1
|
Zhao H, Zhang Y, Cao Y, Zhou B, Xing M, Wang Y. Lycopene regulates Nrf2 to Ameliorate Sulfamethoxazole -induced renal injury and apoptosis via inhibiting oxidative stress and Endoplasmic Reticulum stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107348. [PMID: 40187298 DOI: 10.1016/j.aquatox.2025.107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The overuse and long-term existence of Sulfamethoxazole (SMZ) in aquatic system have led to adverse effects on non-target organisms, remaining a challenge for aquaculture and human health. This study investigated whether the natural carotenoid lycopene (LYC, 10 mg/kg B.W.) could be used as a candidate to alleviate SMZ (0.3 μg/L)-induced kidney injury in grass carp; the underlying mechanisms were deciphered in vivo and in vitro. Transmission electron microscopy and TUNEL were observed to detect renal injury, structure and function. Various indexes belong to apoptosis (Bcl-2 and caspase families) and its upstream cellular processes, including endoplasmic reticulum stress and autophagy and the Nrf2 pathway were detected in kidney to suggest the alleviating effect of LYC on SMZ-induced renal toxicity. The same renal protection of LYC against SMZ-induced autophagic activation, apoptotic cell death, and Nrf2 blockage, were further confirmed in cultured grass carp kidney cells (CIK). Nrf2 siRNA abrogated LYC-dependent protection of the nephrocytes against SMZ-induced higher production of ROS and apoptosis level. LYC is demonstrated as a potential feed additive for both preventing and alleviating SMZ-induced renal toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yingxue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yufei Cao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Boran Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
2
|
Qin F, Cao R, Bai X, Yuan J, Sun W, Zheng Y, Qi X, Zhao W, Liu B, Gao C. Listerin Alleviates Alzheimer's Disease through IRE1-mediated Decay of TLR4 mRNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e14956. [PMID: 40448625 DOI: 10.1002/advs.202414956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 05/16/2025] [Indexed: 06/02/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, accounting for ≈60-70% of all dementia cases worldwide. Microglial-mediated brain inflammation is thought to play key roles in AD progression. Clinical evidence and animal models have indicated that the ribosome-associated quality control (RQC) component Listerin is involved in the development of AD. How Listerin regulates the development and progression of AD is unknown. Here, it is demonstrated that Listerin can decrease brain inflammation and alleviate AD-related cognitive impairments. Microglial-specific knockout of Listerin exhibits deteriorative cognitive symptoms based on the extracellular Amyloid-β (Aβ) or Lipopolysaccharide (LPS) injection. Mechanistically, Listerin directly binds to Toll-like receptor 4 (TLR4) mRNA and facilitates the IRE1α-mediated cleavage and degradation of TLR4 mRNA, leading to the alleviation of TLR4-induced brain inflammation. Adenovirus-mediated overexpression of Listerin decelerates the disease progression in the mouse model of Aβ-mediated neurodegeneration. Thus, Listerin is an important suppressor of microglia-induced brain inflammation and may be a potential therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Fei Qin
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Runyu Cao
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Xuemei Bai
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Jiahua Yuan
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Wanwei Sun
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Yi Zheng
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Xiaopeng Qi
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Wei Zhao
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Bingyu Liu
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Chengjiang Gao
- Key Laboratory of Infection, Immunity and prevention of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China
| |
Collapse
|
3
|
Skóra B, Szychowski KA. Proteostasis and autophagy disruption by the aging-related VGVAPG hexapeptide - preliminary insights into a potential novel elastin-induced neurodegeneration pathway in an in vitro human cellular neuron model. Neurochem Int 2025; 187:105992. [PMID: 40348194 DOI: 10.1016/j.neuint.2025.105992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
The hexapeptide Val-Gly-Val-Ala-Pro-Gly (VGVAPG) is the most readily released product of elastin degradation, a process closely associated with aging. Recent studies have demonstrated the ability of this peptide to upregulate Sirtuin 2 (SIRT2) mRNA and protein expression. The correlation between HRD1 ligase (Synoviolin 1) and the degradation of SIRT2 has been previously reported in the literature. This study aimed to explore the impact of VGVAPG-induced interaction between HRD1 and SIRT2 and its effects on autophagy in differentiated SH-SY5Y cells in vitro (a simplified model of neurons). The results revealed that VGVAPG decreases HRD1 mRNA and protein expression while correlating with SIRT2 overexpression. Further analysis showed reduced SEL1L protein levels and an increase in p97/VCP protein expression. Additionally, enhanced phosphorylation of IRE1α indicated induction of ER stress in the tested cell model without affecting mTOR. Decreased proteasome activity and accumulation of ubiquitin were also noted. This phenomenon triggered VGVAPG-induced autophagy, as evidenced by increased expression of autophagy-related proteins ATG16L1, ATG5, ATG18, and FIP200. However, autophagy was suppressed probably as a result of VGVAPG-induced phosphorylation of ERK1/2. These findings demonstrate that the aging-related hexapeptide VGVAPG downregulates the function of the SEL1L-HRD1 complex, leading to SIRT2 accumulation and subsequent ER stress due to ERAD and UPS. This cascade, in turn, activates autophagy as an alternative clearance pathway aimed at restoring proteostasis; however, the process becomes dysregulated, leading to persistent ER stress. This dual effect may have significant implications in neurobiology, given the well-established correlation between autophagy impairment and aging-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, St. Sucharskiego 2, 35 -225, Rzeszów, Poland.
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, St. Sucharskiego 2, 35 -225, Rzeszów, Poland
| |
Collapse
|
4
|
Chen WY, Yan ZY, Shu-Chen, Liu AN, Miao YT, Wang L, Chen YH. A preliminary study on the regulation and impact of unfolded protein response on circadian genes in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105364. [PMID: 40154934 DOI: 10.1016/j.dci.2025.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Circadian rhythm serves as an adaptive mechanism to environmental changes and is known to regulate multiple physiological processes, such immune response and metabolism. This study explores how unfolded protein response (UPR) affects circadian rhythm genes and their implications at immune and metabolic systems in Litopenaeus vannamei. Under 12 light-dark cycle conditions, Cry1 (LvCry1), Period (LvPeriod), and Vrille (LvVrille) had the highest expression in the eyestalk, while Timeless (LvTimeless) and Shaggy (LvShaggy) were most expressed in the hepatopancreas and nerve. Tunicamycin (TM) injection activated the shrimp UPR and affect the expression of circadian rhythm genes. The time of expression peak of LvCry1 getting earlier, while LvPeriod or LvTimeless peak phase is left shift; LvVrille expression appears circadian disorder, the expression level decreases and the amplitude is significantly lower than the control group. Further investigation revealed that PERK-eIF2α pathway of UPR system may be crucial for its influence on the circadian rhythm gene expression. Further investigation showed that knocked-down expression of LvTimeless, which was significantly affected by the UPR, combined with transcriptomic analysis uncovered that some metabolic and immune-related genes was significantly affected by circadian rhythm. These results have laid a foundation for us to continue to deeply understand the relationship between environmental stress, circadian rhythm and health in L. vannamei.
Collapse
Affiliation(s)
- Wan-Yi Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE)/Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation/College of Life Science, South China Normal University, 510640, Guangzhou, 510631, PR China
| | - Ze-Yu Yan
- Institute of Modern Aquaculture Science and Engineering (IMASE)/Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation/College of Life Science, South China Normal University, 510640, Guangzhou, 510631, PR China
| | - Shu-Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE)/Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation/College of Life Science, South China Normal University, 510640, Guangzhou, 510631, PR China
| | - An-Na Liu
- Institute of Modern Aquaculture Science and Engineering (IMASE)/Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation/College of Life Science, South China Normal University, 510640, Guangzhou, 510631, PR China
| | - Yu-Tao Miao
- Institute of Modern Aquaculture Science and Engineering (IMASE)/Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation/College of Life Science, South China Normal University, 510640, Guangzhou, 510631, PR China
| | - Lei Wang
- Institute of Modern Aquaculture Science and Engineering (IMASE)/Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation/College of Life Science, South China Normal University, 510640, Guangzhou, 510631, PR China.
| | - Yi-Hong Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE)/Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation/College of Life Science, South China Normal University, 510640, Guangzhou, 510631, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| |
Collapse
|
5
|
Wei H, Kappler C, Green E, Jiang H, Yeung T, Wang H. GRP94 is indispensable for definitive endoderm specification of human induced pluripotent stem cells. Mol Ther 2025:S1525-0016(25)00299-0. [PMID: 40254879 DOI: 10.1016/j.ymthe.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/24/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived insulin-producing β cell therapy shows promise in treating type 1 diabetes and potentially type 2 diabetes. Understanding the genetic factors controlling hiPSC differentiation could optimize this therapy. In this study, we investigated the role of glucose-regulated protein 94 (GRP94) in human β cell development by generating HSP90B1/GRP94 knockout (KO) hiPSCs, re-expressing GRP94 in the mutants and inducing their β cell differentiation. Our results revealed that GRP94 depletion hindered β cell generation by promoting cell death induced by endoplasmic reticulum (ER) stress and other stressors during definitive endoderm (DE) differentiation. Moreover, GRP94 deletion resulted in decreased activation of WNT/β-catenin signaling, which is critical for DE specification. Re-expression of GRP94 in GRP94 KO iPSCs partially reversed DE differentiation deficiency and alleviated cell death. These findings highlight the previously unrecognized indispensable role of GRP94 in human DE formation and consequent β cell development from hiPSCs. GRP94 mitigates ER stress-induced cell death and regulates the WNT/β-catenin signaling pathway, which is both crucial for successful β cell differentiation. These results provide new insights into the molecular mechanisms underlying β cell differentiation from hiPSCs and suggest that targeting GRP94 pathways could enhance the efficiency of hiPSC-derived insulin-producing cell therapies for diabetes treatment.
Collapse
Affiliation(s)
- Hua Wei
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Christiana Kappler
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Erica Green
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Hanna Jiang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Tiffany Yeung
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA; Ralph H Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
6
|
Trouvé P, Férec C. p.Phe508del-CFTR Trafficking: A Protein Quality Control Perspective Through UPR, UPS, and Autophagy. Int J Mol Sci 2025; 26:3623. [PMID: 40332143 PMCID: PMC12026709 DOI: 10.3390/ijms26083623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Cystic fibrosis (CF) is a genetic disease due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most frequent mutation (p.Phe508del) results in a misfolded protein (p.Phe508del-CFTR) with an altered transport to the membrane of the cells via the conventional protein secretion (CPS) pathway. Nevertheless, it can use unconventional protein secretion (UPS). Indeed, p.Phe508del-CFTR forms a complex with GRASP55 to assist its direct trafficking from the endoplasmic reticulum to the plasma membrane. While GRASP55 is a key player of UPS, it is also a key player of stress-induced autophagy. In parallel, the unfolded protein response (UPR), which is activated in the presence of misfolded proteins, is tightly linked to UPS and autophagy through the key effectors IRE1, PERK, and ATF6. A better understanding of how UPS, UPR, and stress-induced autophagy interact to manage protein trafficking in CF and other conditions could lead to novel therapeutic strategies. By enhancing or modulating these pathways, it may be possible to increase p.Phe508del-CFTR surface expression. In summary, this review highlights the critical roles of UPS- and UPR-induced autophagy in managing protein transport, offering new perspectives for therapeutic approaches.
