial‑to‑mesenchymal transition (EndMT/EMT), cell morphology, junction proteins and ionic transporter expression in human CECs (HCECs) in vitro and then to clarify the mechanisms of action of TZV. In the present study, primary HCECs were cultured in vitro and passaged. The expression levels of adhesion proteins (E‑cadherin and N‑cadherin), the EndMT/EMT marker, α smooth muscle actin (α‑SMA), the tight junction protein, Zonula occludens-1 (ZO‑1), and the ionic transporter, Na+/K+‑ATPase, were detected by immunofluorescence. The proliferative ability of the HCECs was determined by CCK-8 assay. The mRNA expression of the EndMT/EMT‑inducing gene, Snail, was examined by RT‑PCR. The protein expression levels of ROCK1/2 were evaluated by western blot analysis. The HCECs were cultured with TZV at various concentrations (2, 4, or 6 µM) for different periods of time (24 or 48 h). We found that the the cell states of the HCECs co‑cultured with 4 µM TZV for 48 h reached the optimum, and corneal EndMT/EMT was inhibited, as evidenced by the significantly upregulated expression of ZO‑1 and E‑cadherin, and the markedly downregulated expression of N‑cadherin and α‑SMA. Furthermore, the cells exhibited a normal, tightly connected hexagonal or pentagonal morphology. Additionally, the protein expression of ROCK1/2 and the mRNA expression of Snail were significantly decreased. However, there was no significant difference between the TZV‑treated and the control groups as regards HCEC proliferative ability. These findings suggested that the ROCK inhibitor, TZV (4 µM), was effective in improving the morphology, cell junctions and ionic transporter expression of HCECs by inhibiting EndMT/EMT, but had no effect on HCEC proliferation.
Collapse
Affiliation(s)
- Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chen Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Lijie Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yunzhi Ling
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Ting Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
27
|
Kryczka J, Przygodzka P, Bogusz H, Boncela J. HMEC-1 adopt the mixed amoeboid-mesenchymal migration type during EndMT. Eur J Cell Biol 2017; 96:289-300. [PMID: 28487031 DOI: 10.1016/j.ejcb.2017.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 11/25/2022] Open
Abstract
The contribution of endothelial cells to scar and fibrotic tissue formation is undisputedly connected to their ability to undergo the endothelial-to-mesenchymal transition (EndMT) towards fibroblast phenotype-resembling cells. The migration model of fibroblasts and fibroblast-resembling cells is still not fully understood. It may be either a Rho/ROCK-independent, an integrin- and MMP-correlated ECM degradation-dependent, a mesenchymal model or Rho/ROCK-dependent, integrin adhesion- and MMP activity-independent, an amoeboid model. Here, we hypothesized that microvascular endothelial cells (HMEC-1) undergoing EndMT adopt an intermediate state of drifting migration model between the mesenchymal and amoeboid protrusive types in the early stages of fibrosis. We characterized the response of HMEC-1 to TGF-β2, a well-known mediator of EndMT within the microvasculature. We observed that TGF-β2 induces up to an intermediate mesenchymal phenotype in HMEC-1. In parallel, MMP-2 is upregulated and is responsible for most proteolytic activity. Interestingly, the migration of HMEC-1 undergoing EndMT is dependent on both ECM degradation and invadosome formation associated with MMP-2 proteolytic activity and Rho/ROCK cytoskeleton contraction. In conclusion, the transition from mesenchymal towards amoeboid movement highlights a molecular plasticity mechanism in endothelial cell migration in skin fibrosis.
Collapse
Affiliation(s)
- Jakub Kryczka
- Institute of Medical Biology, PAS, 106 Lodowa Street, 93232 Lodz, Poland.
| | | | - Helena Bogusz
- Institute of Medical Biology, PAS, 106 Lodowa Street, 93232 Lodz, Poland.
| | - Joanna Boncela
- Institute of Medical Biology, PAS, 106 Lodowa Street, 93232 Lodz, Poland.
