1
|
Tan SM, Luo L, He YF, Li W, Wan XX. Daurisoline inhibits glycolysis of lung cancer by targeting the AKT-HK2 axis. Cancer Biol Ther 2025; 26:2442556. [PMID: 39699276 DOI: 10.1080/15384047.2024.2442556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
Lung cancer, one of the most prevalent tumors, remains a clinical challenge with a poor five-year survival rate. Daurisoline, a bis-benzylisoquinoline alkaloid derived from the traditional Chinese herb Menispermum dauricum, is known to suppress tumor growth effectively. However, its precise mechanism of action remains unclear. In this study, we demonstrate that Daurisoline targets glycolysis and reduces the protein level of HK2, thereby inhibiting lung cancer progression. Mechanistic investigations reveal that Daurisoline directly binds to AKT and antagonizes the AKT-GSK3β-c-Myc-HK2 signaling axis. Furthermore, in an animal model, we validate the in vivo anti-tumor effect of Daurisoline without any observable side effects. Overall, our findings suggest that Daurisoline holds potential as an anti-tumor agent through its targeting of glycolysis.
Collapse
Affiliation(s)
- Shi-Ming Tan
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lan Luo
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Fu He
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin-Xing Wan
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Lu T, Wang Q, Xin Y, Wu X, Wang Y, Xia Y, Xun L, Liu H. Knockout of the sulfide: quinone oxidoreductase SQR reduces growth of HCT116 tumor xenograft. Redox Biol 2025; 83:103650. [PMID: 40305883 DOI: 10.1016/j.redox.2025.103650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
Colorectal cancer (CRC) exhibits significant diversity and heterogeneity, posing a requirement for novel therapeutic targets. Polysulfides are associated with CRC progression and immune evasion, but the underlying mechanisms are not fully understood. Sulfide: quinone oxidoreductase (SQR), a mitochondrial flavoprotein, catalyzes hydrogen sulfide (H2S) oxidation and polysulfides production. Herein, we explored its role in CRC pathogenesis and its potential as a therapeutic target. Our findings revealed that SQR knockout disrupted polysulfides homeostasis, diminished mitochondrial function, impaired cell proliferation, and triggered early apoptosis in HCT116 CRC cells. Moreover, the SQR knockout led to markedly reduced tumor sizes in mice models of colon xenografts. Although the transcription of glycolytic genes remained largely unchanged, metabolomic analysis demonstrated a reprogramming of glycolysis at the fructose-1,6-bisphosphate degradation step, catalyzed by aldolase A (ALDOA). Both Western blot analysis and enzymatic assays confirmed the decrease in ALDOA levels and activity. In conclusion, the study establishes the critical role of SQR in mitochondrial function and metabolic regulation in CRC, with its knockout leading to metabolic reprogramming and diminished tumor growth in HCT116 tumor xenografts. These insights lay a foundation for the development of SQR-targeted therapies for CRC.
Collapse
Affiliation(s)
- Ting Lu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266071, People's Republic of China
| | - Qingda Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Yuping Xin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Xiaohua Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Yang Wang
- Origin Biotechnology Private Limited, 2 Venture Drive, 608526, Singapore
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China; School of Molecular Biosciences, Washington State University, Pullman, WA, 991647520, USA
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
3
|
Zhou L, Zhang TJ, Zhang L, Deng QY, Xia ZY, Chen SL, Cheng DB, Qiao ZY, Wang H. Stimuli-responsive peptide-based nanodrug delivery systems for tumor therapy. Chem Commun (Camb) 2025; 61:7384-7407. [PMID: 40293360 DOI: 10.1039/d5cc00950b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Compared to free chemotherapeutic drugs, nano-sized drug delivery systems exhibit enhanced therapeutic effects and reduced in vivo toxicity. Peptide-based drug delivery systems have garnered significant attention due to the advantageous properties of peptides, including their excellent biocompatibility, diverse side-chain functionalities, and ability to form stable secondary structures. Incorporating stimuli-responsive amino acid residues or specific responsive moieties within their side chains endows these peptide-based drug delivery systems with unique stimuli-responsive characteristics. In this review, we summarize recent advancements and mechanisms in peptide-based nanodrug delivery systems that are capable of responding to one or multiple stimuli as well as conclude with a concise overview of the challenges that lie ahead in this field.
Collapse
Affiliation(s)
- Lei Zhou
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Ting-Jie Zhang
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Lu Zhang
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Qiu-Ying Deng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhi-Yu Xia
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Si-Lin Chen
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, Hubei, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| |
Collapse
|
4
|
Shen H, Mudassar F, Ma S, Wang X, Nguyen S, Bal N, Huynh QS, Wang D, Chang C, Ing P, Varikatt W, Lai J, Gloss B, Holst J, O’Neill GM, Gee H, Cook KM, Hau E. Inhibition of mitochondrial bioenergetics and hypoxia to radiosensitize diffuse intrinsic pontine glioma. Neuro Oncol 2025; 27:1061-1075. [PMID: 39575457 PMCID: PMC12083227 DOI: 10.1093/neuonc/noae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025] Open
Abstract
BACKGROUND Diffuse intrinsic pontine gliomas (DIPGs) and other H3K27M-mutated diffuse midline gliomas (DMGs) are brain tumors that primarily affect children. Radiotherapy is the standard of care but only provides only temporary symptomatic relief due to radioresistance. Although hypoxia is a major driver of radioresistance in other tumors, there is no definitive evidence that DIPGs are hypoxic. Diffuse intrinsic pontine gliomas often contain histone mutations, which alter tumor metabolism and are also associated with radioresistance. Our objective was to identify the metabolic profiles of DIPG cells, detect hypoxia signatures, and uncover metabolism-linked mechanisms of radioresistance to improve tumor radiosensitivity. METHODS Using DIPG models combined with clinical datasets, we examined mitochondrial metabolism and signatures of hypoxia. We explored DIPG reliance on mitochondrial metabolism using extracellular flux assays and targeted metabolomics. In vitro and in vivo models were used to explore the mechanisms of targeting mitochondrial bioenergetics and hypoxia for radiosensitization. Treatment-induced transcriptomics and metabolomics were also investigated. RESULTS Comprehensive analyses of DIPG cells show signatures of enhanced oxidative phosphorylation (OXPHOS). We also identified increased expression of specific OXPHOS-related genes and signatures of hypoxia gene expression in datasets obtained from DIPG patients. We found the presence of hypoxia in orthotopic mouse models bearing DIPG tumors. These findings enabled us to develop a proof-of-concept treatment strategy to enhance radiosensitivity of DIPGs in vitro and in animal models. CONCLUSIONS Diffuse intrinsic pontine glioma cells rely on mitochondrial metabolism for growth, and targeting mitochondria disrupts bioenergetics, alleviates hypoxia, and enhances radiosensitivity. These findings warrant further exploration of OXPHOS inhibition as a radiosensitizing strategy for DIPG treatment.
