1
|
Chen X, Qin Y, Gan J, Wei T, Wei X, Xiong Y, Zhang Z, Wei B. Uncovering global research frontiers in deubiquitinating enzymes and immunotherapy: A bibliometric study. Hum Vaccin Immunother 2025; 21:2483558. [PMID: 40130728 PMCID: PMC11938311 DOI: 10.1080/21645515.2025.2483558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/28/2025] [Accepted: 03/15/2025] [Indexed: 03/26/2025] Open
Abstract
Recently, immunotherapy has been a key therapeutic strategy for cancer. Deubiquitinating enzymes (DUBs), which are protein-modifying enzymes, have a crucial role in the pathogenesis of cancer, autoimmune diseases, and inflammation. DUBs influence the tumor immune microenvironment by regulating immune cell functions and key signaling pathways. Thus, the potential applications of DUBs in immunotherapy have piqued the interest of the scientific community. This study performed bibliometric analysis to comprehensively examine the research hotspots and trends in this field, providing theoretical foundations and guidance for future research. Studies associated with DUBs and immunotherapy conducted over a decade (2014 to 2024) were searched and extracted from Web of Science Collection database. The analysis was performed using CiteSpace, VOSviewer, and the Bibliometrix package in R software. Visualizations were generated for countries, institutions, authors, journals, references, and keyword co-occurrences. In total, 321 articles related to DUBs and immunotherapy were retrieved. The number of publications increased markedly since 2020. China had the highest number of publications, while the United States exerted the most influence in this field. Zhang Jinfang was the most influential author in this field. Zhejiang University was the institution with the highest number of publications. Nature was the most cited journal (807 total citations). Keyword analysis revealed that the primary research hotspots were expression, immunotherapy, ubiquitination, degradation, and cancer. This bibliometric analysis revealed the research trends and emerging frontiers in DUBs and immunotherapy, offering novel strategies for the application of DUBs in immunotherapy.
Collapse
Affiliation(s)
- Xia Chen
- Department of Geriatrics, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yang Qin
- Department of Rheumatology and immunology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jinfeng Gan
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor‑Targeted Drug Basic Research, Guilin Medical University, Guilin, China
| | - Tangwen Wei
- School of Public Health, Guilin Medical University, Guilin, China
| | - Xinyi Wei
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Yaling Xiong
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine China Medical University, Shenyang, Liaoning Province, China
| | - Bing Wei
- Department of Geriatrics, Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
2
|
Torrado C, Ashton NW, D'Andrea AD, Yap TA. USP1 inhibition: A journey from target discovery to clinical translation. Pharmacol Ther 2025; 271:108865. [PMID: 40274197 DOI: 10.1016/j.pharmthera.2025.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Ubiquitin-specific protease 1 (USP1) is a deubiquitinating enzyme involved in the DNA damage response. Upon DNA damage, USP1 stabilizes replication forks by removing monoubiquitin from PCNA and FANCD2-FANCI, thereby catalyzing critical final steps in translesion synthesis and interstrand crosslink (ICL) repair. This function is particularly crucial in BRCA1 mutant cancers, where the homologous recombination pathway is compromised, leading tumors to rely on USP1 for effective repair. USP1 is also overexpressed in BRCA1 mutant cancers, as well as other tumor types. Preclinical studies have demonstrated that knockout of USP1 is synthetically lethal in tumors with biallelic BRCA1 mutations, and this relationship is enhanced by combination with PARP inhibitors. Newly developed USP1 inhibitors have confirmed this synthetic lethality in BRCA1-deficient tumor cells. Moreover, these drugs have the potential for resensitizing platinum-resistant tumors. Currently, potent and specific USP1 inhibitors are undergoing evaluation in phase I clinical trials. RO7623066 (KSQ-4279) reported an acceptable safety profile during a phase I dose escalation study, with anemia being the most common side effect, and demonstrated robust pharmacokinetic, pharmacodynamic, and clinical activity. Other USP1 inhibitors, including SIM0501, XL309-101, and HSK39775, are currently in early clinical development. In this review, we provide an overview of the molecular function of USP1 and its importance as a therapeutic target in oncology, before focusing on the current state of preclinical and clinical development of USP1 inhibitors.
Collapse
Affiliation(s)
- Carlos Torrado
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas W Ashton
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Timothy A Yap
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Wang J, Wang S, Wang Y, Xu L, Wu C, Zhang X, Liang C, Wan S, Xia Y, Huang X, Xu L. Hsa_circ_0000479 promotes gastric cancer progression by inhibiting BTRC-mediated ubiquitination of G3BP1. Exp Cell Res 2025; 449:114585. [PMID: 40320200 DOI: 10.1016/j.yexcr.2025.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/30/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
An increasing number of studies have shown that circular RNAs (circRNAs) are key regulators of cancer development and progression. RNA-binding proteins (RBPs) play critical roles in the regulation of biological activities, such as RNA synthesis, selective splicing, modification, translocation, and translation; therefore, research on the interactions of circRNAs with RBPs is key to identifying potential targets for cancer treatment. However, the biological roles and mechanisms of circRNAs in gastric cancer (GC) remain largely unknown. We identified differentially expressed circRNAs in GC by analysing Gene Expression Omnibus (GEO) datasets. Concurrently, in vitro functional assays and in vivo animal studies were performed to explore the biological role of circRNAs in GC. We performed western blotting (WB) of labelled proteins, salvage assays, mass spectrometry (MS), and RNA sequencing to investigate the mechanism of circRNAs in GC to explore their effects on GC cell proliferation and metastasis and to validate their potential value as therapeutic targets. Upregulated expression of cyclic RNA EPSTI1 (circEPSTI1; hsa_circ_0000479) was found in GC tissues and was associated with a poor clinical prognosis. hsa_circ_0000479 promotes the proliferation and migration of GC cells in vitro and in vivo. Notably, hsa_circ_0000479 interacts with Ras-GTPase-activated protein-binding protein 1 (G3BP1) in GC cells and inhibits the degradation of G3BP1 via the ubiquitin‒proteasome pathway, whereas hsa_circ_0000479 blocks the binding of G3BP1 to the E3 ligase BTRC. Mechanistic studies suggest that hsa_circ_0000479 promotes GC progression by competitively inhibiting the G3BP1 ubiquitination-mediated degradation facilitated by BTRC. Our results reveal the molecular mechanism by which hsa_circ_0000479 promotes GC progression through BTRC-mediated competitive binding to G3BP1 to inhibit its ubiquitination-mediated degradation, which provides a new theoretical basis for the targeted treatment of GC and elucidates the potential of hsa_circ_0000479-G3BP1-BTRC as a therapeutic target in GC. These findings provide a new direction for the treatment of patients with GC.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China; Department of General Surgery, Maanshan Maternal and Child Health Care Hospital, Maanshan, Anhui, China
| | - Song Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Ye Wang
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Lishuai Xu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Chengwei Wu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Xu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Changming Liang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Senlin Wan
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Yabin Xia
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Xiaoxu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China.
| | - Li Xu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China.
| |
Collapse
|
4
|
Luo Y, Li WX, Zheng QS, Yan JQ, Yang YD, Shen SR, Zhang QH, Liang G, Wang Y, Chen DD, Hu X, Luo W. OTUD1 deficiency attenuates myocardial ischemia/reperfusion induced cardiomyocyte apoptosis by regulating RACK1 phosphorylation. Acta Pharmacol Sin 2025:10.1038/s41401-025-01567-x. [PMID: 40394237 DOI: 10.1038/s41401-025-01567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/14/2025] [Indexed: 05/22/2025]
Abstract
Myocardial infarction (MI) is an important risk factor of cardiovascular disease (CVD) and its incidence has been on the rise globally. Myocardial ischemia/reperfusion (I/R) injury is frequently detected in the ischemic myocardium. Recent studies have shown that ubiquitination plays an important role in the cardiac pathophysiological processes. Herein, we investigated the role and molecular mechanism of Ovarian tumor deubiquitinase 1 (OTUD1) in I/R induced myocardial injury. It was observed that the myocardial OTUD1 was upregulated in I/R-induced heart tissues and global deletion of OTUD1 significantly ameliorated I/R induced myocardial injury and dysfunction. Similarly, silencing or overexpression OTUD1 affected the hypoxia/reoxygenation (H/R) induced cell apoptosis in cultured cardiomyocytes. Mechanistically, immunoprecipitation-mass spectrometry revealed that OTUD1 directly bound to receptor for activated C-kinase 1 (RACK1) which has been identified as a scaffold protein for multiple kinases including mitogen-activated protein kinase (MAPKs) and Inhibitor of nuclear factor kappa B kinase (IKK). OTUD1 could cleave K63-linked polyubiquitin chains to enhance RACK1 phosphorylation, thus modulating MAPKs and nuclear factor kappa B (NF-κB) signaling. Finally, silencing of RACK1 reverses OTUD1-promoted H/R induced myocardial apoptosis. In conclusion, our findings suggest that OTUD1 promotes I/R-induced heart injury by deubiquitinating RACK1, suggesting that OTUD1 is a potential therapeutic target for myocardial I/R.
Collapse
Affiliation(s)
- Yue Luo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325800, China
| | - Wei-Xin Li
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qing-Song Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jue-Qian Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu-Die Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Si-Rui Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qian-Hui Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ding-Dao Chen
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325800, China.
| | - Xiang Hu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Wu Luo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325800, China.
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
5
|
Zhu Q, Yuan Z, Huo Q, Lu Q, Wu Q, Guo J, Fu W, Lu Y, Zhong L, Shang W, Cui D, Li S, Liu X, Tu K, Huang D, Xu Q, Hu X. YY1 induced USP13 transcriptional activation drives the malignant progression of hepatocellular carcinoma by deubiquitinating WWP1. Cell Mol Biol Lett 2025; 30:56. [PMID: 40319251 PMCID: PMC12049795 DOI: 10.1186/s11658-025-00733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 04/16/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer globally and the third leading cause of cancer-related mortality. Protein ubiquitination and deubiquitination play vital roles in human cancers. Ubiquitin-specific protease 13 (USP13) is a deubiquitinating enzyme (DUB) that is involved in many cellular processes. However, the mechanism by which USP13 regulates deubiquitination remains largely unknown. METHODS Clinical data were analyzed via online databases. USP13 expression in HCC cell lines and tissues was analyzed via western blotting and immunohistochemistry. A lentivirus was used to established stable USP13-knockdown and USP13-overexpression cells. Cell Counting Kit-8, colony formation, wound healing, Transwell, and sphere formation assays were used to detect the malignant behaviors of HCC cells in vitro. A subcutaneous mouse model was used to investigate the function of USP13 in vivo. Co-immunoprecipitation, chromatin immunoprecipitation and dual-luciferase reporter assays were conducted to explore the molecular regulation. RESULTS USP13 was upregulated in HCC cell lines and tissues, which predicted a poor prognosis in patients with HCC. Functional experiments in which USP13 was overexpressed or depleted revealed the oncogenic role of USP13 in driving HCC progression both in vitro and in vivo. Mechanistically, WW domain-containing ubiquitin E3 ligase 1 (WWP1) was identified as a binding protein of USP13. Furthermore, USP13 can interact with WWP1 and then remove the K29- and K48-linked polyubiquitination chains from WWP1 to stabilize the WWP1 protein via the ubiquitin-proteasome pathway. Moreover, Yin Yang 1 (YY1) was explored as a new transcription factor of USP13, and YY1 could also upregulate WWP1 expression through USP13. Moreover, YY1 and WWP1 were shown to participate in the oncogenic role of USP13. CONCLUSIONS Our findings revealed the functional YY1/USP13/WWP1 signaling axis in HCC, identifying a promising therapeutic target for anti-HCC treatment.
