1
|
Jühlen R, Wiesmann SC, Scheufen A, Stausberg T, Braun I, Strobel C, Llera-Brandt C, Rappold S, Suluyayla R, Tatarek-Nossol M, Lennartz B, Lue H, Schneider MWG, Perez-Correa JF, Moreno-Andrés D, Antonin W. The DEAD-box helicase eIF4A1/2 acts as RNA chaperone during mitotic exit enabling chromatin decondensation. Nat Commun 2025; 16:2434. [PMID: 40069174 PMCID: PMC11897408 DOI: 10.1038/s41467-025-57592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/26/2025] [Indexed: 03/15/2025] Open
Abstract
During mitosis, chromosomes condense and decondense to segregate faithfully and undamaged. The exact molecular mechanisms are not well understood. We identify the DEAD-box helicase eIF4A1/2 as a critical factor in this process. In a cell-free condensation assay eIF4A1/2 is crucial for this process, relying on its RNA-binding ability but not its ATPase activity. Reducing eIF4A1/2 levels in cells consistently slows down chromatin decondensation during nuclear reformation. Conversely, increasing eIF4A1/2 concentration on mitotic chromosomes accelerates their decondensation. The absence of eIF4A1/2 affects the perichromatin layer, which surrounds the chromosomes during mitosis and consists of RNA and mainly nucleolar proteins. In vitro, eIF4A1/2 acts as an RNA chaperone, dissociating biomolecular condensates of RNA and perichromatin proteins. During mitosis, the chaperone activity of eIF4A1/2 is required to regulate the composition and fluidity of the perichromatin layer, which is crucial for the dynamic reorganization of chromatin as cells exit mitosis.
Collapse
Affiliation(s)
- Ramona Jühlen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Sabine C Wiesmann
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Anja Scheufen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Thilo Stausberg
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Isabel Braun
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Chantal Strobel
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Carmen Llera-Brandt
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Sabrina Rappold
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Rabia Suluyayla
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Marianna Tatarek-Nossol
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Birgitt Lennartz
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Hongqi Lue
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Maximilian W G Schneider
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Juan-Felipe Perez-Correa
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Daniel Moreno-Andrés
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
2
|
Iuchi S, Paulo JA. The role of MKI67 in the regulation of 60S pre-ribosome nucleolar export, transcripts, energy supply, and apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638155. [PMID: 39990431 PMCID: PMC11844515 DOI: 10.1101/2025.02.13.638155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
MKI67 (Ki67) is expressed exclusively in proliferating cells in human tissues, rendering it as a valuable diagnostic marker for cancer. However, the function of this protein in cells remains unclear. In this study, we present the findings on the regulatory functions of MKI67 in conjunction with its partner proteins GNL2 and MDN1, which are involved in pre-ribosome processing, as well as the regulatory functions in its absence. In proliferating HEK293T cells, MKI67 binds contiguously to the chromatin in conjunction with GNL2 and MDN1, localizing most densely to the nucleolar periphery to regulate 60S pre-ribosome export. On the other hand, RNA-seq analysis reveals that these three proteins can independently regulate many target transcripts, but they often share their target transcripts, yet often regulate them at different expression levels. MDN1 depletion strongly downregulates RNA gene transcripts involved in ribosome biogenesis and splicing. In contrast, MKI67 depletion strongly upregulates transcripts of protein-coding genes, including synapse-specific proteins and the mitosis-related protein NEK7. Furthermore, MKI67 depletion coordinately up- or down-regulates the levels of transcripts of several pathways, thereby enabling MKI67-depleted cells to adapt to less active metabolic states. The underlying mechanism by which MKI67 depletion upregulates transcripts appears to involve attenuation of transcript levels in cooperation with mRNA degradation systems, as evidenced by analysis of NEK7 and UNC13A translations. In conclusion, the present results indicate that MKI67 contributes to proliferation via nucleolar export of 60S pre-ribosome particles and high energy supply. Conversely, its absence leads the cells to adapt to the senescent and differentiated conditions.
Collapse
|
3
|
Hu HT, Wang UTT, Chen BC, Hsueh YP, Wang TF. Ki-67 and CDK1 control the dynamic association of nuclear lipids with mitotic chromosomes. J Lipid Res 2025; 66:100731. [PMID: 39706365 PMCID: PMC11786767 DOI: 10.1016/j.jlr.2024.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
Nuclear lipids play roles in regulatory processes, such as signaling, transcriptional regulation, and DNA repair. In this report, we demonstrate that nuclear lipids may contribute to Ki-67-regulated chromosome integrity during mitosis. In COS-7 cells, nuclear lipids are enriched at the perichromosomal layer and excluded from intrachromosomal regions during early mitosis but are then detected in intrachromosomal regions during late mitosis, as revealed by TT-ExM (expansion microscopy with trypsin digestion and tyramide signal amplification), an improved expansion microscopy technique that enables high-sensitivity and super-resolution imaging of proteins, lipids, and nuclear DNA. The nuclear nonhistone protein Ki-67 acts as a surfactant to form a repulsive molecular brush around fully condensed sister chromatids in early mitosis, preventing the diffusion or penetration of nuclear lipids into intrachromosomal regions. Ki-67 is phosphorylated during mitosis by cyclin-dependent kinase 1 (CDK1), the best-known master regulator of the cell cycle. Both Ki-67 knockdown and reduced Ki-67 phosphorylation by CDK1 inhibitors allow nuclear lipids to penetrate chromosomal regions. Thus, both Ki-67 protein level and phosphorylation status during mitosis appear to influence the perichromosomal distribution of nuclear lipids. Ki-67 knockdown and CDK1 inhibition also lead to uneven chromosome disjunction between daughter cells, highlighting the critical role of this regulatory mechanism in ensuring accurate chromosome segregation. Given that Ki-67 has been proposed to promote chromosome individualization and establish chromosome-cytoplasmic compartmentalization during open mitosis in vertebrates, our results reveal that nuclear lipid enrichment at the perichromosomal layer enhances the ability of Ki-67 to form a protective perichromosomal barrier (chromosome envelope), which is critical for correct chromosome segregation and maintenance of genome integrity during mitosis.
Collapse
Affiliation(s)
- Hsiao-Tang Hu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ueh-Ting Tim Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; Department of Photonics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Pelosi G, Travis WD. Head-to-head: Should Ki67 proliferation index be included in the formal classification of pulmonary neuroendocrine neoplasms? Histopathology 2024; 85:535-548. [PMID: 38728050 DOI: 10.1111/his.15206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 08/31/2024]
Abstract
The reporting of lung neuroendocrine neoplasms (NENs) according to the 2021 World Health Organisation (WHO) is based on mitotic count per 2 mm2, necrosis assessment and a constellation of cytological and immunohistochemical details. Accordingly, typical carcinoid and atypical carcinoid are low- to intermediate-grade neuroendocrine tumours (NETs), while large-cell neuroendocrine carcinoma (NEC) and small-cell lung carcinoma are high-grade NECs. In small-sized diagnostic material (cytology and biopsy), the noncommittal term of carcinoid tumour/NET not otherwise specified (NOS) and metastatic carcinoid NOS have been introduced with regard to primary and metastatic diagnostic settings, respectively. Ki-67 antigen, a well-known marker of cell proliferation, has been included in the WHO classification as a non-essential but desirable criterion, especially to distinguish NETs from high-grade NECs and to delineate the provisional category of carcinoid tumours/NETs with elevated mitotic counts (> 10 mitoses per mm2) and/or Ki-67 proliferation index (≥ 30%). However, a wider use of this marker in the spectrum of lung NENs continues to be highly reported and debated, thus witnessing a never-subsided attention. Therefore, the arguments for and against incorporating Ki-67 in the classification and clinical practice of these neoplasms are discussed herein in detail.
Collapse
Affiliation(s)
- Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Inter-Hospital Pathology Division, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - William D Travis
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York City, NY, USA
| |
Collapse
|
5
|
Hernandez-Armendariz A, Sorichetti V, Hayashi Y, Koskova Z, Brunner A, Ellenberg J, Šarić A, Cuylen-Haering S. A liquid-like coat mediates chromosome clustering during mitotic exit. Mol Cell 2024; 84:3254-3270.e9. [PMID: 39153474 DOI: 10.1016/j.molcel.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
The individualization of chromosomes during early mitosis and their clustering upon exit from cell division are two key transitions that ensure efficient segregation of eukaryotic chromosomes. Both processes are regulated by the surfactant-like protein Ki-67, but how Ki-67 achieves these diametric functions has remained unknown. Here, we report that Ki-67 radically switches from a chromosome repellent to a chromosome attractant during anaphase in human cells. We show that Ki-67 dephosphorylation during mitotic exit and the simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface. Experiments and coarse-grained simulations support a model in which the coalescence of chromosome surfaces, driven by co-condensation of Ki-67 and RNA, promotes clustering of chromosomes. Our study reveals how the switch of Ki-67 from a surfactant to a liquid-like condensed phase can generate mechanical forces during genome segregation that are required for re-establishing nuclear-cytoplasmic compartmentalization after mitosis.
Collapse
Affiliation(s)
- Alberto Hernandez-Armendariz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Valerio Sorichetti
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Yuki Hayashi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Zuzana Koskova
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Andreas Brunner
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Anđela Šarić
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Sara Cuylen-Haering
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| |
Collapse
|
6
|
Li P, Yu X. The role of rRNA in maintaining genome stability. DNA Repair (Amst) 2024; 139:103692. [PMID: 38759435 DOI: 10.1016/j.dnarep.2024.103692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Over the past few decades, unbiased approaches such as genetic screening and protein affinity purification have unveiled numerous proteins involved in DNA double-strand break (DSB) repair and maintaining genome stability. However, despite our knowledge of these protein factors, the underlying molecular mechanisms governing key cellular events during DSB repair remain elusive. Recent evidence has shed light on the role of non-protein factors, such as RNA, in several pivotal steps of DSB repair. In this review, we provide a comprehensive summary of these recent findings, highlighting the significance of ribosomal RNA (rRNA) as a critical mediator of DNA damage response, meiosis, and mitosis. Moreover, we discuss potential mechanisms through which rRNA may influence genome integrity.