Collapse
Affiliation(s)
- Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Faiqa Mudassar
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Shiyong Ma
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, The Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xingyu Wang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, The Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Sandy Nguyen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Neha Bal
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Quy-Susan Huynh
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Dongwei Wang
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Cecilia Chang
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Prunella Ing
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Winny Varikatt
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Joey Lai
- Westmead Research Hub Core Facilities, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Brian Gloss
- Westmead Research Hub Core Facilities, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Jeff Holst
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Geraldine M O’Neill
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Children’s Cancer Research Unit, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Harriet Gee
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Western Sydney Radiation Oncology Network, Western Sydney Local Health District, Sydney, NSW, Australia
- Genome Integrity Unit, Children’s Medical Research Institute, Westmead, NSW, Australia
| | - Kristina M Cook
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Western Sydney Radiation Oncology Network, Western Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
5
|
Zhou H, Zhu C, Li Y, Zhao F, Feng Q, Liu S, Jia S, Ji J, Ye L, Zhai G, Yang X. Exosome/liposome hybrid nanovesicles for enhanced phototherapy and boosted anti-tumor immunity against melanoma. Eur J Med Chem 2025; 289:117485. [PMID: 40081104 DOI: 10.1016/j.ejmech.2025.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Although phototherapy shows great potential as a safe ablative modality for treatment of cutaneous melanoma, there remain serious flaws restricting its therapeutic outcomes, such as cellular resistance against apoptosis, tumor hypoxia, rewritten cellular metabolism and abnormal angiogenesis. To cope with these challenges, this work combines hemin and IR780 (phototherapy agent) and designs an orchestrated liposome/macrophage-derived exosome hybrid delivery system (named IHEL) for tumor-specific delivery of these two drugs and synchronous tumor microenvironment (TME) reprogramming. As the experimental data suggest, by triggering iron overload and up-regulating HMOX-1, hemin drives a shift from an apoptosis-dominant anti-cancer mode to a combined ferroptosis/apoptosis mode of IR780 treatment, which helps to avoid apoptosis resistance. Also, the catalase-like activity of hemin strengthens PDT effect by alleviating hypoxia. In addition to the above-mentioned enhanced direct cell-killing effect, IHEL also provokes anti-cancer immunity by triggering immunogenic cell death (ICD), intervening glycometabolism and polarizing tumor-associated macrophages (TAMs) in TME to M1-type. This work strongly demonstrated the rationality of IR780/hemin combination and delicately designed immunostimulatory nanocarriers for their tumor-specific delivery, providing both theoretical foundation and practical strategies for advanced anti-cancer phototherapy.
Collapse
Affiliation(s)
- He Zhou
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chuanxiu Zhu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yingchao Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feiyan Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qixiang Feng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shangui Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuangxu Jia
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
6
|
Han J, Yuan Y, Zhang J, Hou Y, Xu H, Nie X, Zhao Z, Hou J. Regulatory effect of Wnt signaling on mitochondria in cancer: from mechanism to therapy. Apoptosis 2025:10.1007/s10495-025-02114-z. [PMID: 40257508 DOI: 10.1007/s10495-025-02114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
Cancer is one of the most significant public health challenges in the new millennium, and complex mechanisms are at work to contribute to its pathogenesis and progression. The Wnt signaling pathways, which are crucial conserved cascades involved in embryological development and tissue homeostasis, and mitochondria, the intracellular powerhouses responsible for energy production, calcium and iron homeostasis, as well as mitochondrial apoptosis in eukaryotic cells, have their own mechanisms regulating these pathological processes. In the past decade, accumulating evidence has indicated that Wnt signaling pathways directly regulate mitochondrial biogenesis and function under physiological and pathological conditions. In this review, we systemically summarize the current understanding of how Wnt signaling pathways, particularly the canonical Wnt cascade, regulate mitochondrial fission, respiration, metabolism, and mitochondrial-dependent apoptosis in cancer. In addition, we discuss recent advancements in the research of anticancer agents and related pharmacological mechanisms targeting the signaling transduction of canonical Wnt pathway and/or mitochondrial function. We believe that the combined use of pharmaceuticals targeting Wnt signaling and/or mitochondria with conventional therapies, immunotherapy and targeted therapy based on accurate molecular pathological diagnosis will undoubtedly be the future mainstream direction of personalized cancer treatment, which could benefit more cancer patients.
Collapse
Affiliation(s)
- Jinping Han
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Yimeng Yuan
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Jianhua Zhang
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd, 475003, Kaifeng, China
| | - Yifan Hou
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Hongtao Xu
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China.
| | - Zhenhua Zhao
- Ma'anshan 86 Hospital, China RongTong Medical Healthcare Group Co. Ltd, 243100, Ma'anshan, China
| | - Junqing Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd, 475003, Kaifeng, China
| |
Collapse
|
7
|
Yuan W, Lu G, Zhao Y, He X, Liao S, Wang Z, Lei X, Xie Z, Yang X, Tang S, Tang G, Deng X. Intranuclear TCA and mitochondrial overload: The nascent sprout of tumors metabolism. Cancer Lett 2025; 613:217527. [PMID: 39909232 DOI: 10.1016/j.canlet.2025.217527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Abnormal glucose metabolism in tumors is a well-known form of metabolic reprogramming in tumor cells, the most representative of which, the Warburg effect, has been widely studied and discussed since its discovery. However, contradictions in a large number of studies and suboptimal efficacy of drugs targeting glycolysis have prompted us to further deepen our understanding of glucose metabolism in tumors. Here, we review recent studies on mitochondrial overload, nuclear localization of metabolizing enzymes, and intranuclear TCA (nTCA) in the context of the anomalies produced by inhibition of the Warburg effect. We provide plausible explanations for many of the contradictory points in the existing studies, including the causes of the Warburg effect. Furthermore, we provide a detailed prospective discussion of these studies in the context of these new findings, providing new ideas for the use of nTCA and mitochondrial overload in tumor therapy.
Collapse
Affiliation(s)
- Weixi Yuan
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guozhong Lu
- 922nd Hospital of Hengyang, 421001, Hunan, China
| | - Yin Zhao
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiang He
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Senyi Liao
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyong Lei
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Department of Pharmacy, Xiangnan University, Chenzhou, 423000, China
| | - Zhizhong Xie
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyan Yang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Department of Pharmacy, Xiangnan University, Chenzhou, 423000, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery Systems (2018TP1044), Hunan, 410007, China.
| | - Guotao Tang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
8
|
Xi D, Yang Y, Guo J, Wang M, Yan X, Li C. Single-cell sequencing and spatial transcriptomics reveal the evolution of glucose metabolism in hepatocellular carcinoma and identify G6PD as a potential therapeutic target. Front Oncol 2025; 15:1553722. [PMID: 40201344 PMCID: PMC11975570 DOI: 10.3389/fonc.2025.1553722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Background Glucose metabolism reprogramming provides significant insights into the development and progression of malignant tumors. This study aims to explore the temporal-spatial evolution of the glucose metabolism in HCC using single-cell sequencing and spatial transcriptomics (ST), and validates G6PD as a potential therapeutic target for HCC. Methods We collected single-cell sequencing data from 7 HCC and adjacent non-cancerous tissues from the GSE149614 database, and ST data from 4 HCC tissues from the HRA000437 database. Pseudotime analysis was performed on the single-cell data, while ST data was used to analyze spatial metabolic activity. High-throughput sequencing and experiments, including wound healing, CCK-8, and transwell assays, were conducted to validate the role and regulatory mechanisms of G6PD in HCC. Results Our study identified a progressive upregulation of PPP-related genes during tumorigenesis. ST analysis revealed elevated PPP metabolic scores in the central and intermediate tumor regions compared to the peripheral zones. High-throughput sequencing and experimental validation further suggested that G6PD-mediated regulation of HCC cell proliferation, migration, and invasion is likely associated with glutathione metabolism and ROS production. Finally, Cox regression analysis cofirmed G6PD as an independent prognostic factor for overall survival in HCC patients. Conclusion Our study provides novel insights into the changes in glucose metabolism in HCC from both temporal and spatial perspectives. We experimentally demonstrated that G6PD regulates proliferation, migration, and invasion in HCC and propose G6PD as a prognostic marker and therapeutic metabolic target for the HCC.