Collapse
Affiliation(s)
- Pascal Trouvé
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France;
| | | |
Collapse
|
7
|
Mohan AA, Talwar P. MAM kinases: physiological roles, related diseases, and therapeutic perspectives-a systematic review. Cell Mol Biol Lett 2025; 30:35. [PMID: 40148800 PMCID: PMC11951743 DOI: 10.1186/s11658-025-00714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondria-associated membranes (MAMs) are tethering regions amid the membranes of the endoplasmic reticulum (ER) and mitochondria. They are a lipid raft-like structure occupied by various proteins that facilitates signal transduction between the two organelles. The MAM proteome participates in cellular functions such as calcium (Ca2+) homeostasis, lipid synthesis, ER stress, inflammation, autophagy, mitophagy, and apoptosis. The human kinome is a superfamily of homologous proteins consisting of 538 kinases. MAM-associated kinases participate in the aforementioned cellular functions and act as cell fate executors. Studies have proved the dysregulated kinase interactions in MAM as an etiology for various diseases including cancer, diabetes mellitus, neurodegenerative diseases, cardiovascular diseases (CVDs), and obesity. Several small kinase inhibitory molecules have been well explored as promising drug candidates in clinical trials with an accelerating impact in the field of precision medicine. This review narrates the physiological actions, pathophysiology, and therapeutic potential of MAM-associated kinases with recent updates in the field.
Collapse
Affiliation(s)
- A Anjana Mohan
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Chu CM, Sabbineni B, Cen HH, Hu X, Sun WG, Brownrigg GP, Xia YH, Rogalski J, Johnson JD. Signal transduction pathways controlling Ins2 gene activity and beta cell state transitions. iScience 2025; 28:112015. [PMID: 40144638 PMCID: PMC11938086 DOI: 10.1016/j.isci.2025.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Pancreatic β cells exist in low and high insulin gene activity states that are dynamic on a scale of hours to days. Here, we used live 3D imaging, mass spectrometry proteomics, and targeted perturbations of β cell signaling to comprehensively investigate Ins2(GFP)HIGH and Ins2(GFP)LOW β cell states. We identified the two Ins2 gene activity states in intact isolated islets and showed that cells in the same state were more likely to be nearer to each other. We report the proteomes of pure β cells to a depth of 5555 proteins and show that β cells with high Ins2 gene activity had reduced β cell immaturity factors, as well as increased translation. We identified activators of cAMP signaling (GLP1, IBMX) as powerful drivers of Ins2(GFP)LOW to Ins2(GFP)HIGH transitions. Okadaic acid and cyclosporine A had the opposite effects. This study provides new insight into the proteomic profiles and regulation of β cell states.
Collapse
Affiliation(s)
- Chieh Min Chu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Bhavya Sabbineni
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Haoning Howard Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - WenQing Grace Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - George P. Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Jason Rogalski
- Proteomics and Metabolomics Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Shishova A, Ivin Y, Gladneva E, Fominykh K, Dyugay I, Gmyl A. Modulation of Ire1-Xbp1 Defense Pathway in Encephalomyocarditis Virus-Infected HeLa Cells. Viruses 2025; 17:360. [PMID: 40143290 PMCID: PMC11946305 DOI: 10.3390/v17030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
A key contributor to the pathogenicity of viruses is their interaction with cellular defense mechanisms, including UPR (unfolded protein response) that counteracts the accumulation of misfolded proteins in the endoplasmic reticulum (known as ER stress). One of the UPR branches is mediated by the IRE1 (inositol-requiring enzyme 1) protein, which possesses protein kinase and RNase activities that facilitate the unconventional cytoplasmic splicing of XBP1 mRNA, leading to the upregulation of the XBP1 transcription factor. In this study, we demonstrate that Encephalomyocarditis Virus (Cardiovirus rueckerti) is able to suppress IRE1-dependent XBP1 activation. HeLa cells infection with EMCV resulted in the modulation of phosphorylated IRE1 levels throughout the infection cycle. Viral infection did not result in the accumulation of spliced XBP1 mRNA. Moreover, the addition of a chemical inducer of ER stress (dithiothreitol) to infected cells led to a markedly lower accumulation of spliced XBP1 mRNA as compared to the level of this mRNA in inducer-treated mock-infected cells. Thus, our results demonstrate the ability of picornaviruses to modulate another defensive activity of the host cell.
Collapse
Affiliation(s)
- Anna Shishova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
- Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 117418 Moscow, Russia
| | - Yury Ivin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Ekaterina Gladneva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Ksenia Fominykh
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Ilya Dyugay
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Anatoly Gmyl
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| |
Collapse
|
10
|
Hilan G, Daniel G, Collak F, Sabatino D, Willmore W. Cancer-Targeting Peptides Functionalized With Polyarginine Enables GRP78-Dependent Cell Uptake and siRNA Delivery Within the DU145 Prostate Cancer Cells. J Pept Sci 2025; 31:e70007. [PMID: 39967318 PMCID: PMC11836551 DOI: 10.1002/psc.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
This study investigated a peptide-based GRP78-targeting strategy for short-interfering (si) RNA delivery in cancer cells. Synthetic fluorescein-labeled amphiphilic peptides composed of the hydrophobic cell surface (cs) GRP78-targeting and hydrophilic, polycationic arginine-rich cell penetrating peptides demonstrated GRP78-dependent cell uptake in the DU145 prostate cancer cells, and to a lesser extent in the non-cancerous human lung fibroblast WI-38 cell line. Mechanistic studies revealed energy-dependent GRP78 receptor-mediated endocytosis of the GRP78-targeting peptide with polyarginine (W1-R9). The cytosolic accumulation of this peptide underscored its potential utility in siRNA delivery. Peptide:siRNA complexes formed stably condensed nanoparticles, with calcium functioning as an ionic stabilizer and additive promoting endosomal siRNA escape for RNA interference (RNAi) activity. Preliminary peptide-based siRNA transfections in the DU145 cells demonstrated that GRP78 knockdown led to an interplay in between pro-survival and cell death outcomes under ER stress induction. Thus, the GRP78-targeting polyarginine peptides enables efficient cell uptake for specific siRNA delivery in the DU145 cells. This class of bio-active synthetic peptides is important for the investigation of cancer biology, leading to the innovation of cancer-targeted gene delivery and therapy approaches.
Collapse
Affiliation(s)
- George Hilan
- Department of BiologyCarleton UniversityOttawaONCanada
| | - Grace Daniel
- Department of ChemistryCarleton UniversityOttawaONCanada
- Institute of BiochemistryCarleton UniversityOttawaONCanada
| | - Filiz Collak
- Department of BiologyCarleton UniversityOttawaONCanada
- Department of ChemistryCarleton UniversityOttawaONCanada
| | - David Sabatino
- Department of ChemistryCarleton UniversityOttawaONCanada
- Institute of BiochemistryCarleton UniversityOttawaONCanada
| | - William G. Willmore
- Department of BiologyCarleton UniversityOttawaONCanada
- Department of ChemistryCarleton UniversityOttawaONCanada
- Institute of BiochemistryCarleton UniversityOttawaONCanada
| |
Collapse
|
11
|
Di Mattia M, Sallese M, Lopetuso LR. The interplay between gut microbiota and the unfolded protein response: Implications for intestinal homeostasis preservation and dysbiosis-related diseases. Microb Pathog 2025; 200:107279. [PMID: 39761770 DOI: 10.1016/j.micpath.2025.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/28/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The unfolded protein response (UPR) is a complex intracellular signal transduction system that orchestrates the cellular response during Endoplasmic Reticulum (ER) stress conditions to reestablish cellular proteostasis. If, on one side, prolonged ER stress conditions can lead to programmed cell death and autophagy as a cytoprotective mechanism, on the other, unresolved ER stress and improper UPR activation represent a perilous condition able to trigger or exacerbate inflammatory responses. Notably, intestinal and immune cells experience ER stress physiologically due to their high protein secretory rate. Indeed, there is evidence of UPR's involvement in both physiological and pathological intestinal conditions, while less is known about its bidirectional interaction with gut microbiota. However, gut microbes and their metabolites can influence ER stress and UPR pathways, and, in turn, ER stress conditions can shape gut microbiota composition, with important implications for overall intestinal health. Thus, targeting UPR components is an intriguing strategy for treating ER stress-linked dysbiosis and diseases, particularly intestinal inflammation.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
12
|
Peng C, Wang J, Wang S, Zhao Y, Wang H, Wang Y, Ma Y, Yang J. Endoplasmic Reticulum Stress: Triggers Microenvironmental Regulation and Drives Tumor Evolution. Cancer Med 2025; 14:e70684. [PMID: 40035165 PMCID: PMC11877002 DOI: 10.1002/cam4.70684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/23/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) serves as a crucial hub for protein synthesis and processing, playing an essential role in maintaining protein homeostasis. Perturbations, such as hypoxia, oxidative stress, inadequate amino acid supply, Ca2+ imbalance, and acidosis, can disrupt cellular equilibrium and result in the accumulation of misfolded/unfolded proteins within the ER lumen. This triggers ER stress. In response to this stress, an unfolded protein response (UPR) is activated as a mechanism to cope with the stress and restore internal balance. The UPR is regulated by three sensors located in the ER: inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). However, the UPR can promote tumor growth in vivo by affecting tumor angiogenesis, cell migration, cell metabolism, and treatment resistance, and has a huge impact on the tumor microenvironment. MATERIALS AND METHODS We conducted a literature review of scientific papers on the topic of ER stress in the tumor microenvironment. RESULTS AND DISCUSSION This review focuses on the inducing factors of ER stress, the mechanism of the UPR signaling pathway induced by ER stress, and the effect of ER stress on the tumor microenvironment and immune-infiltrating cells. Tumors can regulate their evolution by affecting themselves and the tumor microenvironment through endoplasmic reticulum stress. This study reveals the important role of endoplasmic reticulum stress in the occurrence and development of tumors, and provides new ideas and potential therapeutic targets for the precision treatment of tumors. Future studies can further explore the molecular mechanism of ER stress regulating tumor microenvironment and explore its application potential in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Chaosheng Peng
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Juan Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Shu Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Yan Zhao
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Haoyuan Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Yuhao Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Yuxuan Ma
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Jianjun Yang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
13
|
Jeong S, Doo M, Sung K, Kim YJ, Lee JH, Ha JH. Aruncus Dioicus Var. Kamtschaticus Extract Prevents Ocular Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress In Vitro. J Med Food 2025; 28:281-293. [PMID: 39973273 DOI: 10.1089/jmf.2024.k.0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
The aim of this study was to determine the anti-inflammatory and anti-endoplasmic reticulum (ER) stress effects of Aruncus dioicus var. kamtschaticus (ADK) extract on ARPE-19 cells. Pretreatment with ADK effectively mitigated thapsigargin (Tg)-induced increases in vascular endothelial growth factor protein secretion and intracellular calcium levels. Furthermore, pretreatment with ADK suppressed ocular ER stress-related protein expression in a dose-dependent manner, inhibited the loss of tight junctions, and suppressed interleukin-6 gene expression. Moreover, ADK pretreatment significantly prevented lipopolysaccharide-inducible proinflammatory cytokine gene expression at the transcription level and the phosphorylation of proteins involved in the mitogen-activated protein kinase-nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) axis at the posttranslational level. Additionally, ADK extract enhanced antioxidant activity, as evidenced by increased heme oxygenase-1 protein expression and increased 2,2-diphenyl-1-picrylhydrazyl radical scavenging and ferric-reducing antioxidant power. In conclusion, ADK extract effectively protected ARPE-19 cells from ocular ER stress, inflammation, and oxidative stress, demonstrating its potential as a nutraceutical intervention for ocular diseases.
