1
|
Aoki K, Ishitani T. Mechanical force-driven cell competition ensures robust morphogen gradient formation. Semin Cell Dev Biol 2025; 170:103607. [PMID: 40220598 DOI: 10.1016/j.semcdb.2025.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
Morphogen gradients provide positional data and maintain tissue patterns by instructing cells to adopt distinct fates. In contrast, morphogen gradient-forming tissues undergo dynamic morphogenetic movements that generate mechanical forces and can disturb morphogen signal transduction. However, the interactions between morphogen gradients and these forces remain largely unknown. In this study, we described how mechanical force-mediated cell competition corrects noisy morphogen gradients to ensure robust tissue patterns. The Wnt/β-catenin morphogen gradient-that patterns the embryonic anterior-posterior axis-generates cadherin-actomyosin interaction-mediated intercellular tension gradients-termed mechano-gradients. Naturally generated unfit cells that produce noisy Wnt/β-catenin gradients induce local deformation of the mechano-gradients. Neighboring fit cells sense this deformation, resulting in the activation of Piezo family mechanosensitive calcium channels and secretion of annexinA1, which specifically kills unfit cells to recover morphogen gradients. Therefore, mechanical force-mediated cell competition between the morphogen-receiver cells supports robust gradient formation. Additionally, we discuss the potential roles of mechanical force-driven cell competition in other contexts, including organogenesis and cancer.
Collapse
Affiliation(s)
- Kana Aoki
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Moore Zajic EL, Zhao R, McKinney MC, Yi K, Wood C, Trainor PA. Cell extrusion drives neural crest cell delamination. Proc Natl Acad Sci U S A 2025; 122:e2416566122. [PMID: 40063802 PMCID: PMC11929498 DOI: 10.1073/pnas.2416566122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/17/2025] [Indexed: 03/15/2025] Open
Abstract
Neural crest cells (NCC) comprise a heterogeneous population of cells with variable potency that contribute to nearly every tissue and organ throughout the body. Considered unique to vertebrates, NCC are transiently generated within the dorsolateral region of the neural plate or neural tube during neurulation. Their delamination and migration are crucial for embryo development as NCC differentiation is influenced by their final resting locations. Previous work in avian and aquatic species revealed that NCC delaminate via an epithelial-mesenchymal transition (EMT), which transforms these progenitor cells from static polarized epithelial cells into migratory mesenchymal cells with fluid front and back polarity. However, the cellular and molecular mechanisms facilitating NCC delamination in mammals are poorly understood. Through time-lapse imaging of NCC delamination in mouse embryos, we identified a subset of cells that exit the neuroepithelium as isolated round cells, which then halt for a short period prior to acquiring the mesenchymal migratory morphology classically associated with delaminating NCC. High-magnification imaging and protein localization analyses of the cytoskeleton, together with measurements of pressure and tension of delaminating NCC and neighboring neuroepithelial cells, revealed that round NCC are extruded from the neuroepithelium prior to completion of EMT. Furthermore, cranial NCC are extruded through activation of the mechanosensitive ion channel, PIEZO1. Our results support a model in which cell density, pressure, and tension in the neuroepithelium result in activation of the live cell extrusion pathway and delamination of a subpopulation of NCC in parallel with EMT, which has implications for cell delamination in development and disease.
Collapse
Affiliation(s)
| | - Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO64110
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS66160
| | | | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO64110
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS66160
| |
Collapse
|
3
|
Hippee CE, Durnell LA, Kaufman JW, Murray E, Singh BK, Sinn PL. Epithelial-to-mesenchymal transition and live cell extrusion contribute to measles virus release from human airway epithelia. J Virol 2025; 99:e0122024. [PMID: 39791903 PMCID: PMC11852777 DOI: 10.1128/jvi.01220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Measles virus (MeV) is a highly contagious respiratory virus transmitted via aerosols. To understand how MeV exits the airways of an infected host, we use unpassaged primary cultures of human airway epithelial cells (HAE). MeV typically remains cell-associated in HAE and forms foci of infection, termed infectious centers, by directly spreading cell-to-cell. We previously described the phenomenon in which infectious centers detach en masse from HAE and remain viable. Here, we investigate the mechanism of this cellular detachment. Via immunostaining, we observed loss of tight junction and cell adhesion proteins within infectious centers. These morphological changes indicate activation of epithelial-to-mesenchymal transition (EMT). EMT can contribute to wound healing in respiratory epithelia by mobilizing nearby cells. Inhibiting TGF-β, and thus EMT, reduced infectious center detachment. Compared with uninfected cells, MeV-infected cells also expressed increased levels of sphingosine kinase 1 (SK1), a regulator of live cell extrusion. Live cell extrusion encourages cells to detach from respiratory epithelia by contracting the actomyosin of neighboring cells. Inhibition or induction of live cell extrusion impacted infectious center detachment rates. Thus, these two related pathways contributed to infectious center detachment in HAE. Detached infectious centers contained high titers of virus that may be protected from the environment, allowing the virus to live on surfaces longer and infect more hosts.IMPORTANCEMeasles virus (MeV) is an extremely contagious respiratory pathogen that continues to cause large, disruptive outbreaks each year. Here, we examine mechanisms of detachment of MeV-infected cells. MeV spreads cell-to-cell in human airway epithelial cells (HAE) to form groups of infected cells, termed "infectious centers". We reported that infectious centers ultimately detach from HAE as a unit, carrying high titers of virus. Viral particles within cells may be more protected from environmental conditions, such as ultraviolet radiation and desiccation. We identified two host pathways, epithelial-to-mesenchymal transition and live cell extrusion, that contribute to infectious center detachment. Perturbing these pathways altered the kinetics of infectious center detachment. These pathways influence one another and contribute to epithelial wound healing, suggesting that infectious center detachment may be a usurped consequence of the host's response to infection that benefits MeV by increasing its transmissibility between hosts.
Collapse
Affiliation(s)
- Camilla E. Hippee
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Lorellin A. Durnell
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Justin W. Kaufman
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Eileen Murray
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Anjum S, Vijayraghavan D, Fernandez-Gonzalez R, Sutherland A, Davidson L. Inferring active and passive mechanical drivers of epithelial convergent extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635314. [PMID: 39975291 PMCID: PMC11838355 DOI: 10.1101/2025.01.28.635314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
What can we learn about the mechanical processes that shape tissues by simply watching? Several schemes suggest that static cell morphology or junctional connectivity can reveal where chains of cells transmit force or where force asymmetries drive cellular rearrangements. We hypothesize that dynamic cell shape changes from time lapse sequences can be used to distinguish specific mechanisms of tissue morphogenesis. Convergent extension (CE) is a crucial developmental motif wherein a planar tissue narrows in one direction and lengthens in the other. It is tempting to assume that forces driving CE reside within cells of the deforming tissue, as CE may reflect a variety of active processes or passive responses to forces generated by adjacent tissues. In this work, we first construct a simple model of epithelial cells capable of passive CE in response to external forces. We adapt this framework to simulate CE from active anisotropic processes in three different modes: crawling, contraction, and capture. We develop an image analysis pipeline for analysis of morphogenetic changes in both live cells and simulated cells using a panel of mechanical and statistical approaches. Our results allow us to identify how each simulated mechanism uniquely contributes to tissue morphology and provide insight into how force transmission is coordinated. We construct a MEchanism Index (MEI) to quantify how similar live cells are to simulated passive and active cells undergoing CE. Applying these analyses to live cell data of Xenopus neural CE reveals features of both passive motion and active forces. Furthermore, we find spatial variation across the neural plate. We compare the inferred mechanisms in the frog midline to tissues undergoing CE in both the mouse and fly. We find that distinct active modes may have different prevalences depending on the model system. Our modeling framework allows us to gain insight from tissue timelapse images and assess the relative contribution of specific cellular mechanisms to observed tissue phenotypes. This approach can be used to guide further experimental inquiry into how mechanics influences the shaping of tissues and organs during development.
Collapse
Affiliation(s)
- Sommer Anjum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Computational Modeling and Simulation Graduate Program, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Lance Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
5
|
Anjum S, Turner L, Atieh Y, Eisenhoffer GT, Davidson LA. Assessing mechanical agency during apical apoptotic cell extrusion. iScience 2024; 27:111017. [PMID: 39507245 PMCID: PMC11539584 DOI: 10.1016/j.isci.2024.111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/31/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Homeostasis is necessary for epithelia to maintain barrier function and prevent the accumulation of defective cells. Unfit, excess, and dying cells in the larval zebrafish tail fin epidermis are removed via controlled cell death and extrusion. Extrusion coincides with oscillations of cell area, both in the extruding cell and its neighbors. Here, we develop a biophysical model of this process to explore the role of autonomous and non-autonomous mechanics. We vary biophysical properties and oscillatory behaviors of extruding cells and their neighbors along with tissue-wide cell density and viscosity. We find that cell autonomous processes are major contributors to the dynamics of extrusion, with the mechanical microenvironment providing a less pronounced contribution. We also find that some cells initially resist extrusion, influencing the duration of the expulsion process. Our model provides insights into the cellular dynamics and mechanics that promote elimination of unwanted cells from epithelia during homeostatic tissue maintenance.