Collapse
Affiliation(s)
- Deyang Xi
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yinshuang Yang
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiayi Guo
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mengjiao Wang
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuebing Yan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunyang Li
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
9
|
Zhang L, Zhao J, Su C, Wu J, Jiang L, Chi H, Wang Q. Organoid models of ovarian cancer: resolving immune mechanisms of metabolic reprogramming and drug resistance. Front Immunol 2025; 16:1573686. [PMID: 40191206 PMCID: PMC11968360 DOI: 10.3389/fimmu.2025.1573686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Metabolic reprogramming is a hallmark of ovarian cancer, enabling tumor progression, immune evasion and drug resistance. The tumor microenvironment (TME) further shapes metabolic adaptations, enabling cancer cells to withstand hypoxia and nutrient deprivation. While organoid models provide a physiologically relevant platform for studying these processes, they still lack immune and vascular components, limiting their ability to fully recapitulate tumor metabolism and drug responses. In this study, we investigated the key metabolic mechanisms involved in ovarian cancer progression, focusing on glycolysis, lipid metabolism and amino acid metabolism. We integrated metabolomic analyses and drug sensitivity assays to explore metabolic-TME interactions using patient-derived, adult stem cell-derived and iPSC-derived organ tissues. Among these, we found that glycolysis, lipid metabolism and amino acid metabolism play a central role in tumor progression and chemotherapy resistance. We identified methylglyoxal (MGO)-mediated BRCA2 dysfunction as a driver of immune escape, a role for sphingolipid signaling in tumor proliferation and a role for kynurenine metabolism in CD8+ T cell suppression. In addition, PI3K/AKT/mTOR and Wnt/β-catenin pathways promote chemoresistance through metabolic adaptation. By elucidating the link between metabolic reprogramming and immune evasion, this study identifies key metabolic vulnerabilities and potential drug targets in ovarian cancer. Our findings support the development of metabolically targeted therapies and increase the utility of organoid-based precision medicine models.
Collapse
Affiliation(s)
- Lanyue Zhang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jiangnan Zhao
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Chunyu Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jianxi Wu
- Department of Preventive Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Qin Wang
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Arias CF, Acosta FJ, Bertocchini F, Fernández-Arias C. Redefining the role of hypoxia-inducible factors (HIFs) in oxygen homeostasis. Commun Biol 2025; 8:446. [PMID: 40089642 PMCID: PMC11910619 DOI: 10.1038/s42003-025-07896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Hypoxia-inducible factors (HIFs) are key regulators of intracellular oxygen homeostasis. The marked increase in HIFs activity in hypoxia as compared to normoxia, together with their transcriptional control of primary metabolic pathways, motivated the widespread view of HIFs as responsible for the cell's metabolic adaptation to hypoxic stress. In this work, we suggest that this prevailing model of HIFs regulation is misleading. We propose an alternative model focused on understanding the dynamics of HIFs' activity within its physiological context. Our model suggests that HIFs would not respond to but rather prevent the onset of hypoxic stress by regulating the traffic of electrons between catabolic substrates and oxygen. The explanatory power of our approach is patent in its interpretation of the Warburg effect, the tendency of tumor cells to favor anaerobic metabolism over respiration, even in fully aerobic conditions. This puzzling behavior is currently considered as an anomalous metabolic deviation. Our model predicts the Warburg effect as the expected homeostatic response of tumor cells to the abnormal increase in metabolic demand that characterizes malignant phenotypes. This alternative perspective prompts a redefinition of HIFs' function and underscores the need to explicitly consider the cell's metabolic activity in understanding its responses to changes in oxygen availability.
Collapse
Affiliation(s)
- Clemente F Arias
- Grupo Interdisciplinar de Sistemas Complejos de Madrid (GISC), 28040, Madrid, Spain.
| | - Francisco J Acosta
- Departamento de Ecología, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | - Cristina Fernández-Arias
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
11
|
Liu Z, Wang Y, Li L, Liu L, Li Y, Li Z, Xie Y, Yu F. SNAI2, a potential crossing point between cancer and cardiovascular disease. FASEB J 2025; 39:e70459. [PMID: 40059450 DOI: 10.1096/fj.202500198r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 05/13/2025]
Abstract
Cancer and cardiovascular disease remain the leading causes of morbidity and mortality worldwide, and the two separate disease entities share several similarities and possible interactions. Patients with cancer may have underlying cardiovascular disease, which is often exacerbated by the stress of tumor growth or treatment. At the same time, cardiotoxicity induced by anti-cancer therapies or the malignant process itself can lead to new cardiovascular diseases. Efforts have been made to find a rational explanation for this phenomenon. As a classical tumor-promoting factor, we notice that SNAI2 simultaneously plays an important pathogenic role in cardiovascular diseases. Moreover, there are several striking parallels in the mechanisms of cancer and CVD, such as shared risk factors (e.g., smoking and diabetes), cellular phenotypic switching, and metabolic remodeling, all of which are mediated by SNAI2. This review aims to summarize SNAI2's role in the core mechanisms linking cancer and CVD, as well as explore therapeutic approaches targeting SNAI2 and also seeks to provide insights into the common mechanisms underlying both cancer and CVD.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yingzi Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Linlu Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhixin Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yucheng Xie
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fengxu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Yu S, Liang J, Liu L, Chen M, Chen C, Zhou D. AC129507.1 is a ferroptosis-related target identified by a novel mitochondria-related lncRNA signature that is involved in the tumor immune microenvironment in gastric cancer. J Transl Med 2025; 23:290. [PMID: 40050892 PMCID: PMC11887229 DOI: 10.1186/s12967-025-06287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/23/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignancies. Previous studies have shown that mitochondrial metabolism is associated with malignancies. However, relevant research on mitochondria-related lncRNAs in GC is lacking. METHODS We integrated the corresponding information of patients with GC from The Cancer Genome Atlas (TCGA) database. Mitochondria-related lncRNAs were selected based on differential expression and a correlation analysis to construct a prognostic model. The mutation data were analyzed to distinguish differences in the tumor mutation burden (TMB). Single-sample gene set enrichment analysis (ssGSEA) was performed to evaluate immunological differences. A series of cell-based experiments were adopted to evaluate the biological behavior of GC. RESULTS A total of 1571 mitochondria-related lncRNAs were identified. A prognostic signature incorporating nine lncRNAs was built based on 293 suitable GC cases and could predict patient prognosis. The TMB and ssGSEA indicated that the low-risk group displayed increased immune function. The enrichment analysis indicated that the differentially expressed genes were enriched in metabolic functions. AC129507.1 was significantly upregulated in GC cells and associated with a poor prognosis, and its knockdown inhibited the proliferation and migration of GC cells. Mechanistically, silencing AC129507.1 led to abnormal glycolipid metabolism and oxidative stress, thus inducing ferroptosis. CONCLUSIONS Our nine-lncRNA risk signature could powerfully predict patient prognosis. AC129507.1 promoted the malignant phenotypes of GC cells. AC129507.1 could play a nonnegligible role in GC by promoting the formation of a immunosuppressive tumor microenvironment by inhibiting the initiation of ferroptosis, which needs to be further explored.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jinxiao Liang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Lixiao Liu
- Department of Obstetrics and Gynecology, Ningbo City First Hospital, Ningbo University, Ningbo, China
| | - Ming Chen
- Department of Surgical Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
13
|
Liu K, Liu J, Meng T, Wu N, Liu J, Qiao M, Dong L, Liu J. Triptolide reverses cis‑diamminedichloroplatinum resistance in esophageal squamous cell carcinoma by suppressing glycolysis and causing mitochondrial malfunction. Mol Med Rep 2025; 31:74. [PMID: 39886972 PMCID: PMC11795233 DOI: 10.3892/mmr.2025.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025] Open
Abstract
The present study investigated the sensitization mechanism of triptolide (TPL) in esophageal squamous cell carcinoma (ESCC) resistant to cis‑diamminedichloroplatinum (CDDP). CDDP‑resistant TE‑1/CDDP and KYSE30/CDDP cells were created using an incremental drug concentration approach. TPL and CDDP treatment conditions were screened based on the Cell Counting Kit‑8 cell viability assay and cell proliferation was detected using 5‑ethynyl‑2'‑deoxyuridine and clone formation assays. Flow cytometry combined with Hoechst 33258 staining was used to assess cell cycle progression and apoptosis. Scratch healing assay, Transwell assay and western blotting were used to investigate the malignant behaviors of the cells. Changes in cellular glycolysis were investigated by measuring glucose uptake, lactate production and the levels of related regulatory factors. Changes in mitochondrial function were examined by detecting ATP and reactive oxygen species levels, as well as mitochondrial membrane potential and cytochrome c release. Furthermore, a nude mouse subcutaneous graft tumor model assay was used to assess the in vivo effect of TPL. In vitro dosages of TPL and CDDP were tested at 2 nM and 4 µM, respectively. Notably, TPL decreased the proliferation, migration, invasion and epithelial‑mesenchymal transition of CDDP‑resistant ESCC cells, increased their apoptosis and significantly suppressed tumor growth in a nude mouse model of ESCC. TPL was shown to have a strong CDDP‑sensitizing effect in vitro and in vivo and its mechanism may involve inhibiting anaerobic glycolysis and causing mitochondrial energy metabolism impairment to induce apoptosis. In conclusion, TPL may be considered a potential CDDP sensitizer with substantial clinical implications for ESCC therapy.