Collapse
Affiliation(s)
- Sunyoung Jeong
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon, Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Korea
| | - Miae Doo
- Department of Food and Nutrition, Kunsan National University, Gunsan, Korea
| | - Kihun Sung
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Jong-Hwa Lee
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon, Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin, Korea
| |
Collapse
|
14
|
Liu Z, Liu Q, Zeng A, Song L. Regulatory function of endoplasmic reticulum stress in colorectal cancer: Mechanism, facts, and perspectives. Int Immunopharmacol 2025; 147:114024. [PMID: 39764998 DOI: 10.1016/j.intimp.2025.114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/29/2025]
Abstract
Colorectal cancer (CRC) is an exceedingly common and profoundly impactful malignancy of the digestive system, posing a grave threat to human health. Endoplasmic reticulum stress (ERS) is an intracellular biological reaction that mobilizes the unfolded protein response (UPR) to tackling dysregulation in protein homeostasis. This process subtly modulates the cell to either restore normal cellular function or steer it towards apoptosis. The high metabolic demands of CRC cells sculpt a rigorous tumor microenvironment (TME), compelling CRC cells to experience ERS. Adaptive responses induced by mild ERS furnish the necessary conditions for the survival of CRC cells, whereas the cell death mechanisms triggered by sustained ERS could be considered a prospective strategy for cancer therapy. Considering the complex regulation of ERS in cancer development, this article offers a comprehensive review of the molecular mechanisms through which ERS influences CRC fate. It provides crucial insights for exploring the role of ERS in the occurrence and progression of CRC, laying a new theoretical foundation for devising precise therapeutic strategies targeting ERS. Furthermore, by synthesizing extensive clinical and preclinical studies, we delve into therapeutic strategies targeting ERS, including the potential of targeting ERS in immunotherapy, the utilization of native compounds, advancements in proteasome inhibitors, and the potential synergies of these strategies with traditional chemotherapy agents and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Zihan Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
15
|
Jang Y, Bunz F. Dynamic Modulation of IRE1α-XBP1 Signaling by Adenovirus. Pathogens 2025; 14:132. [PMID: 40005508 PMCID: PMC11857978 DOI: 10.3390/pathogens14020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The abundant production of foreign proteins and nucleic acids during viral infection elicits a variety of stress responses in host cells. Viral proteins that accumulate in the endoplasmic reticulum (ER) can trigger the unfolded protein response (UPR), a coordinated signaling program that culminates in the expression of downstream genes that collectively restore protein homeostasis. The model pathogen adenovirus serotype 5 (HAdV5) activates the UPR via the signaling axis formed by inositol-requiring enzyme type 1 (IRE1α) and the X-box binding protein 1 (XBP1), a transcription factor required for immune function. Recent studies have suggested that IRE1α-XBP1 activity supports adenovirus replication. Here, we show that HAdV5 exerted opposing effects on IRE1α and XBP1. IRE1α was activated in response to HAdV5, but the production of the XBP1 isoform, XBP1s, was post-transcriptionally blocked. The tumor suppressor p53, which is eliminated by HAdV5 after infection, inhibited IRE1α activation. The de-repression of IRE1α following the degradation of p53 conceivably reflects a novel antiviral mechanism, which HAdV5 ultimately evades by co-opting IRE1α and suppressing XBP1s. Our findings illustrate the opposing mechanisms used by adenoviruses and their host cells to exert control over the UPR, a critical determinant of cell fate.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Department of Food Science and Nutrition, College of Human Ecology, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| |
Collapse
|
16
|
Matkowski H, Daszkowska-Golec A. Wisdom comes after facts - An update on plants priming using phytohormones. JOURNAL OF PLANT PHYSIOLOGY 2025; 305:154414. [PMID: 39798192 DOI: 10.1016/j.jplph.2024.154414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025]
Abstract
Currently, agriculture is facing the threat of climate change. Adaptation of plants to unfavorable growth conditions is undoubtedly a great challenge for scientists. A promising solution to this problem is priming, for which chemicals, microorganisms and phytohormones can be used. The use of priming not only affects the adaptation of plants to unfavorable environmental conditions caused by water deficiency, low temperatures, heat and soil pollution, but can also improve the quantity and quality of biomass. In this review, we focus on the role of plant phytohormones in inducing priming in crop plants. We took a closer look at hormones such as abscisic acid, salicylic acid, jasmonic acid and gibberellins. We focused not only on their physiological and morphological effects, but also on what changes at the molecular level are induced by priming with phytohormones. An interesting aspect of priming is the epigenetic changes induced by phytohormones, which influence better adaptation to unfavorable conditions, which is why we addressed this topic in this review.
Collapse
Affiliation(s)
- Hubert Matkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
17
|
Rodrigues da Silva GH, Mendes LF, Geronimo G, de Moura LD, Ruas JS, Castilho RF, Cordeiro HG, Ferreira CV, de Paula E, Duarte IF. Schwann cells exposed to articaine display distinct toxic pathways compared to lidocaine. Chem Biol Interact 2025; 406:111315. [PMID: 39580065 DOI: 10.1016/j.cbi.2024.111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Articaine (ATC) has emerged as one of the most popular local anesthetics (LA) in dental clinics, despite its relatively recent introduction to the market. As a member of the amino-amide class of LA, ATC possesses unique features, including a thiophene ring and an ester group, which allow for its use at higher clinical concentrations. However, reports have indicated a higher incidence of paresthesia associated with ATC, though the underlying cause of this effect remains unclear. To investigate this further, we conducted an extracellular metabolic flux analysis and an NMR-based metabolomics study of ATC effects on Schwann cells - a type of glial cell found in the peripheral nervous system - in comparison to lidocaine (LDC), the "gold standard" LA in dentistry. The results showed that ATC had a more significant impact on Schwann cell oxygen consumption compared to LDC. Metabolomics profiling of Schwann cells revealed distinct metabolic alterations between the two treatments. Notably, ATC triggered elevated intracellular levels of various amino acids, including leucine, isoleucine, valine, phenylalanine, methionine, histidine, tyrosine, and glycine, which were not observed in LDC-treated Schwann cells. This was consistent with signs of endoplasmic reticulum stress and apoptosis in ATC-treated cells, as detected by protein expression analysis. These findings offer insights into the metabolic and cellular responses elicited by the two anesthetics in Schwann cells, that may help explain the differential toxicity and higher incidence of paresthesia associated with ATC.
Collapse
Affiliation(s)
- Gustavo H Rodrigues da Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil; Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas-SP, Brazil
| | - Luís F Mendes
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Gabriela Geronimo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Ludmilla D de Moura
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Juliana S Ruas
- Department of Pathology, School of Medical Sciences, UNICAMP, Campinas-SP, Brazil
| | - Roger F Castilho
- Department of Pathology, School of Medical Sciences, UNICAMP, Campinas-SP, Brazil
| | - Helon G Cordeiro
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Carmen V Ferreira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil.
| | - Iola F Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
18
|
Iimori Y, Morita T, Masuda T, Kitajima S, Kono N, Kageyama S, Galipon J, Sasaki AT, Kanai A. SLFN11-mediated tRNA regulation induces cell death by disrupting proteostasis in response to DNA-damaging agents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.632070. [PMID: 39829761 PMCID: PMC11741311 DOI: 10.1101/2025.01.08.632070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
DNA-damaging agents (DDAs) have long been used in cancer therapy. However, the precise mechanisms by which DDAs induce cell death are not fully understood and drug resistance remains a major clinical challenge. Schlafen 11 (SLFN11) was identified as the gene most strongly correlated with the sensitivity to DDAs based on mRNA expression levels. SLFN11 sensitizes cancer cells to DDAs by cleaving and downregulating tRNALeu(TAA). Elucidating the detailed mechanism by which SLFN11 induces cell death is expected to provide insights into overcoming drug resistance. Here, we show that, upon administration of DDAs, SLFN11 cleaves tRNALeu(TAA), leading to ER stress and subsequent cell death regulated by inositol-requiring enzyme 1 alpha (IRE1α). These responses were significantly alleviated by SLFN11 knockout or transfection of tRNALeu(TAA). Our proteomic analysis suggests that tRNALeu(TAA) influences proteins essential for maintaining proteostasis, especially those involved in ubiquitin-dependent proteolysis. Additionally, we identified the cleavage sites of tRNALeu(TAA) generated by SLFN11 in cells, and revealed that tRNA fragments contribute to ER stress and cell death. These findings suggest that SLFN11 plays a crucial role in proteostasis by regulating tRNAs, and thus determines cell fate under DDA treatment. Consequently, targeting SLFN11-mediated tRNA regulation could offer a novel approach to improve cancer therapy.
Collapse
Affiliation(s)
- Yuki Iimori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Teppei Morita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Takeshi Masuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Shojiro Kitajima
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Shun Kageyama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Josephine Galipon
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, 992-8510, Japan
| | - Atsuo T. Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, Cincinnati, OH, 45267, USA
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| |
Collapse
|
19
|
Su S, Liu X, Zhu M, Liu W, Liu J, Yuan Y, Fu F, Rao Z, Liu J, Lu Y, Chen Y. Trehalose Ameliorates Nonalcoholic Fatty Liver Disease by Regulating IRE1α-TFEB Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:521-540. [PMID: 39680632 DOI: 10.1021/acs.jafc.4c08669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by hepatic lipid deposition, is one of the most prevalent chronic metabolic disorders globally, and its pharmaceutical treatments are still limited. Excessive lipid accumulation triggers endoplasmic reticulum (ER) stress and autophagy flux dysfunction, which are important mechanisms for NAFLD. Trehalose (Tre), a natural disaccharide, has been identified to reduce hepatic steatosis and glucose intolerance. However, its underlying mechanisms for NAFLD remain unclear. In this study, a high-fat-diet (HFD)-induced mouse NAFLD model and a saturated fatty acid palmitic acid (PA)-stimulated cell model were constructed. The results indicated that Tre supplementation ameliorated hepatocyte lipid deposition in vitro, as well as hepatic steatosis and hyperlipidemia in vivo. Mechanistically, Tre alleviated both autophagy flux dysfunction and endoplasmic reticulum (ER) stress. Under the stimulation of HFD or PA, Tre remarkably increased the expression and nucleic translocation of the lysosomal master protein transcription factor EB (TFEB), while decreasing the accumulation of p62 and also decreasing the ER stress markers (inositol-requiring enzyme 1 (IRE1α), XBP-1, CHOP, and BIP). Similar results were observed in an ER stressor tunicamycin (TM)-induced in vivo and in vitro models. In addition, the transcriptomic analysis of NAFLD patients revealed significant differences in ER stress-related and autophagy-related biomarkers, including TFEB, ATG7, IRE1α, and CHOP. Molecular docking results demonstrated a strong affinity between Tre and both IRE1α and TFEB. Overall, Tre protected hepatocytes from lipotoxicity-related ER stress and autophagy dysfunction, and its regulatory effect on the IRE1α-TFEB signaling pathway may be a critical mechanism. These findings suggest that Tre, as a bioactive substance with significant medicinal potential, holds considerable promise for drug development and clinical application in treating NAFLD.
Collapse
Affiliation(s)
- Shan Su
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, P. R. China
| | - Xiaohong Liu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Min Zhu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Wen Liu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jingyi Liu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yujia Yuan
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Fudong Fu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, P. R. China
| | - Zhiyong Rao
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jingping Liu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yanrong Lu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Younan Chen
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, P. R. China
| |
Collapse
|
20
|
Straus AJ, Mavodza G, Senkal CE. Glycosylation of ceramide synthase 6 is required for its activity. J Lipid Res 2025; 66:100715. [PMID: 39608570 PMCID: PMC11732463 DOI: 10.1016/j.jlr.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024] Open
Abstract
Sphingolipids play key roles in membrane structure and cellular signaling. Ceramide synthase (CerS)-generated ceramide is implicated in cellular stress responses and induction of apoptosis. Ceramide and other sphingolipids are linked to the induction of ER stress response pathways. However, the mechanisms by which ceramide modulates ER stress signaling are not well understood. Here, we show that the ER stress inducer brefeldin A (BFA) causes increased glycosylation of CerS6, and that treatment with BFA causes increased endogenous ceramide accumulation. To our surprise, we found that CerS6 activity was not affected by BFA-induced glycosylation. Instead, our data show that basal glycosylation of CerS6 at Asn18 is required for CerS6 activity. We used a robust HCT116 CRISPR-Cas9 CerS6 KO with reintroduction of either WT CerS6 or a mutant CerS6 with a point mutation at asparagine-18 to an alanine (N18A) which abrogated glycosylation at that residue. Our data show that cells stably expressing the N18A mutant CerS6 had significantly lower activity in vitro and in situ as compared to WT CerS6 expressing cells. Further, the defective CerS6 with N18A mutation also had defects in GSK3β, AKT, JNK, and STAT3 signaling. Despite being required for CerS6 activity, Asn18 glycosylation did not influence ER stress response pathways. Overall, our study provides vital insight into the regulation of CerS6 activity by posttranslational modification at Asn18 and identifies glycosylation of CerS6 to be important for ceramide generation and regulation of downstream cellular signaling pathways.