Collapse
Affiliation(s)
- Qingwei Zhu
- The Qingdao Medical College of Qingdao University, Qingdao, 266000, China
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Zibo Yuan
- The Qingdao Medical College of Qingdao University, Qingdao, 266000, China
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Qiang Huo
- Department of General Surgery, Zhoushan Dinghai Central Hospital (Dinghai District of Zhejiang Provincial People's Hospital), Zhoushan, 316000, China
| | - Qiliang Lu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- The Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Qingsong Wu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Department of Hepatobiliary, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, China
| | - Junwei Guo
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310053, China
| | - Wen Fu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Ying Lu
- Department of Haematology, Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China
| | - Lei Zhong
- Department of Laboratory Medicine, Tongxiang Traditional Chinese Medicine Hospital, Tongxiang, 314500, China
| | - Wenzhong Shang
- Department of Hematology, The first People's Hospital of Fuyang Hangzhou, Hangzhou, 311400, China
| | - Di Cui
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Shuangshuang Li
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xin Liu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dongsheng Huang
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
| | - Xiaoge Hu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Davidson GA, Moafian Z, Sensi AR, Zhuang Z. Thioether-mediated protein ubiquitination in constructing affinity- and activity-based ubiquitinated protein probes. Nat Protoc 2025:10.1038/s41596-025-01162-8. [PMID: 40281337 DOI: 10.1038/s41596-025-01162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/24/2025] [Indexed: 04/29/2025]
Abstract
Protein ubiquitination, a critical regulatory mechanism and post-translational modification in eukaryotic cells, involves the formation of an isopeptide bond between ubiquitin (Ub) and targeted proteins. Despite extensive investigation into the roles played by protein ubiquitination in various cellular processes, many questions remain to be answered. A major challenge in the biochemical and biophysical characterization of protein ubiquitination, along with its associated pathways and protein players, lies in the generation of ubiquitinated proteins, either in mono- or poly-ubiquitinated forms. Enzymatic and chemical strategies have been reported to address this challenge; however, there are still unmet needs for the facile generation of ubiquitinated proteins in the quantity and homogeneity required to precisely decipher the role of various protein-specific ubiquitination events. In this protocol, we provide the ubiquitin research community with a chemical ubiquitination method enabled by an α-bromoketone-mediated ligation strategy. This method can be readily adapted to generate mono- and poly-ubiquitinated proteins of interest through a cysteine introduced to replace the target lysine, with the native cysteines mutated to serine. Using proliferating cell nuclear antigen (PCNA) as an example, we present herein a detailed protocol for generating di- and tri-Ub PCNA that contains a photo-activatable cross-linker for capturing potential reader proteins. The thioether-mediated protein ligation and purification typically takes 2-3 weeks. An important feature of our ubiquitination strategy is the ability to introduce a Michael-acceptor warhead to the linkage, allowing the generation of activity-based probes for deubiquitinases and ubiquitin-carrying enzymes such as HECT and RBR E3 ubiquitin ligases and E2 enzymes. As such, our method is highly versatile and can be readily adapted to investigate the readers and erasers of many proteins that undergo reversible ubiquitination.
Collapse
Affiliation(s)
- Gregory A Davidson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Zeinab Moafian
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Amanda R Sensi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
7
|
Jiang KC, Zhu YH, Jiang ZL, Liu Y, Hussain W, Luo HY, Sun WH, Ji XY, Li DX. Regulation of PEST-containing nuclear proteins in cancer cells: implications for cancer biology and therapy. Front Oncol 2025; 15:1548886. [PMID: 40330830 PMCID: PMC12052563 DOI: 10.3389/fonc.2025.1548886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
The PEST-containing nuclear protein (PCNP) is a nuclear protein involved in the regulation of cell cycle progression, protein degradation, and tumorigenesis. PCNP contains a PEST sequence, a polypeptide structural motif rich in proline (P), glutamic acid (E), serine (S), and threonine (T), which serves as a proteolytic recognition signal. The degradation of specific proteins via the PEST sequence plays a crucial role in modulating signaling pathways that control cell growth, differentiation, apoptosis, and stress responses. PCNP is primarily degraded through the ubiquitin-proteasome system (UPS) and the calpain pathway, with phosphorylation of threonine and serine residues further accelerating its degradation. The ubiquitination of PCNP by the ring finger protein NIRF in an E3 ligase-dependent manner is well documented, along with its involvement in the MAPK and PI3K/AKT/mTOR signaling pathways. Additionally, PCNP is implicated in p53-mediated cell cycle arrest and apoptosis, which are essential for inhibiting tumor growth. To explore the role of PCNP in cancer, this review examines its effects on cell growth, differentiation, proliferation, and apoptosis in lung adenocarcinoma, thyroid cancer, ovarian cancer, and other malignancies derived from glandular epithelial cells. By focusing on PCNP and its regulatory mechanisms, this study provides a scientific basis for further research on the biological functions of the PEST sequence in tumor development and cancer progression.
Collapse
Affiliation(s)
- Kai-Chun Jiang
- Department of Traditional Chinese Medicine, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
| | - Yong-Hao Zhu
- School of Stomatology, Henan University, Kaifeng, Henan, China
| | - Zhi-Liang Jiang
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu, China
| | - Yi Liu
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wahab Hussain
- School of Stomatology, Henan University, Kaifeng, Henan, China
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Huang-Yin Luo
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu, China
| | - Wei-Hang Sun
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu, China
| | - Xin-Ying Ji
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Oncology, Huaxian County Hospital, Anyang, Henan, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
| | - Ding-Xi Li
- The Affiliated Cancer Hospital, Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
8
|
Mohapatra B, Lavudi K, Kokkanti RR, Patnaik S. Regulation of NLRP3/TRIM family signaling in gut inflammation and colorectal cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189271. [PMID: 39864469 DOI: 10.1016/j.bbcan.2025.189271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
CRC (Colorectal cancer) ranks among the most prevalent tumors in humans and remains a leading cause of cancer-related mortality worldwide. Numerous studies have highlighted the connection between inflammasome over-activation and the initiation and progression of CRC. The activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome is dependent on the nuclear NF-kβ (Nuclear Factor kappa-light-chain-enhancer of activated B cells) pathway, leading to the maturation and release of inflammatory cytokines such as IL-1ß (Interleukin 1 beta) and IL-18 (Interleukin 18). While inflammation is crucial for defense mechanisms and tissue repair, excessive information can pose significant risks. Mounting evidence suggests that overactivation of the inflammasome contributes to the pathogenesis of inflammatory diseases. Consequently, there is a concerted effort to tightly regulate inflammasome activity and mitigate excessive inflammatory responses, particularly in conditions such as IBD (Inflammatory Bowel Disease), which includes Ulcerative Colitis and Crohn's Disease. The tripartite motif (TRIM) protein family, characterized by a conserved structure and rapid evolutionary diversification, includes members with critical roles in ubiquitination and other regulatory functions. Their importance in modulating inflammatory responses is widely acknowledged. This article aims to investigate the interplay between TRIM proteins and the NLRP3 Inflammasome in CRC and gut inflammation, offering insights for future research endeavors and potential therapeutic strategies.
Collapse
Affiliation(s)
- Bibhashee Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive cancer center, The Ohio State University, Columbus, OH, United States
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
9
|
Guo J, Qu H, Cui P, Xue Y. USP33 PROMOTES CERULEIN-INDUCED APOPTOTIC, OXIDATIVE, AND INFLAMMATORY INJURIES IN ACUTE PANCREATITIS BY DEUBIQUITINATING TRAF3. Shock 2025; 63:559-565. [PMID: 39637362 DOI: 10.1097/shk.0000000000002514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
ABSTRACT Background: Tumor necrosis factor receptor associated factor 3 (TRAF3) and deubiquitinating enzyme ubiquitin-specific protease 33 (USP33) have been identified to play important roles in inflammatory diseases, including acute pancreatitis (AP). Here, we aimed to explore whether USP33 affected AP progression by affecting TRAF3 expression through deubiquitination. Methods: Cerulein-treated HPDE6-C7 cells were used to mimic AP conditions in vitro . Levels of mRNAs and proteins were examined by qRT-PCR and western blot. Cell proliferation and apoptosis were evaluated using CCK-8 assay, EdU assay, and flow cytometry. Cell oxidative stress was assessed by detecting the production of superoxide dismutase and malonaldehyde. ELISA analysis detected IL-6 and TNF-α levels. Macrophage M1 polarization was evaluated by flow cytometry. Cellular ubiquitination analyzed the ubiquitination effect on TRAF3. Protein interaction between USP33 and TRAF3 was identified by immunofluorescence staining. Results: Cerulein dose-dependently induced apoptosis, oxidative stress, and inflammatory response in HPDE6-C7 cells and promoted macrophage M1 polarization to enhance inflammation ( P < 0.05). TRAF3 was highly expressed in AP patients (3.5±1.10 vs. 1.0 ±0.74, P < 0.05) and cerulein-induced HPDE6-C7 cells (3.3 ±0.34 vs. 1.0 ±0.10, P < 0.05). Knockdown of TRAF3 protected HPDE6-C7 cells from cerulein-induced apoptotic, oxidative and inflammatory injuries. Mechanistically, USP33 interacted with TRAF3 and induced TRAF3 deubiquitination to upregulate its expression ( P < 0.05). Further analyses showed that USP33 knockdown reversed cerulein-induced apoptosis, oxidative stress and inflammation in HPDE6-C7 cells by TRAF3 ( P < 0.05). Moreover, USP33-TRAF3 activated the NF-κB pathway ( P < 0.05). Conclusion: USP33 promoted cerulein-induced apoptosis, oxidative stress and inflammation in pancreatic ductal cells by deubiquitinating TRAF3, indicating a novel insight into the pathogenesis of AP.