| |
Collapse
|
28
|
Piegeler T, Beck-Schimmer B. Anesthesia and colorectal cancer – The perioperative period as a window of opportunity? Eur J Surg Oncol 2016; 42:1286-95. [DOI: 10.1016/j.ejso.2016.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/24/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022] Open
|
29
|
Bhogal M, Matter K, Balda MS, Allan BD. Organ culture storage of pre-prepared corneal donor material for Descemet's membrane endothelial keratoplasty. Br J Ophthalmol 2016; 100:1576-1583. [PMID: 27543290 PMCID: PMC5136687 DOI: 10.1136/bjophthalmol-2016-308855] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/23/2016] [Accepted: 07/17/2016] [Indexed: 11/03/2022]
Abstract
PURPOSE To evaluate the effect of media composition and storage method on pre-prepared Descemet's membrane endothelial keratoplasty (DMEK) grafts. METHODS 50 corneas were used. Endothelial wound healing and proliferation in different media were assessed using a standard injury model. DMEK grafts were stored using three methods: peeling with free scroll storage; partial peeling with storage on the stroma and fluid bubble separation with storage on the stroma. Endothelial cell (EC) phenotype and the extent of endothelial overgrowth were examined. Global cell viability was assessed for storage methods that maintained a normal cell phenotype. RESULTS 1 mm wounds healed within 4 days. Enhanced media did not increase EC proliferation but may have increased EC migration into the wounded area. Grafts that had been trephined showed evidence of EC overgrowth, whereas preservation of a physical barrier in the bubble group prevented this. In grafts stored in enhanced media or reapposed to the stroma after trephination, endothelial migration occurred sooner and cells underwent endothelial-mesenchymal transformation. Ongoing cell loss, with new patterns of cell death, was observed after returning grafts to storage. Grafts stored as free scrolls retained more viable ECs than grafts prepared with the fluid bubble method (74.2± 3% vs 60.3±6%, p=0.04 (n=8). CONCLUSION Free scroll storage is superior to liquid bubble and partial peeling techniques. Free scrolls only showed overgrowth of ECs after 4 days in organ culture, indicating a viable time window for the clinical use of pre-prepared DMEK donor material using this method. Methods for tissue preparation and storage media developed for whole corneas should not be used in pre-prepared DMEK grafts without prior evaluation.
Collapse
Affiliation(s)
- Maninder Bhogal
- Department of Corneal and External Disease, Moorfields Eye Hospital, London, UK.,University College London, Institute of Ophthalmology, London, UK
| | - Karl Matter
- University College London, Institute of Ophthalmology, London, UK
| | - Maria S Balda
- University College London, Institute of Ophthalmology, London, UK
| | - Bruce D Allan
- Department of Corneal and External Disease, Moorfields Eye Hospital, London, UK.,University College London, Institute of Ophthalmology, London, UK
| |
Collapse
|
30
|
Hastie EL, Sherwood DR. A new front in cell invasion: The invadopodial membrane. Eur J Cell Biol 2016; 95:441-448. [PMID: 27402208 DOI: 10.1016/j.ejcb.2016.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023] Open
Abstract
Invadopodia are F-actin-rich membrane protrusions that breach basement membrane barriers during cell invasion. Since their discovery more than 30 years ago, invadopodia have been extensively investigated in cancer cells in vitro, where great advances in understanding their composition, formation, cytoskeletal regulation, and control of the matrix metalloproteinase MT1-MMP trafficking have been made. In contrast, few studies examining invadopodia have been conducted in vivo, leaving their physiological regulation unclear. Recent live-cell imaging and gene perturbation studies in C. elegans have revealed that invadopodia are formed with a unique invadopodial membrane, defined by its specialized lipid and associated protein composition, which is rapidly recycled through the endolysosome. Here, we provide evidence that the invadopodial membrane is conserved and discuss its possible functions in traversing basement membrane barriers. Discovery and examination of the invadopodial membrane has important implications in understanding the regulation, assembly, and function of invadopodia in both normal and disease settings.
Collapse
Affiliation(s)
- Eric L Hastie
- Department of Biology, Duke University, 124 Science Drive, Box 90388, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, 124 Science Drive, Box 90388, Durham, NC 27708, USA.
| |
Collapse
|
31
|
Horejs CM. Basement membrane fragments in the context of the epithelial-to-mesenchymal transition. Eur J Cell Biol 2016; 95:427-440. [PMID: 27397693 DOI: 10.1016/j.ejcb.2016.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 01/18/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) enables cells of epithelial phenotype to become motile and change to a migratory mesenchymal phenotype. EMT is known to be a fundamental requisite for tissue morphogenesis, and EMT-related pathways have been described in cancer metastasis and tissue fibrosis. Epithelial structures are marked by the presence of a sheet-like extracellular matrix, the basement membrane, which is assembled from two major proteins, laminin and collagen type IV. This specialized matrix is essential for tissue function and integrity, and provides an important barrier to the potential pathogenic migration of cells. The profound phenotypic transition in EMT involves the epithelial cells disrupting the basement membrane. Matrix metalloproteinases (MMPs) are known to cleave components of basement membranes, but MMP-basement membrane crosstalk during EMT in vivo is poorly understood. However, MMPs have been reported to play a role in EMT-related processes and a variety of basement membrane fragments have been shown to be released by specific MMPs in vitro and in vivo exhibiting distinct biological activities. This review discusses general considerations regarding the basement membrane in the context of EMT, a possible role for specific MMPs in EMT and highlights biologically active basement membrane fragments liberated by MMPs.