Collapse
Affiliation(s)
- Alexandra J Straus
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Grace Mavodza
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Can E Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
21
|
Tak J, Kim YS, Kim SG. Roles of X-box binding protein 1 in liver pathogenesis. Clin Mol Hepatol 2025; 31:1-31. [PMID: 39355873 PMCID: PMC11791611 DOI: 10.3350/cmh.2024.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024] Open
Abstract
The prevalence of drug-induced liver injury (DILI) and viral liver infections presents significant challenges in modern healthcare and contributes to considerable morbidity and mortality worldwide. Concurrently, metabolic dysfunctionassociated steatotic liver disease (MASLD) has emerged as a major public health concern, reflecting the increasing rates of obesity and leading to more severe complications such as fibrosis and hepatocellular carcinoma. X-box binding protein 1 (XBP1) is a distinct transcription factor with a basic-region leucine zipper structure, whose activity is regulated by alternative splicing in response to disruptions in endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR) activation. XBP1 interacts with a key signaling component of the highly conserved UPR and is critical in determining cell fate when responding to ER stress in liver diseases. This review aims to elucidate the emerging roles and molecular mechanisms of XBP1 in liver pathogenesis, focusing on its involvement in DILI, viral liver infections, MASLD, fibrosis/cirrhosis, and liver cancer. Understanding the multifaceted functions of XBP1 in these liver diseases offers insights into potential therapeutic strategies to restore ER homeostasis and mitigate liver damage.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
22
|
Chowdhury D, Jang CE, Lajoie P, Renaud SJ. A stress paradox: the dual role of the unfolded protein response in the placenta. Front Endocrinol (Lausanne) 2024; 15:1525189. [PMID: 39758342 PMCID: PMC11695235 DOI: 10.3389/fendo.2024.1525189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
The placenta is a temporary organ that forms during pregnancy and is essential for fetal development and maternal health. As an endocrine organ, proper placental function requires continual production, folding, and transport of proteins and lipids. Central to these processes is the endoplasmic reticulum (ER), a dynamic organelle responsible for maintaining cellular protein and lipid synthesis and processing. ER stress occurs when there is an accumulation of unfolded or misfolded proteins, which triggers the activation of cellular pathways collectively called the unfolded protein response. Unfolded protein response pathways act to alleviate the misfolded protein burden and restore ER homeostasis, or if unresolved, initiate cell death. While prolonged ER stress has been linked to deficient placental function and adverse pregnancy outcomes, basal activation of unfolded protein response pathways is required for placental development and function. This review explores the importance of ER homeostasis in placental development and function, examining how disruptions in ER stress responses may contribute to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Diba Chowdhury
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Chloe E. Jang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| | - Stephen J. Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
23
|
Jang Y, Bunz F. Dynamic modulation of IRE1α-XBP1 signaling by adenovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.30.626188. [PMID: 39677734 PMCID: PMC11642829 DOI: 10.1101/2024.11.30.626188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The abundant production of foreign proteins and nucleic acids during viral infection elicits a variety of stress responses in host cells. Viral proteins that accumulate in the endoplasmic reticulum (ER) can trigger the unfolded protein response (UPR), a coordinated signaling program that culminates in the expression of downstream genes that collectively restore protein homeostasis. The model pathogen adenovirus serotype 5 (HAdV5) activates the UPR via the signaling axis formed by inositol-requiring enzyme type 1 (IRE1α) and the X-box binding protein 1 (XBP1), a transcription factor required for immune function. Recent studies have suggested that IRE1α-XBP1 activity supports adenovirus replication. Here, we show that HAdV5 exerted opposing effects on IRE1α and XBP1. IRE1α was activated in response to HAdV5 but the production of the XBP1 isoform, XBP1s, was post-transcriptionally blocked. The tumor suppressor p53, which is eliminated by HAdV5 after infection, inhibited IRE1α activation. The de-repression of IRE1α following the degradation of p53 conceivably reflects a novel antiviral mechanism, which HAdV5 ultimately evades by suppressing XBP1s. Our findings highlight the defective antiviral defenses in cancer cells and further illustrate the opposing mechanisms used by adenoviruses and their host cells to exert control over the UPR, a critical determinant of cell fate.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
- Department of Food Science and Nutrition, College of Human Ecology, University of Ulsan, Ulsan, Republic of Korea
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| |
Collapse
|
24
|
Mahmoud NM, Elshazly SM, El-shaarawy F, Zaitone SA, Aldahish AA, Ahmed GA, Fawzy MS, Aloyouni SY, Abed SY, Saeedi T, El-Sayed SS. Nitazoxanide mitigates methotrexate hepatotoxicity in rats: role in inhibiting apoptosis and regulating endoplasmic reticulum stress. Front Pharmacol 2024; 15:1491249. [PMID: 39687303 PMCID: PMC11647085 DOI: 10.3389/fphar.2024.1491249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Objectives Hepatotoxicity is a severe outcome of methotrexate (MTX) therapy, limiting its clinical use and contributing to its related morbidity and mortality. This study investigated the hepatoprotective effects of nitazoxanide (NTZ), an antiprotozoal drug, against MTX-induced hepatotoxicity and whether endoplasmic reticulum (ER) stress-modulation underlies the expected beneficial effects of NTZ. Methods Thirty-six rats were allocated to six groups, one control group and five MTX groups, where induction of hepatotoxicity was achieved via injecting MTX (20 mg/kg). Groups were assigned as MTX-vehicle, NTZ-100, and NTZ-200 groups (at 100 and 200 mg/kg/day, gavage, respectively), N-acetyl cysteine (NAC) group (500 mg/kg), and 4-phenyl butyric acid (4-PBA) group (150 mg/kg, i.p). Liver function enzymes in serum, hepatic oxidative stress, proinflammatory cytokines, apoptosis, and ER-stress biomarkers were assessed. A histopathological examination was performed. Results Treatment with NTZ lessened the serum liver enzymes, reduced malondialdehyde (lipid peroxidation product), enhanced antioxidant capacity, attenuated proinflammatory cytokines, and suppressed apoptosis. The protective effect of NTZ was dose-dependent, and the findings observed with the high-dose NTZ were similar to those obtained with the ER-stress inhibitor (4-PBA). Conclusion NTZ exerted a hepatoprotective effect in MTX-challenged rats that is mediated via modulation of ER stress and inhibiting apoptosis.
Collapse
Affiliation(s)
| | - Shimaa M. Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Fatma El-shaarawy
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Arish, Egypt
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Afaf A. Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Gehan A. Ahmed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sheka Yagub Aloyouni
- Research Department, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sally Y. Abed
- Department of Respiratory Care, College of Applied Medical Science in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Tahani Saeedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Shaimaa S. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
25
|
Zhu LR, Cui W, Liu HP. Research progress and advances in endoplasmic reticulum stress regulation of acute kidney injury. Ren Fail 2024; 46:2433160. [PMID: 39586579 PMCID: PMC11590187 DOI: 10.1080/0886022x.2024.2433160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Acute kidney injury (AKI) is a common and severe clinical disorder in which endoplasmic reticulum (ER) stress plays an important regulatory role. In this review, we summarize the research progress on the relationship between ER stress and AKI. It emphasizes the importance of maintaining a balance between promoting and protecting ER stress during AKI and highlights the potential of ER stress-targeted drugs as a new therapeutic approach for AKI. The article also discusses the need for developing drugs that target ER stress effectively while avoiding adverse effects on normal cells and tissues. The review concludes that with a more comprehensive understanding of ER stress mechanisms and advancements in research techniques, more effective treatment options for AKI can be developed in the future.
Collapse
Affiliation(s)
- Li-Ran Zhu
- Anhui Institute of Pediatric Research, Anhui Provincial Children’s Hospital (Children’s Hospital of Fudan University Anhui Hospital; Children’s Medical Center of Anhui Medical University), Hefei, Anhui, China
| | - Wei Cui
- Department of Scientific Research and Education, Anhui Provincial Children’s Hospital (Children’s Hospital of Fudan University Anhui Hospital; Children’s Medical Center of Anhui Medical University), Hefei, Anhui, China
| | - Hai-Peng Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children’s Hospital (Children’s Hospital of Fudan University Anhui Hospital; Children’s Medical Center of Anhui Medical University), Hefei, Anhui, China
| |
Collapse
|
26
|
Lu Y, Zhou J, Wang H, Gao H, Ning E, Shao Z, Hao Y, Yang X. Endoplasmic reticulum stress-mediated apoptosis and autophagy in osteoarthritis: From molecular mechanisms to therapeutic applications. Cell Stress Chaperones 2024; 29:805-830. [PMID: 39571722 DOI: 10.1016/j.cstres.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024] Open
Abstract
Osteoarthritis (OA) is characterized primarily by the degeneration of articular cartilage, with a high prevalence and disability rate. The functional phenotype of chondrocytes, as the sole cell type within cartilage, is vital for OA progression. Due to the avascular nature of cartilage and its limited regenerative capacity, repair following injury poses significant challenges. Various cellular stressors, including hypoxia, nutrient deprivation, oxidative stress, and collagen mutations, can lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), resulting in ER stress (ERS). In response to restore ER homeostasis as well as cellular vitality and function, a series of adaptive mechanisms are triggered, including the unfolded protein response, ER-associated degradation, and ER-phagy. Prolonged or severe ERS may exceed the adaptive capacity of cells, leading to dysregulation in apoptosis and autophagy-key pathogenic factors contributing to chondrocyte damage and OA progression. This review examines the relationship between ERS in OA chondrocytes and both apoptosis and autophagy in order to identify potential therapeutic targets and strategies for prevention and treatment of OA.
Collapse
Affiliation(s)
- Yifan Lu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Hong Wang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Hua Gao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Eryu Ning
- Gusu School, Nanjing Medical University, Suzhou, PR China; Department of Sports Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China
| | - Zhiqiang Shao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China.
| | - Xing Yang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China.
| |
Collapse
|
27
|
Liu W, Zhang Q, Guo S, Wang H. The role of microRNAs regulation of endoplasmic reticulum stress in ischemia-reperfusion injury: A review. Int J Biol Macromol 2024; 283:137566. [PMID: 39542287 DOI: 10.1016/j.ijbiomac.2024.137566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
The endoplasmic reticulum (ER) is an important organelle in eukaryotic cells, responsible for a range of biological functions such as the secretion, modification and folding of proteins, maintaining Ca2+ homeostasis and the synthesis of steroids/lipids, secreted proteins and membrane proteins. When cells are affected by internal or external factors, including abnormal energy metabolism, disrupted Ca2+ balance, altered glycosylation, drug toxicity, and so on, the unfolded or misfolded proteins accumulate in the ER, leading to the unfolded protein response (UPR) and ER stress. The abnormal ER stress has been reported to be involved in various pathological processes. MicroRNAs (miRNAs) are non-coding RNAs with the length of approximately 19-25 nucleotides. They control the expression of multiple genes through posttranscriptional gene silencing in eukaryotes or some viruses. Increasing evidence indicates that miRNAs are involved in various cellular functions and biological processes, such as cell proliferation and differentiation, growth and development, and metabolic homeostasis. Hence, miRNAs participate in multiple pathological processes. Recently, many studies have shown that miRNAs play an important role by regulating ER stress in ischemia-reperfusion (I/R) injury, but the relevant mechanisms are not fully understood. In this review, we reviewed the current understanding of ER stress, as well as the biogenesis and function of miRNAs, and focused on the role of miRNAs regulation of ER stress in I/R injury, with the aim of providing new targets for the treatment of I/R injury.