Collapse
Affiliation(s)
- Jian Guo
- Department of general Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Huiheng Qu
- Department of General Surgery, JiangNan University Medical Center, Wuxi, JiangSu, China
| | - Peng Cui
- Department of general Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yu Xue
- Department of general Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
10
|
Wang X, Zhang P, Xie J, Zuo X. USP39 promotes retinal pathological angiogenesis in retinopathy of prematurity by stabilizing SIRT2 expression through deubiquitination. Int Ophthalmol 2025; 45:39. [PMID: 39853525 DOI: 10.1007/s10792-025-03410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Retinopathy of prematurity (ROP) is a major cause of childhood blindness worldwide, highlighted by retinal neovascularization. Ubiquitin is present throughout the retina. The deubiquitinating enzyme ubiquitin-specific protease 39 (USP39) has been reported to be involved in angiogenesis. Here, this study aimed to investigate the effects of USP39 on ROP and its associated mechanism. METHODS Hypoxia-induced human retinal microvascular endothelial cells (hRMECs) were adopted for functional analyses. Detection of mRNA and protein was conducted using quantitative real-time PCR and western blotting. Cell migration, invasion and angiogenesis were evaluated using transwell and tube formation assays. Protein interaction was determined by immunoprecipitation assay. Oxygen-induced retinopathy (OIR) mouse models were used for in vivo analysis. RESULTS USP39 level was higher in hypoxia-induced hRMECs, functionally, USP39 silencing reversed hypoxia-induced migration, invasion and angiogenesis in hRMECs. In further mechanism analysis, we found that USP39 stabilized SIRT2 protein expression in hRMECs by inducing SIRT2 deubiquitination. Moreover, SIRT2 up-regulation abated hypoxia-evoked migration, invasion and angiogenesis in hRMECs. Besides that, the inhibitory effects of USP39 silencing on hypoxia-induced metastatic and angiogenic behaviors were abolished after SIRT2 overexpression. In addition, USP39 silencing blocked the activation of phosphoinositide 3-kinase (PI3K)/protein kinase B pathway (AKT) by regulating SIRT2. In vivo assay showed that levels of USP39, SIRT2, matrix metalloproteinase (MMP)-2 (MMP-2), MMP-9 and Vascular endothelial growth factor A (VEGFA) were increased in the retinas of OIR mice, while intravitreal injection of USP39 short hairpin RNA (shRNA) could reduce their expression. CONCLUSION USP39 stabilized SIRT2 expression by deubiquitination and promoted hypoxia-induced metastatic and angiogenic behaviors of RMECs in vitro, as well as retinal angiogenesis in vivo.
Collapse
Affiliation(s)
- Xiuxian Wang
- Department of Ophthalmology, Xingtai People's Hospital, Xingtai, 054001, Hebei, China
| | - Peicheng Zhang
- Department of Ophthalmology, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Medical Research Center for Ocular Diseases, Hebei Eye Hospital, No.399, Quanbei East Road, Xingtai, 054001, Hebei, China.
| | - Jing Xie
- Department of Ophthalmology, Xingtai People's Hospital, Xingtai, 054001, Hebei, China
| | - Xiangrong Zuo
- Department of Ophthalmology, Xingtai People's Hospital, Xingtai, 054001, Hebei, China
| |
Collapse
|
11
|
Bandi V, Rennie M, Koch I, Gill P, Pacheco OD, Berg AD, Cui H, Ward DI, Bustos F. RLIM-specific activity reporters define variant pathogenicity in Tonne-Kalscheuer syndrome. HGG ADVANCES 2025; 6:100378. [PMID: 39482882 PMCID: PMC11617870 DOI: 10.1016/j.xhgg.2024.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024] Open
Abstract
Tonne-Kalscheuer syndrome (TOKAS; MIM: 300978) is an X-linked recessive disorder with devastating consequences for patients, such as intellectual disability, developmental delay, and multiple congenital abnormalities. TOKAS is associated with hemizygous variants in the RLIM gene, which encodes a RING-type E3 ubiquitin ligase. The current sustained increase in reported RLIM variants of uncertain significance creates an urgent need to develop assays that can screen these variants and experimentally determine their pathogenicity and disease association. Here, we engineered flow cytometry-based RLIM-specific reporters to measure RLIM activity in TOKAS. This paper describes the design and use of RLIM-specific reporters to determine the pathogenicity of a TOKAS RLIM gene variant. Our data demonstrate that RLIM-specific flow cytometry reporters based on either the full length or a degron region of the substrate REX1 measure RLIM activity in cells. Further, we describe the TOKAS variant RLIM p.Asn581Lys and, using reporter assays, determine that it disrupts RLIM catalytic activity. These data reveal how the p.Asn581Lys variant impairs RLIM function and suggests pathogenic mechanisms. The use of RLIM-specific reporters will greatly accelerate the resolution of variants of uncertain significance and disease association in TOKAS.
Collapse
Affiliation(s)
| | - Martin Rennie
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Intisar Koch
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Polly Gill
- Coordination of Rare Diseases at Sanford (CoRDS), Sanford Research, Sioux Falls, SD, USA
| | - Oscar D Pacheco
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Aaron D Berg
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA; Sanford Medical Center, Sioux Falls, SD, USA
| | - Hong Cui
- GeneDx, Gaithersburg, MD 20877, USA
| | - D Isum Ward
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA; Sanford Children's Specialty Clinic, Sioux Falls, SD, USA; Sanford Imagenetics, Sioux Falls, SD, USA
| | - Francisco Bustos
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
12
|
Trory JS, Vautrinot J, May CJ, Hers I. PROTACs in platelets: emerging antithrombotic strategies and future perspectives. Curr Opin Hematol 2025; 32:34-42. [PMID: 39446364 DOI: 10.1097/moh.0000000000000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Proteolysis-targeted chimeras (PROTACs) are heterobifunctional compounds that selectively target proteins for degradation and are an emerging therapeutic modality to treat diseases such as cancer and neurodegenerative disorders. This review will widen the area of application by highlighting the ability of PROTACs to remove proteins from the anucleate platelets and evaluate their antithrombotic potential. RECENT FINDINGS Proteomic and biochemical studies demonstrated that human platelets possess the Ubiquitin Proteasomal System as well as the E3 ligase cereblon (CRBN) and therefore may be susceptible to PROTAC-mediated protein degradation. Recent findings confirmed that CRBN ligand-based PROTACs targeting generic tyrosine kinases, Btk and/or Fak lead to efficacious and selective protein degradation in human platelets. Downregulation of Btk, a key player involved in signalling to thrombosis, but not haemostasis, resulted in impaired in-vitro thrombus formation. SUMMARY Platelets are susceptible to targeted protein degradation by CRBN ligand-based PROTACs and have limited ability to resynthesise proteins, ensuring long-term downregulation of target proteins. Therefore, PROTACs serve as an additional research tool to study platelet function and offer new therapeutic potential to prevent thrombosis. Future studies should focus on enhancing cell specificity to avoid on-target side effects on other blood cells.
Collapse
Affiliation(s)
- Justin S Trory
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
13
|
Lord S, Johnston H, Samant R, Lai Y. Ubiquitylomics: An Emerging Approach for Profiling Protein Ubiquitylation in Skeletal Muscle. J Cachexia Sarcopenia Muscle 2024; 15:2281-2294. [PMID: 39279720 PMCID: PMC11634490 DOI: 10.1002/jcsm.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Skeletal muscle is a highly adaptable tissue, finely tuned by various physiological and pathological factors. Whilst the pivotal role of skeletal muscle in overall health is widely acknowledged, unravelling the underlying molecular mechanisms poses ongoing challenges. Protein ubiquitylation, a crucial post-translational modification, is involved in regulating most biological processes. This widespread impact is achieved through a diverse set of enzymes capable of generating structurally and functionally distinct ubiquitin modifications on proteins. The complexity of protein ubiquitylation has presented significant challenges in not only identifying ubiquitylated proteins but also characterising their functional significance. Mass spectrometry enables in-depth analysis of proteins and their post-translational modification status, offering a powerful tool for studying protein ubiquitylation and its biological diversity: an approach termed ubiquitylomics. Ubiquitylomics has been employed to tackle different perspectives of ubiquitylation, including but not limited to global quantification of substrates and ubiquitin linkages, ubiquitin site recognition and crosstalk with other post-translational modifications. As the field of mass spectrometry continues to evolve, the usage of ubiquitylomics has unravelled novel insights into the regulatory mechanisms of protein ubiquitylation governing biology. However, ubiquitylomics research has predominantly been conducted in cellular models, limiting our understanding of ubiquitin signalling events driving skeletal muscle biology. By integrating the intricate landscape of protein ubiquitylation with dynamic shifts in muscle physiology, ubiquitylomics promises to not only deepen our understanding of skeletal muscle biology but also lay the foundation for developing transformative muscle-related therapeutics. This review aims to articulate how ubiquitylomics can be utilised by researchers to address different aspects of ubiquitylation signalling in skeletal muscle. We explore methods used in ubiquitylomics experiments, highlight relevant literature employing ubiquitylomics in the context of skeletal muscle and outline considerations for experimental design.
Collapse
Affiliation(s)
- Samuel O. Lord
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | | | | | - Yu‐Chiang Lai
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamBirminghamUK
- NIHR Birmingham Biomedical Research Centre Sarcopenia and MultimorbidityUniversity of BirminghamBirminghamUK
| |
Collapse
|
14
|
He WQ, Pang W, Li N, Li AQ, Li YH, Lu Y, Shen F, Xin R, Song TZ, Tian RR, Yang LM, Zheng YT. IFI27 inhibits HIV-1 replication by degrading Gag protein through the ubiquitin-proteasome pathway. J Virol 2024; 98:e0135624. [PMID: 39475279 PMCID: PMC11575308 DOI: 10.1128/jvi.01356-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/25/2024] [Indexed: 11/20/2024] Open
Abstract
Type I interferon (IFN-I) and its downstream genes play a profound role in HIV infection. In this study, we found that an IFN-inducible gene, IFI27, was upregulated in HIV-1 infection, which in turn efficiently suppressed HIV-1 replication, specially degraded the viral gag protein, including p24 and p55 subunits. Notably, the anti-HIV-1 activity of IFI27 in Old World monkeys surpassed that in New World monkeys, and IFI27 has a higher potentially inhibitory effect on HIV-1 than simian immunodeficiency virus (SIV). Our initial observations showed that NPM-IFI27, the IFI27 variant in northern pig-tailed macaque (Macaca leonina, NPM), exhibited a strong anti-HIV-1 activity. Further investigation demonstrated that NPM-IFI27 degraded p24 and p55 via the ubiquitin-proteasome pathway, with NPM-IFI27-37-115 interacting with the p24-N domain, and the NPM-IFI27-76-122 domain was closely associated with K48 ubiquitin recruitment. Additionally, Skp2 was identified as the probable E3 ubiquitin ligase responsible for the degradation of p24 and p55. Similarly, human IFI27 (Hu-IFI27) showed a mechanism similar to NPM-IFI27 in HIV-1 inhibition. These findings underscore the pivotal role of NPM-IFI27 in HIV-1 infection and provide a potential strategy for clinical anti-HIV-1 therapy.IMPORTANCEHIV-1 infection can trigger the production of IFN-I, which subsequently activates the expression of various IFN-stimulated genes (ISGs) to antagonize the virus. Therefore, discovering novel host antiviral agents for HIV-1 treatment is crucial. Our previous study revealed that IFI27 can influence HIV-1 replication. In this study, we observed that the NPM-IFI27 complex specifically inhibited HIV-1 by targeting its Gag protein. Further exploration demonstrated that IFI27 interacted with the HIV-1 p24 and p55 proteins, leading to their degradation through the ubiquitin-proteasome pathway. Notably, the NPM-IFI27-37-122 variant exhibited potent anti-HIV-1 activity, comparable to that of SAMHD1. These findings highlight the critical role and inhibitory mechanism of NPM-IFI27 in HIV-1 infection, providing a potential strategy for clinical antiviral therapy.