Collapse
Affiliation(s)
- Kuiyuan Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jia Liu
- Intensive Care Unit, Sun Yat sen University Cancer Center, Guangzhou, Guangdong 510030, P.R. China
| | - Tiebao Meng
- Department of Medical Imaging, Sun Yat sen University Cancer Center, Guangzhou, Guangdong 510030, P.R. China
| | - Nan Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Juntao Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mingxu Qiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liangyi Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jingeng Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
14
|
Sirajee R, El Khatib S, Dieleman LA, Salla M, Baksh S. ImmunoMet Oncogenesis: A New Concept to Understand the Molecular Drivers of Cancer. J Clin Med 2025; 14:1620. [PMID: 40095546 PMCID: PMC11900543 DOI: 10.3390/jcm14051620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
The appearance of cancer progresses through a multistep process that includes genetic, epigenetic, mutational, inflammatory and metabolic disturbances to signaling pathways within an organ. The combined influence of these changes will dictate the growth properties of the cells; the direction of further malignancy depends on the severity of these "disturbances". The molecular mechanisms driving abnormal inflammation and metabolism are beginning to be identified and, in some cases, are quite prominent in pre-condition states of cancer and are significant drivers of the malignant phenotype. As such, utilizing signaling pathways linked to inflammation and metabolism as biomarkers of cancer is an emerging method and includes pathways beyond those well characterized to drive metabolism or inflammation. In this review, we will discuss several emerging elements influencing proliferation, inflammation and metabolism that may play a part as drivers of the cancer phenotype. These include AMPK and leptin (linked to metabolism), NOD2/RIPK2, TAK1 (linked to inflammation), lactate and pyruvate transporters (monocarboxylate transporter [MCT], linked to mitochondrial biogenesis and metabolism) and RASSF1A (linked to proliferation, cell death, cell cycle control, inflammation and epigenetics). We speculate that the aforementioned elements are important drivers of carcinogenesis that should be collectively referenced as being involved in "ImmunoMET Oncogenesis", a new tripartite description of the role of elements in driving cancer. This term would suggest that for a better understanding of cancer, we need to understand how proliferation, inflammation and metabolic pathways are impacted and how they influence classical drivers of malignant transformation in order to drive ImmunoMET oncogenesis and the malignant state.
Collapse
Affiliation(s)
- Reshma Sirajee
- Faculty of Science, 1-001 CCIS, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Sami El Khatib
- Department of Biological & Chemical Sciences, Bekaa Campus, Lebanese International University, West Bekaa, Khiyara 1106, Lebanon; (S.E.K.); (M.S.)
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Kuwait City 32093, Kuwait
| | - Levinus A. Dieleman
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada;
| | - Mohamed Salla
- Department of Biological & Chemical Sciences, Bekaa Campus, Lebanese International University, West Bekaa, Khiyara 1106, Lebanon; (S.E.K.); (M.S.)
| | - Shairaz Baksh
- Department of Pediatrics, Biochemistry and Division of Experimental Oncology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada
- Women and Children’s Health Research Institute, Edmonton Clinic Health Academy (ECHA), University of Alberta, 4-081 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada
- BioImmuno Designs, 4747 154 Avenue, Edmonton, AB T5Y 0C2, Canada
- Bio-Stream Diagnostics, 2011 94 Street, Edmonton, AB T6H 1N1, Canada
| |
Collapse
|
15
|
Ding Z, Li Z, Sun K, Liu Y, Fang Z, Sun S, Li C, Wang Z. Mitochondrial Regulation of Ferroptosis in Cancer Cells. Int J Biol Sci 2025; 21:2179-2200. [PMID: 40083691 PMCID: PMC11900798 DOI: 10.7150/ijbs.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
Ferroptosis is an iron-dependent nonapoptotic regulated cell death modality characterized by lethal levels of lipid peroxide accumulation and disrupted antioxidant systems. An increasing number of studies have revealed correlations between ferroptosis and the pathophysiology and treatment of cancer. Given the intricate involvement of mitochondria in ferroptosis, as suggested by previous studies, here, we review advances in understanding the roles of mitochondrial quality control and mitochondrial metabolism (including the roles of the TCA cycle, reactive oxygen species, iron metabolism, and lipid metabolism) in cancer-related ferroptosis and outline the molecular mechanism and clinical translation of mitochondria-related ferroptosis in cancer treatment. with the aim of promoting the precise utilization and prevention of ferroptosis in cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Shengrong Sun
- Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Chenyuan Li
- Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhong Wang
- Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
16
|
Daumova L, Manakov D, Petrak J, Sovilj D, Behounek M, Andera L, Vit O, Souckova O, Havranek O, Dolnikova A, Renesova N, Tuskova L, Winkowska L, Bettazova N, Kupcova K, Kalbacova MH, Sikorova M, Trneny M, Klener P. Long-term adaptation of lymphoma cell lines to hypoxia is mediated by diverse molecular mechanisms that are targetable with specific inhibitors. Cell Death Discov 2025; 11:65. [PMID: 39966387 PMCID: PMC11836139 DOI: 10.1038/s41420-025-02341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
A large body of evidence suggests that hypoxia drives aggressive molecular features of malignant cells irrespective of cancer type. Non-Hodgkin lymphomas (NHL) are the most common hematologic malignancies characterized by frequent involvement of diverse hypoxic microenvironments. We studied the impact of long-term deep hypoxia (1% O2) on the biology of lymphoma cells. Only 2 out of 6 tested cell lines (Ramos, and HBL2) survived ≥ 4 weeks under hypoxia. The hypoxia-adapted (HA)b Ramos and HBL2 cells had a decreased proliferation rate accompanied by significant suppression of both oxidative phosphorylation and glycolytic pathways. Transcriptome and proteome analyses revealed marked downregulation of genes and proteins of the mitochondrial respiration complexes I and IV, and mitochondrial ribosomal proteins. Despite the observed suppression of glycolysis, the proteome analysis of both HA cell lines showed upregulation of several proteins involved in the regulation of glucose utilization including the active catalytic component of prolyl-4-hydroxylase P4HA1, an important druggable oncogene. HA cell lines demonstrated increased transcription of key regulators of auto-/mitophagy, e.g., neuritin, BCL2 interacting protein 3 (BNIP3), BNIP3-like protein, and BNIP3 pseudogene. Adaptation to hypoxia was further associated with deregulation of apoptosis, namely upregulation of BCL2L1/BCL-XL, overexpression of BCL2L11/BIM, increased binding of BIM to BCL-XL, and significantly increased sensitivity of both HA cell lines to A1155463, a BCL-XL inhibitor. Finally, in both HA cell lines AKT kinase was hyperphosphorylated and the cells showed increased sensitivity to copanlisib, a pan-PI3K inhibitor. In conclusion, our data report on several shared mechanisms of lymphoma cell adaptation to long-term hypoxia including: 1. Upregulation of proteins responsible for glucose utilization, 2. Degradation of mitochondrial proteins for potential mitochondrial recycling (by mitophagy), and 3. Increased dependence on BCL-XL and PI3K-AKT signaling for survival. In translation, inhibition of glycolysis, BCL-XL, or PI3K-AKT cascade may result in targeted elimination of HA lymphoma cells.