Collapse
Affiliation(s)
- Wanying Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
28
|
He R, Liu Y, Fu W, He X, Liu S, Xiao D, Tao Y. Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer 2024; 23:267. [PMID: 39614268 PMCID: PMC11606237 DOI: 10.1186/s12943-024-02172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
Cell death is a fundamental part of life for metazoans. To maintain the balance between cell proliferation and metabolism of human bodies, a certain number of cells need to be removed regularly. Hence, the mechanisms of cell death have been preserved during the evolution of multicellular organisms. Tumorigenesis is closely related with exceptional inhibition of cell death. Mutations or defects in cell death-related genes block the elimination of abnormal cells and enhance the resistance of malignant cells to chemotherapy. Therefore, the investigation of cell death mechanisms enables the development of drugs that directly induce tumor cell death. In the guidelines updated by the Cell Death Nomenclature Committee (NCCD) in 2018, cell death was classified into 12 types according to morphological, biochemical and functional classification, including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, PARP-1 parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence and mitotic catastrophe. The mechanistic relationships between epigenetic controls and cell death in cancer progression were previously unclear. In this review, we will summarize the mechanisms of cell death pathways and corresponding epigenetic regulations. Also, we will explore the extensive interactions between these pathways and discuss the mechanisms of cell death in epigenetics which bring benefits to tumor therapy.
Collapse
Affiliation(s)
- Ruimin He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yifan Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Weijie Fu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Xuan He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Furong Laboratory, Xiangya School of Medicine, Central South University, Hunan, 410078, China.
| |
Collapse
|
29
|
Singh A, Samtani H, Gangwar H, Sharma A, Jaiswal V, Djalovic I, Prasad PVV, Gahlaut V. Comparative analysis of IRE1s in plants: insights into heat stress adaptation in Triticum aestivum. BMC PLANT BIOLOGY 2024; 24:1083. [PMID: 39543477 PMCID: PMC11566738 DOI: 10.1186/s12870-024-05785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND The unfolded protein response (UPR) pathway serves as a crucial mechanism enabling plants to perceive, respond to, and shield themselves from adverse environmental conditions. Inositol-requiring enzyme 1 (IRE1) is one of the key players of the UPR, and resides in the endoplasmic reticulum (ER) within the cell. This study provides a comprehensive analysis of 195 IRE1 genes across 90 diverse plant species, with a focus on their identification and characterization. RESULTS To decipher the functions of IRE1 family members, we investigated the evolution and spread of IREs in plants and analysed their structural and localization characteristics. Our detailed cis-element analysis revealed unique IRE1 regulation patterns in different plant species. Furthermore, gene expression analysis revealed tissue-specific and heat stress-responsive expression patterns of TaIRE1s, which were subsequently confirmed via quantitative gene expression analysis. TaIRE1-6A was upregulated in response to dithiothreitol (DTT) treatment as well as heat stress. This finding suggests that IRE1 might play a role in linking the UPR pathway and the heat stress response (HSR). CONCLUSIONS Our findings provide a comprehensive understanding of the evolution and expansion of IRE1 genes in different plant species. These findings provide a foundation for further in-depth research on the functional diversity of IREs in nutritious crops following polyploidization. By linking the UPR with HSR, IRE1 could be a key contributor to wheat's resilience against heat stress. Additionally, this connection offers important insights for future functional studies in other crops. Thus, this knowledge could be used for engineering climate resilience in crops such as wheat.
Collapse
Affiliation(s)
- Amandeep Singh
- Department of Biotechnology, Panjab University, Chandigarh, Punjab, 160014, India
| | - Harsha Samtani
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Himanshi Gangwar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Aishwarye Sharma
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, Novi Sad, 21000, Serbia
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Vijay Gahlaut
- Department of Biotechnology & University Center for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
30
|
Luo H, Gong WY, Zhang YY, Liu YY, Chen Z, Feng XL, Jiao QB, Zhang XW. IRE1β evolves to be a guardian of respiratory and gastrointestinal mucosa. Heliyon 2024; 10:e39011. [PMID: 39524875 PMCID: PMC11550042 DOI: 10.1016/j.heliyon.2024.e39011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/31/2024] Open
Abstract
Inositol-requiring enzyme 1 (IRE1), a mediator of the unfolded protein response, shows the highest degree of evolutionary conservation. Vertebrates express two IRE1 paralogs: IRE1α, which is universally expressed and IRE1β, which shows specific expression within mucus secreted cells in respiratory and gastrointestinal tracts. The biological properties and regulation of the two IRE1 duplicates show evolutionary differences. As recently suggested, IRE1β-deficient mice display impairment in secreted protein expression and mucosal homeostasis. Abnormal changes in IRE1β caused by external and internal factors can disrupt mucosal homeostasis and further lead to respiratory and gastrointestinal diseases. Here, we highlight the physiological functions of IRE1β in the respiratory and gastrointestinal tracts in response to environmental microbes, viruses, toxins, and food components.
Collapse
Affiliation(s)
- Hui Luo
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wen-Yan Gong
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuan-Yuan Zhang
- Department of Cardiovascular Ultrasonic Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying-Ying Liu
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhen Chen
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xing-Lin Feng
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qi-Bin Jiao
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xing-Wei Zhang
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
31
|
Saha P, Sharma SS. RNA Interference Unleashed: Current Perspective of Small Interfering RNA (siRNA) Therapeutics in the Treatment of Neuropathic Pain. ACS Pharmacol Transl Sci 2024; 7:2951-2970. [PMID: 39416962 PMCID: PMC11475279 DOI: 10.1021/acsptsci.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Neuropathic pain (NP) is one of the debilitating pain phenotypes that leads to the progressive degeneration of the central as well as peripheral nervous system. NP is often associated with hyperalgesia, allodynia, paresthesia, tingling, and burning sensations leading to disability, motor dysfunction, and compromised psychological state of the patients. Most of the conventional pharmacological agents are unable to improve the devastating conditions of pain because of their limited efficacy, undesirable side effects, and multifaceted pathophysiology of the diseased condition. A rapid rise in new cases of NP warrants further research for identifying the potential novel therapeutic modalities for treating NP. Recently, small interfering RNA (siRNA) approach has shown therapeutic potential in many disease conditions including NP. Delivery of siRNAs led to potential and selective downregulation of target mRNA and abolished the pain-related behaviors/pathophysiological pain response. The crucial role of siRNA in the treatment of NP by considering all of the pathways associated with NP that could be managed by siRNA therapeutics has been discussed. However, their therapeutic use is limited by several hurdles such as instability in systemic circulation due to their negative charge and membrane impermeability, off-target effects, immunogenicity, and inability to reach the intended site of action. This review also emphasizes several strategies and techniques to overcome these hurdles for translating these therapeutic siRNAs from bench to bedside by opening a new avenue for obtaining a potential therapeutic approach for treating NP.
Collapse
Affiliation(s)
- Priya Saha
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Shyam S. Sharma
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
32
|
Zhao J, Zhao G, Lang J, Sun B, Feng S, Li D, Sun G. Astragaloside IV ameliorated neuroinflammation and improved neurological functions in mice exposed to traumatic brain injury by modulating the PERK-eIF2α-ATF4 signaling pathway. J Investig Med 2024; 72:747-762. [PMID: 38869170 DOI: 10.1177/10815589241261293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Increasing evidence suggests that endoplasmic reticulum stress (ER stress) and neuroinflammation are involved in the complex pathological process of traumatic brain injury (TBI). However, the pathological mechanisms of their interactions in TBI remain incompletely elucidated. Therefore, investigating and ameliorating neuroinflammation and ER stress post-TBI may represent effective strategies for treating secondary brain injury. Astragaloside IV (AS-IV) has been reported as a potential neuroprotective and anti-inflammatory agent in neurological diseases. This study utilized a mouse TBI model to investigate the pathological mechanisms and crosstalk of ER stress, neuroinflammation, and microglial cell morphology in TBI, as well as the mechanisms and potential of AS-IV in improving TBI. The research revealed that post-TBI, inflammatory factors IL-6, IL-1β, and TNF-α increased, microglial cells were activated, and the specific inhibitor of PERK phosphorylation, GSK2656157, intervened to alleviate neuroinflammation and inhibit microglial cell activation. Post-TBI, levels of ER stress-related proteins (p-PERK, p-eIF2a, ATF4, ATF6, and p-IRE1a) increased. Following AS-IV treatment, neurological dysfunction in TBI mice improved. Levels of p-PERK, p-eIF2a, and ATF4 decreased, along with reductions in inflammatory factors IL-6, IL-1β, and TNF-α. Changes in microglial/macrophage M1/M2 polarization were observed. Additionally, the PERK activator CCT020312 intervention eliminated the impact of AS-IV on post-TBI inflammation and ER stress-related proteins p-PERK, p-eIF2a, and ATF4. These results indicate that AS-IV alleviates neuroinflammation and brain damage post-TBI through the PERK pathway, offering new directions and theoretical insights for TBI treatment.
Collapse
Affiliation(s)
- Jianfei Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
- Department of Neurosurgery, The People's Hospital of Shijiazhuang City, Shijiazhuang, The People's Republic of China
| | - Gengshui Zhao
- Department of Neurosurgery, The People's Hospital of Hengshui City, Hengshui, The People's Republic of China
| | - Jiadong Lang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| | - Boyu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| | - Shiyao Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| | - Dongsheng Li
- Department of Neurosurgery, The People's Hospital of Shijiazhuang City, Shijiazhuang, The People's Republic of China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| |
Collapse
|
33
|
Andres M, Hennuyer N, Zibar K, Bicharel-Leconte M, Duplan I, Enée E, Vallez E, Herledan A, Loyens A, Staels B, Deprez B, van Endert P, Deprez-Poulain R, Lancel S. Insulin-degrading enzyme inhibition increases the unfolded protein response and favours lipid accumulation in the liver. Br J Pharmacol 2024; 181:3610-3626. [PMID: 38812293 DOI: 10.1111/bph.16436] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND AND PURPOSE Nonalcoholic fatty liver disease refers to liver pathologies, ranging from steatosis to steatohepatitis, with fibrosis ultimately leading to cirrhosis and hepatocellular carcinoma. Although several mechanisms have been suggested, including insulin resistance, oxidative stress, and inflammation, its pathophysiology remains imperfectly understood. Over the last decade, a dysfunctional unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress emerged as one of the multiple driving factors. In parallel, growing evidence suggests that insulin-degrading enzyme (IDE), a highly conserved and ubiquitously expressed metallo-endopeptidase originally discovered for its role in insulin decay, may regulate ER stress and UPR. EXPERIMENTAL APPROACH We investigated, by genetic and pharmacological approaches, in vitro and in vivo, whether IDE modulates ER stress-induced UPR and lipid accumulation in the liver. KEY RESULTS We found that IDE-deficient mice display higher hepatic triglyceride content along with higher inositol-requiring enzyme 1 (IRE1) pathway activation. Upon induction of ER stress by tunicamycin or palmitate in vitro or in vivo, pharmacological inhibition of IDE, using its inhibitor BDM44768, mainly exacerbated ER stress-induced IRE1 activation and promoted lipid accumulation in hepatocytes, effects that were abolished by the IRE1 inhibitors 4μ8c and KIRA6. Finally, we identified that IDE knockout promotes lipolysis in adipose tissue and increases hepatic CD36 expression, which may contribute to steatosis. CONCLUSION AND IMPLICATIONS These results unravel a novel role for IDE in the regulation of ER stress and development of hepatic steatosis. These findings pave the way to innovative strategies modulating IDE to treat metabolic diseases.