Collapse
Affiliation(s)
- Wen-Qiang He
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Pang
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Na Li
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- Yunnan Provincial Hospital of Infectious Disease, Kunming, China
| | - An-Qi Li
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Hui Li
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Lu
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Fan Shen
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Rong Xin
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ren-Rong Tian
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Liu-Meng Yang
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Sharninghausen R, Hwang J, Dennison DD, Baldridge RD. Identification of ERAD-dependent degrons for the endoplasmic reticulum lumen. eLife 2024; 12:RP89606. [PMID: 39531282 PMCID: PMC11556787 DOI: 10.7554/elife.89606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Degrons are minimal protein features that are sufficient to target proteins for degradation. In most cases, degrons allow recognition by components of the cytosolic ubiquitin proteasome system. Currently, all of the identified degrons only function within the cytosol. Using Saccharomyces cerevisiae, we identified the first short linear sequences that function as degrons from the endoplasmic reticulum (ER) lumen. We show that when these degrons are transferred to proteins, they facilitate proteasomal degradation through the endoplasmic reticulum associated degradation (ERAD) system. These degrons enable degradation of both luminal and integral membrane ER proteins, expanding the types of proteins that can be targeted for degradation in budding yeast and mammalian tissue culture. This discovery provides a framework to target proteins for degradation from the previously unreachable ER lumen and builds toward therapeutic approaches that exploit the highly conserved ERAD system.
Collapse
Affiliation(s)
- Rachel Sharninghausen
- Department of Biological Chemistry, University of Michigan Medical SchoolAnn ArborUnited States
| | - Jiwon Hwang
- Department of Biological Chemistry, University of Michigan Medical SchoolAnn ArborUnited States
| | - Devon D Dennison
- Cellular and Molecular Biology Program, University of Michigan Medical SchoolAnn ArborUnited States
| | - Ryan D Baldridge
- Department of Biological Chemistry, University of Michigan Medical SchoolAnn ArborUnited States
- Cellular and Molecular Biology Program, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
16
|
Rossio V, Liu X, Paulo JA. Proteome Profiling of S. cerevisiae Strains Lacking the Ubiquitin-Conjugating Enzymes Ubc4 and Ubc5 During Exponential Growth and After Heat Shock Treatment. Microorganisms 2024; 12:2235. [PMID: 39597624 PMCID: PMC11596627 DOI: 10.3390/microorganisms12112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
The Ubiquitin-Proteasome System (UPS) governs numerous cellular processes by modulating protein stability and activity via the conjugation of the small protein ubiquitin, either as a single molecule or as linkages with distinct functions. Dysregulation of the UPS has been associated with many diseases, including neurodegenerative and neurodevelopmental diseases, as well as cancer. Ubiquitin-conjugating enzymes (E2s) are important players of the UPS that work together with ubiquitin ligases (E3s) to promote substrate ubiquitylation. In this study, we conduct a comparative proteome-wide abundance profiling of S. cerevisiae cells during the exponential growth phase with and without heat shock treatment. We focus on cells with deletions of the two highly homologous E2s, UBC4 or UBC5, and use isobaric tag-based quantitative mass spectrometry to elucidate differences and similarities in their proteomic profiles. Our analysis revealed that the deletion of Ubc4 has a stronger effect on the proteome compared to the deletion of Ubc5, particularly in exponentially growing cells. In contrast, the effect on the proteome of deleting Ubc5 becomes evident only after heat shock, and even then, it remains minor compared to Ubc4. Furthermore, we identified proteins increasing in the absence of each enzyme, which may represent candidate substrates, potentially contributing to a better understanding of their cellular role.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA;
| | | | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
17
|
Rossio V, Paulo JA. Comparative Proteome-Wide Abundance Profiling of Yeast Strains Deleted for Cdc48 Adaptors. Proteomes 2024; 12:31. [PMID: 39585118 PMCID: PMC11587464 DOI: 10.3390/proteomes12040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
The yeast ATPase Cdc48 (known as p97/VCP in human cells) plays an important role in the Ubiquitin Proteasome System. VCP is essential for cancer cell proliferation, and its dysregulation has been implicated in several neurodegenerative diseases. Cdc48 functions by extracting ubiquitylated proteins from membranes, protein complexes and chromatin by often facilitating their proteasomal degradation. Specific adaptors or cofactors, primarily belonging to the UBX domain-containing protein family (which has seven members in Saccharomyces cerevisiae) recruit Cdc48 to ubiquitylated proteins. Here, we employed sample multiplexing-based quantitative mass spectrometry to profile global protein abundance in p97 adaptor deletion strains, specifically comparing seven single deletion strains of UBX domain-containing proteins and the Cuz1 deletion strain, which belongs to the zinc finger AN1-type domain protein family. We observed that each strain showed unique sets of differentially abundant proteins compared to the wild type. Our analysis also revealed a role for Ubx3 in maintaining wild type levels of mitochondrial proteins. Overall, we identified ~1400 differentially abundant proteins in the absence of a specific Cdc48 adaptor. This unique dataset offers a valuable resource for studying the functions of these adaptors, aiming to achieve a better understanding of the cellular processes regulated by Cdc48 itself and to deepen our understanding of the Ubiquitin Proteasome System.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Cheng X, Wang Y, Liu J, Wu Y, Zhang Z, Liu H, Tian L, Zhang L, Chang L, Xu P, Zhang L, Li Y. Super Enhanced Purification of Denatured-Refolded Ubiquitinated Proteins by ThUBD Revealed Ubiquitinome Dysfunction in Liver Fibrosis. Mol Cell Proteomics 2024; 23:100852. [PMID: 39362602 PMCID: PMC11584597 DOI: 10.1016/j.mcpro.2024.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
Ubiquitination is crucial for maintaining protein homeostasis and plays a vital role in diverse biological processes. Ubiquitinome profiling and quantification are of great scientific significance. Artificial ubiquitin-binding domains (UBDs) have been widely employed to capture ubiquitinated proteins. The success of this enrichment relies on recognizing native spatial structures of ubiquitin and ubiquitin chains by UBDs under native conditions. However, the use of native lysis conditions presents significant challenges, including insufficient protein extraction, heightened activity of deubiquitinating enzymes and proteasomes in removing the ubiquitin signal, and purification of a substantial number of contaminant proteins, all of which undermine the robustness and reproducibility of ubiquitinomics. In this study, we introduced a novel approach that combines denatured-refolded ubiquitinated sample preparation (DRUSP) with a tandem hybrid UBD for ubiquitinomic analysis. The samples were effectively extracted using strongly denatured buffers and subsequently refolded using filters. DRUSP yielded a significantly stronger ubiquitin signal, nearly three times greater than that of the Control method. Then, eight types of ubiquitin chains were quickly and accurately restored; therefore, they were recognized and enriched by tandem hybrid UBD with high efficiency and no biases. Compared with the Control method, DRUSP showed extremely high efficiency in enriching ubiquitinated proteins, improving overall ubiquitin signal enrichment by approximately 10-fold. Moreover, when combined with ubiquitin chain-specific UBDs, DRUSP had also been proven to be a versatile approach. This new method significantly enhanced the stability and reproducibility of ubiquitinomics research. Finally, DRUSP was successfully applied to deep ubiquitinome profiling of early mouse liver fibrosis with increased accuracy, revealing novel insights for liver fibrosis research.
Collapse
Affiliation(s)
- Xinyu Cheng
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China; School of Basic Medical, Anhui Medical University, Heifei, Anhui, PR China
| | - Yonghong Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China
| | - Jinfang Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China; Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Ying Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China
| | - Zhenpeng Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China
| | - Hui Liu
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, PR China
| | - Lantian Tian
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Li Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China; School of Basic Medical, Anhui Medical University, Heifei, Anhui, PR China
| | - Lei Chang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China
| | - Ping Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China; School of Basic Medical, Anhui Medical University, Heifei, Anhui, PR China; College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, PR China; TaiKang Medical School (School of Basic Medical Sciences), Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, PR China
| | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China; School of Basic Medical, Anhui Medical University, Heifei, Anhui, PR China; College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, PR China
| | - Yanchang Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, PR China; School of Basic Medical, Anhui Medical University, Heifei, Anhui, PR China; College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, PR China.
| |
Collapse
|
19
|
Zhang R, Li C, Zhang S, Kong L, Liu Z, Guo Y, Sun Y, Zhang C, Yong Y, Lv J, Lu M, Liu M, Wu D, Zhang T, Yang H, Wei D, Chen Z, Bian H. UBE2S promotes glycolysis in hepatocellular carcinoma by enhancing E3 enzyme-independent polyubiquitination of VHL. Clin Mol Hepatol 2024; 30:771-792. [PMID: 38915206 PMCID: PMC11540382 DOI: 10.3350/cmh.2024.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND/AIMS Ubiquitination is widely involved in the progression of hepatocellular carcinoma (HCC) by regulating various cellular processes. However, systematic strategies for screening core ubiquitin-related genes, clarifying their functions and mechanisms, and ultimately developing potential therapeutics for patients with HCC are still lacking. METHODS Cox and LASSO regression analyses were performed to construct a ubiquitin-related gene prediction model for HCC. Loss- and gain-of-function studies, transcriptomic and metabolomics analysis were used to explore the function and mechanism of UBE2S on HCC cell glycolysis and growth. RESULTS Based on 1,423 ubiquitin-related genes, a four-gene signature was successfully constructed to evaluate the prognosis of patients with HCC. UBE2S was identified in this signature with the potential to predict the survival of patients with HCC. E2F2 transcriptionally upregulated UBE2S expression by directly binding to its promoter. UBE2S positively regulated glycolysis in a HIF-1α-dependent manner, thus promoting the proliferation of HCC cells. Mechanistically, UBE2S enhanced K11-linkage polyubiquitination at lysine residues 171 and 196 of VHL independent of E3 ligase, thereby indirectly stabilizing HIF-1α protein levels by mediating the degradation of VHL by the proteasome. In particular, the combination of cephalomannine, a small molecule compound that inhibits the expression of UBE2S, and PX-478, an inhibitor of HIF-1α, significantly improved the anti-tumor efficacy. CONCLUSION UBE2S is identified as a key biomarker in HCC among the thousands of ubiquitin-related genes and promotes glycolysis by E3 enzyme-independent ubiquitination, thus serving as a therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Renyu Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Can Li
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Shuai Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Lingmin Kong
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Zekun Liu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Yixiao Guo
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Ying Sun
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Cong Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Yule Yong
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Jianjun Lv
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Meng Lu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Man Liu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Dong Wu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Tianjiao Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Haijiao Yang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Ding Wei
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Zhinan Chen
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Huijie Bian
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| |
Collapse
|
20
|
Gill JK, Shaw GS. Using Förster Resonance Energy Transfer (FRET) to Understand the Ubiquitination Landscape. Chembiochem 2024; 25:e202400193. [PMID: 38632088 DOI: 10.1002/cbic.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Förster resonance energy transfer (FRET) is a fluorescence technique that allows quantitative measurement of protein interactions, kinetics and dynamics. This review covers the use of FRET to study the structures and mechanisms of ubiquitination and related proteins. We survey FRET assays that have been developed where donor and acceptor fluorophores are placed on E1, E2 or E3 enzymes and ubiquitin (Ub) to monitor steady-state and real-time transfer of Ub through the ubiquitination cascade. Specialized FRET probes placed on Ub and Ub-like proteins have been developed to monitor Ub removal by deubiquitinating enzymes (DUBs) that result in a loss of a FRET signal upon cleavage of the FRET probes. FRET has also been used to understand conformational changes in large complexes such as multimeric E3 ligases and the proteasome, frequently using sophisticated single molecule methods. Overall, FRET is a powerful tool to help unravel the intricacies of the complex ubiquitination system.