Collapse
Affiliation(s)
- Christine-Maria Horejs
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles vaeg 2, 17177 Stockholm, Sweden.
| |
Collapse
|
32
|
Regulation of VCP/p97 demonstrates the critical balance between cell death and epithelial-mesenchymal transition (EMT) downstream of ER stress. Oncotarget 2016; 6:17725-37. [PMID: 25970786 PMCID: PMC4627341 DOI: 10.18632/oncotarget.3918] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/08/2015] [Indexed: 11/28/2022] Open
Abstract
Valosin-containing protein (VCP), also called p97, is a AAA+ ATPase that has been shown to be involved in endoplasmic reticulum-associated protein degradation (ERAD), mitochondria quality control and vesicle transport. We and others have previously found that disruption of VCP is sufficient to cause endoplasmic reticulum (ER) stress. We observed that induction of ER stress either following siRNA mediated loss of VCP or inhibition of VCP with eeyarestatin I potently activates an EMT-like state in cells. Interestingly, both ER stress and EMT are reversible events. Further, brief treatment of cells with eeyarestatin I increases EMT markers, and migratory and invasive properties of lung cancer cells. By examining primary lung adenocarcinoma patient samples we find that the VCP locus is heterozygously lost in nearly half of lung adenocarcinomas and VCP protein expression is decreased in nearly all primary lung tumors. Further, primary lung adenocarcinomas have increased ER stress and EMT markers. These observations have potential clinical relevance because increased ER stress and EMT markers are known to contribute to chemoresistance and poor survival of patients with lung adenocarcinoma.
Collapse
|
33
|
Lu H, Liu S, Zhang G, Kwong LN, Zhu Y, Miller JP, Hu Y, Zhong W, Zeng J, Wu L, Krepler C, Sproesser K, Xiao M, Xu W, Karakousis GC, Schuchter LM, Field J, Zhang PJ, Herlyn M, Xu X, Guo W. Oncogenic BRAF-Mediated Melanoma Cell Invasion. Cell Rep 2016; 15:2012-24. [PMID: 27210749 DOI: 10.1016/j.celrep.2016.04.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/21/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022] Open
Abstract
Melanoma patients with oncogenic BRAF(V600E) mutation have poor prognoses. While the role of BRAF(V600E) in tumorigenesis is well established, its involvement in metastasis that is clinically observed in melanoma patients remains a topic of debate. Here, we show that BRAF(V600E) melanoma cells have extensive invasion activity as assayed by the generation of F-actin and cortactin foci that mediate membrane protrusion, and degradation of the extracellular matrix (ECM). Inhibition of BRAF(V600E) blocks melanoma cell invasion. In a BRAF(V600E)-driven murine melanoma model or in patients' tumor biopsies, cortactin foci decrease upon inhibitor treatment. In addition, genome-wide expression analysis shows that a number of invadopodia-related genes are downregulated after BRAF(V600E) inhibition. Mechanistically, BRAF(V600E) induces phosphorylation of cortactin and the exocyst subunit Exo70 through ERK, which regulates actin dynamics and matrix metalloprotease secretion, respectively. Our results provide support for the role of BRAF(V600E) in metastasis and suggest that inhibiting invasion is a potential therapeutic strategy against melanoma.