Collapse
Affiliation(s)
- Sommer Anjum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Computational Modeling and Simulation Graduate Program, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Llaran Turner
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Genetics and Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Youmna Atieh
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George T. Eisenhoffer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Genetics and Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
6
|
Mukherjee A, Huang Y, Elgeti J, Oh S, Abreu J, Neliat AR, Schuttler J, Su D, Dupre C, Benites NC, Liu X, Peshkin L, Barboiu M, Stocker H, Kirschner MW, Basan M. Membrane potential mediates the cellular response to mechanical pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565386. [PMID: 37961564 PMCID: PMC10635089 DOI: 10.1101/2023.11.02.565386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mechanical forces have been shown to influence cellular decisions to grow, die, or differentiate, through largely mysterious mechanisms. Separately, changes in resting membrane potential have been observed in development, differentiation, regeneration, and cancer. We now demonstrate that membrane potential is the central mediator of cellular response to mechanical pressure. We show that mechanical forces acting on the cell change cellular biomass density, which in turn alters membrane potential. Membrane potential then regulates cell number density in epithelia by controlling cell growth, proliferation, and cell elimination. Mechanistically, we show that changes in membrane potential control signaling through the Hippo and MAPK pathways, and potentially other signaling pathways that originate at the cell membrane. While many molecular interactions are known to affect Hippo signaling, the upstream signal that activates the canonical Hippo pathway at the membrane has previously been elusive. Our results establish membrane potential as a central regulator of growth and tissue homeostasis.
Collapse
|
7
|
Wallbank BA, Pardy RD, Brodsky IE, Hunter CA, Striepen B. Cryptosporidium impacts epithelial turnover and is resistant to induced death of the host cell. mBio 2024; 15:e0172024. [PMID: 38995074 PMCID: PMC11323733 DOI: 10.1128/mbio.01720-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Infection with the apicomplexan parasite Cryptosporidium is a leading cause of diarrheal disease. Cryptosporidiosis is of particular importance in infants and shows a strong association with malnutrition, both as a risk factor and as a consequence. Cryptosporidium invades and replicates within the small intestine epithelial cells. This is a highly dynamic tissue that is developmentally stratified along the villus axis. New cells emerge from a stem cell niche in the crypt and differentiate into mature epithelial cells while moving toward the villus tip, where they are ultimately shed. Here, we studied the impact of Cryptosporidium infection on this dynamic architecture. Tracing DNA synthesis in pulse-chase experiments in vivo, we quantified the genesis and migration of epithelial cells along the villus. We found proliferation and epithelial migration to be elevated in response to Cryptosporidium infection. Infection also resulted in significant cell loss documented by imaging and molecular assays. Consistent with these observations, single-cell RNA sequencing of infected intestines showed a gain of young and a loss of mature cells. Interestingly, enhanced epithelial cell loss was not a function of enhanced apoptosis of infected cells. To the contrary, Cryptosporidium-infected cells were less likely to be apoptotic than bystanders, and experiments in tissue culture demonstrated that infection provided enhanced resistance to chemically induced apoptosis to the host but not bystander cells. Overall, this study suggests that Cryptosporidium may modulate cell apoptosis and documents pronounced changes in tissue homeostasis due to parasite infection, which may contribute to its long-term impact on the developmental and nutritional state of children. IMPORTANCE The intestine must balance its roles in digestion and nutrient absorption with the maintenance of an effective barrier to colonization and breach by numerous potential pathogens. An important component of this balance is its constant turnover, which is modulated by a gain of cells due to proliferation and loss due to death or extrusion. Here, we report that Cryptosporidium infection changes the dynamics of this process increasing both gain and loss of enterocytes speeding up the villus elevator. This leads to a much more immature epithelium and a reduction of the number of those cells typically found toward the villus apex best equipped to take up key nutrients including carbohydrates and lipids. These changes in the cellular architecture and physiology of the small intestine may be linked to the profound association between cryptosporidiosis and malnutrition.
Collapse
Affiliation(s)
- Bethan A. Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan D. Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Igor E. Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Yang S, Golkaram M, Oh S, Oh Y, Cho Y, Yoe J, Ju S, Lalli MA, Park SY, Lee Y, Jang J. ETV4 is a mechanical transducer linking cell crowding dynamics to lineage specification. Nat Cell Biol 2024; 26:903-916. [PMID: 38702503 PMCID: PMC11178500 DOI: 10.1038/s41556-024-01415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/03/2024] [Indexed: 05/06/2024]
Abstract
Dynamic changes in mechanical microenvironments, such as cell crowding, regulate lineage fates as well as cell proliferation. Although regulatory mechanisms for contact inhibition of proliferation have been extensively studied, it remains unclear how cell crowding induces lineage specification. Here we found that a well-known oncogene, ETS variant transcription factor 4 (ETV4), serves as a molecular transducer that links mechanical microenvironments and gene expression. In a growing epithelium of human embryonic stem cells, cell crowding dynamics is translated into ETV4 expression, serving as a pre-pattern for future lineage fates. A switch-like ETV4 inactivation by cell crowding derepresses the potential for neuroectoderm differentiation in human embryonic stem cell epithelia. Mechanistically, cell crowding inactivates the integrin-actomyosin pathway and blocks the endocytosis of fibroblast growth factor receptors (FGFRs). The disrupted FGFR endocytosis induces a marked decrease in ETV4 protein stability through ERK inactivation. Mathematical modelling demonstrates that the dynamics of cell density in a growing human embryonic stem cell epithelium precisely determines the spatiotemporal ETV4 expression pattern and, consequently, the timing and geometry of lineage development. Our findings suggest that cell crowding dynamics in a stem cell epithelium drives spatiotemporal lineage specification using ETV4 as a key mechanical transducer.
Collapse
Affiliation(s)
- Seungbok Yang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Mahdi Golkaram
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Seyoun Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yujeong Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoonjae Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jeehyun Yoe
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Matthew A Lalli
- Seaver Autism Center for Research and Treatment at Mount Sinai, New York, NY, USA
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
9
|
Bagley DC, Russell T, Ortiz-Zapater E, Stinson S, Fox K, Redd PF, Joseph M, Deering-Rice C, Reilly C, Parsons M, Brightling C, Rosenblatt J. Bronchoconstriction damages airway epithelia by crowding-induced excess cell extrusion. Science 2024; 384:66-73. [PMID: 38574138 DOI: 10.1126/science.adk2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
Asthma is deemed an inflammatory disease, yet the defining diagnostic feature is mechanical bronchoconstriction. We previously discovered a conserved process called cell extrusion that drives homeostatic epithelial cell death when cells become too crowded. In this work, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion in both mice and humans. Although relaxing the airways with the rescue treatment albuterol did not affect these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these features. Our findings show that bronchoconstriction causes epithelial damage and inflammation by excess crowding-induced cell extrusion and suggest that blocking epithelial extrusion, instead of the ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.
Collapse
Affiliation(s)
- Dustin C Bagley
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Tobias Russell
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
| | - Sally Stinson
- Institute for Lung Health, Leicester NIHR BRC, University of Leicester, Leicester LE3 9QP, UK
| | | | - Polly F Redd
- University of Utah, Salt Lake City, UT 84112, USA
| | - Merry Joseph
- University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | - Maddy Parsons
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Christopher Brightling
- Institute for Lung Health, Leicester NIHR BRC, University of Leicester, Leicester LE3 9QP, UK
| | - Jody Rosenblatt
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| |
Collapse
|
10
|
Parigini C, Greulich P. Homeostatic regulation of renewing tissue cell populations via crowding control: stability, robustness and quasi-dedifferentiation. J Math Biol 2024; 88:47. [PMID: 38520536 PMCID: PMC10960778 DOI: 10.1007/s00285-024-02057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/25/2024]
Abstract
To maintain renewing epithelial tissues in a healthy, homeostatic state, cell divisions and differentiation need to be tightly regulated. Mechanisms of homeostatic regulation often rely on crowding feedback control: cells are able to sense the cell density in their environment, via various molecular and mechanosensing pathways, and respond by adjusting division, differentiation, and cell state transitions appropriately. Here, we determine, via a mathematically rigorous framework, which general conditions for the crowding feedback regulation (i) must be minimally met, and (ii) are sufficient, to allow the maintenance of homeostasis in renewing tissues. We show that those conditions naturally allow for a degree of robustness toward disruption of regulation. Furthermore, intrinsic to this feedback regulation is that stem cell identity is established collectively by the cell population, not by individual cells, which implies the possibility of 'quasi-dedifferentiation', in which cells committed to differentiation may reacquire stem cell properties upon depletion of the stem cell pool. These findings can guide future experimental campaigns to identify specific crowding feedback mechanisms.