Collapse
Affiliation(s)
- Peng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Neděla V, Tihlaříková E, Cápal P, Doležel J. Advanced environmental scanning electron microscopy reveals natural surface nano-morphology of condensed mitotic chromosomes in their native state. Sci Rep 2024; 14:12998. [PMID: 38844535 PMCID: PMC11156959 DOI: 10.1038/s41598-024-63515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
The challenge of in-situ handling and high-resolution low-dose imaging of intact, sensitive and wet samples in their native state at nanometer scale, including live samples is met by Advanced Environmental Scanning Electron Microscopy (A-ESEM). This new generation of ESEM utilises machine learning-based optimization of thermodynamic conditions with respect to sample specifics to employ a low temperature method and an ionization secondary electron detector with an electrostatic separator. A modified electron microscope was used, equipped with temperature, humidity and gas pressure sensors for in-situ and real-time monitoring of the sample. A transparent ultra-thin film of ionic liquid is used to increase thermal and electrical conductivity of the samples and to minimize sample damage by free radicals. To validate the power of the new method, we analyze condensed mitotic metaphase chromosomes to reveal new structural features of their perichromosomal layer, and the organization of chromatin fibers, not observed before by any microscopic technique. The ability to resolve nano-structural details of chromosomes using A-ESEM is validated by measuring gold nanoparticles with achievable resolution in the lower nanometre units.
Collapse
Affiliation(s)
- Vilém Neděla
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, Brno, 612 00, Czech Republic.
| | - Eva Tihlaříková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, Brno, 612 00, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, Olomouc, 772 00, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, Olomouc, 772 00, Czech Republic
| |
Collapse
|
8
|
Câmara AS, Kubalová I, Schubert V. Helical chromonema coiling is conserved in eukaryotes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1284-1300. [PMID: 37840457 DOI: 10.1111/tpj.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
Efficient chromatin condensation is required to transport chromosomes during mitosis and meiosis, forming daughter cells. While it is well accepted that these processes follow fundamental rules, there has been a controversial debate for more than 140 years on whether the higher-order chromatin organization in chromosomes is evolutionarily conserved. Here, we summarize historical and recent investigations based on classical and modern methods. In particular, classical light microscopy observations based on living, fixed, and treated chromosomes covering a wide range of plant and animal species, and even in single-cell eukaryotes suggest that the chromatids of large chromosomes are formed by a coiled chromatin thread, named the chromonema. More recently, these findings were confirmed by electron and super-resolution microscopy, oligo-FISH, molecular interaction data, and polymer simulation. Altogether, we describe common and divergent features of coiled chromonemata in different species. We hypothesize that chromonema coiling in large chromosomes is a fundamental feature established early during the evolution of eukaryotes to handle increasing genome sizes.
Collapse
Affiliation(s)
- Amanda Souza Câmara
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany
| | - Ivona Kubalová
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany
| |
Collapse
|
9
|
Jiang Y, Sun S, Liu X, Su K, Zhang C, Zhang P, Zhao Z, Su Y, Wang C, Du X. U3 snoRNA inter-regulates with DDX21 in the perichromosomal region to control mitosis. Cell Death Dis 2024; 15:342. [PMID: 38760378 PMCID: PMC11101645 DOI: 10.1038/s41419-024-06725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
U3 snoRNA is essential for ribosome biogenesis during interphase. Upon mitotic onset, the nucleolus disassembles and U3 snoRNA relocates to the perichromosomal region (PR) to be considered as a chromosome passenger. Whether U3 controls mitosis remains unknown. Here, we demonstrate that U3 snoRNA is required for mitotic progression. We identified DDX21 as the predominant U3-binding protein during mitosis and confirmed that U3 snoRNA colocalizes with DDX21 in the PR. DDX21 knockdown induces mitotic catastrophe and similar mitotic defects caused by U3 snoRNA depletion. Interestingly, the uniform PR distribution of U3 snoRNA and DDX21 is interdependent. DDX21 functions in mitosis depending on its PR localization. Mechanistically, U3 snoRNA regulates DDX21 PR localization through maintaining its mobility. Moreover, Cy5-U3 snoRNA downsizes the fibrous condensates of His-DDX21 at proper molecular ratios in vitro. This work highlights the importance of the equilibrium between U3 snoRNA and DDX21 in PR formation and reveals the potential relationship between the PR assembly and mitotic regulation.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Shiqi Sun
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Cancer Hospital & Institute, Peking University, Beijing, 100142, China
| | - Kunqi Su
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Peipei Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Zhuochen Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Ya Su
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Chang Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China.
| |
Collapse
|
10
|
Bagnyukova T, Egleston BL, Pavlov VA, Serebriiskii IG, Golemis EA, Borghaei H. Synergy of EGFR and AURKA Inhibitors in KRAS-mutated Non-small Cell Lung Cancers. CANCER RESEARCH COMMUNICATIONS 2024; 4:1227-1239. [PMID: 38639476 PMCID: PMC11078142 DOI: 10.1158/2767-9764.crc-23-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
The most common oncogenic driver mutations for non-small cell lung cancer (NSCLC) activate EGFR or KRAS. Clinical trials exploring treatments for EGFR- or KRAS-mutated (EGFRmut or KRASmut) cancers have focused on small-molecule inhibitors targeting the driver mutations. Typically, these inhibitors perform more effectively based on combination with either chemotherapies, or other targeted therapies. For EGFRmut NSCLC, a combination of inhibitors of EGFR and Aurora-A kinase (AURKA), an oncogene commonly overexpressed in solid tumors, has shown promising activity in clinical trials. Interestingly, a number of recent studies have indicated that EGFR activity supports overall viability of tumors lacking EGFR mutations, and AURKA expression is abundant in KRASmut cell lines. In this study, we have evaluated dual inhibition of EGFR and AURKA in KRASmut NSCLC models. These data demonstrate synergy between the EGFR inhibitor erlotinib and the AURKA inhibitor alisertib in reducing cell viability and clonogenic capacity in vitro, associated with reduced activity of EGFR pathway effectors, accumulation of enhanced aneuploid cell populations, and elevated cell death. Importantly, the erlotinib-alisertib combination also synergistically reduces xenograft growth in vivo. Analysis of signaling pathways demonstrated that the combination of erlotinib and alisertib was more effective than single-agent treatments at reducing activity of EGFR and pathway effectors following either brief or extended administration of the drugs. In sum, this study indicates value of inhibiting EGFR in KRASmut NSCLC, and suggests the specific value of dual inhibition of AURKA and EGFR in these tumors. SIGNIFICANCE The introduction of specific KRAS G12C inhibitors to the clinical practice in lung cancer has opened up opportunities that did not exist before. However, G12C alterations are only a subtype of all KRAS mutations observed. Given the high expression of AURKA in KRASmut NSCLC, our study could point to a potential therapeutic option for this subgroup of patients.
Collapse
Affiliation(s)
- Tetyana Bagnyukova
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Brian L. Egleston
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Valerii A. Pavlov
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Ilya G. Serebriiskii
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Kazan Federal University, Kazan, Russian Federation
| | - Erica A. Golemis
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Hossein Borghaei
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Division of Thoracic Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Forte G, Boteva L, Conforto F, Gilbert N, Cook PR, Marenduzzo D. Bridging condensins mediate compaction of mitotic chromosomes. J Cell Biol 2024; 223:e202209113. [PMID: 37976091 PMCID: PMC10655892 DOI: 10.1083/jcb.202209113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/08/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Eukaryotic chromosomes compact during mitosis into elongated cylinders-and not the spherical globules expected of self-attracting long flexible polymers. This process is mainly driven by condensin-like proteins. Here, we present Brownian-dynamic simulations involving two types of such proteins with different activities. One, which we refer to as looping condensins, anchors long-lived chromatin loops to create bottlebrush structures. The second, referred to as bridging condensins, forms multivalent bridges between distant parts of these loops. We show that binding of bridging condensins leads to the formation of shorter and stiffer mitotic-like cylinders without requiring any additional energy input. These cylinders have several features matching experimental observations. For instance, the axial condensin backbone breaks up into clusters as found by microscopy, and cylinder elasticity qualitatively matches that seen in chromosome pulling experiments. Additionally, simulating global condensin depletion or local faulty condensin loading gives phenotypes seen experimentally and points to a mechanistic basis for the structure of common fragile sites in mitotic chromosomes.
Collapse
Affiliation(s)
- Giada Forte
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Lora Boteva
- MRC Human Genetics Unit, Western General Hospital, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Filippo Conforto
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Western General Hospital, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Peter R. Cook
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Davide Marenduzzo
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Ledvin L, Gassaway BM, Tawil J, Urso O, Pizzo D, Welsh KA, Bolhuis DL, Fisher D, Bonni A, Gygi SP, Brown NG, Ferguson CJ. The anaphase-promoting complex controls a ubiquitination-phosphoprotein axis in chromatin during neurodevelopment. Dev Cell 2023; 58:2666-2683.e9. [PMID: 37875116 PMCID: PMC10872926 DOI: 10.1016/j.devcel.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/07/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Mutations in the degradative ubiquitin ligase anaphase-promoting complex (APC) alter neurodevelopment by impairing proteasomal protein clearance, but our understanding of their molecular and cellular pathogenesis remains limited. Here, we employ the proteomic-based discovery of APC substrates in APC mutant mouse brain and human cell lines and identify the chromosome-passenger complex (CPC), topoisomerase 2a (Top2a), and Ki-67 as major chromatin factors targeted by the APC during neuronal differentiation. These substrates accumulate in phosphorylated form, suggesting that they fail to be eliminated after mitosis during terminal differentiation. The accumulation of the CPC kinase Aurora B within constitutive heterochromatin and hyperphosphorylation of its target histone 3 are corrected in the mutant brain by pharmacologic Aurora B inhibition. Surprisingly, the reduction of Ki-67, but not H3S10ph, rescued the function of constitutive heterochromatin in APC mutant neurons. These results expand our understanding of how ubiquitin signaling regulates chromatin during neurodevelopment and identify potential therapeutic targets in APC-related disorders.