Collapse
Affiliation(s)
- Jashanjot Kaur Gill
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, N6A5C1
| | - Gary S Shaw
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, N6A5C1
| |
Collapse
|
21
|
Wang J, Wang Z, Zhang K, Cui Y, Zhou J, Liu J, Li H, Zhao M, Jiang J. The role of the ubiquitin system in the onset and reversal of neuropathic pain. Biomed Pharmacother 2024; 179:117127. [PMID: 39191026 DOI: 10.1016/j.biopha.2024.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024] Open
Abstract
Neuropathic pain (NP) remains one of the world's most difficult problems, and people suffering from NP have their quality of life affected to a great extent and constantly suffer from pain. Sensitization of injurious receptors, ectopic firing of afferent nerves after nerve injury, and coupling between sympathetic and sensory neurons are involved in the onset or development of NP, but the pathogenesis of NP is still not well understood. We found that the ubiquitin system is involved in the pathogenesis of NP and has a crucial role in it. The ubiquitin system can be involved in the onset or reversal of NP by affecting ion channels, cellular signal transduction, glial cells, and the regulation of non-coding RNAs. This provides new ideas for the treatment of NP. The ubiquitin system may be a new effective target for the treatment of NP. A continued, in-depth understanding of the mechanisms of the ubiquitin system involved in NP could further refine the study of analgesic targets and improve pharmacological studies.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kexin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanping Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingruo Zhou
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiazhou Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huanyi Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingxia Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
22
|
Li K, Krone MW, Butrin A, Bond MJ, Linhares BM, Crews CM. Development of Ligands and Degraders Targeting MAGE-A3. J Am Chem Soc 2024; 146:24884-24891. [PMID: 39190582 DOI: 10.1021/jacs.4c05393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Type I melanoma antigen (MAGE) family members are detected in numerous tumor types, and expression is correlated with poor prognosis, high tumor grade, and increased metastasis. Type I MAGE proteins are typically restricted to reproductive tissues, but expression can recur during tumorigenesis. Several biochemical functions have been elucidated for them, and notably, MAGEs regulate proteostasis by serving as substrate recognition modules for E3 ligase complexes. The repertoire of E3 ligase complexes that can be hijacked for targeted protein degradation continues to expand, and MAGE-E3 complexes are an especially attractive platform given their cancer-selective expression. Additionally, type I MAGE-derived peptides are presented on cancer cell surfaces, so targeted MAGE degradation may increase antigen presentation and improve immunotherapy outcomes. Motivated by these applications, we developed novel, small-molecule ligands for MAGE-A3, a type I MAGE that is widely expressed in tumors and associates with TRIM28, a RING E3 ligase. Chemical matter was identified through DNA-encoded library (DEL) screening, and hit compounds were validated for in vitro binding to MAGE-A3. We obtained a cocrystal structure with a DEL analog and hypothesize that the small molecule binds at a dimer interface. We utilized this ligand to develop PROTAC molecules that induce MAGE-A3 degradation through VHL recruitment and inhibit the proliferation of MAGE-A3 positive cell lines. These ligands and degraders may serve as valuable probes for investigating MAGE-A3 biology and as foundations for the ongoing development of tumor-specific PROTACs.
Collapse
Affiliation(s)
- Ke Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Mackenzie W Krone
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Arseniy Butrin
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Michael J Bond
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Brian M Linhares
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Department of Pharmacology, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
23
|
Maffeo B, Cilloni D. The Ubiquitin-Conjugating Enzyme E2 O (UBE2O) and Its Therapeutic Potential in Human Leukemias and Solid Tumors. Cancers (Basel) 2024; 16:3064. [PMID: 39272922 PMCID: PMC11394522 DOI: 10.3390/cancers16173064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Protein degradation is a biological phenomenon essential for cellular homeostasis and survival. Selective protein degradation is performed by the ubiquitination system which selectively targets proteins that need to be eliminated and leads them to proteasome degradation. In this narrative review, we focus on the ubiquitin-conjugating enzyme E2 O (UBE2O) and highlight the role of UBE2O in many biological and physiological processes. We further discuss UBE2O's implications in various human diseases, particularly in leukemias and solid cancers. Ultimately, our review aims to highlight the potential role of UBE2O as a therapeutic target and offers new perspectives for developing targeted treatments for human cancers.
Collapse
Affiliation(s)
- Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
24
|
Wei Z, Su L, Gao S. The roles of ubiquitination in AML. Ann Hematol 2024; 103:3413-3428. [PMID: 37603061 DOI: 10.1007/s00277-023-05415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneously malignant disorder resulting in poor prognosis. Ubiquitination, a major post-translational modification (PTM), plays an essential role in regulating various cellular processes and determining cell fate. Despite these initial insights, the precise role of ubiquitination in AML pathogenesis and treatment remains largely unknown. In order to address this knowledge gap, we explore the relationship between ubiquitination and AML from the perspectives of signal transduction, cell differentiation, and cell cycle control; and try to find out how this relationship can be utilized to inform new therapeutic strategies for AML patients.
Collapse
Affiliation(s)
- Zhifeng Wei
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
25
|
Michel MA, Scutts S, Komander D. Secondary interactions in ubiquitin-binding domains achieve linkage or substrate specificity. Cell Rep 2024; 43:114545. [PMID: 39052481 PMCID: PMC11372445 DOI: 10.1016/j.celrep.2024.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Small ubiquitin-binding domains (UBDs) recognize small surface patches on ubiquitin with weak affinity, and it remains a conundrum how specific cellular responses may be achieved. Npl4-type zinc-finger (NZF) domains are ∼30 amino acid, compact UBDs that can provide two ubiquitin-binding interfaces, imposing linkage specificity to explain signaling outcomes. We here comprehensively characterize the linkage preference of human NZF domains. TAB2 prefers Lys6 and Lys63 linkages phosphorylated on Ser65, explaining why TAB2 recognizes depolarized mitochondria. Surprisingly, most NZF domains do not display chain linkage preference, despite conserved, secondary interaction surfaces. This suggests that some NZF domains may specifically bind ubiquitinated substrates by simultaneously recognizing substrate and an attached ubiquitin. We show biochemically and structurally that the NZF1 domain of the E3 ligase HOIPbinds preferentially to site-specifically ubiquitinated forms of NEMO and optineurin. Thus, despite their small size, UBDs may impose signaling specificity via multivalent interactions with ubiquitinated substrates.
Collapse
Affiliation(s)
- Martin A Michel
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH Cambridge, UK
| | - Simon Scutts
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department for Medical Biology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - David Komander
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH Cambridge, UK; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department for Medical Biology, University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
26
|
Sharninghausen R, Hwang J, Dennison DD, Baldridge RD. Identification of ERAD-dependent degrons for the endoplasmic reticulum lumen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.21.546000. [PMID: 39149235 PMCID: PMC11326120 DOI: 10.1101/2023.06.21.546000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Degrons are minimal protein features that are sufficient to target proteins for degradation. In most cases, degrons allow recognition by components of the cytosolic ubiquitin proteasome system. Currently, all of the identified degrons only function within the cytosol. Using Saccharomyces cerevisiae, we identified the first short linear sequences that function as degrons from the endoplasmic reticulum (ER) lumen. We show that when these degrons are transferred to proteins, they facilitate proteasomal degradation through the ERAD system. These degrons enable degradation of both luminal and integral membrane ER proteins, expanding the types of proteins that can be targeted for degradation in budding yeast and mammalian tissue culture. This discovery provides a framework to target proteins for degradation from the previously unreachable ER lumen and builds toward therapeutic approaches that exploit the highly-conserved ERAD system.
Collapse
Affiliation(s)
- Rachel Sharninghausen
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jiwon Hwang
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Devon D. Dennison
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Ryan D. Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Shimshon A, Dahan K, Israel-Gueta M, Olmayev-Yaakobov D, Timms RT, Bekturova A, Makaros Y, Elledge SJ, Koren I. Dipeptidyl peptidases and E3 ligases of N-degron pathways cooperate to regulate protein stability. J Cell Biol 2024; 223:e202311035. [PMID: 38874443 PMCID: PMC11178506 DOI: 10.1083/jcb.202311035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
N-degrons are short sequences located at protein N-terminus that mediate the interaction of E3 ligases (E3s) with substrates to promote their proteolysis. It is well established that N-degrons can be exposed following protease cleavage to allow recognition by E3s. However, our knowledge regarding how proteases and E3s cooperate in protein quality control mechanisms remains minimal. Using a systematic approach to monitor the protein stability of an N-terminome library, we found that proline residue at the third N-terminal position (hereafter "P+3") promotes instability. Genetic perturbations identified the dipeptidyl peptidases DPP8 and DPP9 and the primary E3s of N-degron pathways, UBR proteins, as regulators of P+3 bearing substrate turnover. Interestingly, P+3 UBR substrates are significantly enriched for secretory proteins. We found that secretory proteins relying on a signal peptide (SP) for their targeting contain a "built-in" N-degron within their SP. This degron becomes exposed by DPP8/9 upon translocation failure to the designated compartments, thus enabling clearance of mislocalized proteins by UBRs to maintain proteostasis.