Collapse
Affiliation(s)
- Cristina Parigini
- School of Mathematical Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Te Pūnaha Ātea - Space Institute, University of Auckland, Auckland, New Zealand
| | - Philip Greulich
- School of Mathematical Sciences, University of Southampton, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
11
|
Moore E, Zhao R, McKinney MC, Yi K, Wood C, Trainor P. Cell extrusion - a novel mechanism driving neural crest cell delamination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584232. [PMID: 38559094 PMCID: PMC10979875 DOI: 10.1101/2024.03.09.584232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Neural crest cells (NCC) comprise a heterogeneous population of cells with variable potency, that contribute to nearly every tissue and organ system throughout the body. Considered unique to vertebrates, NCC are transiently generated within the dorsolateral region of the neural plate or neural tube, during neurulation. Their delamination and migration are crucial events in embryo development as the differentiation of NCC is heavily influenced by their final resting locations. Previous work in avian and aquatic species has shown that NCC delaminate via an epithelial-mesenchymal transition (EMT), which transforms these stem and progenitor cells from static polarized epithelial cells into migratory mesenchymal cells with fluid front and back polarity. However, the cellular and molecular drivers facilitating NCC delamination in mammals are poorly understood. We performed live timelapse imaging of NCC delamination in mouse embryos and discovered a group of cells that exit the neuroepithelium as isolated round cells, which then halt for a short period prior to acquiring the mesenchymal migratory morphology classically associated with most delaminating NCC. High magnification imaging and protein localization analyses of the cytoskeleton, together with measurements of pressure and tension of delaminating NCC and neighboring neuroepithelial cells, revealed these round NCC are extruded from the neuroepithelium prior to completion of EMT. Furthermore, we demonstrate that cranial NCC are extruded through activation of the mechanosensitive ion channel, PIEZO1, a key regulator of the live cell extrusion pathway, revealing a new role for PIEZO1 in neural crest cell development. Our results elucidating the cellular and molecular dynamics orchestrating NCC delamination support a model in which high pressure and tension in the neuroepithelium results in activation of the live cell extrusion pathway and delamination of a subpopulation of NCC in parallel with EMT. This model has broad implications for our understanding of cell delamination in development and disease.
Collapse
Affiliation(s)
- Emma Moore
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mary C McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Paul Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
12
|
Mann Z, Yap AS. Talking with force at cell-cell adhesions. Nat Cell Biol 2024; 26:26-28. [PMID: 38228828 DOI: 10.1038/s41556-023-01263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Affiliation(s)
- Zoya Mann
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.
| |
Collapse
|
13
|
Anjum S, Turner L, Atieh Y, Eisenhoffer GT, Davidson L. Assessing mechanical agency during apical apoptotic cell extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564227. [PMID: 37961593 PMCID: PMC10634859 DOI: 10.1101/2023.10.26.564227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Epithelial tissues maintain homeostasis through the continual addition and removal of cells. Homeostasis is necessary for epithelia to maintain barrier function and prevent the accumulation of defective cells. Unfit, excess, and dying cells can be removed from epithelia by the process of extrusion. Controlled cell death and extrusion in the epithelium of the larval zebrafish tail fin coincides with oscillation of cell area, both in the extruding cell and its neighbors. Both cell-autonomous and non-autonomous factors have been proposed to contribute to extrusion but have been challenging to test by experimental approaches. Here we develop a dynamic cell-based biophysical model that recapitulates the process of oscillatory cell extrusion to test and compare the relative contributions of these factors. Our model incorporates the mechanical properties of individual epithelial cells in a two-dimensional simulation as repelling active particles. The area of cells destined to extrude oscillates with varying durations or amplitudes, decreasing their mechanical contribution to the epithelium and surrendering their space to surrounding cells. Quantitative variations in cell shape and size during extrusion are visualized by a hybrid weighted Voronoi tessellation technique that renders individual cell mechanical properties directly into an epithelial sheet. To explore the role of autonomous and non-autonomous mechanics, we vary the biophysical properties and behaviors of extruding cells and neighbors such as the period and amplitude of repulsive forces, cell density, and tissue viscosity. Our data suggest that cell autonomous processes are major contributors to the dynamics of extrusion, with the mechanical microenvironment providing a less pronounced contribution. Our computational model based on in vivo data serves as a tool to provide insights into the cellular dynamics and localized changes in mechanics that promote elimination of unwanted cells from epithelia during homeostatic tissue maintenance.
Collapse
Affiliation(s)
- Sommer Anjum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Llaran Turner
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Genetics and Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Youmna Atieh
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George T. Eisenhoffer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Genetics and Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Lance Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Ventrella R, Kim SK, Sheridan J, Grata A, Bresteau E, Hassan OA, Suva EE, Walentek P, Mitchell BJ. Bidirectional multiciliated cell extrusion is controlled by Notch-driven basal extrusion and Piezo1-driven apical extrusion. Development 2023; 150:dev201612. [PMID: 37602491 PMCID: PMC10482390 DOI: 10.1242/dev.201612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Xenopus embryos are covered with a complex epithelium containing numerous multiciliated cells (MCCs). During late-stage development, there is a dramatic remodeling of the epithelium that involves the complete loss of MCCs. Cell extrusion is a well-characterized process for driving cell loss while maintaining epithelial barrier function. Normal cell extrusion is typically unidirectional, whereas bidirectional extrusion is often associated with disease (e.g. cancer). We describe two distinct mechanisms for MCC extrusion, a basal extrusion driven by Notch signaling and an apical extrusion driven by Piezo1. Early in the process there is a strong bias towards basal extrusion, but as development continues there is a shift towards apical extrusion. Importantly, response to the Notch signal is age dependent and governed by the maintenance of the MCC transcriptional program such that extension of this program is protective against cell loss. In contrast, later apical extrusion is regulated by Piezo1, such that premature activation of Piezo1 leads to early extrusion while blocking Piezo1 leads to MCC maintenance. Distinct mechanisms for MCC loss underlie the importance of their removal during epithelial remodeling.
Collapse
Affiliation(s)
- Rosa Ventrella
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
- Precision Medicine Program, Midwestern University, Downers Grove, IL 60515, USA
| | - Sun K. Kim
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Jennifer Sheridan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Aline Grata
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Enzo Bresteau
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Osama A. Hassan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Eve E. Suva
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Peter Walentek
- University of Freiburg, Renal Division, Internal Medicine IV, Medical Center and CIBSS Centre for Integrative Biological Signalling Studies, 79104 Freiburg im Breisgau, Germany
| | - Brian J. Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
- Northwestern University, Lurie Cancer Center, Chicago, IL 60611, USA
| |
Collapse
|
15
|
He J, Xie X, Xiao Z, Qian W, Zhang L, Hou X. Piezo1 in Digestive System Function and Dysfunction. Int J Mol Sci 2023; 24:12953. [PMID: 37629134 PMCID: PMC10454946 DOI: 10.3390/ijms241612953] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Piezo1, a non-selective cation channel directly activated by mechanical forces, is widely expressed in the digestive system and participates in biological functions physiologically and pathologically. In this review, we summarized the latest insights on Piezo1’s cellular effect across the entire digestive system, and discussed the role of Piezo1 in various aspects including ingestion and digestion, material metabolism, enteric nervous system, intestinal barrier, and inflammatory response within digestive system. The goal of this comprehensive review is to provide a solid foundation for future research about Piezo1 in digestive system physiologically and pathologically.
Collapse
Affiliation(s)
| | | | | | | | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| |
Collapse
|
16
|
Bagley DC, Russell T, Ortiz-Zapater E, Fox K, Redd PF, Joseph M, Rice CD, Reilly CA, Parsons M, Rosenblatt J. Bronchoconstriction damages airway epithelia by excess crowding-induced extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551943. [PMID: 37577550 PMCID: PMC10418241 DOI: 10.1101/2023.08.04.551943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Asthma is deemed an inflammatory disease, yet the defining diagnostic symptom is mechanical bronchoconstriction. We previously discovered a conserved process that drives homeostatic epithelial cell death in response to mechanical cell crowding called cell extrusion(1, 2). Here, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion. While relaxing airways with the rescue treatment albuterol did not impact these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these symptoms. Our findings propose a new etiology for asthma, dependent on the mechanical crowding of a bronchoconstrictive attack. Our studies suggest that blocking epithelial extrusion, instead of ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.
Collapse
|
17
|
Mitchell SJ, Pardo-Pastor C, Zangle TA, Rosenblatt J. Voltage-dependent volume regulation controls epithelial cell extrusion and morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532421. [PMID: 36993671 PMCID: PMC10054995 DOI: 10.1101/2023.03.13.532421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Epithelial cells work collectively to provide a protective barrier, yet also turn over rapidly by cell death and division. If the number of dying cells does not match those dividing, the barrier would vanish, or tumors can form. Mechanical forces and the stretch-activated ion channel (SAC) Piezo1 link both processes; stretch promotes cell division and crowding triggers cell death by initiating live cell extrusion1,2. However, it was not clear how particular cells within a crowded region are selected for extrusion. Here, we show that individual cells transiently shrink via water loss before they extrude. Artificially inducing cell shrinkage by increasing extracellular osmolarity is sufficient to induce cell extrusion. Pre-extrusion cell shrinkage requires the voltage-gated potassium channels Kv1.1 and Kv1.2 and the chloride channel SWELL1, upstream of Piezo1. Activation of these voltage-gated channels requires the mechano-sensitive Epithelial Sodium Channel, ENaC, acting as the earliest crowd-sensing step. Imaging with a voltage dye indicated that epithelial cells lose membrane potential as they become crowded and smaller, yet those selected for extrusion are markedly more depolarized than their neighbours. Loss of any of these channels in crowded conditions causes epithelial buckling, highlighting an important role for voltage and water regulation in controlling epithelial shape as well as extrusion. Thus, ENaC causes cells with similar membrane potentials to slowly shrink with compression but those with reduced membrane potentials to be eliminated by extrusion, suggesting a chief driver of cell death stems from insufficient energy to maintain cell membrane potential.