Collapse
Affiliation(s)
- Marine Andres
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - EGID Drugs and Molecules for Living Systems, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Nathalie Hennuyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Khamis Zibar
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | | | - Isabelle Duplan
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Emmanuelle Enée
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
| | - Emmanuelle Vallez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - EGID Drugs and Molecules for Living Systems, Lille, France
| | - Anne Loyens
- Univ. Lille, UMR-S 1172-JPArc Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - EGID Drugs and Molecules for Living Systems, Lille, France
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Service immunologie biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - EGID Drugs and Molecules for Living Systems, Lille, France
- Institut Universitaire de France (IUF), Paris, France
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| |
Collapse
|
34
|
Qadri O, Bashir S, Banday M, Hilal N, Majeed Y, Fatima NI, Pal D, Fazili KM. Tumour suppressor protein sMEK1 links to IRE1 signalling pathway to modulate its activity during ER stress. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119774. [PMID: 38838857 DOI: 10.1016/j.bbamcr.2024.119774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
The Endoplasmic Reticulum is a pervasive, dynamic cellular organelle that performs a wide range of functions in the eukaryotic cell, including protein folding and maturation. Upon stress, ER activates an adaptive cellular pathway, namely Unfolded Protein Response, that transduces information from ER to nucleus, restoring homeostasis in the ER milieu. UPR consists of three membrane-tethered sensors; IRE1, PERK and ATF6. Among all the UPR sensors, the IRE1 branch acts as a central pathway that orchestrates several pathways to determine cell fate. However, the detailed knowledge underlying the whole process is not understood yet. Previously, we determined the sMEK1 as one of the interacting partners of IRE1. sMEK1 is a protein phosphatase, which has been indicated in a number of critical cellular functions like apoptosis, cell proliferation, and tumour suppression. In this study, we evaluated the role of sMEK1 on the IRE1 signalling pathway. Our data indicate that sMEK1 can inhibit IRE1 phosphorylation under ER stress. This inhibitory effect of sMEK1 could be reflected in its downstream effectors, Xbp1 and RIDD, which are downregulated in the presence of sMEK1. We also found that the repressing effect of sMEK1 was specific to the IRE1 signalling pathway and could be preserved even under prolonged ER stress. Our findings also indicate that sMEK1 can inhibit IRE1 and its downstream molecules under ER stress irrespective of other UPR sensors. These results help to draw the mechanistic details giving insights into different molecular connections of UPR with other pathways.
Collapse
Affiliation(s)
- Ozaira Qadri
- Department of Biotechnology, University of Kashmir, Hazratbal J&K, India
| | - Samirul Bashir
- Department of Biotechnology, University of Kashmir, Hazratbal J&K, India
| | - Mariam Banday
- Department of Biotechnology, University of Kashmir, Hazratbal J&K, India
| | - Nazia Hilal
- Department of Biotechnology, University of Kashmir, Hazratbal J&K, India
| | - Younis Majeed
- Department of Biotechnology, University of Kashmir, Hazratbal J&K, India
| | - Nida I Fatima
- Department of Biotechnology, University of Kashmir, Hazratbal J&K, India
| | - Debnath Pal
- Department of Computational and Data Science (CDS), Indian Institute of Science (IISc), Bengaluru, India
| | | |
Collapse
|
35
|
Kirimlioglu E, Oflamaz AO, Hidisoglu E, Ozen S, Yargicoglu P, Demir N. Short and long-term 2100 MHz radiofrequency radiation causes endoplasmic reticulum stress in rat testis. Histochem Cell Biol 2024; 162:311-321. [PMID: 38997526 PMCID: PMC11364557 DOI: 10.1007/s00418-024-02308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Long-term radiofrequency radiation (RFR) exposure, which adversely affects organisms, deteriorates testicular functions. Misfolding or unfolding protein accumulation in the endoplasmic reticulum (ER) initiates an intracellular reaction known as ER stress (ERS), which activates the unfolded protein response (UPR) for proteostasis. Since both RFR exposure and ERS can cause male infertility, we hypothesized that RFR exposure causes ERS to adversely affect testicular functions in rats. To investigate role of ERS in mediating RFR effects on rat testis, we established five experimental groups in male rats: control, short-term 2100-megahertz (MHz) RFR (1-week), short-term sham (sham/1-week), long-term 2100-MHz RFR (10-week), and long-term sham (sham/10-week). ERS markers Grp78 and phosphorylated PERK (p-Perk) levels and ERS-related apoptosis markers Chop and caspase 12 were investigated by immunohistochemistry, immunoblotting, and quantitative real-time polymerase chain reaction (qPCR). Long-term RFR exposure increased Grp78, p-Perk, and Chop levels, while short-term RFR exposure elevated Chop and caspase 12 levels. Chop expression was not observed in spermatogonia and primary spermatocytes, which may protect spermatogonia and primary spermatocytes against RFR-induced ERS-mediated apoptosis, thereby allowing transmission of genetic material to next generations. While short and long-term RFR exposures trigger ERS and ERS-related apoptotic pathways, further functional analyses are needed to elucidate whether this RFR-induced apoptosis has long-term male infertility effects.
Collapse
Affiliation(s)
- Esma Kirimlioglu
- Departments of Histology and Embryology, Faculty of Engineering, Akdeniz University, Antalya, Turkey.
| | - Asli Okan Oflamaz
- Departments of Histology and Embryology, Faculty of Engineering, Akdeniz University, Antalya, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Bozok University, Yozgat, Turkey
| | - Enis Hidisoglu
- Departments of Biophysics, Faculty of Medicine, Faculty of Engineering, Akdeniz University, Antalya, Turkey
- Department of Drug Science, NIS Centre, University of Turin, Turin, Italy
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Piraye Yargicoglu
- Departments of Biophysics, Faculty of Medicine, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Necdet Demir
- Departments of Histology and Embryology, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| |
Collapse
|
36
|
Chen L, Wei M, Zhou B, Wang K, Zhu E, Cheng Z. The roles and mechanisms of endoplasmic reticulum stress-mediated autophagy in animal viral infections. Vet Res 2024; 55:107. [PMID: 39227990 PMCID: PMC11373180 DOI: 10.1186/s13567-024-01360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024] Open
Abstract
The endoplasmic reticulum (ER) is a unique organelle responsible for protein synthesis and processing, lipid synthesis in eukaryotic cells, and the replication of many animal viruses is closely related to ER. A considerable number of viral proteins are synthesised during viral infection, resulting in the accumulation of unfolded and misfolded proteins in ER, which in turn induces endoplasmic reticulum stress (ERS). ERS further drives three signalling pathways (PERK, IRE1, and ATF6) of the cellular unfolded protein response (UPR) to respond to the ERS. In numerous studies, ERS has been shown to mediate autophagy, a highly conserved cellular degradation mechanism to maintain cellular homeostasis in eukaryotic cells, through the UPR to restore ER homeostasis. ERS-mediated autophagy is closely linked to the occurrence and development of numerous viral diseases in animals. Host cells can inhibit viral replication by regulating ERS-mediated autophagy, restoring the ER's normal physiological process. Conversely, many viruses have evolved strategies to exploit ERS-mediated autophagy to achieve immune escape. These strategies include the regulation of PERK-eIF2α-Beclin1, PERK-eIF2α-ATF4-ATG12, IRE1α-JNK-Beclin1, and other signalling pathways, which provide favourable conditions for the replication of animal viruses in host cells. The ERS-mediated autophagy pathway has become a hot topic in animal virological research. This article reviews the most recent research regarding the regulatory functions of ERS-mediated autophagy pathways in animal viral infections, emphasising the underlying mechanisms in the context of different viral infections. Furthermore, it considers the future direction and challenges in the development of ERS-mediated autophagy targeting strategies for combating animal viral diseases, which will contribute to unveiling their pathogenic mechanism from a new perspective and provide a scientific reference for the discovery and development of new antiviral drugs and preventive strategies.
Collapse
Affiliation(s)
- Lan Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Miaozhan Wei
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bijun Zhou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kaigong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
37
|
Macauslane KL, Pegg CL, Short KR, Schulz BL. Modulation of endoplasmic reticulum stress response pathways by respiratory viruses. Crit Rev Microbiol 2024; 50:750-768. [PMID: 37934111 DOI: 10.1080/1040841x.2023.2274840] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.
Collapse
Affiliation(s)
- Kyle L Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
38
|
Walczak-Szeffer A, Piastowska-Ciesielska AW. Endoplasmic reticulum stress as a target for retinoids in cancer treatment. Life Sci 2024; 352:122892. [PMID: 38971363 DOI: 10.1016/j.lfs.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Retinoids, natural and synthetic derivatives of vitamin A, have various regulatory activities including controlling cellular proliferation, differentiation, and death. Furthermore, they have been used to treat specific cancers with satisfying results. Nevertheless, retinoids have yet to be converted into effective systemic therapies for the majority of tumor types. Regulation of unfolded protein response signaling, and persistent activation of endoplasmic reticulum stress (ER-stress) are promising treatment methods for cancer. The present article reviews the current understanding of how vitamin A and its derivatives may aid to cause ER-stress-activated apoptosis, as well as therapeutic options for exploiting ER-stress for achieving beneficial goal. The therapeutic use of some retinoids discussed in this article was related to decreased disease recurrence and improved therapeutic outcomes via ER-stress activation and promotion, indicating that retinoids may play an important role in cancer treatment and prevention. More research is needed to expand the use of vitamin A derivatives in cancer therapy, either alone or in combination with unfolded protein response inducers.
Collapse
Affiliation(s)
- Anna Walczak-Szeffer
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Poland.
| | | |
Collapse
|
39
|
Xiao J, Cao S, Wang J, Li P, Cheng Q, Zhou X, Dong J, Li Y, Zhao X, Xu Z, Yang L. Leptin-mediated suppression of lipoprotein lipase cleavage enhances lipid uptake and facilitates lymph node metastasis in gastric cancer. Cancer Commun (Lond) 2024; 44:855-878. [PMID: 38958445 PMCID: PMC11337928 DOI: 10.1002/cac2.12583] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Lymph node metastasis (LNM) is the primary mode of metastasis in gastric cancer (GC). However, the precise mechanisms underlying this process remain elusive. Tumor cells necessitate lipid metabolic reprogramming to facilitate metastasis, yet the role of lipoprotein lipase (LPL), a pivotal enzyme involved in exogenous lipid uptake, remains uncertain in tumor metastasis. Therefore, the aim of this study was to investigate the presence of lipid metabolic reprogramming during LNM of GC as well as the role of LPL in this process. METHODS Intracellular lipid levels were quantified using oil red O staining, BODIPY 493/503 staining, and flow cytometry. Lipidomics analysis was employed to identify alterations in intracellular lipid composition following LPL knockdown. Protein expression levels were assessed through immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assays. The mouse popliteal LNM model was utilized to investigate differences in LNM. Immunoprecipitation and mass spectrometry were employed to examine protein associations. In vitro phosphorylation assays and Phos-tag sodium dodecyl-sulfate polyacrylamide gel electrophoresis assays were conducted to detect angiopoietin-like protein 4 (ANGPTL4) phosphorylation. RESULTS We identified that an elevated intracellular lipid level represents a crucial characteristic of node-positive (N+) GC and further demonstrated that a high-fat diet can expedite LNM. LPL was found to be significantly overexpressed in N+ GC tissues and shown to facilitate LNM by mediating dietary lipid uptake within GC cells. Leptin, an obesity-related hormone, intercepted the effect exerted by ANGPTL4/Furin on LPL cleavage. Circulating leptin binding to the leptin receptor could induce the activation of inositol-requiring enzyme-1 (IRE1) kinase, leading to the phosphorylation of ANGPTL4 at the serine 30 residue and subsequently reducing its binding affinity with LPL. Moreover, our research revealed that LPL disrupted lipid homeostasis by elevating intracellular levels of arachidonic acid, which then triggered the cyclooxygenase-2/prostaglandin E2 (PGE2) pathway, thereby promoting tumor lymphangiogenesis. CONCLUSIONS Leptin-induced phosphorylation of ANGPTL4 facilitates LPL-mediated lipid uptake and consequently stimulates the production of PGE2, ultimately facilitating LNM in GC.