Collapse
Affiliation(s)
- Leya Ledvin
- Pathology Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brandon M Gassaway
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Tawil
- Pathology Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Olivia Urso
- Pathology Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Donald Pizzo
- Pathology Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaeli A Welsh
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Derek L Bolhuis
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | - Azad Bonni
- Neuroscience Department, Washington University, St. Louis, MO 63110, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas G Brown
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Cole J Ferguson
- Pathology Department, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Sayago C, Sánchez-Wandelmer J, García F, Hurtado B, Lafarga V, Prieto P, Zarzuela E, Ximénez-Embún P, Ortega S, Megías D, Fernández-Capetillo O, Malumbres M, Munoz J. Decoding protein methylation function with thermal stability analysis. Nat Commun 2023; 14:3016. [PMID: 37230995 DOI: 10.1038/s41467-023-38863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Protein methylation is an important modification beyond epigenetics. However, systems analyses of protein methylation lag behind compared to other modifications. Recently, thermal stability analyses have been developed which provide a proxy of a protein functional status. Here, we show that molecular and functional events closely linked to protein methylation can be revealed by the analysis of thermal stability. Using mouse embryonic stem cells as a model, we show that Prmt5 regulates mRNA binding proteins that are enriched in intrinsically disordered regions and involved in liquid-liquid phase separation mechanisms, including the formation of stress granules. Moreover, we reveal a non-canonical function of Ezh2 in mitotic chromosomes and the perichromosomal layer, and identify Mki67 as a putative Ezh2 substrate. Our approach provides an opportunity to systematically explore protein methylation function and represents a rich resource for understanding its role in pluripotency.
Collapse
Affiliation(s)
- Cristina Sayago
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | | | - Fernando García
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Begoña Hurtado
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- Cancer Cell Cycle group, Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Patricia Prieto
- Mouse Genome Editing Unit, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Eduardo Zarzuela
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Sagrario Ortega
- Mouse Genome Editing Unit, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | | | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- Cancer Cell Cycle group, Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Javier Munoz
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain.
- Cell Signaling and Clinical Proteomics Group, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain.
- Ikerbasque, Basque foundation for science, 48011, Bilbao, Spain.
| |
Collapse
|
14
|
Huang Q, Yang Y, Zhu Y, Chen Q, Zhao T, Xiao Z, Wang M, Song X, Jiang Y, Yang Y, Zhang J, Xiao Y, Nan Y, Wu W, Ai K. Oral Metal-Free Melanin Nanozymes for Natural and Durable Targeted Treatment of Inflammatory Bowel Disease (IBD). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207350. [PMID: 36760016 DOI: 10.1002/smll.202207350] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Indexed: 05/11/2023]
Abstract
Oral antioxidant nanozymes bring great promise for inflammatory bowel disease (IBD) treatment. To efficiently eliminate reactive oxygen species (ROS), various metal-based nanozymes have been developed for the treatment of IBD but their practical applications are seriously impaired by unstable ROS-eliminating properties and potential metal ion leakage in the digestive tract. Here, the authors for the first time propose metal-free melanin nanozymes (MeNPs) with excellent gastrointestinal stability and biocompatibility as a favorable therapy strategy for IBD. Moreover, MeNPs have extremely excellent natural and long-lasting characteristics of targeting IBD lesions. In view of the dominant role of ROS in IBD, the authors further reveal that oral administration of MeNPs can greatly alleviate the six major pathological features of IBD: oxidative stress, endoplasmic reticulum stress, apoptosis, inflammation, gut barrier disruption, and gut dysbiosis. Overall, this strategy highlights the great clinical application prospects of metal-free MeNPs via harnessing ROS scavenging at IBD lesions, offering a paradigm for antioxidant nanozyme in IBD or other inflammatory diseases.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Zhu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Mingyuan Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiangping Song
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yunrong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinping Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Wei Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
15
|
Gupta V, Ramalingam K, Yasothkumar D, Debnath D, Sundar V. Ki-67 Expression as a Prognostic Marker: A Comparative Immunohistochemical Analysis of Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma. Cureus 2023; 15:e38941. [PMID: 37313057 PMCID: PMC10259728 DOI: 10.7759/cureus.38941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction Oral dysplasia is a frequent precancerous condition that may lead to oral cancer. The histopathologic abnormalities exhibited in a chronic, progressive, and premalignant condition of the oral mucosa are referred to as oral epithelial dysplasia (OED). It might show up as erythroplakia, leukoplakia, or leukoerythroplakia. OED is a premalignancy histologic marker that predicts a higher likelihood of squamous cell carcinoma development. Aims and objectives The aim of this study is to identify an association between Ki-67 protein expression and histological grading of OED and oral squamous cell carcinoma (OSCC) and to compare the expression of Ki-67 in different grades of OED and OSCC with the prognosis. Materials and methods The current retrospective research is focused on evaluating epithelial dysplasia and analyzing the function of Ki-67 as a prognostic marker after receiving institutional ethical approval. Group I - normal oral mucosa (NOM), Group II - OED, and Group III - OSCC were included in the study. For statistical analysis, SPSS Statistics version 21.0 (IBM Corp. Released 2021. IBM SPSS Statistics for Windows, Version 28.0. Armonk, NY: IBM Corp) was utilized. The Cox regression model was employed to look at interactions between various prognostic variables. At p<0.05, differences were deemed statistically significant. Results Ki-67 expression was confined to the basal layers in the normal oral epithelium and in the basal, suprabasal, and spinous layers in OED. Ki-67 positive cells were mostly found on the perimeter of well, moderate, and poorly differentiated OSCC tumor nests with Ki-67 positive cells scattered throughout OSCC. According to statistical analysis, there is a substantial difference in expression between OED and NOM, OSCC and NOM, and OED and OSCC. Conclusion Our study showed that there is a progressive increase in Ki-67 expression across various grades of OED, and the highest expression was noted in OSCC. Early identification and prompt treatment will help in improving the quality of life of such patients.
Collapse
Affiliation(s)
- Vineet Gupta
- Oral Pathology, Maharaj Ganga Singh Dental College and Research Centre, Sri Ganganagar, IND
| | - Karthikeyan Ramalingam
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, IND
- Oral Pathology and Microbiology, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Dinesh Yasothkumar
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, IND
- Oral Pathology and Microbiology, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Diptakshi Debnath
- Oral Pathology, Maharaj Ganga Singh Dental College and Research Centre, Sri Ganganagar, IND
| | - Vinay Sundar
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Chennai, IND
- Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
16
|
Stamatiou K, Chmielewska A, Ohta S, Earnshaw WC, Vagnarelli P. CCDC86 is a novel Ki-67-interacting protein important for cell division. J Cell Sci 2023; 136:286751. [PMID: 36695333 PMCID: PMC10022746 DOI: 10.1242/jcs.260391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/08/2022] [Indexed: 01/26/2023] Open
Abstract
The chromosome periphery is a network of proteins and RNAs that coats the outer surface of mitotic chromosomes. Despite the identification of new components, the functions of this complex compartment are poorly characterised. In this study, we identified a novel chromosome periphery-associated protein, CCDC86 (also known as cyclon). Using a combination of RNA interference, microscopy and biochemistry, we studied the functions of CCDC86 in mitosis. CCDC86 depletion resulted in partial disorganisation of the chromosome periphery with alterations in the localisation of Ki-67 (also known as MKI67) and nucleolin (NCL), and the formation of abnormal cytoplasmic aggregates. Furthermore, CCDC86-depleted cells displayed errors in chromosome alignment, altered spindle length and increased apoptosis. These results suggest that, within the chromosome periphery, different subcomplexes that include CCDC86, nucleolin and B23 (nucleophosmin or NPM1) are required for mitotic spindle regulation and correct kinetochore-microtubule attachments, thus contributing to chromosome segregation in mitosis. Moreover, we identified CCDC86 as a MYCN-regulated gene, the expression levels of which represent a powerful marker for prognostic outcomes in neuroblastoma.
Collapse
Affiliation(s)
- Konstantinos Stamatiou
- College of Health, Medicine and Life Sciences, Department of Life Sciences, Brunel University London, London UB8 3PH, UK
| | - Aldona Chmielewska
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Shinya Ohta
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Paola Vagnarelli
- College of Health, Medicine and Life Sciences, Department of Life Sciences, Brunel University London, London UB8 3PH, UK
| |
Collapse
|
17
|
Schneider MWG, Gibson BA, Otsuka S, Spicer MFD, Petrovic M, Blaukopf C, Langer CCH, Batty P, Nagaraju T, Doolittle LK, Rosen MK, Gerlich DW. A mitotic chromatin phase transition prevents perforation by microtubules. Nature 2022; 609:183-190. [PMID: 35922507 PMCID: PMC9433320 DOI: 10.1038/s41586-022-05027-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 06/27/2022] [Indexed: 12/20/2022]
Abstract
Dividing eukaryotic cells package extremely long chromosomal DNA molecules into discrete bodies to enable microtubule-mediated transport of one genome copy to each of the newly forming daughter cells1-3. Assembly of mitotic chromosomes involves DNA looping by condensin4-8 and chromatin compaction by global histone deacetylation9-13. Although condensin confers mechanical resistance to spindle pulling forces14-16, it is not known how histone deacetylation affects material properties and, as a consequence, segregation mechanics of mitotic chromosomes. Here we show how global histone deacetylation at the onset of mitosis induces a chromatin-intrinsic phase transition that endows chromosomes with the physical characteristics necessary for their precise movement during cell division. Deacetylation-mediated compaction of chromatin forms a structure dense in negative charge and allows mitotic chromosomes to resist perforation by microtubules as they are pushed to the metaphase plate. By contrast, hyperacetylated mitotic chromosomes lack a defined surface boundary, are frequently perforated by microtubules and are prone to missegregation. Our study highlights the different contributions of DNA loop formation and chromatin phase separation to genome segregation in dividing cells.