Collapse
Affiliation(s)
- Adi Shimshon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Karin Dahan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mor Israel-Gueta
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Diana Olmayev-Yaakobov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Richard T. Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Aizat Bekturova
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yaara Makaros
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Stephen J. Elledge
- Department of Genetics, Harvard Medical School, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
28
|
van der Laan L, ten Voorde N, Mannens MMAM, Henneman P. Molecular signatures in Mendelian neurodevelopment: a focus on ubiquitination driven DNA methylation aberrations. Front Mol Neurosci 2024; 17:1446686. [PMID: 39135741 PMCID: PMC11317395 DOI: 10.3389/fnmol.2024.1446686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Mendelian disorders, arising from pathogenic variations within single genetic loci, often manifest as neurodevelopmental disorders (NDDs), affecting a significant portion of the pediatric population worldwide. These disorders are marked by atypical brain development, intellectual disabilities, and various associated phenotypic traits. Genetic testing aids in clinical diagnoses, but inconclusive results can prolong confirmation processes. Recent focus on epigenetic dysregulation has led to the discovery of DNA methylation signatures, or episignatures, associated with NDDs, accelerating diagnostic precision. Notably, TRIP12 and USP7, genes involved in the ubiquitination pathway, exhibit specific episignatures. Understanding the roles of these genes within the ubiquitination pathway sheds light on their potential influence on episignature formation. While TRIP12 acts as an E3 ligase, USP7 functions as a deubiquitinase, presenting contrasting roles within ubiquitination. Comparison of phenotypic traits in patients with pathogenic variations in these genes reveals both distinctions and commonalities, offering insights into underlying pathophysiological mechanisms. This review contextualizes the roles of TRIP12 and USP7 within the ubiquitination pathway, their influence on episignature formation, and the potential implications for NDD pathogenesis. Understanding these intricate relationships may unveil novel therapeutic targets and diagnostic strategies for NDDs.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nicky ten Voorde
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | - Marcel M. A. M. Mannens
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Peter Henneman
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Rossio V, Paulo JA, Liu X, Gygi SP, King RW. Specificity profiling of deubiquitylases against endogenously generated ubiquitin-protein conjugates. Cell Chem Biol 2024; 31:1349-1362.e5. [PMID: 38810651 PMCID: PMC11260241 DOI: 10.1016/j.chembiol.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
Deubiquitylating enzymes (DUBs) remove ubiquitin from proteins thereby regulating their stability or activity. Our understanding of DUB-substrate specificity is limited because DUBs are typically not compared to each other against many physiological substrates. By broadly inhibiting DUBs in Xenopus egg extract, we generated hundreds of ubiquitylated proteins and compared the ability of 30 DUBs to deubiquitylate them using quantitative proteomics. We identified five high-impact DUBs (USP7, USP9X, USP36, USP15, and USP24) that each reduced ubiquitylation of over 10% of the isolated proteins. Candidate substrates of high-impact DUBs showed substantial overlap and were enriched for disordered regions, suggesting this feature may promote substrate recognition. Other DUBs showed lower impact and non-overlapping specificity, targeting distinct non-disordered proteins including complexes such as the ribosome or the proteasome. Altogether our study identifies candidate DUB substrates and defines patterns of functional redundancy and specificity, revealing substrate characteristics that may influence DUB-substrate recognition.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Xinyue Liu
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Randall W King
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Loy CA, Trader DJ. Primed for Interactions: Investigating the Primed Substrate Channel of the Proteasome for Improved Molecular Engagement. Molecules 2024; 29:3356. [PMID: 39064934 PMCID: PMC11279888 DOI: 10.3390/molecules29143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Protein homeostasis is a tightly conserved process that is regulated through the ubiquitin proteasome system (UPS) in a ubiquitin-independent or ubiquitin-dependent manner. Over the past two decades, the proteasome has become an excellent therapeutic target through inhibition of the catalytic core particle, inhibition of subunits responsible for recognizing and binding ubiquitinated proteins, and more recently, through targeted protein degradation using proteolysis targeting chimeras (PROTACs). The majority of the developed inhibitors of the proteasome's core particle rely on gaining selectivity through binding interactions within the unprimed substrate channel. Although this has allowed for selective inhibitors and chemical probes to be generated for the different proteasome isoforms, much remains unknown about the interactions that could be harnessed within the primed substrate channel to increase potency or selectivity. Herein, we discuss small molecules that interact with the primed substrate pocket and how their differences may give rise to altered activity. Taking advantage of additional interactions with the primed substrate pocket of the proteasome could allow for the generation of improved chemical tools for perturbing or monitoring proteasome activity.
Collapse
Affiliation(s)
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA;
| |
Collapse
|
31
|
Garadi Suresh H, Bonneil E, Albert B, Dominique C, Costanzo M, Pons C, Masinas MPD, Shuteriqi E, Shore D, Henras AK, Thibault P, Boone C, Andrews BJ. K29-linked free polyubiquitin chains affect ribosome biogenesis and direct ribosomal proteins to the intranuclear quality control compartment. Mol Cell 2024; 84:2337-2352.e9. [PMID: 38870935 PMCID: PMC11193623 DOI: 10.1016/j.molcel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/25/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs) Ubp2 and Ubp14, and E3 ligases Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the intranuclear quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with ribosomopathies.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Benjamin Albert
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland; Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Myra Paz David Masinas
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ermira Shuteriqi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Brenda J Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
32
|
Yu M, Li J, Gao W, Li Z, Zhang W. Multiple E3 ligases act as antiviral factors against SARS-CoV-2 via inducing the ubiquitination and degradation of ORF9b. J Virol 2024; 98:e0162423. [PMID: 38709105 PMCID: PMC11237466 DOI: 10.1128/jvi.01624-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/07/2024] [Indexed: 05/07/2024] Open
Abstract
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) open reading frame 9b (ORF9b) antagonizes the antiviral type I and III interferon (IFN) responses and is ubiquitinated and degraded via the ubiquitin-proteasome pathway. However, E3 ubiquitin ligases that mediate the polyubiquitination and degradation of ORF9b remain unknown. In this study, we identified 14 E3 ligases that specifically bind to SARS-CoV-2 ORF9b. Specifically, three E3 ligases, HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 (HUWE1), ubiquitin protein ligase E3 component n-recognin 4 (UBR4), and UBR5, induced K48-linked polyubiquitination and degradation of ORF9b, thereby attenuating ORF9b-mediated inhibition of the IFN response and SARS-CoV-2 replication. Moreover, each E3 ligase performed this function independent of the other two E3 ligases. Therefore, the three E3 ligases identified in this study as anti-SARS-CoV-2 host factors provide novel molecular insight into the virus-host interaction.IMPORTANCEUbiquitination is an important post-translational modification that regulates multiple biological processes, including viral replication. Identification of E3 ubiquitin ligases that target viral proteins for degradation can provide novel targets for antagonizing viral infections. Here, we identified multiple E3 ligases, including HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 (HUWE1), ubiquitin protein ligase E3 component n-recognin 4 (UBR4), and UBR5, that ubiquitinated and induced the degradation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) open reading frame 9b (ORF9b), an interferon (IFN) antagonist, thereby enhancing IFN production and attenuating SARS-CoV-2 replication. Our study provides new possibilities for drug development targeting the interaction between E3 ligases and ORF9b.
Collapse
Affiliation(s)
- Miao Yu
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Geriatrics and Special medical treatment, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jie Li
- Department of Geriatrics and Special medical treatment, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenying Gao
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaolong Li
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyan Zhang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
33
|
Ling X, Xu W, Tang J, Cao Q, Luo G, Chen X, Yang S, Reinach PS, Yan D. The Role of Ubiquitination and the E3 Ligase Nedd4 in Regulating Corneal Epithelial Wound Healing. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 38888282 PMCID: PMC11186577 DOI: 10.1167/iovs.65.6.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
Purpose Ubiquitination serves as a fundamental post-translational modification in numerous cellular events. Yet, its role in regulating corneal epithelial wound healing (CEWH) remains elusive. This study endeavored to determine the function and mechanism of ubiquitination in CEWH. Methods Western blot and immunoprecipitation were used to discern ubiquitination alterations during CEWH in mice. Interventions, including neuronally expressed developmentally downregulated 4 (Nedd4) siRNA and proteasome/lysosome inhibitor, assessed their impact on CEWH. In vitro analyses, such as the scratch wound assay, MTS assay, and EdU staining, were conducted to gauge cell migration and proliferation in human corneal epithelial cells (HCECs). Moreover, transfection of miR-30/200 coupled with a luciferase activity assay ascertained their regulatory mechanism on Nedd4. Results Global ubiquitination levels were markedly increased during the mouse CEWH. Importantly, the application of either proteasomal or lysosomal inhibitors notably impeded the healing process both in vivo and in vitro. Furthermore, Nedd4 was identified as an essential E3 ligase for CEWH. Nedd4 expression was significantly upregulated during CEWH. In vivo studies revealed that downregulation of Nedd4 substantially delayed CEWH, whereas further investigations underscored its role in regulating cell proliferation and migration, through the Stat3 pathway by targeting phosphatase and tensin homolog (PTEN). Notably, our findings pinpointed miR-30/200 family members as direct regulators of Nedd4. Conclusions Ubiquitination holds pivotal significance in orchestrating CEWH. The critical E3 ligase Nedd4, under the regulatory purview of miR-30 and miR-200, facilitates CEWH through PTEN-mediated Stat3 signaling. This revelation sheds light on a prospective therapeutic target within the realm of CEWH.
Collapse
Affiliation(s)
- Xuemei Ling
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weiwei Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Tang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiongjie Cao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guangying Luo
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shuai Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peter Sol Reinach
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Yan
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Lu L, Jifu C, Xia J, Wang J. E3 ligases and DUBs target ferroptosis: A potential therapeutic strategy for neurodegenerative diseases. Biomed Pharmacother 2024; 175:116753. [PMID: 38761423 DOI: 10.1016/j.biopha.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Ferroptosis is a form of cell death mediated by iron and lipid peroxidation (LPO). Recent studies have provided compelling evidence to support the involvement of ferroptosis in the pathogenesis of various neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD). Therefore, understanding the mechanisms that regulate ferroptosis in NDDs may improve disease management. Ferroptosis is regulated by multiple mechanisms, and different degradation pathways, including autophagy and the ubiquitinproteasome system (UPS), orchestrate the complex ferroptosis response by directly or indirectly regulating iron accumulation or lipid peroxidation. Ubiquitination plays a crucial role as a protein posttranslational modification in driving ferroptosis. Notably, E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) are key enzymes in the ubiquitin system, and their dysregulation is closely linked to the progression of NDDs. A growing body of evidence highlights the role of ubiquitin system enzymes in regulating ferroptosis sensitivity. However, reports on the interaction between ferroptosis and ubiquitin signaling in NDDs are scarce. In this review, we first provide a brief overview of the biological processes and roles of the UPS, summarize the core molecular mechanisms and potential biological functions of ferroptosis, and explore the pathophysiological relevance and therapeutic implications of ferroptosis in NDDs. In addition, reviewing the roles of E3s and DUBs in regulating ferroptosis in NDDs aims to provide new insights and strategies for the treatment of NDDs. These include E3- and DUB-targeted drugs and ferroptosis inhibitors, which can be used to prevent and ameliorate the progression of NDDs.
Collapse
Affiliation(s)
- Linxia Lu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Cili Jifu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jun Xia
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jingtao Wang
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China.
| |
Collapse
|
35
|
Prus G, Satpathy S, Weinert BT, Narita T, Choudhary C. Global, site-resolved analysis of ubiquitylation occupancy and turnover rate reveals systems properties. Cell 2024; 187:2875-2892.e21. [PMID: 38626770 PMCID: PMC11136510 DOI: 10.1016/j.cell.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/19/2023] [Accepted: 03/19/2024] [Indexed: 04/18/2024]
Abstract
Ubiquitylation regulates most proteins and biological processes in a eukaryotic cell. However, the site-specific occupancy (stoichiometry) and turnover rate of ubiquitylation have not been quantified. Here we present an integrated picture of the global ubiquitylation site occupancy and half-life. Ubiquitylation site occupancy spans over four orders of magnitude, but the median ubiquitylation site occupancy is three orders of magnitude lower than that of phosphorylation. The occupancy, turnover rate, and regulation of sites by proteasome inhibitors are strongly interrelated, and these attributes distinguish sites involved in proteasomal degradation and cellular signaling. Sites in structured protein regions exhibit longer half-lives and stronger upregulation by proteasome inhibitors than sites in unstructured regions. Importantly, we discovered a surveillance mechanism that rapidly and site-indiscriminately deubiquitylates all ubiquitin-specific E1 and E2 enzymes, protecting them against accumulation of bystander ubiquitylation. The work provides a systems-scale, quantitative view of ubiquitylation properties and reveals general principles of ubiquitylation-dependent governance.