Collapse
Affiliation(s)
- Lenka Daumova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dmitry Manakov
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Petrak
- BIOCEV Biotechnology and Biomedicine Centre, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Dana Sovilj
- Institute of Biotechnology, Czech Academy of Sciences / BIOCEV, Vestec, Czech Republic
| | - Matej Behounek
- BIOCEV Biotechnology and Biomedicine Centre, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ladislav Andera
- Institute of Biotechnology, Czech Academy of Sciences / BIOCEV, Vestec, Czech Republic
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Vit
- BIOCEV Biotechnology and Biomedicine Centre, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Olga Souckova
- OMICS Mass Spectrometry Core Facility, Biology Departments, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Ondrej Havranek
- BIOCEV Biotechnology and Biomedicine Centre, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alex Dolnikova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nicol Renesova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Liliana Tuskova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucie Winkowska
- CLIP, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Nardjas Bettazova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristyna Kupcova
- BIOCEV Biotechnology and Biomedicine Centre, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marie Hubalek Kalbacova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miriama Sikorova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Trneny
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
- First Department of Medicine- Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
17
|
Chen J, Huang Z, Chen Y, Tian H, Chai P, Shen Y, Yao Y, Xu S, Ge S, Jia R. Lactate and lactylation in cancer. Signal Transduct Target Ther 2025; 10:38. [PMID: 39934144 PMCID: PMC11814237 DOI: 10.1038/s41392-024-02082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 02/13/2025] Open
Abstract
Accumulated evidence has implicated the diverse and substantial influence of lactate on cellular differentiation and fate regulation in physiological and pathological settings, particularly in intricate conditions such as cancer. Specifically, lactate has been demonstrated to be pivotal in molding the tumor microenvironment (TME) through its effects on different cell populations. Within tumor cells, lactate impacts cell signaling pathways, augments the lactate shuttle process, boosts resistance to oxidative stress, and contributes to lactylation. In various cellular populations, the interplay between lactate and immune cells governs processes such as cell differentiation, immune response, immune surveillance, and treatment effectiveness. Furthermore, communication between lactate and stromal/endothelial cells supports basal membrane (BM) remodeling, epithelial-mesenchymal transitions (EMT), metabolic reprogramming, angiogenesis, and drug resistance. Focusing on lactate production and transport, specifically through lactate dehydrogenase (LDH) and monocarboxylate transporters (MCT), has shown promise in the treatment of cancer. Inhibitors targeting LDH and MCT act as both tumor suppressors and enhancers of immunotherapy, leading to a synergistic therapeutic effect when combined with immunotherapy. The review underscores the importance of lactate in tumor progression and provides valuable perspectives on potential therapeutic approaches that target the vulnerability of lactate metabolism, highlighting the Heel of Achilles for cancer treatment.
Collapse
Affiliation(s)
- Jie Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ziyue Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ya Chen
- Department of Radiology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Yongning Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| |
Collapse
|
18
|
Huang Z, Tian K, Xue Y, Luo F. A promising role of noble metal NPs@MOFs in chondrosarcoma management. NANOSCALE 2025; 17:2961-2984. [PMID: 39718125 DOI: 10.1039/d4nr03878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Chondrosarcoma, a challenging and malignant neoplasm originating from cartilage cells, poses significant diagnostic and therapeutic hurdles due to its resistance to conventional treatments and the complexity of its diagnosis. Noble metal nanoparticle-embedded metal-organic frameworks (NPs@MOFs) stand out as a novel approach for the diagnosis and treatment of chondrosarcoma. This review delves into the properties and applications of NPs@MOFs, focusing on their classification by noble metal type and their role in enhancing photothermal therapy (PTT), photodynamic therapy (PDT), targeted drug delivery and chondrosarcoma diagnosis. Despite promising in vitro and in vivo results, challenges such as understanding the mechanisms of action and clinical translation remain, and the therapeutic effect of PTT and PDT on deep chondrosarcoma seems unsatisfactory. Future exploration, such as combined therapy and multiple MOF therapy, could unlock the full potential of noble metal NPs@MOFs in revolutionizing chondrosarcoma management, offering insights into the prospect of these materials in chondrosarcoma management.
Collapse
Affiliation(s)
- Ziheng Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yiyuan Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
19
|
Wu Y, Zhang Z, Ren M, Chen Y, Zhang J, Li J, Gao F, Bao Y, Huang Y, Yang X, Song Z. Metformin Induces Apoptosis and Ferroptosis of Ovarian Cancer Cells Under Energy Stress Conditions. Cells 2025; 14:213. [PMID: 39937004 PMCID: PMC11817979 DOI: 10.3390/cells14030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
As ovarian cancer progresses, increased glucose use causes a glucose shortage in the tumor microenvironment. Therefore, it is crucial to find drugs that can effectively kill cancer cells in this energy stress setting. Here, we propose an effective therapeutic strategy that combines nutrient restriction with metformin to combat tumors. This study investigated the effects of metformin on ovarian cancer cells under energy stress conditions, mimicking the nutrient-deprived tumor microenvironment. We revealed that Metformin (10 mM) significantly reduced cell viability and proliferation under glucose deprivation conditions. Furthermore, it enhanced apoptosis and ferroptosis, as demonstrated by alterations in apoptotic protein expression and elevated levels of lipid reactive oxygen species (ROS), malondialdehyde (MDA), lipid peroxidation (LPO), and Fe2+. Transcriptional profiling revealed significant alterations in genes related to iron homeostasis and oxidative phosphorylation. Moreover, Metformin was found to induce mitochondrial dysfunction without affecting mitochondrial DNA or the expression of enzymes in the tricarboxylic acid (TCA) cycle, resulting in decreased ATP production and compromised activities of the respiratory chain complexes. The direct interaction between metformin and the NDUFB4 subunit in mitochondrial complex I was corroborated through the application of cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) assays. In vivo, the combination of metformin and fasting cycles significantly inhibited SKOV3 cell-derived xenograft tumors in immunodeficient mice. Altogether, we have demonstrated that Metformin potentiates apoptosis and ferroptosis in ovarian cancer cells under energy stress conditions by targeting the NDUFB4 subunit of mitochondrial complex I, thus laying the groundwork for clinical testing. This study, though limited to cellular and animal levels, provides valuable insights into the therapeutic potential of metformin in ovarian cancer treatment.