Collapse
Affiliation(s)
- Hezhe Lu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 770303, USA
| | - Yueyao Zhu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John P Miller
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 770303, USA
| | - Yi Hu
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Wenqun Zhong
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jingwen Zeng
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lawrence Wu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Katrin Sproesser
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Wei Xu
- Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn M Schuchter
- Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffery Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul J Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Wei Guo
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Superparamagnetic iron oxide nanoparticle uptake alters M2 macrophage phenotype, iron metabolism, migration and invasion. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1127-1138. [DOI: 10.1016/j.nano.2015.11.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/11/2015] [Accepted: 11/25/2015] [Indexed: 01/11/2023]
|
35
|
García E, Ragazzini C, Yu X, Cuesta-García E, Bernardino de la Serna J, Zech T, Sarrió D, Machesky LM, Antón IM. WIP and WICH/WIRE co-ordinately control invadopodium formation and maturation in human breast cancer cell invasion. Sci Rep 2016; 6:23590. [PMID: 27009365 PMCID: PMC4806363 DOI: 10.1038/srep23590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/08/2016] [Indexed: 01/16/2023] Open
Abstract
Cancer cells form actin-rich degradative protrusions (invasive pseudopods and invadopodia), which allows their efficient dispersal during metastasis. Using biochemical and advanced imaging approaches, we demonstrate that the N-WASP-interactors WIP and WICH/WIRE play non-redundant roles in cancer cell invasion. WIP interacts with N-WASP and cortactin and is essential for invadopodium assembly, whereas WICH/WIRE regulates N-WASP activation to control invadopodium maturation and degradative activity. Our data also show that Nck interaction with WIP and WICH/WIRE modulates invadopodium maturation; changes in WIP and WICH/WIRE levels induce differential distribution of Nck. We show that WIP can replace WICH/WIRE functions and that elevated WIP levels correlate with high invasiveness. These findings identify a role for WICH/WIRE in invasiveness and highlight WIP as a hub for signaling molecule recruitment during invadopodium generation and cancer progression, as well as a potential diagnostic biomarker and an optimal target for therapeutic approaches.
Collapse
Affiliation(s)
- Esther García
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Xinzi Yu
- The Beatson Institute for Cancer Research, Glasgow, UK
| | | | - Jorge Bernardino de la Serna
- Science and Technology Facilities Council, Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell, Harwell-Oxford, UK
| | - Tobias Zech
- The Beatson Institute for Cancer Research, Glasgow, UK
| | | | | | - Inés M. Antón
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
36
|
Mesenchymal Stem/Stromal Cells in Stromal Evolution and Cancer Progression. Stem Cells Int 2015; 2016:4824573. [PMID: 26798356 PMCID: PMC4699086 DOI: 10.1155/2016/4824573] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 01/14/2023] Open
Abstract
The study of cancer biology has mainly focused on malignant epithelial cancer cells, although tumors also contain a stromal compartment, which is composed of stem cells, tumor-associated fibroblasts (TAFs), endothelial cells, immune cells, adipocytes, cytokines, and various types of macromolecules comprising the extracellular matrix (ECM). The tumor stroma develops gradually in response to the needs of epithelial cancer cells during malignant progression initiating from increased local vascular permeability and ending to remodeling of desmoplastic loosely vascularized stromal ECM. The constant bidirectional interaction of epithelial cancer cells with the surrounding microenvironment allows damaged stromal cell usage as a source of nutrients for cancer cells, maintains the stroma renewal thus resembling a wound that does not heal, and affects the characteristics of tumor mesenchymal stem/stromal cells (MSCs). Although MSCs have been shown to coordinate tumor cell growth, dormancy, migration, invasion, metastasis, and drug resistance, recently they have been successfully used in treatment of hematopoietic malignancies to enhance the effect of total body irradiation-hematopoietic stem cell transplantation therapy. Hence, targeting the stromal elements in combination with conventional chemotherapeutics and usage of MSCs to attenuate graft-versus-host disease may offer new strategies to overcome cancer treatment failure and relapse of the disease.