Collapse
Affiliation(s)
- Gabriela Prus
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Shankha Satpathy
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Brian T Weinert
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Takeo Narita
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
36
|
Wang Y, Wei T, Zhao M, Huang A, Sun F, Chen L, Lin R, Xie Y, Zhang M, Xu S, Sun Z, Hong L, Wang R, Tian R, Li G. Alkenyl oxindole is a novel PROTAC moiety that recruits the CRL4DCAF11 E3 ubiquitin ligase complex for targeted protein degradation. PLoS Biol 2024; 22:e3002550. [PMID: 38768083 PMCID: PMC11104598 DOI: 10.1371/journal.pbio.3002550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Alkenyl oxindoles have been characterized as autophagosome-tethering compounds (ATTECs), which can target mutant huntingtin protein (mHTT) for lysosomal degradation. In order to expand the application of alkenyl oxindoles for targeted protein degradation, we designed and synthesized a series of heterobifunctional compounds by conjugating different alkenyl oxindoles with bromodomain-containing protein 4 (BRD4) inhibitor JQ1. Through structure-activity relationship study, we successfully developed JQ1-alkenyl oxindole conjugates that potently degrade BRD4. Unexpectedly, we found that these molecules degrade BRD4 through the ubiquitin-proteasome system, rather than the autophagy-lysosomal pathway. Using pooled CRISPR interference (CRISPRi) screening, we revealed that JQ1-alkenyl oxindole conjugates recruit the E3 ubiquitin ligase complex CRL4DCAF11 for substrate degradation. Furthermore, we validated the most potent heterobifunctional molecule HL435 as a promising drug-like lead compound to exert antitumor activity both in vitro and in a mouse xenograft tumor model. Our research provides new employable proteolysis targeting chimera (PROTAC) moieties for targeted protein degradation, providing new possibilities for drug discovery.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Tianzi Wei
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Man Zhao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Aima Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fan Sun
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lu Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Risheng Lin
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yubao Xie
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Ming Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Shiyu Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Sun
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruilin Tian
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guofeng Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
37
|
Kinger S, Jagtap YA, Kumar P, Choudhary A, Prasad A, Prajapati VK, Kumar A, Mehta G, Mishra A. Proteostasis in neurodegenerative diseases. Adv Clin Chem 2024; 121:270-333. [PMID: 38797543 DOI: 10.1016/bs.acc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, India
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India.
| |
Collapse
|
38
|
Zhang X, Wei Y, Wu F, Li M, Han C, Huo C, Li Z, Tang F, He W, Zhao Y, Li Y. UBE2L3 expression in human gastric cancer and its clinical significance. J Cancer Res Clin Oncol 2024; 150:210. [PMID: 38656363 PMCID: PMC11043109 DOI: 10.1007/s00432-024-05669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Gastric cancer (GC) is prevalent as one of the most common malignant tumors globally, with a particularly high incidence in China. The role of UBE2L3 in the initiation and progression of various cancers has been well documented, but its specific significance in GC is not yet fully elucidated. The objective of this study is to examine the expression and importance of UBE2L3 in human gastric cancer tissues. METHODS Immunohistochemical staining and survival analysis were conducted on 125 cases of GC. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to assess the expression of UBE2L3 in GC cell lines. Cell lines with UBE2L3 knockdown and overexpression were cultured through lentivirus transfection and subsequently assessed using Western blot analysis. The involvement of UBE2L3 in the proliferation, invasion, and apoptosis of GC cells was confirmed through in vitro experiments, and its capacity to facilitate tumor growth was also validated in in vivo studies. RESULTS The up-regulation of UBE2L3 expression was observed in GC, and its high expression was found to be significantly associated with the degree of differentiation (χ2 = 6.153, P = 0.0131), TNM stage (χ2 = 6.216, P = 0.0447), and poor overall survival. In vitro, UBE2L3 has been shown to enhance functions in GC cell lines, such as promoting proliferation and invasion, and inhibiting apoptosis. In vivo experiments have validated the role of UBE2L3 in promoting tumor growth. CONCLUSIONS The findings of our study demonstrate the significant involvement of UBE2L3 in the pathogenesis and advancement of gastric cancer, suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Yujie Wei
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
| | - Fanqi Wu
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Department of Pneumology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Mei Li
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Cong Han
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Chengdong Huo
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Zhi Li
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Futian Tang
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
| | - Wenting He
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
| | - Yang Zhao
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China.
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China.
| | - Yumin Li
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China.
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China.
| |
Collapse
|
39
|
Huang XD, Du L, Cheng XC, Lu YX, Liu QW, Wang YW, Liao YJ, Lin DD, Xiao FJ. OTUB1/NDUFS2 axis promotes pancreatic tumorigenesis through protecting against mitochondrial cell death. Cell Death Discov 2024; 10:190. [PMID: 38653740 DOI: 10.1038/s41420-024-01948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Pancreatic cancer is one of the most fatal cancers in the world. A growing number of studies have begun to demonstrate that mitochondria play a key role in tumorigenesis. Our previous study reveals that NDUFS2 (NADH: ubiquinone oxidoreductase core subunit S2), a core subunit of the mitochondrial respiratory chain complex I, is upregulated in Pancreatic adenocarcinoma (PAAD). However, its role in the development of PAAD remains unknown. Here, we showed that NDUFS2 played a critical role in the survival, proliferation and migration of pancreatic cancer cells by inhibiting mitochondrial cell death. Additionally, protein mass spectrometry indicated that the NDUFS2 was interacted with a deubiquitinase, OTUB1. Overexpression of OTUB1 increased NDUFS2 expression at the protein level, while knockdown of OTUB1 restored the effects in vitro. Accordingly, overexpression and knockdown of OTUB1 phenocopied those of NDUFS2 in pancreatic cancer cells, respectively. Mechanically, NDUFS2 was deubiquitinated by OTUB1 via K48-linked polyubiquitin chains, resulted in an elevated protein stability of NDUFS2. Moreover, the growth of OTUB1-overexpressed pancreatic cancer xenograft tumor was promoted in vivo, while the OTUB1-silenced pancreatic cancer xenograft tumor was inhibited in vivo. In conclusion, we revealed that OTUB1 increased the stability of NDUFS2 in PAAD by deubiquitylation and this axis plays a pivotal role in pancreatic cancer tumorigenesis and development.
Collapse
Affiliation(s)
- Xiao-Dong Huang
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, PR China
| | - Li Du
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xiao-Chen Cheng
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Yu-Xin Lu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Qiao-Wei Liu
- Department of Oncology, Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Yi-Wu Wang
- Department of Disease Control and Prevention, Chinese PLA The 96601 Military Hospital, Huangshan, 242700, Anhui, PR China
| | - Ya-Jin Liao
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 42100, Hunan, PR China.
| | - Dong-Dong Lin
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, PR China.
| | - Feng-Jun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| |
Collapse
|
40
|
Kasturirangan S, Nancarrow DJ, Shah A, Lagisetty KH, Lawrence TS, Beer DG, Ray D. Isoform alterations in the ubiquitination machinery impacting gastrointestinal malignancies. Cell Death Dis 2024; 15:194. [PMID: 38453895 PMCID: PMC10920915 DOI: 10.1038/s41419-024-06575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
The advancement of RNAseq and isoform-specific expression platforms has led to the understanding that isoform changes can alter molecular signaling to promote tumorigenesis. An active area in cancer research is uncovering the roles of ubiquitination on spliceosome assembly contributing to transcript diversity and expression of alternative isoforms. However, the effects of isoform changes on functionality of ubiquitination machineries (E1, E2, E3, E4, and deubiquitinating (DUB) enzymes) influencing onco- and tumor suppressor protein stabilities is currently understudied. Characterizing these changes could be instrumental in improving cancer outcomes via the identification of novel biomarkers and targetable signaling pathways. In this review, we focus on highlighting reported examples of direct, protein-coded isoform variation of ubiquitination enzymes influencing cancer development and progression in gastrointestinal (GI) malignancies. We have used a semi-automated system for identifying relevant literature and applied established systems for isoform categorization and functional classification to help structure literature findings. The results are a comprehensive snapshot of known isoform changes that are significant to GI cancers, and a framework for readers to use to address isoform variation in their own research. One of the key findings is the potential influence that isoforms of the ubiquitination machinery have on oncoprotein stability.
Collapse
Affiliation(s)
| | - Derek J Nancarrow
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ayush Shah
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kiran H Lagisetty
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David G Beer
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipankar Ray
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
41
|
Awadasseid A, Wang R, Sun S, Zhang F, Wu Y, Zhang W. Small molecule and PROTAC molecule experiments in vitro and in vivo, focusing on mouse PD-L1 and human PD-L1 differences as targets. Biomed Pharmacother 2024; 172:116257. [PMID: 38350367 DOI: 10.1016/j.biopha.2024.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
In recent years, several monoclonal antibodies (mAbs) targeting PD-L1 have been licensed by the FDA for use in the treatment of cancer, demonstrating the effectiveness of blocking immune checkpoints, particularly the PD-1/PD-L1 pathway. Although mAb-based therapies have made great strides, they still have their limitations, and new small-molecule or PROTAC-molecule inhibitors that can block the PD-1/PD-L1 axis are desperately needed. Therefore, it is crucial to translate initial in vitro discoveries into appropriate in vivo animal models when creating PD-L1-blocking therapies. Due to their widespread availability and low experimental expenses, classical immunocompetent mice are appealing for research purposes. However, it is yet unclear whether the mouse (m) PD-L1 interaction with human (h) PD-1 in vivo would produce a functional immunological checkpoint. In this review, we summarize the in vitro and in vivo experimental studies of small molecules and PROTAC molecules, particularly the distinctions between mPD-L1 as a target and hPD-L1 as a target.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Moganshan Institute ZJUT, Deqing 313202, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China; Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid 51111, Sudan
| | - Rui Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shishi Sun
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
42
|
Lee YB, Rhee HW. Spray-type modifications: an emerging paradigm in post-translational modifications. Trends Biochem Sci 2024; 49:208-223. [PMID: 38443288 DOI: 10.1016/j.tibs.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
A post-translational modification (PTM) occurs when a nucleophilic residue (e.g., lysine of a target protein) attacks electrophilic substrate molecules (e.g., acyl-AMP), involving writer enzymes or even occurring spontaneously. Traditionally, this phenomenon was thought to be sequence specific; however, recent research suggests that PTMs can also occur in a non-sequence-specific manner confined to a specific location in a cell. In this Opinion, we compile the accumulated evidence of spray-type PTMs and propose a mechanism for this phenomenon based on the exposure level of reactive electrophilic substrate molecules at the active site of the PTM writers. Overall, a spray-type PTM conceptual framework is useful for comprehending the promiscuous PTM writer events that cannot be adequately explained by the traditional concept of sequence-dependent PTM events.