Collapse
Affiliation(s)
- Maximilian W G Schneider
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria.
| | - Bryan A Gibson
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, USA
| | - Shotaro Otsuka
- Max Perutz Labs, a joint venture of the University of Vienna and the Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Maximilian F D Spicer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Mina Petrovic
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Claudia Blaukopf
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Christoph C H Langer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Paul Batty
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Thejaswi Nagaraju
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Lynda K Doolittle
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, USA
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, USA
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
18
|
Wang LH, Chang CC, Cheng CY, Liang YJ, Pei D, Sun JT, Chen YL. MCRS1 Expression Regulates Tumor Activity and Affects Survival Probability of Patients with Gastric Cancer. Diagnostics (Basel) 2022; 12:diagnostics12061502. [PMID: 35741311 PMCID: PMC9221628 DOI: 10.3390/diagnostics12061502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is the fifth most common cancer worldwide and the third most common cause of cancer-related deaths. Surgery remains the first-choice treatment. Chemotherapy is considered in the middle and advanced stages, but has limited success. Microspherule protein 1 (MCRS1, also known as MSP58) is a protein originally identified in the nucleus and cytoplasm that is involved in the cell cycle. High expression of MCRS1 increases tumor growth, invasiveness, and metastasis. The mechanistic relationships between MCSR1 and proliferation, apoptosis, angiogenesis, and epithelial–mesenchymal transition (EMT) remain to be elucidated. We clarified these relationships using immunostaining of tumor tissues and normal tissues from patients with gastric cancer. High MCRS1 expression in gastric cancer positively correlated with Ki-67, Caspase3, CD31, Fibronectin, pAKT, and pAMPK. The hazard ratio of high MCRS1 expression was 2.44 times that of low MCRS1 expression, negatively impacting patient survival.
Collapse
Affiliation(s)
- Liang-Han Wang
- Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei 220, Taiwan; (L.-H.W.); (C.-Y.C.)
| | - Chih-Chun Chang
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei 220, Taiwan;
| | - Chiao-Yin Cheng
- Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei 220, Taiwan; (L.-H.W.); (C.-Y.C.)
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei 242, Taiwan;
| | - Yao-Jen Liang
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei 242, Taiwan;
| | - Dee Pei
- Division of Endocrinology and Metabolism, Department of Internal Medicine Fu Jen Catholic University Hospital, School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan;
| | - Jen-Tang Sun
- Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei 220, Taiwan; (L.-H.W.); (C.-Y.C.)
- Correspondence: (J.-T.S.); (Y.-L.C.); Tel.: +886-2-7728-1843 (J.-T.S.); +886-2-8792-3311 (ext. 16756) (Y.-L.C.)
| | - Yen-Lin Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (J.-T.S.); (Y.-L.C.); Tel.: +886-2-7728-1843 (J.-T.S.); +886-2-8792-3311 (ext. 16756) (Y.-L.C.)
| |
Collapse
|
19
|
Andrés-Sánchez N, Fisher D, Krasinska L. Physiological functions and roles in cancer of the proliferation marker Ki-67. J Cell Sci 2022; 135:275629. [PMID: 35674256 DOI: 10.1242/jcs.258932] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
What do we know about Ki-67, apart from its usefulness as a cell proliferation biomarker in histopathology? Discovered in 1983, the protein and its regulation of expression and localisation throughout the cell cycle have been well characterised. However, its function and molecular mechanisms have received little attention and few answers. Although Ki-67 has long been thought to be required for cell proliferation, recent genetic studies have conclusively demonstrated that this is not the case, as loss of Ki-67 has little or no impact on cell proliferation. In contrast, Ki-67 is important for localising nucleolar material to the mitotic chromosome periphery and for structuring perinucleolar heterochromatin, and emerging data indicate that it also has critical roles in cancer development. However, its mechanisms of action have not yet been fully identified. Here, we review recent findings and propose the hypothesis that Ki-67 is involved in structuring cellular sub-compartments that assemble by liquid-liquid phase separation. At the heterochromatin boundary, this may control access of chromatin regulators, with knock-on effects on gene expression programmes. These changes allow adaptation of the cell to its environment, which, for cancer cells, is a hostile one. We discuss unresolved questions and possible avenues for future exploration.
Collapse
Affiliation(s)
- Nuria Andrés-Sánchez
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293 Montpellier, France.,Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Daniel Fisher
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293 Montpellier, France.,Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Liliana Krasinska
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293 Montpellier, France.,Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, 75013 Paris, France
| |
Collapse
|
20
|
Soares MAF, Oliveira RA, Castro DS. Function and regulation of transcription factors during mitosis-to-G1 transition. Open Biol 2022; 12:220062. [PMID: 35642493 PMCID: PMC9157305 DOI: 10.1098/rsob.220062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 01/04/2023] Open
Abstract
During cell division, drastic cellular changes characteristic of mitosis result in the inactivation of the transcriptional machinery, and global downregulation of transcription. Sequence-specific transcription factors (TFs) have thus been considered mere bystanders, devoid of any regulatory function during mitosis. This view changed significantly in recent years, upon the conclusion that many TFs associate with condensed chromosomes during cell division, even occupying a fraction of their genomic target sites in mitotic chromatin. This finding was at the origin of the concept of mitotic bookmarking by TFs, proposed as a mechanism to propagate gene regulatory information across cell divisions, by facilitating the reactivation of specific bookmarked genes. While the underlying mechanisms and biological significance of this model remain elusive, recent developments in this fast-moving field have cast new light into TF activity during mitosis, beyond a bookmarking role. Here, we start by reviewing the most recent findings on the complex nature of TF-chromatin interactions during mitosis, and on mechanisms that may regulate them. Next, and in light of recent reports describing how transcription is reinitiated in temporally distinct waves during mitosis-to-G1 transition, we explore how TFs may contribute to defining this hierarchical gene expression process. Finally, we discuss how TF activity during mitotic exit may impact the acquisition of cell identity upon cell division, and propose a model that integrates dynamic changes in TF-chromatin interactions during this cell-cycle period, with the execution of cell-fate decisions.
Collapse
Affiliation(s)
- Mário A. F. Soares
- i3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | | | - Diogo S. Castro
- i3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
21
|
Ribosomal RNA regulates chromosome clustering during mitosis. Cell Discov 2022; 8:51. [PMID: 35637200 PMCID: PMC9151767 DOI: 10.1038/s41421-022-00400-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Noncoding RNAs are known to associate with mitotic chromosomes, but the identities and functions of chromosome-associated RNAs in mitosis remain elusive. Here, we show that rRNA species associate with condensed chromosomes during mitosis. In particular, pre-rRNAs such as 45S, 32S, and 30S are highly enriched on mitotic chromosomes. Immediately following nucleolus disassembly in mitotic prophase, rRNAs are released and associate with and coat each condensed chromosome at prometaphase. Using unbiased mass spectrometry analysis, we further demonstrate that chromosome-bound rRNAs are associated with Ki-67. Moreover, the FHA domain and the repeat region of Ki-67 recognize and anchor rRNAs to chromosomes. Finally, suppression of chromosome-bound rRNAs by RNA polymerase I inhibition or by using rRNA-binding-deficient Ki-67 mutants impair mitotic chromosome dispersion during prometaphase. Our study thus reveals an important role of rRNAs in preventing chromosome clustering during mitosis.
Collapse
|
22
|
Cell cycle-specific phase separation regulated by protein charge blockiness. Nat Cell Biol 2022; 24:625-632. [PMID: 35513709 PMCID: PMC9106583 DOI: 10.1038/s41556-022-00903-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
Abstract
Dynamic morphological changes of intracellular organelles are often regulated by protein phosphorylation or dephosphorylation1–6. Phosphorylation modulates stereospecific interactions among structured proteins, but how it controls molecular interactions among unstructured proteins and regulates their macroscopic behaviours remains unknown. Here we determined the cell cycle-specific behaviour of Ki-67, which localizes to the nucleoli during interphase and relocates to the chromosome periphery during mitosis. Mitotic hyperphosphorylation of disordered repeat domains of Ki-67 generates alternating charge blocks in these domains and increases their propensity for liquid–liquid phase separation (LLPS). A phosphomimetic sequence and the sequences with enhanced charge blockiness underwent strong LLPS in vitro and induced chromosome periphery formation in vivo. Conversely, mitotic hyperphosphorylation of NPM1 diminished a charge block and suppressed LLPS, resulting in nucleolar dissolution. Cell cycle-specific phase separation can be modulated via phosphorylation by enhancing or reducing the charge blockiness of disordered regions, rather than by attaching phosphate groups to specific sites. Yamazaki et al. show that cell cycle-regulated changes in hyperphosphorylation of Ki-67 and NPM1 modulate alternating charge blocks in these proteins, which defines their propensity for liquid–liquid phase separation at chromatin.
Collapse
|
23
|
Ferguson CJ, Urso O, Bodrug T, Gassaway BM, Watson ER, Prabu JR, Lara-Gonzalez P, Martinez-Chacin RC, Wu DY, Brigatti KW, Puffenberger EG, Taylor CM, Haas-Givler B, Jinks RN, Strauss KA, Desai A, Gabel HW, Gygi SP, Schulman BA, Brown NG, Bonni A. APC7 mediates ubiquitin signaling in constitutive heterochromatin in the developing mammalian brain. Mol Cell 2022; 82:90-105.e13. [PMID: 34942119 PMCID: PMC8741739 DOI: 10.1016/j.molcel.2021.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 10/14/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Neurodevelopmental cognitive disorders provide insights into mechanisms of human brain development. Here, we report an intellectual disability syndrome caused by the loss of APC7, a core component of the E3 ubiquitin ligase anaphase promoting complex (APC). In mechanistic studies, we uncover a critical role for APC7 during the recruitment and ubiquitination of APC substrates. In proteomics analyses of the brain from mice harboring the patient-specific APC7 mutation, we identify the chromatin-associated protein Ki-67 as an APC7-dependent substrate of the APC in neurons. Conditional knockout of the APC coactivator protein Cdh1, but not Cdc20, leads to the accumulation of Ki-67 protein in neurons in vivo, suggesting that APC7 is required for the function of Cdh1-APC in the brain. Deregulated neuronal Ki-67 upon APC7 loss localizes predominantly to constitutive heterochromatin. Our findings define an essential function for APC7 and Cdh1-APC in neuronal heterochromatin regulation, with implications for understanding human brain development and disease.