Collapse
Affiliation(s)
- Jian Xiao
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Shuqing Cao
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Jiawei Wang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Pengyu Li
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Quan Cheng
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Xinyi Zhou
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Jiacheng Dong
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Yuan Li
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Xinyu Zhao
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Zekuan Xu
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Li Yang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| |
Collapse
|
40
|
Nicolini A, Ferrari P. Involvement of tumor immune microenvironment metabolic reprogramming in colorectal cancer progression, immune escape, and response to immunotherapy. Front Immunol 2024; 15:1353787. [PMID: 39119332 PMCID: PMC11306065 DOI: 10.3389/fimmu.2024.1353787] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 08/10/2024] Open
Abstract
Metabolic reprogramming is a k`ey hallmark of tumors, developed in response to hypoxia and nutrient deficiency during tumor progression. In both cancer and immune cells, there is a metabolic shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, also known as the Warburg effect, which then leads to lactate acidification, increased lipid synthesis, and glutaminolysis. This reprogramming facilitates tumor immune evasion and, within the tumor microenvironment (TME), cancer and immune cells collaborate to create a suppressive tumor immune microenvironment (TIME). The growing interest in the metabolic reprogramming of the TME, particularly its significance in colorectal cancer (CRC)-one of the most prevalent cancers-has prompted us to explore this topic. CRC exhibits abnormal glycolysis, glutaminolysis, and increased lipid synthesis. Acidosis in CRC cells hampers the activity of anti-tumor immune cells and inhibits the phagocytosis of tumor-associated macrophages (TAMs), while nutrient deficiency promotes the development of regulatory T cells (Tregs) and M2-like macrophages. In CRC cells, activation of G-protein coupled receptor 81 (GPR81) signaling leads to overexpression of programmed death-ligand 1 (PD-L1) and reduces the antigen presentation capability of dendritic cells. Moreover, the genetic and epigenetic cell phenotype, along with the microbiota, significantly influence CRC metabolic reprogramming. Activating RAS mutations and overexpression of epidermal growth factor receptor (EGFR) occur in approximately 50% and 80% of patients, respectively, stimulating glycolysis and increasing levels of hypoxia-inducible factor 1 alpha (HIF-1α) and MYC proteins. Certain bacteria produce short-chain fatty acids (SCFAs), which activate CD8+ cells and genes involved in antigen processing and presentation, while other mechanisms support pro-tumor activities. The use of immune checkpoint inhibitors (ICIs) in selected CRC patients has shown promise, and the combination of these with drugs that inhibit aerobic glycolysis is currently being intensively researched to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
41
|
Wang X, Sun L. REEP5 mediates the function of CLEC5A to alleviate myocardial infarction by inhibiting endoplasmic reticulum stress-induced apoptosis. BMC Cardiovasc Disord 2024; 24:382. [PMID: 39044150 PMCID: PMC11265427 DOI: 10.1186/s12872-024-04018-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
MI (myocardial infarction) often triggers severe heart failure and is one of the leading causes of death worldwide. Receptor expression-enhancing protein 5 (REEP5), a member of REEPs, acts as regulators of endoplasmic reticulum (ER) affecting cardiac functions. Based on GSE114695 profile data, REEP5 was decreased in the left ventricle of MI mice. However, its role and potential mechanism in MI remain to be investigated. In the present study, the mouse MI model was established by ligation of the left anterior descending artery. REEP5 expression was downregulated in the infarct penumbra area of MI mice. Next, its role during MI was explored by gain-of-function. Interestingly, REEP5 overexpression improved left ventricular function of mice with MI, accompanied with reduced infarct size. In cardiomyocytes, REEP5 overexpression inhibited ER stress, accompanied with repressive phosphorylation of PERK and IRE1α, and the decreased nuclear translocation of ATF6. Subsequently, REEP5 overexpression downregulated the levels of Chop and cleaved caspase-12, further alleviating ER stress-induced apoptosis, which was consistent with the in vivo results. Moreover, REEP5 was found to bind to C-type lectin member 5 A (CLEC5A), a protein that triggers cardiac dysfunction. CLEC5A, whose expression was elevated in hypoxia-induced cell models, led to cardiomyocyte apoptosis. Noteworthily, REEP5 overexpression markedly abolished the effects of CLEC5A on ER stress-induced apoptosis. Taken together, REEP5 mediated the function of CLEC5A to relieve MI via inhibiting ER stress-induced apoptosis in vivo and in vitro. REEP5 may be a promising target for treating MI.
Collapse
Affiliation(s)
- Xin Wang
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Limin Sun
- Department of General Practice, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
42
|
Chen Y, Liu Y, Li Y, Yao C, Qu J, Tang J, Chen G, Han Y. Acute exposure to polystyrene nanoplastics induces unfolded protein response and global protein ubiquitination in lungs of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116580. [PMID: 38865938 DOI: 10.1016/j.ecoenv.2024.116580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Inhaling microplastics (MPs) and nanoplastics (NPs) in the air can damage lung function. Xenobiotics in the body can cause endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) activation alleviates ER stress. Degradation of unfolded or misfolded proteins is an important pathway for recovering cellular homeostasis. The UPR and protein degradation induced by MPs/NPs in lung tissues are not well understood. Here, we investigated the UPR and protein ubiquitination in the lungs of mice exposed to polystyrene (PS)-NPs and their possible molecular mechanisms leading to protein ubiquitination. Mice were intratracheally administered with 5.6, 17, and 51 mg/kg PS-NPs once for 24 h. Exposure to PS-NPs elevated protein ubiquitination in the lungs of mice in a dose-dependent manner. PS-NPs activated three branches of UPR including inositol-requiring protein 1α (IRE1α), eukaryotic translation initiator factor 2α (eIF2α), and activating transcription factor 6α (ATF6α) in the lungs of mice. However, activated IRE1α did not trigger X-box binding protein 1 (XBP1) mRNA splicing. Exposure to PS-NPs induced an increase in the levels of E3 ubiquitin ligase hydroxymethyl glutaryl-coenzyme A reductase degradation protein 1 (HRD1) and carboxy terminus of Hsc70 interacting protein (CHIP) in the lungs of mice and BEAS-2B cells. ATF6α siRNA inhibited the levels of HRD1 and CHIP proteins induced by PS-NPs in BEAS-2B cells. These results suggest that ATF6α plays a critical role in increasing ubiquitination of unfolded or misfolded proteins by alleviating PS-NPs induced ER stress through UPR to achieve ER homeostasis in the lungs of mice.
Collapse
Affiliation(s)
- Yanhong Chen
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Yingqi Liu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China; Wujiang Center for Disease Control and Prevention, Suzhou, Jiangsu 215299, China
| | - Yanli Li
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Chenjuan Yao
- Department of Molecular Oral Physiology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima-Shi, Tokushima 770-8504, Japan
| | - Jianhua Qu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yu Han
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
43
|
Posadas N, Conaco C. Gene networks governing the response of a calcareous sponge to future ocean conditions reveal lineage-specific XBP1 regulation of the unfolded protein response. Ecol Evol 2024; 14:e11652. [PMID: 38952658 PMCID: PMC11214833 DOI: 10.1002/ece3.11652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Marine sponges are predicted to be winners in the future ocean due to their exemplary adaptive capacity. However, while many sponge groups exhibit tolerance to a wide range of environmental insults, calcifying sponges may be more susceptible to thermo-acidic stress. To describe the gene regulatory networks that govern the stress response of the calcareous sponge, Leucetta chagosensis (class Calcarea, order Clathrinida), individuals were subjected to warming and acidification conditions based on the climate models for 2100. Transcriptome analysis and gene co-expression network reconstruction revealed that the unfolded protein response (UPR) was activated under thermo-acidic stress. Among the upregulated genes were two lineage-specific homologs of X-box binding protein 1 (XBP1), a transcription factor that activates the UPR. Alternative dimerization between these XBP1 gene products suggests a clathrinid-specific mechanism to reversibly sequester the transcription factor into an inactive form, enabling the rapid regulation of pathways linked to the UPR in clathrinid calcareous sponges. Our findings support the idea that transcription factor duplication events may refine evolutionarily conserved molecular pathways and contribute to ecological success.
Collapse
Affiliation(s)
- Niño Posadas
- Marine Science Institute, University of the Philippines DilimanQuezon CityPhilippines
- Present address:
Centre for Chromosome Biology, School of Biological and Chemical SciencesUniversity of GalwayGalwayIreland
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines DilimanQuezon CityPhilippines
| |
Collapse
|
44
|
Mu W, Zhi Y, Zhou J, Wang C, Chai K, Fan Z, Lv G. Endoplasmic reticulum stress and quality control in relation to cisplatin resistance in tumor cells. Front Pharmacol 2024; 15:1419468. [PMID: 38948460 PMCID: PMC11211601 DOI: 10.3389/fphar.2024.1419468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
The endoplasmic reticulum (ER) is a crucial organelle that orchestrates key cellular functions like protein folding and lipid biosynthesis. However, it is highly sensitive to disturbances that lead to ER stress. In response, the unfolded protein response (UPR) activates to restore ER homeostasis, primarily through three sensors: IRE1, ATF6, and PERK. ERAD and autophagy are crucial in mitigating ER stress, yet their dysregulation can lead to the accumulation of misfolded proteins. Cisplatin, a commonly used chemotherapy drug, induces ER stress in tumor cells, activating complex signaling pathways. Resistance to cisplatin stems from reduced drug accumulation, activation of DNA repair, and anti-apoptotic mechanisms. Notably, cisplatin-induced ER stress can dualistically affect tumor cells, promoting either survival or apoptosis, depending on the context. ERAD is crucial for degrading misfolded proteins, whereas autophagy can protect cells from apoptosis or enhance ER stress-induced apoptosis. The complex interaction between ER stress, cisplatin resistance, ERAD, and autophagy opens new avenues for cancer treatment. Understanding these processes could lead to innovative strategies that overcome chemoresistance, potentially improving outcomes of cisplatin-based cancer treatments. This comprehensive review provides a multifaceted perspective on the complex mechanisms of ER stress, cisplatin resistance, and their implications in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
45
|
Han X, Jiang S, Hu C, Wang Y, Zhao L, Wang W. Inhibition of keloid fibroblast proliferation by artesunate is mediated by targeting the IRE1α/XBP1 signaling pathway and decreasing TGF-β1. Burns 2024; 50:1259-1268. [PMID: 38492983 DOI: 10.1016/j.burns.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/24/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Keloid is a benign hyperplastic dermatosis with high recurrence rate and complex pathogenesis. There is no universally effective treatment yet. New therapies and elucidation of pathogenesis are urgently required. AIMS To explore the function of IRE1α/XBP1 in keloid fibroblasts and to investigate the potential mechanism of artesunate in inhibiting keloid hyperplasia. METHODS Human keloid fibroblasts (KFs) were cultured, and the expressions of XBP1 and TGF-β1 were detected by immunohistochemistry. The expression of IRE1 was interfered with through cell transfection and the effects of IRE1 interference on cell proliferation and the cell cycle were assessed using MTS, colony formation assays, and flow cytometry. Detection of the expressions of XBP1 and TGF-β1 by qRT-PCR and Western blot. Then artesunate was applied to a subset of the cells, and its effects on cell viability and the expression of related proteins using the same methods. RESULTS The IRE1α/XBP1 pathway was activated in KFs. Knocking out the gene IRE1α can inhibit the expression of TGF-β1, in addition, the cell viability and cell cycle progression of KFs were also significantly affected. After artesunate treatment, there was a remarkable reduction in cell proliferation. Meanwhile, the cell cycle of KFs treated with artesunate was blocked in G1 phase.After upregulating the expression of IRE1α and treating KFs with artesunate, both cell cycle and proliferation showed inhibitory effects, and related proteins also exhibited suppressed expression. CONCLUSIONS The IRE1α/XBP1 pathway is activated in keloid, and inhibiting the expression of this pathway can affect the cell proliferation activity. In addition, artesunate also has a significant effect on fibroblast proliferation, and the IRE1α/XBP1 pathway may participate in this process. These findings suggest that IRE1α/XBP1 signal pathway may be a potential target for scar treatment, and artesunate could also be a powerful candidate for keloid treatment.