Collapse
|
37
|
Hwang YS, Lee J, Zhang X, Lindholm PF. Lysophosphatidic acid activates the RhoA and NF-κB through Akt/IκBα signaling and promotes prostate cancer invasion and progression by enhancing functional invadopodia formation. Tumour Biol 2015; 37:6775-85. [PMID: 26662305 DOI: 10.1007/s13277-015-4549-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022] Open
Abstract
We have demonstrated previously that increased RhoA and nuclear factor (NF)-κB activities are associated with increased PC-3 prostate cancer cell invasion and that lysophosphatidic acid (LPA) significantly increases cancer invasion through RhoA and NF-κB activation. In this study, we identified the intermediate signaling molecules and specialized cell structures which are activated by LPA, resulting in enhanced cellular invasion. LPA-induced Akt and IκBα signaling pathways were necessary for RhoA and NF-κB activation, and these LPA effects were abolished by RhoA inhibition. Mice injected with PC-3 cells expressing dominant-negative RhoA N19 developed significantly less tumor growth compared with those injected with control (pcDNA 3.1). In addition, LPA treatment increased functional invadopodia formation. Activation of RhoA and NF-κB through the Akt and IκBα signaling pathway was required for LPA-stimulated gelatin degradation activity. LPA administration increased tumor growth and osteolytic lesions in a mouse xenograft model. These results indicate that LPA promotes PC-3 cell invasion by increasing functional invadopodia formation via upregulating RhoA and NF-κB signaling which contributes to prostate cancer progression. Therefore, the LPA and RhoA-NF-κB signaling axis may represent key molecular targets to inhibit prostate cancer invasion and progression.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Dental Hygiene, College of Health Science, Eulji University, Seongnam, Republic of Korea
| | - Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan Gu, Suwon City, Gyunggi Do, 164-19, Republic of Korea
| | - Xianglan Zhang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea.,Department of Pathology, Yanbian University Hospital, Yanji City, Jilin Province, China
| | - Paul F Lindholm
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
38
|
Berning M, Prätzel-Wunder S, Bickenbach JR, Boukamp P. Three-Dimensional In Vitro Skin and Skin Cancer Models Based on Human Fibroblast-Derived Matrix. Tissue Eng Part C Methods 2015; 21:958-70. [DOI: 10.1089/ten.tec.2014.0698] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Manuel Berning
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Silke Prätzel-Wunder
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jackie R. Bickenbach
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Petra Boukamp
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- IUF–Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
39
|
Abstract
Glioblastomas are devastating central nervous system tumors with abysmal prognoses. These tumors are often difficult to resect surgically, are highly invasive and proliferative, and are resistant to virtually all therapeutic attempts, making them universally lethal diseases. One key enabling feature of their tumor biology is the engagement of the unfolded protein response (UPR), a stress response originating in the endoplasmic reticulum (ER) designed to handle the pathologies of aggregating malfolded proteins in that organelle. Glioblastomas and other tumors have co-opted this stress response to allow their continued uncontrolled growth by enhanced protein production (maintained by chaperone-assisted protein folding) and lipid biosynthesis driven downstream of the UPR. These features can account for the extensive extracellular remodeling/invasiveness/angiogenesis and proliferative capacity, and ultimately result in tumor phenotypes of chemo- and radio-resistance. The UPR in general, and its chaperoning capacity in particular, are thus putative high-value targets for treatment intervention. Such therapeutic strategies, and potential problems with them, will be discussed and analyzed.
Collapse
|
40
|
Lohmer LL, Kelley LC, Hagedorn EJ, Sherwood DR. Invadopodia and basement membrane invasion in vivo. Cell Adh Migr 2015; 8:246-55. [PMID: 24717190 DOI: 10.4161/cam.28406] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over 20 years ago, protrusive, F-actin-based membrane structures, termed invadopodia, were identified in highly metastatic cancer cell lines. Invadopodia penetrate artificial or explanted extracellular matrices in 2D culture conditions and have been hypothesized to facilitate the migration of cancer cells through basement membrane, a thin, dense, barrier-like matrix surrounding most tissues. Despite intensive study, the identification of invadopodia in vivo has remained elusive and until now their possible roles during invasion or even existence have remained unclear. Studies in remarkably different cellular contexts-mouse tumor models, zebrafish intestinal epithelia, and C. elegans organogenesis-have recently identified invadopodia structures associated with basement membrane invasion. These studies are providing the first in vivo insight into the regulation, function, and role of these fascinating subcellular devices with critical importance to both development and human disease.
Collapse
|
41
|
Emmanuel M, Nakano YS, Nozaki T, Datta S. Small GTPase Rab21 mediates fibronectin induced actin reorganization in Entamoeba histolytica: implications in pathogen invasion. PLoS Pathog 2015; 11:e1004666. [PMID: 25730114 PMCID: PMC4346268 DOI: 10.1371/journal.ppat.1004666] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
The protozoan parasite Entamoeba histolytica causes a wide spectrum of intestinal infections. In severe cases, the trophozoites can breach the mucosal barrier, invade the intestinal epithelium and travel via the portal circulation to the liver, where they cause hepatic abscesses, which can prove fatal if left untreated. The host Extra Cellular Matrix (ECM) plays a crucial role in amoebic invasion by triggering an array of cellular responses in the parasite, including induction of actin rich adhesion structures. Similar actin rich protrusive structures, known as 'invadosomes', promote chemotactic migration of the metastatic cancer cells and non-transformed cells by remodeling the ECM. Recent studies showed a central role for Rab GTPases, the master regulators of vesicular trafficking, in biogenesis of invadosomes. Here, we showed that fibronectin, a major host ECM component induced actin remodeling in the parasite in a Rab21 dependent manner. The focalized actin structures formed were reminiscent of the mammalian invadosomes. By using various approaches, such as immunofluorescence confocal microscopy and scanning electron microscopy, along with in vitro invasion assay and matrix degradation assay, we show that the fibronectin induced formation of amoebic actin dots depend on the nucleotide status of the GTPase. The ECM components, fibronectin and collagen type I, displayed differential control over the formation of actin dots, with fibronectin positively and collagen type I negatively modulating it. The cell surface adhesion molecule Gal/GalNAc complex was also found to impose additional regulation on this process, which might have implication in collagen type I mediated suppression of actin dots.