Collapse
Affiliation(s)
- Yun-Bin Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
43
|
Vogel K, Isono E. Deubiquitylating enzymes in Arabidopsis thaliana endocytic protein degradation. Biochem Soc Trans 2024; 52:291-299. [PMID: 38174770 DOI: 10.1042/bst20230561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
The regulation of ubiquitylation is key for plant growth and development, in which the activities of ubiquitylating enzymes as well as deubiquitylating enzymes (DUBs) determine the stability or function of the modified proteins. In contrast with ubiquitylating enzymes, there are less numbers of DUBs. DUBs can be classified into seven protein families according to the amino acid sequence of their catalytic domains. The catalytic domains of animal and plant DUB families show high homology, whereas the regions outside of the catalytic site can vary a lot. By hydrolyzing the ubiquitin molecules from ubiquitylated proteins, DUBs control ubiquitin-dependent selective protein degradation pathways such as the proteasomal-, autophagic-, and endocytic degradation pathways. In the endocytic degradation pathway, DUBs can modulate the endocytic trafficking and thus the stability of plasma membrane proteins including receptors and transporters. To date, three DUB families were shown to control the endocytic degradation pathway namely associated molecule with the SH3 domain of STAM (AMSH) 3, ubiquitin-specific protease (UBP) 12 and UBP13, and ovarian tumor protease (OTU) 11 and OTU12. In this review we will summarize the activity, molecular functions, and target protein of these DUBs and how they contribute to the environmental response of plants.
Collapse
Affiliation(s)
- Karin Vogel
- Department of Biology, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| | - Erika Isono
- Department of Biology, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| |
Collapse
|
44
|
van Overbeek NK, Aguirre T, van der Heden van Noort GJ, Blagoev B, Vertegaal ACO. Deciphering non-canonical ubiquitin signaling: biology and methodology. Front Mol Biosci 2024; 10:1332872. [PMID: 38414868 PMCID: PMC10897730 DOI: 10.3389/fmolb.2023.1332872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 02/29/2024] Open
Abstract
Ubiquitination is a dynamic post-translational modification that regulates virtually all cellular processes by modulating function, localization, interactions and turnover of thousands of substrates. Canonical ubiquitination involves the enzymatic cascade of E1, E2 and E3 enzymes that conjugate ubiquitin to lysine residues giving rise to monomeric ubiquitination and polymeric ubiquitination. Emerging research has established expansion of the ubiquitin code by non-canonical ubiquitination of N-termini and cysteine, serine and threonine residues. Generic methods for identifying ubiquitin substrates using mass spectrometry based proteomics often overlook non-canonical ubiquitinated substrates, suggesting that numerous undiscovered substrates of this modification exist. Moreover, there is a knowledge gap between in vitro studies and comprehensive understanding of the functional consequence of non-canonical ubiquitination in vivo. Here, we discuss the current knowledge about non-lysine ubiquitination, strategies to map the ubiquitinome and their applicability for studying non-canonical ubiquitination substrates and sites. Furthermore, we elucidate the available chemical biology toolbox and elaborate on missing links required to further unravel this less explored subsection of the ubiquitin system.
Collapse
Affiliation(s)
- Nila K. van Overbeek
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Tim Aguirre
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
45
|
Luo VM, Shen C, Worme S, Bhagrath A, Simo-Cheyou E, Findlay S, Hébert S, Wai Lam Poon W, Aryanpour Z, Zhang T, Zahedi RP, Boulais J, Buchwald ZS, Borchers CH, Côté JF, Kleinman CL, Mandl JN, Orthwein A. The Deubiquitylase Otub1 Regulates the Chemotactic Response of Splenic B Cells by Modulating the Stability of the γ-Subunit Gng2. Mol Cell Biol 2024; 44:1-16. [PMID: 38270191 PMCID: PMC10829841 DOI: 10.1080/10985549.2023.2290434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
The ubiquitin proteasome system performs the covalent attachment of lysine 48-linked polyubiquitin chains to substrate proteins, thereby targeting them for degradation, while deubiquitylating enzymes (DUBs) reverse this process. This posttranslational modification regulates key features both of innate and adaptative immunity, including antigen presentation, protein homeostasis and signal transduction. Here we show that loss of one of the most highly expressed DUBs, Otub1, results in changes in murine splenic B cell subsets, leading to a significant increase in marginal zone and transitional B cells and a concomitant decrease in follicular B cells. We demonstrate that Otub1 interacts with the γ-subunit of the heterotrimeric G protein, Gng2, and modulates its ubiquitylation status, thereby controlling Gng2 stability. Proximal mapping of Gng2 revealed an enrichment in partners associated with chemokine signaling, actin cytoskeleton and cell migration. In line with these findings, we show that Otub1-deficient B cells exhibit greater Ca2+ mobilization, F-actin polymerization and chemotactic responsiveness to Cxcl12, Cxcl13 and S1P in vitro, which manifests in vivo as altered localization of B cells within the spleen. Together, our data establishes Otub1 as a novel regulator of G-protein coupled receptor signaling in B cells, regulating their differentiation and positioning in the spleen.
Collapse
Affiliation(s)
- Vincent M. Luo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Connie Shen
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- McGill Research Centre for Complex Traits, McGill University, Montréal, Québec, Canada
| | - Samantha Worme
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Aanya Bhagrath
- McGill Research Centre for Complex Traits, McGill University, Montréal, Québec, Canada
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Estelle Simo-Cheyou
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Steven Findlay
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Steven Hébert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - William Wai Lam Poon
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Zahra Aryanpour
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Thomas Zhang
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - René P. Zahedi
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | - Jonathan Boulais
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Québec, Canada
| | - Zachary S. Buchwald
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Pathology, McGill University, Montreal, Québec, Canada
| | - Jean-Francois Côté
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, Québec, Canada
- Département de Médecine (Programmes de Biologie Moléculaire), Université de Montréal, Montreal, Québec, Canada
| | - Claudia L. Kleinman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Judith N. Mandl
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- McGill Research Centre for Complex Traits, McGill University, Montréal, Québec, Canada
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Alexandre Orthwein
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| |
Collapse
|
46
|
Rossio V, Paulo JA, Liu X, Gygi SP, King RW. Substrate identification and specificity profiling of deubiquitylases against endogenously-generated ubiquitin-protein conjugates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572581. [PMID: 38187689 PMCID: PMC10769257 DOI: 10.1101/2023.12.20.572581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Deubiquitylating enzymes (DUBs) remove ubiquitin from proteins thereby regulating their stability or activity. Our understanding of DUB-substrate specificity is limited because DUBs are typically not compared to each other against many physiological substrates. By broadly inhibiting DUBs in Xenopus egg extract, we generated hundreds of ubiquitylated proteins and compared the ability of 30 DUBs to deubiquitylate them using quantitative proteomics. We identified five high impact DUBs (USP7, USP9X, USP36, USP15 and USP24) that each reduced ubiquitylation of over ten percent of the isolated proteins. Candidate substrates of high impact DUBs showed substantial overlap and were enriched for disordered regions, suggesting this feature may promote substrate recognition. Other DUBs showed lower impact and non-overlapping specificity, targeting distinct non-disordered proteins including complexes such as the ribosome or the proteasome. Altogether our study identifies candidate DUB substrates and defines patterns of functional redundancy and specificity, revealing substrate characteristics that may influence DUB-substrate recognition.
Collapse
|
47
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
48
|
Ouyang M, Feng Y, Chen H, Liu Y, Tan C, Tan Y. Recent Advances in Optically Controlled PROTAC. Bioengineering (Basel) 2023; 10:1368. [PMID: 38135959 PMCID: PMC10740939 DOI: 10.3390/bioengineering10121368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Proteolysis-targeting chimera (PROTAC) technology is a groundbreaking therapeutic approach with significant clinical potential for degrading disease-inducing proteins within targeted cells. However, challenges related to insufficient target selectivity raise concerns about PROTAC toxicity toward normal cells. To address this issue, researchers are modifying PROTACs using various approaches to enhance their target specificity. This review highlights innovative optically controlled PROTACs as anti-cancer therapies currently used in clinical practice and explores the challenges associated with their efficacy and safety. The development of optically controlled PROTACs holds the potential to significantly expand the clinical applicability of PROTAC-based technology within the realm of drug discovery.
Collapse
Affiliation(s)
- Muzi Ouyang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ying Feng
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yanping Liu
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
| | - Chunyan Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
49
|
Bednarczyk M, Muc-Wierzgoń M, Dzięgielewska-Gęsiak S, Waniczek D. Relationship between the Ubiquitin-Proteasome System and Autophagy in Colorectal Cancer Tissue. Biomedicines 2023; 11:3011. [PMID: 38002011 PMCID: PMC10669458 DOI: 10.3390/biomedicines11113011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Dysregulation of the autophagy process via ubiquitin is associated with the occurrence of a number of diseases, including cancer. The present study analyzed the changes in the transcriptional activity of autophagy-related genes and the ubiquitination process (UPS) in colorectal cancer tissue. (2) Methods: The process of measuring the transcriptional activity of autophagy-related genes was analyzed by comparing colorectal cancer samples from four clinical stages I-IV (CS I-IV) of adenocarcinoma to the control (C). The transcriptional activity of genes associated with the UPS pathway was determined via the microarray technique (HG-U133A, Affymetrix). (3) Results: Of the selected genes, only PTEN-induced kinase 1 (PINK1) indicated statistical significance for all groups of colon cancer tissue transcriptome compared to the control. The transcriptional activity of the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene increased in all stages of the cancer, but the p-value was only less than 0.05 in CSIV vs. C. Forkhead box O1 (FOXO 1) and ubiquitin B (UBB) are statistically overexpressed in CSI. (4) Conclusions: The pathological expression changes in the studied proteins observed especially in the early stages of colorectal cancer suggest that the dysregulation of ubiquitination and autophagy processes occur during early neoplastic transformation. Stopping or slowing down the processes of removal of damaged proteins and their accumulation may contribute to tumor progression and poor prognosis.
Collapse
Affiliation(s)
- Martyna Bednarczyk
- Department of Hematology and Cancer Prevention, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Małgorzata Muc-Wierzgoń
- Department of Preventive Medicine, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | | | - Dariusz Waniczek
- Department of Surgical Nursing and Propaedeutics of Surgery, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| |
Collapse
|
50
|
Schwefel D. Cullin(g) glutamate dehydrogenase: Insights into multivalent CRL3 KLHL22 substrate recognition. Structure 2023; 31:1294-1296. [PMID: 37922866 DOI: 10.1016/j.str.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Substrate specificity is central to the regulation of cellular ubiquitylation. In this issue of Structure, Teng et al. employ biochemistry and cryo-EM single-particle reconstruction to clarify the intricate interaction of the dimeric CRL3KLHL22 E3 ligase assembly with a hexameric substrate and its possible implications for metabolic adaptation and oncogenesis.
Collapse
Affiliation(s)
- David Schwefel
- Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany.
| |
Collapse
|