Collapse
Affiliation(s)
- Cole J Ferguson
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Neuropathology Division, Physician-Scientist Training Program, Washington University, St. Louis, MO 63110, USA
| | - Olivia Urso
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Tatyana Bodrug
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | - Pablo Lara-Gonzalez
- Department of Cellular and Molecular Medicine, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Raquel C Martinez-Chacin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Dennis Y Wu
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | | | | | - Cora M Taylor
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA 17837, USA
| | - Barbara Haas-Givler
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA 17837, USA
| | - Robert N Jinks
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17603, USA
| | | | - Arshad Desai
- Department of Cellular and Molecular Medicine, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard University, Boston, MA 02138, USA
| | | | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
24
|
Parker MW, Kao JA, Huang A, Berger JM, Botchan MR. Molecular determinants of phase separation for Drosophila DNA replication licensing factors. eLife 2021; 10:e70535. [PMID: 34951585 PMCID: PMC8813052 DOI: 10.7554/elife.70535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) of intrinsically disordered regions (IDRs) in proteins can drive the formation of membraneless compartments in cells. Phase-separated structures enrich for specific partner proteins and exclude others. Previously, we showed that the IDRs of metazoan DNA replication initiators drive DNA-dependent phase separation in vitro and chromosome binding in vivo, and that initiator condensates selectively recruit replication-specific partner proteins (Parker et al., 2019). How initiator IDRs facilitate LLPS and maintain compositional specificity is unknown. Here, using Drosophila melanogaster (Dm) Cdt1 as a model initiation factor, we show that phase separation results from a synergy between electrostatic DNA-bridging interactions and hydrophobic inter-IDR contacts. Both sets of interactions depend on sequence composition (but not sequence order), are resistant to 1,6-hexanediol, and do not depend on aromaticity. These findings demonstrate that distinct sets of interactions drive condensate formation and specificity across different phase-separating systems and advance efforts to predict IDR LLPS propensity and partner selection a priori.
Collapse
Affiliation(s)
- Matthew W Parker
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jonchee A Kao
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Alvin Huang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
25
|
Chromosome clustering in mitosis by the nuclear protein Ki-67. Biochem Soc Trans 2021; 49:2767-2776. [PMID: 34783345 PMCID: PMC8786303 DOI: 10.1042/bst20210717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Ki-67 is highly expressed in proliferating cells, a characteristic that made the protein a very important proliferation marker widely used in the clinic. However, the molecular functions and properties of Ki-67 remained quite obscure for a long time. Only recently important discoveries have shed some light on its function and shown that Ki-67 has a major role in the formation of mitotic chromosome periphery compartment, it is associated with protein phosphatase one (PP1) and regulates chromatin function in interphase and mitosis. In this review, we discuss the role of Ki-67 during cell division. Specifically, we focus on the importance of Ki-67 in chromosome individualisation at mitotic entry (prometaphase) and its contribution to chromosome clustering and nuclear remodelling during mitotic exit.
Collapse
|
26
|
Pelosi G, Travis WD. The Ki-67 antigen in the new 2021 World Health Organization classification of lung neuroendocrine neoplasms. Pathologica 2021; 113:377-387. [PMID: 34837096 PMCID: PMC8720414 DOI: 10.32074/1591-951x-542] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 01/14/2023] Open
Abstract
Prof. Rosai's work has permeated the surgical pathology in many fields, including the 2017 World Health Organization classification on tumors of endocrine organs and pulmonary neuroendocrine cell pathology, with stimulating contributions which have also anticipated the subsequent evolution of knowledge. Among the many studies authored by Prof. Rosai, we would like to recall one of which whose topic has been encased in the new 2021 World Health Organization classification on lung tumors. This is an eminently practical paper dealing with the use of the proliferation antigen Ki-67 in lung neuroendocrine neoplasms. While these neoplasms are primarily ranked upon histologic features and Ki-67 labeling index does not play any role in classification, diagnostic dilemmas may however arise in severely crushed biopsy or cytology samples where this marker proves helpful to avoid misdiagnoses of carcinoids as small cell carcinoma. Another application of Ki-67 labeling index endorsed by the 2021 World Health Organization classification regards, alongside mitotic count, the emerging recognition of lung atypical carcinoids with increased mitotic or proliferation rates, whose biological boundaries straddle a subset of large cell neuroendocrine carcinoma. This article focuses on these two practical applications of the proliferation marker Ki-67 in keeping with the 2021 World Health Organization classification, which provides standards for taxonomy, diagnosis and clinical decision making in lung neuroendocrine neoplasm patients.
Collapse
Affiliation(s)
- Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - William D. Travis
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| |
Collapse
|
27
|
Lan HC, Du TH, Yao YL, Yang WM. Ocular disease-associated mutations diminish the mitotic chromosome retention ability of PAX6. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194751. [PMID: 34500082 DOI: 10.1016/j.bbagrm.2021.194751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Transcription factors play a key role in maintaining cell identity. One mechanism of such cell memory after multiple rounds of cell division cycles is through persistent mitotic chromosome binding, although how individual transcription factors achieve mitotic chromosome retention is not completely understood. Here we show that PAX6, a lineage-determining transcription factor, coats mitotic chromosomes. Using deletion and point mutants associated with human ocular diseases in live-cell imaging analysis, we identified two regions, MCR-D1 and MCR-D2, that were responsible for mitotic chromosome retention of PAX6. We also identified three nuclear localization signals (NLSs) that contributed to mitotic chromosome retention independent of their nuclear import functions. Full mitotic chromosome retention required the presence of DNA-binding domains as well as NLSs within MCR-Ds. Furthermore, disease-associated mutations and NLS mutations changed the distribution of intrinsically disordered regions (IDRs) in PAX6. Our findings not only identify PAX6 as a novel mitotic chromosome retention factor but also demonstrate that the mechanism of mitotic chromosome retention involves sequence-specific DNA binding, NLSs, and molecular conformation determined by IDRs. These findings link mitotic chromosome retention with PAX6-related pathogenesis and imply similar mechanisms for other lineage-determining factors in the PAX family.
Collapse
Affiliation(s)
- Hsin-Chi Lan
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ting-Huei Du
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ya-Li Yao
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Wen-Ming Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
28
|
Garwain O, Sun X, Iyer DR, Li R, Zhu LJ, Kaufman PD. The chromatin-binding domain of Ki-67 together with p53 protects human chromosomes from mitotic damage. Proc Natl Acad Sci U S A 2021; 118:e2021998118. [PMID: 34353903 PMCID: PMC8364191 DOI: 10.1073/pnas.2021998118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vertebrate mammals express a protein called Ki-67 which is most widely known as a clinically useful marker of highly proliferative cells. Previous studies of human cells indicated that acute depletion of Ki-67 can elicit a delay at the G1/S boundary of the cell cycle, dependent on induction of the checkpoint protein p21. Consistent with those observations, we show here that acute Ki-67 depletion causes hallmarks of DNA damage, and the damage occurs even in the absence of checkpoint signaling. This damage is not observed in cells traversing S phase but is instead robustly detected in mitotic cells. The C-terminal chromatin-binding domain of Ki-67 is necessary and sufficient to protect cells from this damage. We also observe synergistic effects when Ki-67 and p53 are simultaneously depleted, resulting in increased levels of chromosome bridges at anaphase, followed by the appearance of micronuclei. Therefore, these studies identify the C terminus of Ki-67 as an important module for genome stability.
Collapse
Affiliation(s)
- Osama Garwain
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Xiaoming Sun
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Divya Ramalingam Iyer
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Paul D Kaufman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
29
|
Remnant L, Kochanova NY, Reid C, Cisneros-Soberanis F, Earnshaw WC. The intrinsically disorderly story of Ki-67. Open Biol 2021; 11:210120. [PMID: 34375547 PMCID: PMC8354752 DOI: 10.1098/rsob.210120] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
Ki-67 is one of the most famous marker proteins used by histologists to identify proliferating cells. Indeed, over 30 000 articles referring to Ki-67 are listed on PubMed. Here, we review some of the current literature regarding the protein. Despite its clinical importance, our knowledge of the molecular biology and biochemistry of Ki-67 is far from complete, and its exact molecular function(s) remain enigmatic. Furthermore, reports describing Ki-67 function are often contradictory, and it has only recently become clear that this proliferation marker is itself dispensable for cell proliferation. We discuss the unusual organization of the protein and its mRNA and how they relate to various models for its function. In particular, we focus on ways in which the intrinsically disordered structure of Ki-67 might aid in the assembly of the still-mysterious mitotic chromosome periphery compartment by controlling liquid-liquid phase separation of nucleolar proteins and RNAs.
Collapse
Affiliation(s)
- Lucy Remnant
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Natalia Y. Kochanova
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Caitlin Reid
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Fernanda Cisneros-Soberanis
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - William C. Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
30
|
Kutay U, Jühlen R, Antonin W. Mitotic disassembly and reassembly of nuclear pore complexes. Trends Cell Biol 2021; 31:1019-1033. [PMID: 34294532 DOI: 10.1016/j.tcb.2021.06.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
Nuclear pore complexes (NPCs) are huge protein assemblies within the nuclear envelope (NE) that serve as selective gates for macromolecular transport between nucleus and cytoplasm. When higher eukaryotic cells prepare for division, they rapidly disintegrate NPCs during NE breakdown such that nuclear and cytoplasmic components mix to enable the formation of a cytoplasmic mitotic spindle. At the end of mitosis, reassembly of NPCs is coordinated with the establishment of the NE around decondensing chromatin. We review recent progress on mitotic NPC disassembly and reassembly, focusing on vertebrate cells. We highlight novel mechanistic insights into how NPCs are rapidly disintegrated into conveniently reusable building blocks, and put divergent models of (post-)mitotic NPC assembly into a spatial and temporal context.
Collapse
Affiliation(s)
- Ulrike Kutay
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland.
| | - Ramona Jühlen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
31
|
Zhao C, Zhang J, Jia Y, Peng J, He W, Luo C, Hu H. Circular RNA Circ_0008035 Participates in the Progression of Multiple Myeloma by Regulating miRNA-1256. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Anomalous expression of micro RNAs (miRNAs) and circular RNAs (circRNAs) were strongly correlated to the progression of multiple cancers, including multiple myeloma (MM). This study aimed to investigate whether circ_0008035 exerts its roles on MM cells by targetingmiRNA-1256. To analyze
the levels of circ_0008035 and miRNA-1256 in MM samples and healthy bone marrow samples, a real time quantitative PCR (RT-qPCR) assay was executed. Cell proliferation and apoptosis were detected with a cell counting kit (CCK-8) and flow cytometry assay, respectively. The cell invasive and
migration ability were assessed using a transwell assay. Dual-luciferase reporter assay and RTqPCR were applied to analyze and compare the targeting effect of circ_0008035 and miRNA-1256. Circ_0008035 was overexpressed, while miRNA-1256 expression declined in MM bone marrow tissues. RPMI8226
cells transfected with si-circ_0008035 or miRNA-1256 mimic exhibited lower proliferation and migration capabilities, while cell apoptosis was remarkably elevated. Circ_0008035 acts as a miRNA-1256sponge and negatively controls miRNA-1256 expression. Transfection of anti-miRNA-1256 reversed
proliferation and migration inhibition and promoted cell apoptosis, which was motivated by si-circ_0008035 transfection. Circ_0008035 negatively regulated miRNA-1256, and the circ_0008035/miRNA-1256 axis regulates the progression of MM, thus providing a potential target for MM therapy.