Collapse
Affiliation(s)
- Merlyn Emmanuel
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Yumiko Saito Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- * E-mail:
| |
Collapse
|
42
|
Morris HT, Machesky LM. Actin cytoskeletal control during epithelial to mesenchymal transition: focus on the pancreas and intestinal tract. Br J Cancer 2015; 112:613-20. [PMID: 25611303 PMCID: PMC4333498 DOI: 10.1038/bjc.2014.658] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/12/2022] Open
Abstract
The formation of epithelial tissues allows organisms to specialise and form tissues with diverse functions and compartmentalised environments. The tight controls on cell growth and migration required to maintain epithelia can present problems such as the development and spread of cancer when normal pathways are disrupted. By attaining a deeper understanding of how cell migration is suppressed to maintain the epithelial organisation and how it is reactivated when epithelial tissues become mesenchymal, new insights into both cancer and development can be gained. Here we discuss recent developments in our understanding of epithelial and mesenchymal regulation of the actin cytoskeleton in normal and cancerous tissue, with a focus on the pancreas and intestinal tract.
Collapse
Affiliation(s)
- H T Morris
- The CRUK Beatson Institute for Cancer Research and University of Glasgow College of Medical, Veterinary and Life Sciences, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - L M Machesky
- The CRUK Beatson Institute for Cancer Research and University of Glasgow College of Medical, Veterinary and Life Sciences, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
43
|
The roles of akt isoforms in the regulation of podosome formation in fibroblasts and extracellular matrix invasion. Cancers (Basel) 2015; 7:96-111. [PMID: 25575302 PMCID: PMC4381253 DOI: 10.3390/cancers7010096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/22/2014] [Indexed: 01/15/2023] Open
Abstract
Mesenchymal cells employ actin-based membrane protrusions called podosomes and invadopodia for cross-tissue migration during normal human development such as embryogenesis and angiogenesis, and in diseases such as atherosclerosis plaque formation and cancer cell metastasis. The Akt isoforms, downstream effectors of phosphatidylinositol 3 kinase (PI3K), play crucial roles in cell migration and invasion, but their involvement in podosome formation and cell invasion is not known. In this study, we have used Akt1 and/or Akt2 knockout mouse embryonic fibroblasts and Akt3-targeted shRNA to determine the roles of the three Akt isoforms in Src and phorbol ester-induced podosome formation, and extracellular matrix (ECM) digestion. We found that deletion or knockdown of Akt1 significantly reduces Src-induced formation of podosomes and rosettes, and ECM digestion, while suppression of Akt2 has little effect. In contrast, Akt3 knockdown by shRNA increases Src-induced podosome/rosette formation and ECM invasion. These data suggest that Akt1 promotes, while Akt3 suppresses, podosome formation induced by Src, and Akt2 appears to play an insignificant role. Interestingly, both Akt1 and Akt3 suppress, while Akt2 enhances, phorbol ester-induced podosome formation. These data show that Akt1, Akt2 and Akt3 play different roles in podosome formation and ECM invasion induced by Src or phorbol ester, thus underscoring the importance of cell context in the roles of Akt isoforms in cell invasion.