Collapse
Affiliation(s)
- Yulun Wu
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China
| | - Ziying Zhang
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China
| | - Minhui Ren
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China
| | - Yao Chen
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China
| | - Jingying Zhang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China
| | - Jiarui Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China
| | - Feng Gao
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China
| | - Yongli Bao
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China
| | - Yanxin Huang
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China
| | - Xiaoguang Yang
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
20
|
Zhou Z, Li Q, Huo R. SUCLG1 promotes aerobic respiration and progression in plexiform neurofibroma. Int J Oncol 2025; 66:10. [PMID: 39749698 PMCID: PMC11753773 DOI: 10.3892/ijo.2024.5716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Plexiform neurofibromas (PNFs) are benign tumors that affect 20‑50% of patients with type I neurofibromatosis (NF1). PNF carries a risk of malignancy. There is no effective cure for PNF. Its onset may be associated with genetic and metabolic abnormalities, but the exact mechanisms remain unclear. Succinate‑CoA ligase GDP/ADP‑Forming Subunit α(SUCLG1), a catalytic enzyme in the tricarboxylic acid cycle, is highly expressed in PNF. The present study aimed to explore the role of SUCLG1 in function and metabolism of PNF cells. SUCLG1 expression was verified using western blotting and immunofluorescence. After inducing SUCLG1 knockdown and overexpression, functional changes in PNF cells were assessed, as well as effects of SUCLG1 on cell respiration and glucose metabolism. Quantitative PCR, WB, electron microscopy and Flow cytometry demonstrated that SUCLG1 enhanced mitochondrial quality and promoted mitochondrial fusion, thereby driving proliferation and migration of tumor cells, inhibiting apoptosis and altering the cell cycle. A Seahorse assay showed that elevated SUCLG1 expression enhanced cell aerobic respiration without affecting the glycolytic process. This suggests that SUCLG1 upregulation in PNF does not trigger the Warburg effect associated with malignant tumors. This study also demonstrated the positive regulation of cellular function by promoting the expression level of the SLC25A1 gene when SUCLG1 expression was elevated. In conclusion, SUCLG1 altered the mechanism of mitochondrial quality control to enhance cell aerobic respiration, thereby driving the pathogenesis of PNF. Thus, SUCLG1 can serve as a potential target in future therapeutic strategies.
Collapse
Affiliation(s)
- Zifu Zhou
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, P.R. China
| |
Collapse
|
21
|
Yang X, Zhou B. Unleashing metabolic power for axonal regeneration. Trends Endocrinol Metab 2025; 36:161-175. [PMID: 39069446 DOI: 10.1016/j.tem.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Axon regeneration requires the mobilization of intracellular resources, including proteins, lipids, and nucleotides. After injury, neurons need to adapt their metabolism to meet the biosynthetic demands needed to achieve axonal regeneration. However, the exact contribution of cellular metabolism to this process remains elusive. Insights into the metabolic characteristics of proliferative cells may illuminate similar mechanisms operating in axon regeneration; therefore, unraveling previously unappreciated roles of metabolic adaptation is critical to achieving neuron regrowth, which is connected to the therapeutic strategies for neurological conditions necessitating nerve repairs, such as spinal cord injury and stroke. Here, we outline the metabolic role in axon regeneration and discuss factors enhancing nerve regrowth, highlighting potential novel metabolic treatments for restoring nerve function.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing 100191, China.
| |
Collapse
|
22
|
Qin LH, Jiang Z, Yang C, Song R, Chen PY, Xu W, Zeng G, Liao JY, Long L. Spatial single-cell maps reveal ST6GAL1 promoting ovarian cancer metastasis. Glycoconj J 2025; 42:27-40. [PMID: 39883364 DOI: 10.1007/s10719-025-10177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/04/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
In this study, spatial and single-cell transcriptome techniques were used to investigate the role of beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) in promoting peritoneal metastasis in ovarian cancer epithelial cells. We collected single-cell transcriptomic (GSE130000) and spatial transcriptomic datasets (GSE211956) from the Gene Expression Omnibus and RNA-sequencing data from The Cancer Genome Atlas. The Robust Cell Type Decomposition (RCTD) approach was implemented to integrate spatial and single-cell transcriptomic data. In addition, pseudo-time trajectory analysis, cell-cell communication networks, transcription factor activity profiling, spatial interaction mapping, and prognostic significance of gene expression were assessed. A significant enrichment of ST6GAL1 was observed in the epithelial cells of ovarian cancer, particularly in peritoneal metastases, which exhibited elevated metabolic activity compared to primary tumors. The levels of ST6GAL1 were significantly high in peritumoral and adjacent non-tumorous tissues, with increased metabolic activity, while the tumor core demonstrated ST6GAL1-negative epithelial cells. Extensive cell-cell communication and transcription factor networks were unraveled, potentially influencing vascular permeability and intracellular signaling. Clinically, high expression of ST6GAL1 in epithelial cells is associated with diminished progression-free survival, indicating its prognostic potential. In conclusion, ST6GAL1 is likely to significantly impact the progression and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Lan-Hui Qin
- Department of Radiology, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Zijian Jiang
- Department of Radiology, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chongze Yang
- Department of Radiology, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Rui Song
- Department of Radiology, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Pei-Yin Chen
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Weihui Xu
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Guanzhen Zeng
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Jin-Yuan Liao
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China.
| | - Liling Long
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China.
| |
Collapse
|
23
|
Yang N, Sun S, Xu J, Gong F, Lei H, Hao Y, Pei Z, Wang C, Yu Q, Nie J, Jiang N, Ni C, Cheng L. Manganese Galvanic Cells Intervene in Tumor Metabolism to Reinforce cGAS-STING Activation for Bidirectional Synergistic Hydrogen-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414929. [PMID: 39775989 DOI: 10.1002/adma.202414929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/07/2024] [Indexed: 01/11/2025]
Abstract
The cGAS-STING pathway is pivotal in initiating antitumor immunity. However, tumor metabolism, particularly glycolysis, negatively regulates the activation of the cGAS-STING pathway. Herein, Mn galvanic cells (MnG) are prepared via liquid-phase exfoliation and in situ galvanic replacement to modulate tumor metabolism, thereby enhancing cGAS-STING activation for bidirectional synergistic H2-immunotherapy. The obtained MnG can be etched by water, enabling efficient and sustained generation of H2 gas and Mn2+. MnG not only activated and amplified the cGAS-STING pathway through the sustained release of Mn2+ but also regulated tumor glucose metabolism to inhibit the expression of three prime repair exonuclease 2 (TREX2), thereby synergistically enhancing the activation of the cGAS-STING pathway. The injection of MnG into tumors resulted in a robust immune response, thereby providing favorable support for antitumor therapy. Consequently, the combination of MnG with immune checkpoint blockade therapy resulted in significant suppression of both primary tumors and distant tumors. Furthermore, the MnG-lipiodol dispersion exhibited remarkable efficacy in combination with transarterial embolization (TAE)-gas-immunotherapy in a rabbit orthotopic liver tumor model. The present study underscores the significance of employing a metal galvanic cell strategy for enhanced immunotherapy, thereby offering a novel approach for rational design of bioactive materials to augment immunotherapeutic effectiveness.