Collapse
Affiliation(s)
- Saranne J Mitchell
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, & School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Carlos Pardo-Pastor
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, & School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Thomas A Zangle
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Jody Rosenblatt
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, & School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
18
|
Ventrella R, Kim SK, Sheridan J, Grata A, Bresteau E, Hassan O, Suva EE, Walentek P, Mitchell B. Bidirectional multiciliated cell extrusion is controlled by Notch driven basal extrusion and Piezo 1 driven apical extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523838. [PMID: 36711534 PMCID: PMC9882179 DOI: 10.1101/2023.01.12.523838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Xenopus embryos are covered with a complex epithelium containing numerous multiciliated cells (MCCs). During late stage development there is a dramatic remodeling of the epithelium that involves the complete loss of MCCs. Cell extrusion is a well-characterized process for driving cell loss while maintaining epithelial barrier function. Normal cell extrusion is typically unidirectional whereas bidirectional extrusion is often associated with disease (e.g. cancer). We describe two distinct mechanisms for MCC extrusion, a basal extrusion driven by Notch signaling and an apical extrusion driven by Piezo1. Early in the process there is a strong bias towards basal extrusion, but as development continues there is a shift towards apical extrusion. Importantly, receptivity to the Notch signal is age-dependent and governed by the maintenance of the MCC transcriptional program such that extension of this program is protective against cell loss. In contrast, later apical extrusion is regulated by Piezo 1 such that premature activation of Piezo 1 leads to early extrusion while blocking Piezo 1 leads to MCC maintenance. Distinct mechansms for MCC loss underlie the importance of their removal during epithelial remodeling. Summay Statement Cell extrusion typically occurs unidirectionally. We have identified a single population of multiciliated cells that extrudes bidirectionally: Notch-driven basal extrusion and Piezo 1-mediated apical extrusion.
Collapse
Affiliation(s)
- Rosa Ventrella
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
- Current position; Assistant professor, Precision Medicine Program, Midwestern University
| | - Sun K. Kim
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Jennifer Sheridan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Aline Grata
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Enzo Bresteau
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Osama Hassan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Eve E. Suva
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Peter Walentek
- University of Freiburg, Renal Division, Internal Medicine IV, Medical Center and CIBSS Centre for Integrative Biological Signalling Studies
| | - Brian Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
- Northwestern University, Lurie Cancer Center
| |
Collapse
|
19
|
Huelsz-Prince G, Kok RNU, Goos Y, Bruens L, Zheng X, Ellenbroek S, Van Rheenen J, Tans S, van Zon JS. Mother cells control daughter cell proliferation in intestinal organoids to minimize proliferation fluctuations. eLife 2022; 11:e80682. [PMID: 36445322 PMCID: PMC9708068 DOI: 10.7554/elife.80682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
During renewal of the intestine, cells are continuously generated by proliferation. Proliferation and differentiation must be tightly balanced, as any bias toward proliferation results in uncontrolled exponential growth. Yet, the inherently stochastic nature of cells raises the question how such fluctuations are limited. We used time-lapse microscopy to track all cells in crypts of growing mouse intestinal organoids for multiple generations, allowing full reconstruction of the underlying lineage dynamics in space and time. Proliferative behavior was highly symmetric between sister cells, with both sisters either jointly ceasing or continuing proliferation. Simulations revealed that such symmetric proliferative behavior minimizes cell number fluctuations, explaining our observation that proliferating cell number remained constant even as crypts increased in size considerably. Proliferative symmetry did not reflect positional symmetry but rather lineage control through the mother cell. Our results indicate a concrete mechanism to balance proliferation and differentiation with minimal fluctuations that may be broadly relevant for other tissues.
Collapse
Affiliation(s)
| | | | | | - Lotte Bruens
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer InstituteAmterdamNetherlands
| | | | - Saskia Ellenbroek
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer InstituteAmterdamNetherlands
| | - Jacco Van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer InstituteAmterdamNetherlands
| | | | | |
Collapse
|
20
|
Jülicher F, Prost J, Toner J. Broken living layers: Dislocations in active smectic liquid crystals. Phys Rev E 2022; 106:054607. [PMID: 36559431 DOI: 10.1103/physreve.106.054607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
We show that dislocations in active two-dimensional (2D) smectic liquid crystals with underlying rotational symmetry are always unbound in the presence of noise, meaning the active smectic phase does not exist for nonzero noise in d=2. The active smectic phase can, like equilibrium smectics in 2D, be stabilized by applying rotational symmetry-breaking fields; however, even in the presence of such fields, active smectics are still much less stable against noise than equilibrium ones, when the symmetry-breaking field(s) are weak.
Collapse
Affiliation(s)
- Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany and Cluster of Excellence, Physics of Life, TU Dresden, 01307 Dresden, Germany
| | - Jacques Prost
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411 and Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - John Toner
- Department of Physics and Institute for Fundamental Science, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
21
|
Kohno T, Kojima T. Atypical Macropinocytosis Contributes to Malignant Progression: A Review of Recent Evidence in Endometrioid Endometrial Cancer Cells. Cancers (Basel) 2022; 14:cancers14205056. [PMID: 36291839 PMCID: PMC9599675 DOI: 10.3390/cancers14205056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary A novel type of macropinocytosis has been identified as a trigger for the malignant progression of endometrial cancer. Transiently reducing epithelial barrier homeostasis leads to macropinocytosis by splitting between adjacent cells in endometrioid endometrial cancer. Macropinocytosis causes morphological changes in well-differentiated to poorly differentiated cancer cells. Inhibition of macropinocytosis promotes a persistent dormant state in the intrinsic KRAS-mutated cancer cell line Sawano. This review focuses on the mechanisms of atypical macropinocytosis and its effects on cellular function, and it describes the physiological processes involved in inducing resting conditions in endometrioid endometrial cancer cells. Abstract Macropinocytosis is an essential mechanism for the non-specific uptake of extracellular fluids and solutes. In recent years, additional functions have been identified in macropinocytosis, such as the intracellular introduction pathway of drugs, bacterial and viral infection pathways, and nutritional supplement pathway of cancer cells. However, little is known about the changes in cell function after macropinocytosis. Recently, it has been reported that macropinocytosis is essential for endometrial cancer cells to initiate malignant progression in a dormant state. Macropinocytosis is formed by a temporary split of adjacent bicellular junctions of epithelial sheets, rather than from the apical surface or basal membrane, as a result of the transient reduction of tight junction homeostasis. This novel type of macropinocytosis has been suggested to be associated with the malignant pathology of endometriosis and endometrioid endometrial carcinoma. This review outlines the induction of malignant progression of endometrial cancer cells by macropinocytosis based on a new mechanism and the potential preventive mechanism of its malignant progression.
Collapse
|
22
|
Self-assembly of tessellated tissue sheets by expansion and collision. Nat Commun 2022; 13:4026. [PMID: 35821232 PMCID: PMC9276766 DOI: 10.1038/s41467-022-31459-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Tissues do not exist in isolation—they interact with other tissues within and across organs. While cell-cell interactions have been intensely investigated, less is known about tissue-tissue interactions. Here, we studied collisions between monolayer tissues with different geometries, cell densities, and cell types. First, we determine rules for tissue shape changes during binary collisions and describe complex cell migration at tri-tissue boundaries. Next, we propose that genetically identical tissues displace each other based on pressure gradients, which are directly linked to gradients in cell density. We present a physical model of tissue interactions that allows us to estimate the bulk modulus of the tissues from collision dynamics. Finally, we introduce TissEllate, a design tool for self-assembling complex tessellations from arrays of many tissues, and we use cell sheet engineering techniques to transfer these composite tissues like cellular films. Overall, our work provides insight into the mechanics of tissue collisions, harnessing them to engineer tissue composites as designable living materials. Tissue boundaries in our body separate organs and enable healing, but boundary mechanics are not well known. Here, the authors define mechanical rules for colliding cell monolayers and use these rules to make complex, predictable tessellations.
Collapse
|
23
|
Despin-Guitard E, Migeotte I. Mitosis, a springboard for epithelial-mesenchymal transition? Cell Cycle 2021; 20:2452-2464. [PMID: 34720062 DOI: 10.1080/15384101.2021.1992854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitosis is a key process in development and remains critical to ensure homeostasis in adult tissues. Besides its primary role in generating two new cells, cell division involves deep structural and molecular changes that might have additional effects on cell and tissue fate and shape. Specific quantitative and qualitative regulation of mitosis has been observed in multiple morphogenetic events in different embryo models. For instance, during mouse embryo gastrulation, the portion of epithelium that undergoes epithelial to mesenchymal transition, where a static epithelial cell become mesenchymal and motile, has a higher mitotic index and a distinct localization of mitotic rounding, compared to the rest of the tissue. Here we explore the potential mechanisms through which mitosis may favor tissue reorganization in various models. Notably, we discuss the mechanical impact of cell rounding on the cell and its environment, and the modification of tissue physical parameters through changes in cell-cell and cell-matrix adhesion.