Collapse
|
44
|
Havrylov S, Park M. MS/MS-based strategies for proteomic profiling of invasive cell structures. Proteomics 2014; 15:272-86. [PMID: 25303514 DOI: 10.1002/pmic.201400220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/19/2014] [Accepted: 10/01/2014] [Indexed: 12/29/2022]
Abstract
Acquired capacity of cancer cells to penetrate through the extracellular matrix of surrounding tissues is a prerequisite for tumour metastatic spread - the main source of cancer-associated mortality. Through combined efforts of many research groups, we are beginning to understand that the ability of cells to invade through the extracellular matrix is a multi-faceted phenomenon supported by variety of specialised protrusive cellular structures, primarily pseudopodia, invadopodia and podosomes. Additionally, secreted extracellular vesicles are being increasingly recognised as important mediators of invasive cell phenotypes and therefore may be considered bona fide invasive cell structures. Dissection of the molecular makings underlying biogenesis and function of all of these structures is crucial to identify novel targets for specific anti-metastatic therapies. Rapid advances and growing accessibility of MS/MS-based protein identification made this family of techniques a suitable and appropriate choice for proteomic profiling of invasive cell structures. In this review, we provide a summary of current progress in the characterisation of protein composition and topology of protein interaction networks of pseudopodia, invadopodia, podosomes and extracellular vesicles, as well as outline challenges and perspectives of the field.
Collapse
Affiliation(s)
- Serhiy Havrylov
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Medicine, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
45
|
Meseure D, Drak Alsibai K, Nicolas A. Pivotal role of pervasive neoplastic and stromal cells reprogramming in circulating tumor cells dissemination and metastatic colonization. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2014; 7:95-115. [PMID: 25523234 PMCID: PMC4275542 DOI: 10.1007/s12307-014-0158-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 10/06/2014] [Indexed: 01/01/2023]
Abstract
Reciprocal interactions between neoplastic cells and their microenvironment are crucial events in carcinogenesis and tumor progression. Pervasive stromal reprogramming and remodeling that transform a normal to a tumorigenic microenvironment modify numerous stromal cells functions, status redox, oxidative stress, pH, ECM stiffness and energy metabolism. These environmental factors allow selection of more aggressive cancer cells that develop important adaptive strategies. Subpopulations of cancer cells acquire new properties associating plasticity, stem-like phenotype, unfolded protein response, metabolic reprogramming and autophagy, production of exosomes, survival to anoikis, invasion, immunosuppression and therapeutic resistance. Moreover, by inducing vascular transdifferentiation of cancer cells and recruiting endothelial cells and pericytes, the tumorigenic microenvironment induces development of tumor-associated vessels that allow invasive cells to gain access to the tumor vessels and to intravasate. Circulating cancer cells can survive in the blood stream by interacting with the intravascular microenvironment, extravasate through the microvasculature and interact with the metastatic microenvironment of target organs. In this review, we will focus on many recent paradigms involved in the field of tumor progression.
Collapse
Affiliation(s)
- Didier Meseure
- Platform of Investigative Pathology and Department of Biopathology, Curie Institute, 26 rue d'Ulm, 75248, Paris, Cedex 05, France,
| | | | | |
Collapse
|
46
|
Mimae T, Ito A. New challenges in pseudopodial proteomics by a laser-assisted cell etching technique. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:538-46. [PMID: 25461796 DOI: 10.1016/j.bbapap.2014.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/10/2014] [Accepted: 10/10/2014] [Indexed: 12/26/2022]
Abstract
Pseudopodia are ventral membrane protrusions that extend toward higher concentrations of chemoattractants and play key roles in cell migration and cancer cell invasion. Cancers, including carcinoma and sarcoma, become life threatening when they invade surrounding structures and other organs. Understanding the molecular basis of invasiveness is important for the elimination of cancers. Thus, determining the pseudopodial composition will offer insights into the mechanisms underlying tumor cell invasiveness and provide potential biomarkers and therapeutic targets. Pseudopodial composition has been extensively investigated by using proteomic approaches. A variety of modalities, including gel-based and mass spectrometry-based methods, have been employed for pseudopodial proteomics. Our research group recently established a novel method using excimer laser pulses to selectively harvest pseudopodia, and we successfully identified a number of new pseudopodial constituents. Here, we summarized the conventional proteomic procedures and describe our new excimer laser-assisted method, with a special emphasis on the differences in the methods used to isolate pseudopodia. In addition, we discussed the theoretical background for the use of excimer laser-mediated cell ablation in proteomic applications. Using the excimer laser-assisted method, we showed that alpha-parvin, an actin-binding adaptor protein, is localized to pseudopodia, and is involved in breast cancer invasiveness. Our results clearly indicate that excimer laser-assisted cell etching is a useful technique for pseudopodial proteomics. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Takahiro Mimae
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan.