Collapse
Affiliation(s)
- Caifang Zhao
- Department of Hematology, Jinhua Municipal Central Hospital, Jinhua Hospital Affiliated to Zhejiang University, Jinhua 321000, Zhejiang, PR China
| | - Jingcheng Zhang
- Department of Hematology, Jinhua Municipal Central Hospital, Jinhua Hospital Affiliated to Zhejiang University, Jinhua 321000, Zhejiang, PR China
| | - Yongqing Jia
- Department of Hematology, Jinhua Municipal Central Hospital, Jinhua Hospital Affiliated to Zhejiang University, Jinhua 321000, Zhejiang, PR China
| | - Jing Peng
- Department of Hematology, Jinhua Municipal Central Hospital, Jinhua Hospital Affiliated to Zhejiang University, Jinhua 321000, Zhejiang, PR China
| | - Wei He
- Department of Hematology, Jinhua Municipal Central Hospital, Jinhua Hospital Affiliated to Zhejiang University, Jinhua 321000, Zhejiang, PR China
| | - Chao Luo
- Department of Hematology, Jinhua Municipal Central Hospital, Jinhua Hospital Affiliated to Zhejiang University, Jinhua 321000, Zhejiang, PR China
| | - Huixian Hu
- Department of Hematology, Jinhua Municipal Central Hospital, Jinhua Hospital Affiliated to Zhejiang University, Jinhua 321000, Zhejiang, PR China
| |
Collapse
|
32
|
S1P Lyase Regulates Intestinal Stem Cell Quiescence via Ki-67 and FOXO3. Int J Mol Sci 2021; 22:ijms22115682. [PMID: 34073605 PMCID: PMC8198365 DOI: 10.3390/ijms22115682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Reduction of the Sphingosine-1-phosphate (S1P) degrading enzyme S1P lyase 1 (SGPL1) initiates colorectal cancer progression with parallel loss of colon function in mice. We aimed to investigate the effect of SGPL1 knockout on the stem cell niche in these mice. Methods: We performed immunohistochemical and multi-fluorescence imaging on tissue sections of wildtype and SGPL1 knockout colons under disease conditions. Furthermore, we generated SGPL1 knockout DLD-1 cells (SGPL1−/−M.Ex1) using CRISPR/Cas9 and characterized cell cycle and AKT signaling pathway via Western blot, immunofluorescence, and FACS analysis. Results: SGPL1 knockout mice were absent of anti-Ki-67 staining in the stem cell niche under disease conditions. This was accompanied by an increase of the negative cell cycle regulator FOXO3 and attenuation of CDK2 activity. SGPL1−/−M.Ex1 cells show a similar FOXO3 increase but no arrest of proliferation, although we found a suppression of the PDK1/AKT signaling pathway, a prolonged G1-phase, and reduced stem cell markers. Conclusions: While already established colon cancer cells find escape mechanisms from cell cycle arrest, in vivo SGPL1 knockout in the colon stem cell niche during progression of colorectal cancer can contribute to cell cycle quiescence. Thus, we propose a new function of the S1P lyase 1 in stemness.
Collapse
|
33
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
34
|
Zhu X, Oguh A, Gingerich MA, Soleimanpour SA, Stoffers DA, Gannon M. Cell Cycle Regulation of the Pdx1 Transcription Factor in Developing Pancreas and Insulin-Producing β-Cells. Diabetes 2021; 70:903-916. [PMID: 33526589 PMCID: PMC7980191 DOI: 10.2337/db20-0599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/20/2021] [Indexed: 12/25/2022]
Abstract
Current evidence indicates that proliferating β-cells express lower levels of some functional cell identity genes, suggesting that proliferating cells are not optimally functional. Pdx1 is important for β-cell specification, function, and proliferation and is mutated in monogenic forms of diabetes. However, its regulation during the cell cycle is unknown. Here we examined Pdx1 protein expression in immortalized β-cells, maternal mouse islets during pregnancy, and mouse embryonic pancreas. We demonstrate that Pdx1 localization and protein levels are highly dynamic. In nonmitotic cells, Pdx1 is not observed in constitutive heterochromatin, nucleoli, or most areas containing repressive epigenetic marks. At prophase, Pdx1 is enriched around the chromosomes before Ki67 coating of the chromosome surface. Pdx1 uniformly localizes in the cytoplasm at prometaphase and becomes enriched around the chromosomes again at the end of cell division, before nuclear envelope formation. Cells in S phase have lower Pdx1 levels than cells at earlier cell cycle stages, and overexpression of Pdx1 in INS-1 cells prevents progression toward G2, suggesting that cell cycle-dependent regulation of Pdx1 is required for completion of mitosis. Together, we find that Pdx1 localization and protein levels are tightly regulated throughout the cell cycle. This dynamic regulation has implications for the dichotomous role of Pdx1 in β-cell function and proliferation.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alexis Oguh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Morgan A Gingerich
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Program in the Biological Sciences, University of Michigan, Ann Arbor, MI
| | - Scott A Soleimanpour
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- VA Ann Arbor Health Care System, Ann Arbor, MI
| | - Doris A Stoffers
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Maureen Gannon
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
35
|
Sridhar S, Hori T, Nakagawa R, Fukagawa T, Sanyal K. Bridgin connects the outer kinetochore to centromeric chromatin. Nat Commun 2021; 12:146. [PMID: 33420015 PMCID: PMC7794384 DOI: 10.1038/s41467-020-20161-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/10/2020] [Indexed: 11/29/2022] Open
Abstract
The microtubule-binding outer kinetochore is coupled to centromeric chromatin through CENP-CMif2, CENP-TCnn1, and CENP-UAme1 linker pathways originating from the constitutive centromere associated network (CCAN) of the inner kinetochore. Here, we demonstrate the recurrent loss of most CCAN components, including certain kinetochore linkers during the evolution of the fungal phylum of Basidiomycota. By kinetochore interactome analyses in a model basidiomycete and human pathogen Cryptococcus neoformans, a forkhead-associated domain containing protein “bridgin” was identified as a kinetochore component along with other predicted kinetochore proteins. In vivo and in vitro functional analyses of bridgin reveal its ability to connect the outer kinetochore with centromeric chromatin to ensure accurate chromosome segregation. Unlike established CCAN-based linkers, bridgin is recruited at the outer kinetochore establishing its role as a distinct family of kinetochore proteins. Presence of bridgin homologs in non-fungal lineages suggests an ancient divergent strategy exists to bridge the outer kinetochore with centromeric chromatin. The kinetochore is a multi-complex structure that helps attach chromosomes to spindle microtubules, ensuring accurate chromosome segregation during cell division. Kinetochores are thought to be evolutionarily conserved, but which components are conserved is unclear. Here, the authors report that some members of the fungal phylum of Basidomycota lack many conventional kinetochore linker proteins. Instead, they possess a human Ki67-like protein that bridges the outer part of the kinetochore to centromere DNA, which may compensate for the loss of a conventional linker.
Collapse
Affiliation(s)
- Shreyas Sridhar
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research (JNCASR), Bangalore, India, 560064.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tetsuya Hori
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research (JNCASR), Bangalore, India, 560064. .,Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
36
|
Bizhanova A, Kaufman PD. Close to the edge: Heterochromatin at the nucleolar and nuclear peripheries. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194666. [PMID: 33307247 PMCID: PMC7855492 DOI: 10.1016/j.bbagrm.2020.194666] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Chromatin is a dynamic structure composed of DNA, RNA, and proteins, regulating storage and expression of the genetic material in the nucleus. Heterochromatin plays a crucial role in driving the three-dimensional arrangement of the interphase genome, and in preserving genome stability by maintaining a subset of the genome in a silent state. Spatial genome organization contributes to normal patterns of gene function and expression, and is therefore of broad interest. Mammalian heterochromatin, the focus of this review, mainly localizes at the nuclear periphery, forming Lamina-associated domains (LADs), and at the nucleolar periphery, forming Nucleolus-associated domains (NADs). Together, these regions comprise approximately one-half of mammalian genomes, and most but not all loci within these domains are stochastically placed at either of these two locations after exit from mitosis at each cell cycle. Excitement about the role of these heterochromatic domains in early development has recently been heightened by the discovery that LADs appear at some loci in the preimplantation mouse embryo prior to other chromosomal features like compartmental identity and topologically-associated domains (TADs). While LADs have been extensively studied and mapped during cellular differentiation and early embryonic development, NADs have been less thoroughly studied. Here, we summarize pioneering studies of NADs and LADs, more recent advances in our understanding of cis/trans-acting factors that mediate these localizations, and discuss the functional significance of these associations.
Collapse
Affiliation(s)
- Aizhan Bizhanova
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Paul D Kaufman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
37
|
Orsenigo F, Conze LL, Jauhiainen S, Corada M, Lazzaroni F, Malinverno M, Sundell V, Cunha SI, Brännström J, Globisch MA, Maderna C, Lampugnani MG, Magnusson PU, Dejana E. Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution. eLife 2020; 9:e61413. [PMID: 33138917 PMCID: PMC7609066 DOI: 10.7554/elife.61413] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a rare neurovascular disease that is characterized by enlarged and irregular blood vessels that often lead to cerebral hemorrhage. Loss-of-function mutations to any of three genes results in CCM lesion formation; namely, KRIT1, CCM2, and PDCD10 (CCM3). Here, we report for the first time in-depth single-cell RNA sequencing, combined with spatial transcriptomics and immunohistochemistry, to comprehensively characterize subclasses of brain endothelial cells (ECs) under both normal conditions and after deletion of Pdcd10 (Ccm3) in a mouse model of CCM. Integrated single-cell analysis identifies arterial ECs as refractory to CCM transformation. Conversely, a subset of angiogenic venous capillary ECs and respective resident endothelial progenitors appear to be at the origin of CCM lesions. These data are relevant for the understanding of the plasticity of the brain vascular system and provide novel insights into the molecular basis of CCM disease at the single cell level.