Collapse
Affiliation(s)
- Evangéline Despin-Guitard
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| |
Collapse
|
24
|
Kohno T, Konno T, Kikuchi S, Kondoh M, Kojima T. Translocation of LSR from tricellular corners causes macropinocytosis at cell-cell interface as a trigger for breaking out of contact inhibition. FASEB J 2021; 35:e21742. [PMID: 34403506 DOI: 10.1096/fj.202100299r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022]
Abstract
Withdrawal from contact inhibition is necessary for epithelial cancer precursor cells to initiate cell growth and motility. Nevertheless, little is understood about the mechanism for the sudden initiation of cell growth under static conditions. We focused on cellular junctions as one region where breaking out of contact inhibition occurs. In well-differentiated endometrial cancer cells, Sawano, the ligand administration for tricellular tight junction protein LSR, which transiently decreased the robust junction property, caused an abrupt increase in cell motility and consequent excessive multilayered cell growth despite being under contact inhibition conditions. We observed that macropinocytosis essentially and temporarily occurred as an antecedent event for the above process at intercellular junctions without disruption of the junction apparatus but not at the apical plasma membrane. Collectively, we concluded that the formation of macropinocytosis, which is derived from tight junction-mediated signaling, was triggered for the initiation of cell growth in static precancerous epithelium.
Collapse
Affiliation(s)
- Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University, Sapporo, Japan
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
25
|
Molecular control of cell density-mediated exit to quiescence. Cell Rep 2021; 36:109436. [PMID: 34320337 PMCID: PMC8924979 DOI: 10.1016/j.celrep.2021.109436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 05/04/2021] [Accepted: 07/01/2021] [Indexed: 12/22/2022] Open
Abstract
Contact inhibition of cell proliferation regulates tissue size and prevents uncontrolled cell expansion. When cell density increases, contact inhibition can force proliferating cells into quiescence. Here we show that the variable memory of local cell density experienced by a mother cell controls the levels of the cyclin-dependent kinase (CDK) activator cyclin D1 and inhibitor p27 in newborn daughters, which direct cells to proliferation or quiescence. Much of this regulation can be explained by rapid suppression of ERK activity by high cell density in mothers, which leads to lower cyclin D1 and higher p27 levels in daughters. Strikingly, cell density and mitogen signals compete by shifting the ratio of cyclin D1/p27 levels below or above a single sharp threshold that controls the proliferation decision. Thus, the history of competing cell density and mitogen signals experienced by mothers is funneled into a precise activator-inhibitor balance that decides the fate of daughter cells. Using live single-cell microscopy, Fan and Meyer show that the decision of newborn daughter cells to proliferate or become quiescent is controlled by the memory of local cell density inherited from mother cells. This memory is mediated by an ultrasensitive activator-inhibitor balance between cyclin D1 and p27.
Collapse
|
26
|
Greulich P, MacArthur BD, Parigini C, Sánchez-García RJ. Universal principles of lineage architecture and stem cell identity in renewing tissues. Development 2021; 148:269055. [PMID: 34100065 DOI: 10.1242/dev.194399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/01/2021] [Indexed: 01/20/2023]
Abstract
Adult tissues in multicellular organisms typically contain a variety of stem, progenitor and differentiated cell types arranged in a lineage hierarchy that regulates healthy tissue turnover. Lineage hierarchies in disparate tissues often exhibit common features, yet the general principles regulating their architecture are not known. Here, we provide a formal framework for understanding the relationship between cell molecular 'states' and cell 'types', based on the topology of admissible cell state trajectories. We show that a self-renewing cell type - if defined as suggested by this framework - must reside at the top of any homeostatic renewing lineage hierarchy, and only there. This architecture arises as a natural consequence of homeostasis, and indeed is the only possible way that lineage architectures can be constructed to support homeostasis in renewing tissues. Furthermore, under suitable feedback regulation, for example from the stem cell niche, we show that the property of 'stemness' is entirely determined by the cell environment, in accordance with the notion that stem cell identities are contextual and not determined by hard-wired, cell-intrinsic characteristics. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Philip Greulich
- Mathematical Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Ben D MacArthur
- Mathematical Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.,Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK.,The Alan Turing Institute, London, NW1 2DB, UK
| | - Cristina Parigini
- Mathematical Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Rubén J Sánchez-García
- Mathematical Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| |
Collapse
|
27
|
Yu JL, Liao HY. Piezo-type mechanosensitive ion channel component 1 (Piezo1) in human cancer. Biomed Pharmacother 2021; 140:111692. [PMID: 34004511 DOI: 10.1016/j.biopha.2021.111692] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 02/09/2023] Open
Abstract
Piezo-type mechanosensitive ion channel component 1 (Piezo1) is a mechanosensitive ion channel protein that is evolutionarily conserved and multifunctional. It plays an important role as an oncogenic mediator in several malignant tumors. It mediates the proliferation, migration, and invasion of a variety of cancer cells through various mechanisms. Multiple studies have shown that the expression of Piezo1 is related to the clinical characteristics of senescence and cancer patients, making Piezo1 useful as a new biomarker for the diagnosis and prognosis of a variety of human cancers. Manipulating the expression or function of Piezo1 is a potential therapeutic strategy for different diseases. Piezo1 may be a promising tumor biomarker and therapeutic target. Here we review the biological function, mechanism of action, and potential clinical significance of Piezo1 in oncogenesis and progression.
Collapse
Affiliation(s)
- Jia-Lin Yu
- The 947th Army Hospital of the Chinese People's Liberation Army, 13 Kuona Bazha Road, XinJiang 844200, PR China
| | - Hai-Yang Liao
- The Fist Affiliated Hospital of Gannan Medical College, 23 Youth Road, Jiangxi 342800, PR China
| |
Collapse
|
28
|
Abstract
AbstractAn important goal in the fight against cancer is to understand how tumors become invasive and metastatic. A crucial early step in metastasis is thought to be the epithelial mesenchymal transition (EMT), the process in which epithelial cells transition into a more migratory and invasive, mesenchymal state. Since the genetic regulatory networks driving EMT in tumors derive from those used in development, analysis of EMTs in genetic model organisms such as the vinegar fly, Drosophila melanogaster, can provide great insight into cancer. In this review I highlight the many ways in which studies in the fly are shedding light on cancer metastasis. The review covers both normal developmental events in which epithelial cells become migratory, as well as induced events, whereby normal epithelial cells become metastatic due to genetic manipulations. The ability to make such precise genetic perturbations in the context of a normal, in vivo environment, complete with a working innate immune system, is making the fly increasingly important in understanding metastasis.
Collapse
Affiliation(s)
- Michael J. Murray
- School of BioSciences, Faculty of Science, University of Melbourne, Victoria 3010, Melbourne, Australia
| |
Collapse
|
29
|
Bouza M, Li Y, Wang AC, Wang ZL, Fernández FM. Triboelectric Nanogenerator Ion Mobility-Mass Spectrometry for In-Depth Lipid Annotation. Anal Chem 2021; 93:5468-5475. [PMID: 33720699 PMCID: PMC8292975 DOI: 10.1021/acs.analchem.0c05145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids play a critical role in cell membrane integrity, signaling, and energy storage. However, in-depth structural characterization of lipids is still challenging and not routinely possible in lipidomics experiments. Techniques such as collision-induced dissociation (CID) tandem mass spectrometry (MS/MS), ion mobility (IM) spectrometry, and ultrahigh-performance liquid chromatography are not yet capable of fully characterizing double-bond and sn-chain position of lipids in a high-throughput manner. Herein, we report on the ability to structurally characterize lipids using large-area triboelectric nanogenerators (TENG) coupled with time-aligned parallel (TAP) fragmentation IM-MS analysis. Gas-phase lipid epoxidation during TENG ionization, coupled to mobility-resolved MS3 via TAP IM-MS, enabled the acquisition of detailed information on the presence and position of lipid C═C double bonds, the fatty acyl sn-chain position and composition, and the cis/trans geometrical C═C isomerism. The proposed methodology proved useful for the shotgun lipidomics analysis of lipid extracts from biological samples, enabling the detailed annotation of numerous lipid isobars.
Collapse
Affiliation(s)
- Marcos Bouza
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Yafeng Li
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Aurelia C Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|
30
|
Le AP, Rupprecht JF, Mège RM, Toyama Y, Lim CT, Ladoux B. Adhesion-mediated heterogeneous actin organization governs apoptotic cell extrusion. Nat Commun 2021; 12:397. [PMID: 33452264 PMCID: PMC7810754 DOI: 10.1038/s41467-020-20563-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
Apoptotic extrusion is crucial in maintaining epithelial homeostasis. Current literature supports that epithelia respond to extrusion by forming a supracellular actomyosin purse-string in the neighbors. However, whether other actin structures could contribute to extrusion and how forces generated by these structures can be integrated are unknown. Here, we found that during extrusion, a heterogeneous actin network composed of lamellipodia protrusions and discontinuous actomyosin cables, was reorganized in the neighboring cells. The early presence of basal lamellipodia protrusion participated in both basal sealing of the extrusion site and orienting the actomyosin purse-string. The co-existence of these two mechanisms is determined by the interplay between the cell-cell and cell-substrate adhesions. A theoretical model integrates these cellular mechanosensitive components to explain why a dual-mode mechanism, which combines lamellipodia protrusion and purse-string contractility, leads to more efficient extrusion than a single-mode mechanism. In this work, we provide mechanistic insight into extrusion, an essential epithelial homeostasis process.