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kinki University, Osaka 589-8511, Japan
| |
Collapse
|
47
|
Abstract
The epithelial-mesenchymal transition (EMT) is an essential mechanism in embryonic development and tissue repair. EMT also contributes to the progression of disease, including organ fibrosis and cancer. EMT, as well as a similar transition occurring in vascular endothelial cells called endothelial-mesenchymal transition (EndMT), results from the induction of transcription factors that alter gene expression to promote loss of cell-cell adhesion, leading to a shift in cytoskeletal dynamics and a change from epithelial morphology and physiology to the mesenchymal phenotype. Transcription program switching in EMT is induced by signaling pathways mediated by transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP), Wnt-β-catenin, Notch, Hedgehog, and receptor tyrosine kinases. These pathways are activated by various dynamic stimuli from the local microenvironment, including growth factors and cytokines, hypoxia, and contact with the surrounding extracellular matrix (ECM). We discuss how these pathways crosstalk and respond to signals from the microenvironment to regulate the expression and function of EMT-inducing transcription factors in development, physiology, and disease. Understanding these mechanisms will enable the therapeutic control of EMT to promote tissue regeneration, treat fibrosis, and prevent cancer metastasis.
Collapse
Affiliation(s)
- David M Gonzalez
- Departments of Orthopaedics and Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA. Center for Regenerative Medicine, Rhode Island Hospital, Providence, RI 02903, USA. Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA
| | - Damian Medici
- Departments of Orthopaedics and Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA. Center for Regenerative Medicine, Rhode Island Hospital, Providence, RI 02903, USA. Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA.
| |
Collapse
|
48
|
Takino T, Yoshimoto T, Nakada M, Li Z, Domoto T, Kawashiri S, Sato H. Membrane-type 1 matrix metalloproteinase regulates fibronectin assembly and N-cadherin adhesion. Biochem Biophys Res Commun 2014; 450:1016-20. [PMID: 24976399 DOI: 10.1016/j.bbrc.2014.06.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 06/19/2014] [Indexed: 11/24/2022]
Abstract
Fibronectin matrix formation requires the increased cytoskeletal tension generated by cadherin adhesions, and is suppressed by membrane-type 1 matrix metalloproteinase (MT1-MMP). In a co-culture of Rat1 fibroblasts and MT1-MMP-silenced HT1080 cells, fibronectin fibrils extended from Rat1 to cell-matrix adhesions in HT1080 cells, and N-cadherin adhesions were formed between Rat1 and HT1080 cells. In control HT1080 cells contacting with Rat1 fibroblasts, cell-matrix adhesions were formed in the side away from Rat1 fibroblasts, and fibronectin assembly and N-cadherin adhesions were not formed. The role of N-cadherin adhesions in fibronectin matrix formation was studied using MT1-MMP-silenced HT1080 cells. MT1-MMP knockdown promoted fibronectin matrix assembly and N-cadherin adhesions in HT1080 cells, which was abrogated by double knockdown with either integrin β1 or fibronectin. Conversely, inhibition of N-cadherin adhesions by its knockdown or treatment with its neutralizing antibody suppressed fibronectin matrix formation in MT1-MMP-silenced cells. These results demonstrate that fibronectin assembly initiated by MT1-MMP knockdown results in increase of N-cadherin adhesions, which are prerequisite for further fibronectin matrix formation.
Collapse
Affiliation(s)
- Takahisa Takino
- Division of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Taisuke Yoshimoto
- Division of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Zichen Li
- Division of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takahiro Domoto
- Division of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shuichi Kawashiri
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | - Hiroshi Sato
- Division of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
49
|
Abstract
The occurrence of invadopodia has been, since its characterization, a hallmark of cancerous cell invasion and metastasis. These structures are now the subject of a controversy concerning their cellular function, molecular regulation, and assembly. The terms invadopodia and podosomes have been used interchangeably since their discovery back in 1980. Since then, these phenotypes are now more established and accepted by the scientific community as vital structures for 3D cancer cell motility. Many characteristics relating to invadopodia and podosomes have been elucidated, which might prove these structures as good targets for metastasis treatment. In this review, we briefly review the actin reorganization process needed in most types of cancer cell motility. We also review the important characteristics of invadopodia, including molecular components, assembly, markers, and the signaling pathways, providing a comprehensive model for invadopodia regulation.
Collapse
Affiliation(s)
- Bechara A Saykali
- Department of Natural Sciences, The Lebanese American University , Beirut , Lebanon
| | | |
Collapse
|
50
|
Abstract
The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial-mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-β (TGFβ) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT.
Collapse
|