Collapse
Affiliation(s)
- Xiaomei Han
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Shaoqian Jiang
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Caixia Hu
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ying Wang
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lu Zhao
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenqing Wang
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
46
|
Chen P, Lv H, Du M, Liu W, Che C, Zhao J, Liu H. Bacillus subtilis HW2 enhances growth performance and alleviates gut injury via attenuation of endoplasmic reticulum stress and regulation of gut microbiota in broilers under necrotic enteritis challenge. Poult Sci 2024; 103:103661. [PMID: 38547540 PMCID: PMC11000119 DOI: 10.1016/j.psj.2024.103661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
This study investigated the effects of Bacillus subtilis HW2 on the growth performance, immune response, endoplasmic reticulum (ER) stress, and intestinal health in broilers with necrotic enteritis. Three hundred 1-day-old male Cobb 500 broilers (33.88 ± 2.34 g) were randomly allocated to 5 groups including non-infected control (NC group), basal diet + necrotic enteritis challenge (NE group), basal diet + 1 × 106 CFU/g B. subtilis HW2 + necrotic enteritis challenge (L-Pro group), basal diet + 5 × 106 CFU/g B. subtilis HW2 + necrotic enteritis challenge (M-Pro group), and basal diet + 1 × 107 CFU/g B. subtilis HW2 + necrotic enteritis challenge (H-Pro group), with 6 replicates per group. All broilers except NC group were orally given with sporulated coccidian oocysts at day 14 and Clostridium perfringens from days 19 to 21. Results showed that L-Pro and M-Pro groups improved growth performance and intestinal morphology in necrotic enteritis-challenged broilers, and L-Pro, M-Pro, and H-Pro groups improved intestinal barrier function and immune response and decreased ER stress in necrotic enteritis-challenged broilers. Analysis of the gut microbiota revealed that L-Pro group increased the abundances of Alistipes, Coprobacter, Barnesiella, and Limosilactobacillus, decreased Erysipelatoclostridium abundance on day 42 in necrotic enteritis-challenged broilers. M-Pro group increased Turicibacter abundance on day 28 and the abundances of Alistipes, Barnesiella, and Limosilactobacillus on day 42 in necrotic enteritis-challenged broilers. H-Pro group decreased Romboutsia abundance on day 28 and unidentified_Clostridia abundance on day 42 in necrotic enteritis-challenged broilers. Analysis of short-chain fatty acids (SCFAs) revealed higher isobutyric acid and isovaleric acid levels in L-Pro and M-Pro groups than NE group. Correlation analysis revealed the correlations between the biochemical parameters and gut microbiota as well as SCFAs, especially Romboutsia, Barnesiella, Coprobacter, isobutyric acid, and isovaleric acid. Overall, our results indicated that B. subtilis HW2 supplementation could ameliorate necrotic enteritis infection-induced gut injury. The optimal dietary supplementation dosage of Bacillus subtilis HW2 was 5 × 106 CFU/g.
Collapse
Affiliation(s)
- Peng Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huimin Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengmeng Du
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Weiyong Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chuanyan Che
- College of Animal Science and Technology, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
47
|
Kuranaga Y, Yu B, Osuka S, Zhang H, Devi NS, Bae S, Van Meir EG. Targeting Integrin α3 Blocks β1 Maturation, Triggers Endoplasmic Reticulum Stress, and Sensitizes Glioblastoma Cells to TRAIL-Mediated Apoptosis. Cells 2024; 13:753. [PMID: 38727288 PMCID: PMC11083687 DOI: 10.3390/cells13090753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma (GBM) is a devastating brain cancer for which new effective therapies are urgently needed. GBM, after an initial response to current treatment regimens, develops therapeutic resistance, leading to rapid patient demise. Cancer cells exhibit an inherent elevation of endoplasmic reticulum (ER) stress due to uncontrolled growth and an unfavorable microenvironment, including hypoxia and nutrient deprivation. Cancer cells utilize the unfolded protein response (UPR) to maintain ER homeostasis, and failure of this response promotes cell death. In this study, as integrins are upregulated in cancer, we have evaluated the therapeutic potential of individually targeting all αβ1 integrin subunits using RNA interference. We found that GBM cells are uniquely susceptible to silencing of integrin α3. Knockdown of α3-induced proapoptotic markers such as PARP cleavage and caspase 3 and 8 activation. Remarkably, we discovered a non-canonical function for α3 in mediating the maturation of integrin β1. In its absence, generation of full length β1 was reduced, immature β1 accumulated, and the cells underwent elevated ER stress with upregulation of death receptor 5 (DR5) expression. Targeting α3 sensitized TRAIL-resistant GBM cancer cells to TRAIL-mediated apoptosis and led to growth inhibition. Our findings offer key new insights into integrin α3's role in GBM survival via the regulation of ER homeostasis and its value as a therapeutic target.
Collapse
Affiliation(s)
- Yuki Kuranaga
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Y.K.); (S.O.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Bing Yu
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (B.Y.); (H.Z.); (N.S.D.)
| | - Satoru Osuka
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Y.K.); (S.O.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Hanwen Zhang
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (B.Y.); (H.Z.); (N.S.D.)
| | - Narra S. Devi
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (B.Y.); (H.Z.); (N.S.D.)
| | - Sejong Bae
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erwin G. Van Meir
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Y.K.); (S.O.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (B.Y.); (H.Z.); (N.S.D.)
| |
Collapse
|
48
|
Wang W, Wang S, Li Y, Zhu M, Xu Q, Luo B, Liu Y, Liu Y. Network pharmacology, molecular docking, and in vitro experimental verification of the mechanism of Guanxining in treating diabetic atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117792. [PMID: 38290612 DOI: 10.1016/j.jep.2024.117792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guanxinning(GXN) tablet is a patented traditional Chinese medicine widely used to prevent and treat cardiovascular diseases. However, its potential mechanism and target in anti-diabetic atherosclerosis have not been clarified. AIM The aim of this study was to investigate the underlying targets and mechanisms of action GXN in the treatment of diabetic atherosclerosis, employing a combination of network pharmacology, molecular docking, and in vitro experimental verification. METHODS We predicted the core components and targets of GXN in the treatment of diabetic atherosclerosis through various databases, and made analysis and molecular docking. In vitro, we induced injury in human umbilical vein endothelial cells using glucose/palmitate and observed the effects of GXN on cellular damage high-glucose and high-fat conditions, subsequently elucidating its molecular mechanisms. RESULTS A total of 14 active components and 157 targets of GXN were identified. Using the PPI network, we selected 9 core active components and 20 targets of GXN. GO functional analysis revealed that these targets were primarily associated with apoptosis signaling pathways in response to endoplasmic reticulum stress and reactive oxygen species responses. Molecular docking confirmed the strong binding affinities of the primary active components of GXN with ERN1, MAPK1 and BECN1. In vitro experiments demonstrated the ability of GXN to restore endothelial cell activity, enhance cell migration and inhibit sICAM secretion, and upregulate the expression of endoplasmic reticulum stress-related proteins (IRE1, XBP1) and autophagy-related proteins (Beclin1, LC3A, and LC3B), while simultaneously inhibiting endothelial cell apoptosis under high-glucose and high-fat conditions. CONCLUSIONS Our findings suggest that GXN can potentially safeguard endothelial cells from the adverse effects of high-glucose and high-fat by modulating the interactions between endoplasmic reticulum stress and autophagy. Therefore, GXN is a promising candidate for the prevention and treatment of diabetic atherosclerosis.
Collapse
Affiliation(s)
- Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Sutong Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Qian Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China; The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
49
|
Wadgaonkar P, Wang Z, Chen F. Endoplasmic reticulum stress responses and epigenetic alterations in arsenic carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123565. [PMID: 38373625 DOI: 10.1016/j.envpol.2024.123565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/21/2023] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
Arsenic is a well-known human carcinogen whose environmental exposure via drinking water, food, and air impacts millions of people across the globe. Various mechanisms of arsenic carcinogenesis have been identified, ranging from damage caused by excessive production of free radicals and epigenetic alterations to the generation of cancer stem cells. A growing body of evidence supports the critical involvement of the endoplasmic stress-activated unfolded protein response (UPR) in promoting as well as suppressing cancer development/progression. Various in vitro and in vivo models have also demonstrated that arsenic induces the UPR via activation of the PERK, IRE1α, and ATF6 proteins. In this review, we discuss the mechanisms of arsenic-induced endoplasmic reticulum stress and the role of each UPR pathway in the various cancer types with a focus on the epigenetic regulation and function of the ATF6 protein. The importance of UPR in arsenic carcinogenesis and cancer stem cells is a relatively new area of research that requires additional investigations via various omics-based and computational tools. These approaches will provide interesting insights into the mechanisms of arsenic-induced cancers for prospective target identification and development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Ziwei Wang
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA; Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
50
|
Kapuy O. Mechanism of Decision Making between Autophagy and Apoptosis Induction upon Endoplasmic Reticulum Stress. Int J Mol Sci 2024; 25:4368. [PMID: 38673953 PMCID: PMC11050573 DOI: 10.3390/ijms25084368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Dynamic regulation of the cellular proteome is mainly controlled in the endoplasmic reticulum (ER). Accumulation of misfolded proteins due to ER stress leads to the activation of unfolded protein response (UPR). The primary role of UPR is to reduce the bulk of damages and try to drive back the system to the former or a new homeostatic state by autophagy, while an excessive level of stress results in apoptosis. It has already been proven that the proper order and characteristic features of both surviving and self-killing mechanisms are controlled by negative and positive feedback loops, respectively. The new results suggest that these feedback loops are found not only within but also between branches of the UPR, fine-tuning the response to ER stress. In this review, we summarize the recent knowledge of the dynamical characteristic of endoplasmic reticulum stress response mechanism by using both theoretical and molecular biological techniques. In addition, this review pays special attention to describing the mechanism of action of the dynamical features of the feedback loops controlling cellular life-and-death decision upon ER stress. Since ER stress appears in diseases that are common worldwide, a more detailed understanding of the behaviour of the stress response is of medical importance.
Collapse
Affiliation(s)
- Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|