Collapse
Affiliation(s)
- Anh Phuong Le
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- National University of Singapore Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Jean-François Rupprecht
- Aix-Marseille Université, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems, Marseille, France.
| | - René-Marc Mège
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- National University of Singapore Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| | - Benoît Ladoux
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France.
| |
Collapse
|
31
|
Zupanc GKH, Lehotzky D, Tripp IP. The Neurosphere Simulator: An educational online tool for modeling neural stem cell behavior and tissue growth. Dev Biol 2021; 469:80-85. [PMID: 32991866 PMCID: PMC7521883 DOI: 10.1016/j.ydbio.2020.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022]
Abstract
Until very recently, distance education, including digital science labs, served a rather small portion of postsecondary students in the United States and many other countries. This situation has, however, dramatically changed in 2020 in the wake of the COVID-19 pandemic, which forced colleges to rapidly transit from face-to-face instructions to online classes. Here, we report the development of an interactive simulator that is freely available on the web (http://neurosphere.cos.northeastern.edu/) for teaching lab classes in developmental biology. This simulator is based on cellular automata models of neural-stem-cell-driven tissue growth in the neurosphere assay. By modifying model parameters, users can explore the role in tissue growth of several developmental mechanisms, such as regulation of mitosis or apoptotic cell death by contact inhibition. Besides providing an instantaneous animation of the simulated development of neurospheres, the Neurosphere Simulator tool offers also the possibility to download data for detailed analysis. The simulator function is complemented by a tutorial that introduces students to computational modeling of developmental processes. We developed an interactive neurosphere simulator. Simulations are based on cellular automata models of neurosphere growth. This educational tool is freely available on the web. The simulator can be used for online lab classes in developmental biology. Students explore through exercises mechanisms of stem-cell-driven tissue growth.
Collapse
Affiliation(s)
- Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA.
| | - Dávid Lehotzky
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA
| | - Isabel P Tripp
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
32
|
Tension heterogeneity directs form and fate to pattern the myocardial wall. Nature 2020; 588:130-134. [PMID: 33208950 DOI: 10.1038/s41586-020-2946-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
How diverse cell fates and complex forms emerge and feed back to each other to sculpt functional organs remains unclear. In the developing heart, the myocardium transitions from a simple epithelium to an intricate tissue that consists of distinct layers: the outer compact and inner trabecular layers. Defects in this process, which is known as cardiac trabeculation, cause cardiomyopathies and embryonic lethality, yet how tissue symmetry is broken to specify trabecular cardiomyocytes is unknown. Here we show that local tension heterogeneity drives organ-scale patterning and cell-fate decisions during cardiac trabeculation in zebrafish. Proliferation-induced cellular crowding at the tissue scale triggers tension heterogeneity among cardiomyocytes of the compact layer and drives those with higher contractility to delaminate and seed the trabecular layer. Experimentally, increasing crowding within the compact layer cardiomyocytes augments delamination, whereas decreasing it abrogates delamination. Using genetic mosaics in trabeculation-deficient zebrafish models-that is, in the absence of critical upstream signals such as Nrg-Erbb2 or blood flow-we find that inducing actomyosin contractility rescues cardiomyocyte delamination and is sufficient to drive cardiomyocyte fate specification, as assessed by Notch reporter expression in compact layer cardiomyocytes. Furthermore, Notch signalling perturbs the actomyosin machinery in cardiomyocytes to restrict excessive delamination, thereby preserving the architecture of the myocardial wall. Thus, tissue-scale forces converge on local cellular mechanics to generate complex forms and modulate cell-fate choices, and these multiscale regulatory interactions ensure robust self-organized organ patterning.
Collapse
|
33
|
Lehotzky D, Sipahi R, Zupanc GKH. Cellular automata modeling suggests symmetric stem-cell division, cell death, and cell drift as key mechanisms driving adult spinal cord growth in teleost fish. J Theor Biol 2020; 509:110474. [PMID: 32918922 DOI: 10.1016/j.jtbi.2020.110474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Adult neurogenesis - the generation of neurons during adulthood - is intensively studied, yet little is known about its consequences at the tissue level. In the teleost fish Apteronotus leptorhynchus, morphometric analysis has revealed that the total number of cells in the spinal cord increases continuously throughout adulthood, driven by the activity of neurogenic stem/progenitor cells in both the ependymal layer at the central canal and in the radially located parenchyma. This net increase in cell numbers demonstrates cellular addition, as opposed to cellular turnover which appears to be the common outcome of adult neurogenesis in mammals. Grounded on a comprehensive set of quantitative data generated through high-resolution mapping of stem cells and their progeny, we constructed a cellular automata model of the stem-cell-driven growth of the spinal cord. Simulations based on this model suggest that three cellular mechanisms play a critical role for promoting sustained tissue growth and acquisition of correct form of the spinal cord, including the development of the ependymal layer and the parenchyma: the number of symmetric stem-cell divisions versus asymmetric divisions; the probability of the progeny of progenitor cells to undergo cell death; and the radial drifting of cells.
Collapse
Affiliation(s)
- Dávid Lehotzky
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, United States.
| | - Rifat Sipahi
- Complex Dynamic Systems and Control Laboratory, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States.
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, United States.
| |
Collapse
|
34
|
Stern T, Shvartsman SY, Wieschaus EF. Template-based mapping of dynamic motifs in tissue morphogenesis. PLoS Comput Biol 2020; 16:e1008049. [PMID: 32822341 PMCID: PMC7442231 DOI: 10.1371/journal.pcbi.1008049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Tissue morphogenesis relies on repeated use of dynamic behaviors at the levels of intracellular structures, individual cells, and cell groups. Rapidly accumulating live imaging datasets make it increasingly important to formalize and automate the task of mapping recurrent dynamic behaviors (motifs), as it is done in speech recognition and other data mining applications. Here, we present a "template-based search" approach for accurate mapping of sub- to multi-cellular morphogenetic motifs using a time series data mining framework. We formulated the task of motif mapping as a subsequence matching problem and solved it using dynamic time warping, while relying on high throughput graph-theoretic algorithms for efficient exploration of the search space. This formulation allows our algorithm to accurately identify the complete duration of each instance and automatically label different stages throughout its progress, such as cell cycle phases during cell division. To illustrate our approach, we mapped cell intercalations during germband extension in the early Drosophila embryo. Our framework enabled statistical analysis of intercalary cell behaviors in wild-type and mutant embryos, comparison of temporal dynamics in contracting and growing junctions in different genotypes, and the identification of a novel mode of iterative cell intercalation. Our formulation of tissue morphogenesis using time series opens new avenues for systematic decomposition of tissue morphogenesis.
Collapse
Affiliation(s)
- Tomer Stern
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Stanislav Y. Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| | - Eric F. Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
35
|
Serrano Nájera G, Weijer CJ. Cellular processes driving gastrulation in the avian embryo. Mech Dev 2020; 163:103624. [PMID: 32562871 PMCID: PMC7511600 DOI: 10.1016/j.mod.2020.103624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 01/18/2023]
Abstract
Gastrulation consists in the dramatic reorganisation of the epiblast, a one-cell thick epithelial sheet, into a multilayered embryo. In chick, the formation of the internal layers requires the generation of a macroscopic convection-like flow, which involves up to 50,000 epithelial cells in the epiblast. These cell movements locate the mesendoderm precursors into the midline of the epiblast to form the primitive streak. There they acquire a mesenchymal phenotype, ingress into the embryo and migrate outward to populate the inner embryonic layers. This review covers what is currently understood about how cell behaviours ultimately cause these morphogenetic events and how they are regulated. We discuss 1) how the biochemical patterning of the embryo before gastrulation creates compartments of differential cell behaviours, 2) how the global epithelial flows arise from the coordinated actions of individual cells, 3) how the cells delaminate individually from the epiblast during the ingression, and 4) how cells move after the ingression following stereotypical migration routes. We conclude by exploring new technical advances that will facilitate future research in the chick model system.
Collapse
Affiliation(s)
- Guillermo Serrano Nájera
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Cornelis J Weijer
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
36
|
Hagiyama M, Kimura R, Yoneshige A, Inoue T, Otani T, Ito A. Cell Adhesion Molecule 1 Contributes to Cell Survival in Crowded Epithelial Monolayers. Int J Mol Sci 2020; 21:ijms21114123. [PMID: 32527032 PMCID: PMC7312920 DOI: 10.3390/ijms21114123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
When epithelial cells in vivo are stimulated to proliferate, they crowd and often grow in height. These processes are likely to implicate dynamic interactions among lateral membranous proteins, such as cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member. Pulmonary epithelial cell lines that express CADM1, named NCI-H441 and RLE-6TN, were grown to become overconfluent in the polarized 2D culture system, and were examined for the expression of CADM1. Western analyses showed that the CADM1 expression levels increased gradually up to 3 times in a cell density-dependent manner. Confocal microscopic observations revealed dense immunostaining for CADM1 on the lateral membrane. In the overconfluent monolayers, CADM1 knockdown was achieved by two methods using CADM1-targeting siRNA and an anti-CADM1 neutralizing antibody. Antibody treatment experiments were also done on 6 other epithelial cell lines expressing CADM1. The CADM1 expression levels were reduced roughly by half, in association with cell height decrease by half in 3 lines. TUNEL assays revealed that the CADM1 knockdown increased the proportion of TUNEL-positive apoptotic cells approximately 10 folds. Increased expression of CADM1 appeared to contribute to cell survival in crowded epithelial monolayers.