Collapse
Affiliation(s)
- Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| | - Shumin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jiachen Xu
- Department of Vascular Surgery and Interventional Radiology, The Forth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou, 215125, China
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yu Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Chenya Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Qiao Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jihu Nie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Nan Jiang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| |
Collapse
|
24
|
Zhang T, Zhao S, Gu C. Role of PGC-1α in the proliferation and metastasis of malignant tumors. J Mol Histol 2025; 56:77. [PMID: 39881043 DOI: 10.1007/s10735-025-10360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Malignant tumors are among the major diseases threatening human survival in the world, and advancements in medical technology have led to a steady increase in their detection rates worldwide. Despite unique clinical presentations across the spectrum of malignancies, treatment modalities generally adhere to common strategies, encompassing primarily surgical intervention, radiation therapy, chemotherapy, and targeted treatments. Uncovering the genetic elements contributing to cancer cell proliferation, metastasis, and drug resistance remains a pivotal pursuit in the development of novel targeted therapeutics. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A/PGC-1α) is a transcriptional coactivator that influences most cellular metabolic pathways. Its aberrant expression is associated with numerous chronic diseases, including diabetes, heart failure, neurodegenerative disorders, and cancer development. This study primarily discusses the structure, physiological functions, regulatory mechanisms, and research advancement concerning the role of PGC-1α in the proliferation and metastasis of malignant tumors. Targeting PGC-1α and its related regulatory pathways for therapeutic interventions holds promise in facilitating precise and individualized oncological treatments. This approach is expected to counteract drug resistance in patients with cancer and offer a novel direction for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- Dalian Medical University, Dalian, 116011, China
| | - Shilei Zhao
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- Dalian Medical University, Dalian, 116011, China
| | - Chundong Gu
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
- Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
25
|
Cao L, Dong X, Chen F, Li G, Fang J, Han Z, Wang J. Increased Plasma Pyruvate Kinase M2 (PK-M2) in Heart Failure: A Novel Biomarker Related to Cardiac Function and its Clinical Implications. J Am Heart Assoc 2025; 14:e036170. [PMID: 39817549 PMCID: PMC12054480 DOI: 10.1161/jaha.124.036170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/15/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND The purpose of this study was to investigate whether circulating pyruvate kinase M2 (PK-M2) levels are elevated in the peripheral blood and to assess their association with diagnosis and prognosis in patients with heart failure (HF). METHODS AND RESULTS We conducted a prospective investigation involving 222 patients with HF and 103 control subjects, measuring PK-M2 concentrations using ELISA. The primary outcome, assessed over a median follow-up of 2 years (interquartile range: 776 to 926 days), was the time to the first occurrence of either rehospitalization for worsening HF or cardiovascular death. Patients with HF had higher PK-M2 levels than controls (17.4±4.1 versus 7.8±2.3 U/mL, P <0.001), and these levels correlated with HF severity (New York Heart Association cardiac function class). Patients with reduced left ventricular ejection fraction had higher PK-M2 concentrations than those with preserved ejection fraction (18.3±4.5 versus 16.7±3.6 U/mL, P <0.01). In a subset of patients with HF (n=52), PK-M2 levels significantly decreased following standardized HF treatment (mean difference, -4.3±0.5 U/mL, P <0.001). A high PK-M2 level had a 1.913-fold higher risk of the primary outcome (P=0.033) after adjusting for multiple cardiovascular risk factors, but not with cardiovascular death. Additionally, PK-M2 added incremental prognostic value beyond clinical predictors and N-terminal pro-brain natriuretic peptide (P <0.05). CONCLUSIONS Elevated PK-M2 levels are associated with primary outcomes and rehospitalization for worsening heart failure in patients with HF. These findings suggest that PK-M2 is a potential biomarker for HF diagnosis and prognosis, warranting consideration for serial patient assessment.
Collapse
Affiliation(s)
- Lu Cao
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of CardiologyShanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiaoyu Dong
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Fuzhong Chen
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Guangjuan Li
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of CardiologyThe Friendship Hospital of Ili Kazak Autonomous PrefectureYiningChina
| | - Jiale Fang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhijun Han
- Department of Clincal Research CenterJiangnan University Medical CenterWuxiJiangsu ProvinceChina
| | - Junhong Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of CardiologyLiyang People’s HospitalLiyangChina
| |
Collapse
|
26
|
Chiaramonte R, Sauro G, Giannandrea D, Limonta P, Casati L. Molecular Insights in the Anticancer Activity of Natural Tocotrienols: Targeting Mitochondrial Metabolism and Cellular Redox Homeostasis. Antioxidants (Basel) 2025; 14:115. [PMID: 39857449 PMCID: PMC11760857 DOI: 10.3390/antiox14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The role of mitochondria as the electric engine of cells is well established. Over the past two decades, accumulating evidence has pointed out that, despite the presence of a highly active glycolytic pathway (Warburg effect), a functional and even upregulated mitochondrial respiration occurs in cancer cells to meet the need of high energy and the biosynthetic demand to sustain their anabolic growth. Mitochondria are also the primary source of intracellular ROS. Cancer cells maintain moderate levels of ROS to promote tumorigenesis, metastasis, and drug resistance; indeed, once the cytotoxicity threshold is exceeded, ROS trigger oxidative damage, ultimately leading to cell death. Based on this, mitochondrial metabolic functions and ROS generation are considered attractive targets of synthetic and natural anticancer compounds. Tocotrienols (TTs), specifically the δ- and γ-TT isoforms, are vitamin E-derived biomolecules widely shown to possess striking anticancer properties since they regulate several intracellular molecular pathways. Herein, we provide for the first time an overview of the mitochondrial metabolic reprogramming and redox homeostasis perturbation occurring in cancer cells, highlighting their involvement in the anticancer properties of TTs. This evidence sheds light on the use of these natural compounds as a promising preventive or therapeutic approach for novel anticancer strategies.
Collapse
Affiliation(s)
- Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Giulia Sauro
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Domenica Giannandrea
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| |
Collapse
|
27
|
Morton L, Garza AP, Debska‐Vielhaber G, Villafuerte LE, Henneicke S, Arndt P, Meuth SG, Schreiber S, Dunay IR. Pericytes and Extracellular Vesicle Interactions in Neurovascular Adaptation to Chronic Arterial Hypertension. J Am Heart Assoc 2025; 14:e038457. [PMID: 39719419 PMCID: PMC12054408 DOI: 10.1161/jaha.124.038457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Chronic arterial hypertension restructures the vascular architecture of the brain, leading to a series of pathological responses that culminate in cerebral small-vessel disease. Pericytes respond dynamically to vascular challenges; however, how they manifest under the continuous strain of hypertension has not been elucidated. METHODS AND RESULTS In this study, we characterized pericyte behavior alongside hypertensive states in the spontaneously hypertensive stroke-prone rat model, focusing on their phenotypic and metabolic transformation. Flow cytometry was used to characterize pericytes by their expression of platelet-derived growth factor receptor β, neuroglial antigen 2, cluster of differentiation 13-alanyl aminopeptidase, and antigen Kiel 67. Microvessels were isolated for gene expression profiling and in vitro pericyte expansion. Immunofluorescence validated the cell culture model. Plasma-derived extracellular vesicles from hypertensive rodents were applied as a treatment to assess their effects on pericyte function and detailed metabolic assessments on enriched pericytes measured oxidative phosphorylation and glycolysis. Our results reveal a shift in platelet-derived growth factor receptor β+ pericytes toward increased neuroglial antigen 2 and cluster of differentiation 13-alanyl aminopeptidase coexpression, indicative of their critical role in vascular stabilization and inflammatory responses within the hypertensive milieu. Significant alterations were found within key pathways including angiogenesis, blood-brain barrier integrity, hypoxia, and inflammation. Circulating extracellular vesicles from hypertensive rodents distinctly influenced pericyte mitochondrial function, evidencing their dual role as carriers of disease pathology and potential therapeutic agents. Furthermore, a shift toward glycolytic metabolism in hypertensive pericytes was confirmed, coupled with ATP production dysregulation. CONCLUSIONS Our findings demonstrate that cerebral pericytes undergo phenotypic and metabolic reprogramming in response to hypertension, with hypertensive-derived plasma-derived extracellular vesicles impairing their mitochondrial function. Importantly, plasma-derived extracellular vesicles from normotensive controls restore this function, suggesting their potential as both therapeutic agents and precision biomarkers for hypertensive vascular complications. Further investigation into plasma-derived extracellular vesicle cargo is essential to further explore their therapeutic potential in vascular health.