Collapse
Affiliation(s)
- Fabrizio Orsenigo
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM)MilanItaly
| | - Lei Liu Conze
- Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| | - Suvi Jauhiainen
- Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| | - Monica Corada
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM)MilanItaly
| | - Francesca Lazzaroni
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM)MilanItaly
| | - Matteo Malinverno
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM)MilanItaly
| | - Veronica Sundell
- Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| | - Sara Isabel Cunha
- Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| | - Johan Brännström
- Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| | | | - Claudio Maderna
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM)MilanItaly
| | - Maria Grazia Lampugnani
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM)MilanItaly
- Mario Negri Institute for Pharmacological ResearchMilanItaly
| | | | - Elisabetta Dejana
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM)MilanItaly
- Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| |
Collapse
|
38
|
The Greatwall kinase safeguards the genome integrity by affecting the kinome activity in mitosis. Oncogene 2020; 39:6816-6840. [PMID: 32978522 PMCID: PMC7605441 DOI: 10.1038/s41388-020-01470-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
Abstract
Progression through mitosis is balanced by the timely regulation of phosphorylation and dephosphorylation events ensuring the correct segregation of chromosomes before cytokinesis. This balance is regulated by the opposing actions of CDK1 and PP2A, as well as the Greatwall kinase/MASTL. MASTL is commonly overexpressed in cancer, which makes it a potential therapeutic anticancer target. Loss of Mastl induces multiple chromosomal errors that lead to the accumulation of micronuclei and multilobulated cells in mitosis. Our analyses revealed that loss of Mastl leads to chromosome breaks and abnormalities impairing correct segregation. Phospho-proteomic data for Mastl knockout cells revealed alterations in proteins implicated in multiple processes during mitosis including double-strand DNA damage repair. In silico prediction of the kinases with affected activity unveiled NEK2 to be regulated in the absence of Mastl. We uncovered that, RAD51AP1, involved in regulation of homologous recombination, is phosphorylated by NEK2 and CDK1 but also efficiently dephosphorylated by PP2A/B55. Our results suggest that MastlKO disturbs the equilibrium of the mitotic phosphoproteome that leads to the disruption of DNA damage repair and triggers an accumulation of chromosome breaks even in noncancerous cells.
Collapse
|
39
|
Fujimura A, Hayashi Y, Kato K, Kogure Y, Kameyama M, Shimamoto H, Daitoku H, Fukamizu A, Hirota T, Kimura K. Identification of a novel nucleolar protein complex required for mitotic chromosome segregation through centromeric accumulation of Aurora B. Nucleic Acids Res 2020; 48:6583-6596. [PMID: 32479628 PMCID: PMC7337965 DOI: 10.1093/nar/gkaa449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
The nucleolus is a membrane-less nuclear structure that disassembles when cells undergo mitosis. During mitosis, nucleolar factors are thus released from the nucleolus and dynamically change their subcellular localization; however, their functions remain largely uncharacterised. Here, we found that a nucleolar factor called nucleolar protein 11 (NOL11) forms a protein complex with two tryptophan-aspartic acid (WD) repeat proteins named WD-repeat protein 43 (WDR43) and Cirhin in mitotic cells. This complex, referred to here as the NWC (NOL11-WDR43-Cirhin) complex, exists in nucleoli during interphase and translocates to the periphery of mitotic chromosomes, i.e., perichromosomal regions. During mitotic progression, both the congression of chromosomes to the metaphase plate and sister chromatid cohesion are impaired in the absence of the NWC complex, as it is required for the centromeric enrichment of Aurora B and the associating phosphorylation of histone H3 at threonine 3. These results reveal the characteristics of a novel protein complex consisting of nucleolar proteins, which is required for regulating kinetochores and centromeres to ensure faithful chromosome segregation.
Collapse
Affiliation(s)
- Akiko Fujimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Yuki Hayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Kazashi Kato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Yuichiro Kogure
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Mutsuro Kameyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Haruka Shimamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Hiroaki Daitoku
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Toru Hirota
- Cancer Institute of the Japanese Foundation for Cancer Research, Division of Experimental Pathology, 3-8-1 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Keiji Kimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| |
Collapse
|
40
|
Wu M, Leung J, Liu L, Kam C, Chan KYK, Li RA, Feng S, Chen S. A Small-Molecule AIE Chromosome Periphery Probe for Cytogenetic Studies. Angew Chem Int Ed Engl 2020; 59:10327-10331. [PMID: 32163217 PMCID: PMC7318220 DOI: 10.1002/anie.201916718] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Indexed: 01/12/2023]
Abstract
The chromosome periphery (CP) is a complex network that covers the outer surface of chromosomes. It acts as a carrier of nucleolar components, helps maintain chromosome structure, and plays an important role in mitosis. Current methods for fluorescence imaging of CP largely rely on immunostaining. We herein report a small-molecule fluorescent probe, ID-IQ, which possesses aggregation-induced emission (AIE) property, for CP imaging. By labelling the CP, ID-IQ sharply highlighted the chromosome boundaries, which enabled rapid segmentation of touching and overlapping chromosomes, direct identification of the centromere, and clear visualization of chromosome morphology. ID-IQ staining was also compatible with fluorescence in situ hybridization and could assist the precise location of the gene in designated chromosome. Altogether, this study provides a versatile cytogenetic tool for improved chromosome analysis, which greatly benefits the clinical diagnostic testing and genomic research.
Collapse
Affiliation(s)
- Ming‐Yu Wu
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Jong‐Kai Leung
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
| | - Li Liu
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Chuen Kam
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
| | - Kelvin Yuen Kwong Chan
- Department of Obstetrics and GynaecologyQueen Mary HospitalHong KongChina
- Prenatal Diagnostic LaboratoryTsan Yuk HospitalHong KongChina
| | - Ronald A. Li
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
- Dr. Li Dak-Sum Research CentreThe University of Hong KongHong KongChina
| | - Shun Feng
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
- Dr. Li Dak-Sum Research CentreThe University of Hong KongHong KongChina
| |
Collapse
|
41
|
Wu M, Leung J, Liu L, Kam C, Chan KYK, Li RA, Feng S, Chen S. A Small‐Molecule AIE Chromosome Periphery Probe for Cytogenetic Studies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ming‐Yu Wu
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
- School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Jong‐Kai Leung
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
| | - Li Liu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Chuen Kam
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
| | - Kelvin Yuen Kwong Chan
- Department of Obstetrics and Gynaecology Queen Mary Hospital Hong Kong China
- Prenatal Diagnostic Laboratory Tsan Yuk Hospital Hong Kong China
| | - Ronald A. Li
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
- Dr. Li Dak-Sum Research Centre The University of Hong Kong Hong Kong China
| | - Shun Feng
- School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
- Dr. Li Dak-Sum Research Centre The University of Hong Kong Hong Kong China
| |
Collapse
|
42
|
Yang X, Huang Q, Li A, Chen Y, Xu W, Li J, Wang Y, Fang Y. A long-term retrospective study on sporadic Burkitt lymphoma in chinese population. Medicine (Baltimore) 2020; 99:e18438. [PMID: 32000356 PMCID: PMC7004692 DOI: 10.1097/md.0000000000018438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Burkitt lymphoma (BL), an aggressive malignancy, brings a prognosis varying among children, adolescents, and adults. Most of previous retrospective studies of BL focused on a part of population. This study aimed to find the leading prognostic factors in BL among patients of different age groups. World Health Organization classification of lymphoid neoplasms in 2008 and revision in 2016 were used as diagnostic criteria for BL. We compared the laboratory results and clinical manifestations in 2 age groups by Kaplan-Meier survival analysis. Our study strongly indicated that age >14 years and lactate dehydrogenase >570 U/L were 2 powerful prognostic factors for BL. The results indicated that poor prognosis may be for the poor tolerance and low dose of drugs in adolescents and adults.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University
- Key Laboratory of Hematology, Nanjing Medical University
| | - Qianru Huang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University
- Key Laboratory of Hematology, Nanjing Medical University
| | - An Li
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University
- Key Laboratory of Hematology, Nanjing Medical University
| | - Yuan Chen
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Xu
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University
| | - Jianyong Li
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University
| | - Yaping Wang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University
- Key Laboratory of Hematology, Nanjing Medical University
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University
- Key Laboratory of Hematology, Nanjing Medical University
| |
Collapse
|
43
|
Affiliation(s)
- Olivier Albagli
- CNRS-UMR 8014, Inserm U1016, groupe hospitalier Cochin-Port Royal, bâtiment Cassini, 123 boulevard de Port-Royal, 75014 Paris, France
| | - Hélène Pelczar
- Sorbonne Université, UFR 927, BC 60, 4 place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
44
|
Brodská B, Šašinková M, Kuželová K. Nucleophosmin in leukemia: Consequences of anchor loss. Int J Biochem Cell Biol 2019; 111:52-62. [PMID: 31009764 DOI: 10.1016/j.biocel.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Nucleophosmin (NPM), one of the most abundant nucleolar proteins, has crucial functions in ribosome biogenesis, cell cycle control, and DNA-damage repair. In human cells, NPM occurs mainly in oligomers. It functions as a chaperone, undergoes numerous interactions and forms part of many protein complexes. Although NPM role in carcinogenesis is not fully elucidated, a variety of tumor suppressor as well as oncogenic activities were described. NPM is overexpressed, fused with other proteins, or mutated in various tumor types. In the acute myeloid leukemia (AML), characteristic mutations in NPM1 gene, leading to modification of NPM C-terminus, are the most frequent genetic aberration. Although multiple mutation types of NPM are found in AML, they are all characterized by aberrant cytoplasmic localization of the mutated protein. In this review, current knowledge of the structure and function of NPM is presented in relation to its interaction network, in particular to the interaction with other nucleolar proteins and with proteins active in apoptosis. Possible molecular mechanisms of NPM mutation-driven leukemogenesis and NPM therapeutic targeting are discussed. Finally, recent findings concerning the immunogenicity of the mutated NPM and specific immunological features of AML patients with NPM mutation are summarized.