Collapse
|
37
|
Single-cell approaches to cell competition: High-throughput imaging, machine learning and simulations. Semin Cancer Biol 2020; 63:60-68. [DOI: 10.1016/j.semcancer.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
|
38
|
Patankar M, Mattila T, Väyrynen JP, Klintrup K, Mäkelä J, Tuomisto A, Nieminen P, Mäkinen MJ, Karttunen TJ. Putative anoikis-resistant subpopulations in colorectal carcinoma: a marker of adverse prognosis. APMIS 2020; 128:390-400. [PMID: 32202676 DOI: 10.1111/apm.13041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Anoikis is a form of apoptosis induced when a cell loses contact with the extracellular matrix (ECM). Anoikis resistance is essential for metastasis formation, yet only detectable by in vitro experiments. We present a method for quantitation of putative anoikis-resistant (AR) subpopulations in colorectal carcinoma (CRC) and evaluate their prognostic significance. We studied 137 CRC cases and identified cell subpopulations with and without stromal or extracellular matrix (ECM) contact with hematoxylin-and-eosin-stained sections and immunohistochemistry for laminin and type IV collagen. Suprabasal cells of micropapillary structures and inner cells of cribriform and solid structures lacked both stromal contact and contact with ECM proteins. Apoptosis rate (M30) was lower in these subpopulations than in the other carcinoma cells, consistent with putative AR subpopulation. We determined the areal density of these subpopulations (number/mm2 tumor tissue), and their high areal density independently indicates low cancer-specific survival. In conclusion, we show evidence that subpopulations of carcinoma cells in micropapillary, cribriform, and solid structures are resistant to anoikis as shown by lack of ECM contact and low apoptosis rate. Abundance of these subpopulations is a new independent indicator of poor prognosis in CRC, consistent with the importance of anoikis resistance in the formation of metastasis.
Collapse
Affiliation(s)
- Madhura Patankar
- Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland
| | - Taneli Mattila
- Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland
| | - Juha P Väyrynen
- Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Kai Klintrup
- Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Department of Surgery, Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland
| | - Jyrki Mäkelä
- Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Department of Surgery, Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland
| | - Anne Tuomisto
- Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland
| | - Pentti Nieminen
- Medical Informatics and Data Analysis Research Group, University of Oulu, Oulu, Finland
| | - Markus J Mäkinen
- Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland
| | - Tuomo J Karttunen
- Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland
| |
Collapse
|
39
|
Dow LP, Khankhel AH, Abram J, Valentine MT. 3D-printable cell crowding device enables imaging of live cells in compression. Biotechniques 2020; 68:275-278. [PMID: 32096656 DOI: 10.2144/btn-2019-0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We designed and fabricated, using low-cost 3D printing technologies, a device that enables direct control of cell density in epithelial monolayers. The device operates by varying the tension of a silicone substrate upon which the cells are adhered. Multiple devices can be manufactured easily and placed in any standard incubator. This allows long-term culturing of cells on pretensioned substrates until the user decreases the tension, thereby inducing compressive forces in plane and subsequent instantaneous cell crowding. Moreover, the low-profile device is completely portable and can be mounted directly onto an inverted optical microscope. This enables visualization of the morphology and dynamics of living cells in stretched or compressed conditions using a wide range of high-resolution microscopy techniques.
Collapse
Affiliation(s)
- Liam P Dow
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, CA 93106, USA
| | - Aimal H Khankhel
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, CA 93106, USA
| | - John Abram
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
40
|
Jiménez-Martínez M, Ostalé CM, van der Burg LR, Galán-Martínez J, Hardwick JCH, López-Pérez R, Hawinkels LJAC, Stamatakis K, Fresno M. DUSP10 Is a Regulator of YAP1 Activity Promoting Cell Proliferation and Colorectal Cancer Progression. Cancers (Basel) 2019; 11:cancers11111767. [PMID: 31717606 PMCID: PMC6896144 DOI: 10.3390/cancers11111767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022] Open
Abstract
Cell contact inhibition (CCI) is deregulated in cancer. Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. We found that dual-specificity phosphatase 10 (DUSP10) is involved in CRC. DUSP10 overexpression increased the growth of CRC cell lines and mouse xenografts, while the opposite phenotype was observed by DUSP10 silencing. High cell density (HD) induced DUSP10 expression in CRC cell lines, particularly within the nucleus. Yes-associated protein 1 (YAP1) is activated by dephosphorylation, controlling organ growth and CCI, both processes being deregulated in CRC. Expression levels and localization of DUSP10 matched with YAP1 levels in CRC cell lines. DUSP10 and YAP1 co-immunoprecipitated and their interaction was dependent on YAP1 Ser397. The existence of DUSP10 and YAP1 pathway in vivo was confirmed by using a transgenic Drosophila model. Finally, in CRC patients’ samples, high levels of nuclear DUSP10 correlated with nuclear YAP1 in epithelial tumor tissue. Strong nuclear DUSP10 staining also correlated with high tumor stage and poor survival. Overall, these findings describe a DUSP10–YAP1 molecular link in CRC cell lines promoting cell growth in HD. We present evidence suggesting a pro-tumorigenic role of nuclear DUSP10 expression in CRC patients.
Collapse
Affiliation(s)
- Marta Jiménez-Martínez
- Department of Cell Biology and Immunology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (M.J.-M.); (J.G.-M.); (R.L.-P.); (K.S.)
- Department of Molecular Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Instituto de Investigación Sanitaria de La Princesa (IIS-P), 28006 Madrid, Spain
| | - Cristina M. Ostalé
- Department of Development and Regeneration, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain;
| | - Lennart R. van der Burg
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (L.R.v.d.B.); (J.C.H.H.); (L.J.A.C.H.)
| | - Javier Galán-Martínez
- Department of Cell Biology and Immunology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (M.J.-M.); (J.G.-M.); (R.L.-P.); (K.S.)
- Department of Molecular Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Instituto de Investigación Sanitaria de La Princesa (IIS-P), 28006 Madrid, Spain
| | - James C. H. Hardwick
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (L.R.v.d.B.); (J.C.H.H.); (L.J.A.C.H.)
| | - Ricardo López-Pérez
- Department of Cell Biology and Immunology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (M.J.-M.); (J.G.-M.); (R.L.-P.); (K.S.)
| | - Lukas J. A. C. Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (L.R.v.d.B.); (J.C.H.H.); (L.J.A.C.H.)
| | - Konstantinos Stamatakis
- Department of Cell Biology and Immunology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (M.J.-M.); (J.G.-M.); (R.L.-P.); (K.S.)
- Department of Molecular Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Instituto de Investigación Sanitaria de La Princesa (IIS-P), 28006 Madrid, Spain
| | - Manuel Fresno
- Department of Cell Biology and Immunology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (M.J.-M.); (J.G.-M.); (R.L.-P.); (K.S.)
- Department of Molecular Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Instituto de Investigación Sanitaria de La Princesa (IIS-P), 28006 Madrid, Spain
- Correspondence: ; Tel.: +34-911-964-565
| |
Collapse
|
41
|
Tai K, Cockburn K, Greco V. Flexibility sustains epithelial tissue homeostasis. Curr Opin Cell Biol 2019; 60:84-91. [PMID: 31153058 PMCID: PMC6756930 DOI: 10.1016/j.ceb.2019.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/01/2019] [Accepted: 04/26/2019] [Indexed: 01/11/2023]
Abstract
Epithelia surround our bodies and line most of our organs. Intrinsic homeostatic mechanisms replenish and repair these tissues in the face of wear and tear, wounds, and even the presence of accumulating mutations. Recent advances in cell biology, genetics, and live-imaging techniques have revealed that epithelial homeostasis represents an intrinsically flexible process at the level of individual epithelial cells. This homeostatic flexibility has important implications for how we think about the more dramatic cell plasticity that is frequently thought to be associated with pathological settings. In this review, we will focus on key emerging mechanisms and processes of epithelial homeostasis and elaborate on the known molecular mechanisms of epithelial cell interactions to illuminate how epithelia are maintained throughout an organism's lifetime.
Collapse
Affiliation(s)
- Karen Tai
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katie Cockburn
- Departments of Cell Biology & Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cell Biology & Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
42
|
Sipahi R, Zupanc GKH. Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis. J Theor Biol 2019; 445:151-165. [PMID: 29477556 DOI: 10.1016/j.jtbi.2018.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 01/05/2018] [Accepted: 02/22/2018] [Indexed: 12/18/2022]
Abstract
Neural stem and progenitor cells isolated from the central nervous system form, under specific culture conditions, clonal cell clusters known as neurospheres. The neurosphere assay has proven to be a powerful in vitro system to study the behavior of such cells and the development of their progeny. However, the theory of neurosphere growth has remained poorly understood. To overcome this limitation, we have, in the present paper, developed a cellular automata model, with which we examined the effects of proliferative potential, contact inhibition, cell death, and clearance of dead cells on growth rate, final size, and composition of neurospheres. Simulations based on this model indicated that the proliferative potential of the founder cell and its progenitors has a major influence on neurosphere size. On the other hand, contact inhibition of proliferation limits the final size, and reduces the growth rate, of neurospheres. The effect of this inhibition is particularly dramatic when a stem cell becomes encapsulated by differentiated or other non-proliferating cells, thereby suppressing any further mitotic division - despite the existing proliferative potential of the stem cell. Conversely, clearance of dead cells through phagocytosis is predicted to accelerate growth by reducing contact inhibition. A surprising prediction derived from our model is that cell death, while resulting in a decrease in growth rate and final size of neurospheres, increases the degree of differentiation of neurosphere cells. It is likely that the cellular automata model developed as part of the present investigation is applicable to the study of tissue growth in a wide range of systems.