Collapse
Affiliation(s)
- Barbora Brodská
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Markéta Šašinková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Kateřina Kuželová
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic.
| |
Collapse
|
45
|
Festuccia N, Owens N, Papadopoulou T, Gonzalez I, Tachtsidi A, Vandoermel-Pournin S, Gallego E, Gutierrez N, Dubois A, Cohen-Tannoudji M, Navarro P. Transcription factor activity and nucleosome organization in mitosis. Genome Res 2019; 29:250-260. [PMID: 30655337 PMCID: PMC6360816 DOI: 10.1101/gr.243048.118] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022]
Abstract
Mitotic bookmarking transcription factors (BFs) maintain the capacity to bind to their targets during mitosis, despite major rearrangements of the chromatin. While they were thought to propagate gene regulatory information through mitosis by statically occupying their DNA targets, it has recently become clear that BFs are highly dynamic in mitotic cells. This represents both a technical and a conceptual challenge to study and understand the function of BFs: First, formaldehyde has been suggested to be unable to efficiently capture these transient interactions, leading to profound contradictions in the literature; and second, if BFs are not permanently bound to their targets during mitosis, it becomes unclear how they convey regulatory information to daughter cells. Here, comparing formaldehyde to alternative fixatives we clarify the nature of the chromosomal association of previously proposed BFs in embryonic stem cells: While ESRRB can be considered as a canonical BF that binds at selected regulatory regions in mitosis, SOX2 and POU5F1 (also known as OCT4) establish DNA sequence-independent interactions with the mitotic chromosomes, either throughout the chromosomal arms (SOX2) or at pericentromeric regions (POU5F1). Moreover, we show that ordered nucleosomal arrays are retained during mitosis at ESRRB bookmarked sites, whereas regions losing transcription factor binding display a profound loss of order. By maintaining nucleosome positioning during mitosis, ESRRB might ensure the rapid post-mitotic re-establishment of functional regulatory complexes at selected enhancers and promoters. Our results provide a mechanistic framework that reconciles dynamic mitotic binding with the transmission of gene regulatory information across cell division.
Collapse
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Nick Owens
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Thaleia Papadopoulou
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Inma Gonzalez
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Alexandra Tachtsidi
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer.,Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Sandrine Vandoermel-Pournin
- Mouse Functional Genetics, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France
| | - Elena Gallego
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Nancy Gutierrez
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Agnès Dubois
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Michel Cohen-Tannoudji
- Mouse Functional Genetics, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France
| | - Pablo Navarro
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| |
Collapse
|
46
|
Champion L, Pawar S, Luithle N, Ungricht R, Kutay U. Dissociation of membrane-chromatin contacts is required for proper chromosome segregation in mitosis. Mol Biol Cell 2018; 30:427-440. [PMID: 30586323 PMCID: PMC6594442 DOI: 10.1091/mbc.e18-10-0609] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The nuclear envelope (NE) aids in organizing the interphase genome by tethering chromatin to the nuclear periphery. During mitotic entry, NE–chromatin contacts are broken. Here, we report on the consequences of impaired NE removal from chromatin for cell division of human cells. Using a membrane–chromatin tether that cannot be dissociated when cells enter mitosis, we show that a failure in breaking membrane–chromatin interactions impairs mitotic chromatin organization, chromosome segregation and cytokinesis, and induces an aberrant NE morphology in postmitotic cells. In contrast, chromosome segregation and cell division proceed successfully when membrane attachment to chromatin is induced during metaphase, after chromosomes have been singularized and aligned at the metaphase plate. These results indicate that the separation of membranes and chromatin is critical during prometaphase to allow for proper chromosome compaction and segregation. We propose that one cause of these defects is the multivalency of membrane–chromatin interactions.
Collapse
Affiliation(s)
- Lysie Champion
- Department of Biology, Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Sumit Pawar
- Department of Biology, Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Naemi Luithle
- Department of Biology, Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Rosemarie Ungricht
- Department of Biology, Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
47
|
Takkem A, Barakat C, Zakaraia S, Zaid K, Najmeh J, Ayoub M, Seirawan MY. Ki-67 Prognostic Value in Different Histological Grades of Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2018; 19:3279-3286. [PMID: 30486632 PMCID: PMC6318382 DOI: 10.31557/apjcp.2018.19.11.3279] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Introduction: Abnormal cell proliferation appears to be a possible predictor of tumorigenesis, Ki-67 protein expression is closely related to the cell proliferation and could be used as a biomarker for the growth in the most of human tumors. The aim of the study: Investigating of Ki-67 expression in the pathological grades of oral epithelial dysplasia and oral squamous cell carcinomas. Materials and Methods: The sample consisted of 30 formalin-fixed, paraffin-embedded specimens of oral epithelial dysplasia (OED), 30 other of oral squamous cell carcinomas (OSCC), and 10 normal oral epithelium (NOE) were conventionally stained with hematoxylin and eosin and immunohistochemically stained with Ki-67 monoclonal antibody. Results: Expression of Ki-67 was restricted to the basal layers in the normal oral epithelium whereas Ki-67 positive cells in oral epithelial dysplasia (OED) were located in the basal, suprabasal and spinous layers, Ki-67 expression was increased in high-risk cases. Ki-67 positive cells in well-differentiated (OSCC) were located mainly in the periphery of the tumor nests, in moderately-differentiated (OSCC) were located in both peripheral and part of a center of the tumor nests whereas it was diffused in most of the Poorly-differentiated (OSCC). Statistical analysis indicated a significant difference between the expression in (OED) and (NOE), (OSCC) and (NOE), and no differences between (OED) and (OSCC). Conclusion: This study has concluded that Ki-67 antigen could be used as a marker for the histological grading of OED and OSCC, Expression of Ki 67 increased according to the severity of oral epithelial dysplasia.
Collapse
Affiliation(s)
- Amer Takkem
- Department of Oral Histology and Pathology, University of Damascus, Damascus, Syria.
| | | | | | | | | | | | | |
Collapse
|
48
|
Nucleolar Division in the Promastigote Stage of Leishmania major Parasite: A Nop56 Point of View. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1641839. [PMID: 30406129 PMCID: PMC6199852 DOI: 10.1155/2018/1641839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/14/2018] [Accepted: 09/13/2018] [Indexed: 11/23/2022]
Abstract
Nucleogenesis is the cellular event responsible for the formation of the new nucleoli at the end of mitosis. This process depends on the synthesis and processing of ribosomal RNA (rRNA) and, in some eukaryotes, the transfer of nucleolar material contained in prenucleolar bodies (PNBs) to active transcription sites. The lack of a comprehensive description of the nucleolus throughout the cell cycle of the human pathogen Leishmania major prompted us to analyze the distribution of nucleolar protein 56 (Nop56) during interphase and mitosis in the promastigote stage of the parasite. By in silico analysis we show that the orthologue of Nop56 in L. major (LmNop56) contains the three characteristic Nop56 domains and that its predicted three-dimensional structure is also conserved. Fluorescence microscopy observations indicate that the nucleolar localization of LmNop56 is similar, but not identical, to that of the nucleolar protein Elp3b. Notably, unlike other nucleolar proteins, LmNop56 remains associated with the nucleolus in nonproliferative cells. Moreover, epifluorescent images indicate the preservation of the nucleolar structure throughout the closed nuclear division. Experiments performed with the related parasite Trypanosoma brucei show that nucleolar division is carried out by an analogous mechanism.
Collapse
|
49
|
Arvidsson G, Wright APH. A Protein Intrinsic Disorder Approach for Characterising Differentially Expressed Genes in Transcriptome Data: Analysis of Cell-Adhesion Regulated Gene Expression in Lymphoma Cells. Int J Mol Sci 2018; 19:ijms19103101. [PMID: 30308971 PMCID: PMC6213395 DOI: 10.3390/ijms19103101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022] Open
Abstract
Conformational protein properties are coupled to protein functionality and could provide a useful parameter for functional annotation of differentially expressed genes in transcriptome studies. The aim was to determine whether predicted intrinsic protein disorder was differentially associated with proteins encoded by genes that are differentially regulated in lymphoma cells upon interaction with stromal cells, an interaction that occurs in microenvironments, such as lymph nodes that are protective for lymphoma cells during chemotherapy. Intrinsic disorder protein properties were extracted from the Database of Disordered Protein Prediction (D²P²), which contains data from nine intrinsic disorder predictors. Proteins encoded by differentially regulated cell-adhesion regulated genes were enriched in intrinsically disordered regions (IDRs) compared to other genes both with regard to IDR number and length. The enrichment was further ascribed to down-regulated genes. Consistently, a higher proportion of proteins encoded by down-regulated genes contained at least one IDR or were completely disordered. We conclude that down-regulated genes in stromal cell-adherent lymphoma cells encode proteins that are characterized by elevated levels of intrinsically disordered conformation, indicating the importance of down-regulating functional mechanisms associated with intrinsically disordered proteins in these cells. Further, the approach provides a generally applicable and complementary alternative to classification of differentially regulated genes using gene ontology or pathway enrichment analysis.
Collapse
Affiliation(s)
- Gustav Arvidsson
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE 141 57, Sweden.
| | - Anthony P H Wright
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE 141 57, Sweden.
| |
Collapse
|
50
|
Nies KP, Kraaijvanger R, Lindelauf KH, Drent RJ, Rutten RM, Ramaekers FC, Leers MP. Determination of the proliferative fractions in differentiating hematopoietic cell lineages of normal bone marrow. Cytometry A 2018; 93:1097-1105. [DOI: 10.1002/cyto.a.23564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Kelly P.H. Nies
- Dept. of Clinical Chemistry & Hematology; Zuyderland Medical Center; The Netherlands
| | - Raisa Kraaijvanger
- Dept. of Clinical Chemistry & Hematology; Zuyderland Medical Center; The Netherlands
| | - Kim H.K. Lindelauf
- Dept. of Clinical Chemistry & Hematology; Zuyderland Medical Center; The Netherlands
| | | | | | - Frans C.S. Ramaekers
- Nordic-MUbio; Susteren The Netherlands
- Department of Molecular Cell Biology, GROW-School for Oncology & Developmental Biology; Maastricht University Medical Center; The Netherlands
| | - Math P.G. Leers
- Dept. of Clinical Chemistry & Hematology; Zuyderland Medical Center; The Netherlands
| |
Collapse
|