Collapse
Affiliation(s)
- Rifat Sipahi
- Complex Dynamic Systems and Control Laboratory, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
43
|
Abstract
Recently published in Nature, Brown et al. (2017) shed new light on how the skin handles the activation of oncogenic pathways in the stem cell compartment and how wild-type cells limit the proliferation of mutant cells to maintain proper tissue homeostasis.
Collapse
Affiliation(s)
- Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
44
|
Lehotzky D, Zupanc GKH. Cellular Automata Modeling of Stem-Cell-Driven Development of Tissue in the Nervous System. Dev Neurobiol 2019; 79:497-517. [PMID: 31102334 DOI: 10.1002/dneu.22686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022]
Abstract
Mathematical and computational modeling enables biologists to integrate data from observations and experiments into a theoretical framework. In this review, we describe how developmental processes associated with stem-cell-driven growth of tissue in both the embryonic and adult nervous system can be modeled using cellular automata (CA). A cellular automaton is defined by its discrete nature in time, space, and state. The discrete space is represented by a uniform grid or lattice containing agents that interact with other agents within their local neighborhood. This possibility of local interactions of agents makes the cellular automata approach particularly well suited for studying through modeling how complex patterns at the tissue level emerge from fundamental developmental processes (such as proliferation, migration, differentiation, and death) at the single-cell level. As part of this review, we provide a primer for how to define biologically inspired rules governing these processes so that they can be implemented into a CA model. We then demonstrate the power of the CA approach by presenting simulations (in the form of figures and movies) based on building models of three developmental systems: the formation of the enteric nervous system through invasion by neural crest cells; the growth of normal and tumorous neurospheres induced by proliferation of adult neural stem/progenitor cells; and the neural fate specification through lateral inhibition of embryonic stem cells in the neurogenic region of Drosophila.
Collapse
Affiliation(s)
- Dávid Lehotzky
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, Massachusetts
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, Massachusetts
| |
Collapse
|
45
|
Zupanc GK, Zupanc FB, Sipahi R. Stochastic cellular automata model of tumorous neurosphere growth: Roles of developmental maturity and cell death. J Theor Biol 2019; 467:100-110. [DOI: 10.1016/j.jtbi.2019.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/13/2018] [Accepted: 01/19/2019] [Indexed: 02/06/2023]
|
46
|
Zupanc GK. Stem‐Cell‐Driven Growth and Regrowth of the Adult Spinal Cord in Teleost Fish. Dev Neurobiol 2019; 79:406-423. [DOI: 10.1002/dneu.22672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Günther K.H. Zupanc
- Laboratory of Neurobiology, Department of Biology Northeastern University Boston Massachusetts
| |
Collapse
|
47
|
Franco JJ, Atieh Y, Bryan CD, Kwan KM, Eisenhoffer GT. Cellular crowding influences extrusion and proliferation to facilitate epithelial tissue repair. Mol Biol Cell 2019; 30:1890-1899. [PMID: 30785842 PMCID: PMC6727764 DOI: 10.1091/mbc.e18-05-0295] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epithelial wound healing requires a complex orchestration of cellular rearrangements and movements to restore tissue architecture and function after injury. While it is well known that mechanical forces can affect tissue morphogenesis and patterning, how the biophysical cues generated after injury influence cellular behaviors during tissue repair is not well understood. Using time-lapse confocal imaging of epithelial tissues in living zebrafish larvae, we provide evidence that localized increases in cellular crowding during wound closure promote the extrusion of nonapoptotic cells via mechanically regulated stretch-activated ion channels (SACs). Directed cell migration toward the injury site promoted rapid changes in cell number and generated shifts in tension at cellular interfaces over long spatial distances. Perturbation of SAC activity resulted in failed extrusion and increased proliferation in crowded areas of the tissue. Together, we conclude that localized cell number plays a key role in dictating cellular behaviors that facilitate wound closure and tissue repair.
Collapse
Affiliation(s)
- Jovany J Franco
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030.,Department of BioSciences, Rice University, Houston, TX 77251
| | - Youmna Atieh
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Chase D Bryan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112
| | - George T Eisenhoffer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030.,Genetics and Epigenetics Graduate Program, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
48
|
Schlosser G. A Short History of Nearly Every Sense-The Evolutionary History of Vertebrate Sensory Cell Types. Integr Comp Biol 2019; 58:301-316. [PMID: 29741623 DOI: 10.1093/icb/icy024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Evolving from filter feeding chordate ancestors, vertebrates adopted a more active life style. These ecological and behavioral changes went along with an elaboration of the vertebrate head including novel complex paired sense organs such as the eyes, inner ears, and olfactory epithelia. However, the photoreceptors, mechanoreceptors, and chemoreceptors used in these sense organs have a long evolutionary history and homologous cell types can be recognized in many other bilaterians or even cnidarians. After briefly introducing some of the major sensory cell types found in vertebrates, this review summarizes the phylogenetic distribution of sensory cell types in metazoans and presents a scenario for the evolutionary history of various sensory cell types involving several cell type diversification and fusion events. It is proposed that the evolution of novel cranial sense organs in vertebrates involved the redeployment of evolutionarily ancient sensory cell types for building larger and more complex sense organs.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Biomedical Sciences Building, Newcastle Road, Galway H91 TK33, Ireland
| |
Collapse
|
49
|
Martin JL, Sanders EN, Moreno-Roman P, Jaramillo Koyama LA, Balachandra S, Du X, O'Brien LE. Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of division, differentiation and loss. eLife 2018; 7:36248. [PMID: 30427308 PMCID: PMC6277200 DOI: 10.7554/elife.36248] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Organ renewal is governed by the dynamics of cell division, differentiation and loss. To study these dynamics in real time, we present a platform for extended live imaging of the adult Drosophila midgut, a premier genetic model for stem-cell-based organs. A window cut into a living animal allows the midgut to be imaged while intact and physiologically functioning. This approach prolongs imaging sessions to 12–16 hr and yields movies that document cell and tissue dynamics at vivid spatiotemporal resolution. By applying a pipeline for movie processing and analysis, we uncover new and intriguing cell behaviors: that mitotic stem cells dynamically re-orient, that daughter cells use slow kinetics of Notch activation to reach a fate-specifying threshold, and that enterocytes extrude via ratcheted constriction of a junctional ring. By enabling real-time study of midgut phenomena that were previously inaccessible, our platform opens a new realm for dynamic understanding of adult organ renewal.
Collapse
Affiliation(s)
- Judy Lisette Martin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Erin Nicole Sanders
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - Paola Moreno-Roman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States
| | - Leslie Ann Jaramillo Koyama
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - Shruthi Balachandra
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - XinXin Du
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
50
|
Zhang J, Zhou Y, Huang T, Wu F, Liu L, Kwan JSH, Cheng ASL, Yu J, To KF, Kang W. PIEZO1 functions as a potential oncogene by promoting cell proliferation and migration in gastric carcinogenesis. Mol Carcinog 2018; 57:1144-1155. [DOI: 10.1002/mc.22831] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Jinglin Zhang
- Department of Anatomical and Cellular Pathology; State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong SAR PR China
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Li Ka Shing Institute of Health Science; Sir Y.K. Pao Cancer Center; The Chinese University of Hong Kong; Hong Kong SAR PR China
| | - Yuhang Zhou
- Department of Anatomical and Cellular Pathology; State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong SAR PR China
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Li Ka Shing Institute of Health Science; Sir Y.K. Pao Cancer Center; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen PR China
| | - Tingting Huang
- Department of Anatomical and Cellular Pathology; State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong SAR PR China
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Li Ka Shing Institute of Health Science; Sir Y.K. Pao Cancer Center; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen PR China
| | - Feng Wu
- Department of Anatomical and Cellular Pathology; State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong SAR PR China
| | - Liping Liu
- Department of Hepatobiliary and Pancreatic Surgery; Shenzhen People's Hospital; Second Clinical Medical College of Jinan University; Shenzhen Guangdong Province PR China
| | - Johnny S. H. Kwan
- Department of Anatomical and Cellular Pathology; State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong SAR PR China
| | - Alfred S. L. Cheng
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen PR China
- School of Biomedical Sciences; The Chinese University of Hong Kong; Hong Kong PR China
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen PR China
- Department of Medicine and Therapeutics; The Chinese University of Hong Kong; Hong Kong PR China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology; State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong SAR PR China
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Li Ka Shing Institute of Health Science; Sir Y.K. Pao Cancer Center; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen PR China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology; State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong SAR PR China
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Li Ka Shing Institute of Health Science; Sir Y.K. Pao Cancer Center; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen PR China
| |
Collapse
|