Collapse
Affiliation(s)
- Lorena Morton
- Medical Faculty, Institute of Inflammation and NeurodegenerationOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | - Alejandra P. Garza
- Medical Faculty, Institute of Inflammation and NeurodegenerationOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | | | - Luis E. Villafuerte
- Medical Faculty, Institute of Inflammation and NeurodegenerationOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | - Solveig Henneicke
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, MagdeburgMagdeburgGermany
| | - Philipp Arndt
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, MagdeburgMagdeburgGermany
| | - Sven G. Meuth
- Department of NeurologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Stefanie Schreiber
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, MagdeburgMagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS)MagdeburgGermany
- German Center for Mental Health (DZPG)Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)Halle‐Jena‐MagdeburgGermany
| | - Ildiko R. Dunay
- Medical Faculty, Institute of Inflammation and NeurodegenerationOtto‐von‐Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS)MagdeburgGermany
- German Center for Mental Health (DZPG)Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)Halle‐Jena‐MagdeburgGermany
| |
Collapse
|
28
|
Wang Y, Chen R, Jiang FL, Jiang X, Zhou Y, Zhou Y, Hong X, Lin C, Wang WJ, Qiu S. Exploring the prognostic significance of lactate-mitochondria-related genes in prostate cancer. Front Genet 2025; 15:1515045. [PMID: 39834542 PMCID: PMC11743670 DOI: 10.3389/fgene.2024.1515045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Prostate cancer (PCa) is a common and serious health issue among older men globally. Metabolic reprogramming, particularly involving lactate and mitochondria, plays a key role in PCa progression, but studies linking these factors to prognosis are limited. To identify novel prognostic markers of PCa based on lactate-mitochondria-related genes (LMRGs), RNA sequencing data and clinical information of PCa from The Cancer Genome Atlas (TCGA) and the cBioPortal database were used to construct a lactate-mitochondria-related risk signature. Here, we established a novel nine-LMRG risk signature for PCa, and Kaplan-Meier curves confirmed a worse prognosis for high-risk subgroups in the TCGA dataset. Meanwhile, a nomogram that effectively predicts the prognosis of PCa patients was also constructed. Next, close associations between the lactate-mitochondria-related signature and the immune microenvironment were examined to clarify the role of LMRGs in shaping the immune landscape. Furthermore, as the only lactate-related gene among the nine key prognostic risk genes, myeloperoxidase (MPO) was identified as a key factor that mediates lactate production in vitro and in vivo through attenuation of the glycolytic pathway. More importantly, MPO significantly inhibited PCa cell migration, invasion, and epithelial-mesenchymal transition (EMT), indicating its potential as an anticancer gene. Additionally, PCa with high MPO expression is highly sensitive to chemotherapeutic agents and mitochondrial inhibitors, highlighting its potential as an improved therapeutic strategy for PCa management.
Collapse
Affiliation(s)
- Yuan Wang
- The school of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ronghui Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Feng-Le Jiang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Xin Jiang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yuehong Zhou
- The school of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingying Zhou
- The school of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyi Hong
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Chaoying Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Wei-Jia Wang
- Fujian Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Sufang Qiu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| |
Collapse
|
29
|
He Y, Huang Y, Peng P, Yan Q, Ran L. Lactate and lactylation in gastrointestinal cancer: Current progress and perspectives (Review). Oncol Rep 2025; 53:6. [PMID: 39513579 PMCID: PMC11574708 DOI: 10.3892/or.2024.8839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Gastrointestinal (GI) cancers, which have notable incidence and mortality, are impacted by metabolic reprogramming, especially the increased production and accumulation of lactate. Lactylation, a post‑translational modification driven by lactate, is a crucial regulator of gene expression and cellular function in GI cancer. The present review aimed to examine advancements in understanding lactate and lactylation in GI cancer. The mechanisms of lactate production, its influence on the tumor microenvironment and the clinical implications of lactate levels as potential biomarkers were explored. Furthermore, lactylation was investigated, including its biochemical foundation, primary targets and functional outcomes. The present review underscored potential therapeutic strategies targeting lactate metabolism and lactylation. Challenges and future directions emphasize the potential of lactate and lactylation as innovative therapeutic targets in GI cancer to improve clinical outcomes.
Collapse
Affiliation(s)
- Yufen He
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400014, P.R. China
| | - Yaxi Huang
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400014, P.R. China
| | - Peng Peng
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400014, P.R. China
| | - Qi Yan
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400014, P.R. China
| | - Lidan Ran
- Department of Intensive Care Unit, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400014, P.R. China
| |
Collapse
|
30
|
Keerthiga R, Xie Y, Pei DS, Fu A. The multifaceted modulation of mitochondrial metabolism in tumorigenesis. Mitochondrion 2025; 80:101977. [PMID: 39505244 DOI: 10.1016/j.mito.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Changes in mitochondrial metabolism produce a malignant transformation from normal cells to tumor cells. Mitochondrial metabolism, comprising bioenergetic metabolism, biosynthetic process, biomolecular decomposition, and metabolic signal conversion, obviously forms a unique sign in the process of tumorigenesis. Several oncometabolites produced by mitochondrial metabolism maintain tumor phenotype, which are recognized as tumor indicators. The mitochondrial metabolism synchronizes the metabolic and genetic outcome to the potent tumor microenvironmental signals, thereby further promoting tumor initiation. Moreover, the bioenergetic and biosynthetic metabolism within tumor mitochondria orchestrates dynamic contributions toward cancer progression and invasion. In this review, we describe the contribution of mitochondrial metabolism in tumorigenesis through shaping several hallmarks such as microenvironment modulation, plasticity, mitochondrial calcium, mitochondrial dynamics, and epithelial-mesenchymal transition. The review will provide a new insight into the abnormal mitochondrial metabolism in tumorigenesis, which will be conducive to tumor prevention and therapy through targeting tumor mitochondria.
Collapse
Affiliation(s)
- Rajendiran Keerthiga
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China; Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Yafang Xie
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailing Fu
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
31
|
Mukherjee S, Pereboeva L, Fil D, Saikia A, Lee J, Li J, Cotticelli MG, Soragni E, Wilson RB, Napierala M, Napierala JS. Design and validation of cell-based potency assays for frataxin supplementation treatments. Mol Ther Methods Clin Dev 2024; 32:101347. [PMID: 39823061 PMCID: PMC11735916 DOI: 10.1016/j.omtm.2024.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/24/2024] [Indexed: 01/19/2025]
Abstract
Friedreich's ataxia (FRDA) is a multisystem, autosomal recessive disorder caused by mutations in the frataxin (FXN) gene. As FRDA is considered an FXN deficiency disorder, numerous therapeutic approaches in development or clinical trials aim to supplement FXN or restore endogenous FXN expression. These include gene therapy, protein supplementation, genome editing or upregulation of FXN transcription. To evaluate efficacy of these therapies, potency assays capable of quantitative determination of FXN biological activity are needed. Herein, we evaluate the suitability of mouse embryonic fibroblasts derived from Fxn G127V knockin mice (MUT MEFs) as a candidate for cell-based potency assays. We demonstrate that these cells, when immortalized, continue to express minute amounts of Fxn and exhibit a broad range of phenotypes that result from severe Fxn deficiency. Exogenous FXN supplementation reverses these phenotypes. Thus, immortalized MUT MEFs are an excellent tool for developing potency assays to validate novel FRDA therapies. Care needs to be exercised while utilizing these cell lines, as extended passaging results in molecular changes that spontaneously reverse FRDA-like phenotypes without increasing Fxn expression. Based on transcriptome analyses, we identified the Warburg effect as the mechanism allowing cells expressing a minimal level of Fxn to thrive under standard cell culture conditions.
Collapse
Affiliation(s)
- Shibani Mukherjee
- Department of Neurology, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Larisa Pereboeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Daniel Fil
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Achisha Saikia
- Department of Neurology, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jixue Li
- Department of Neurology, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - M. Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elisabetta Soragni
- Friedreich’s Ataxia Research Alliance, 533 W. Uwchlan Avenue, Downingtown, PA 19335, USA
| | - Robert B. Wilson
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marek Napierala
- Department of Neurology, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jill S. Napierala
- Department of Neurology, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
32
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
33
|
Li Z, Liang P, Chen Z, Chen Z, Jin T, He F, Chen X, Yang K. CAF-secreted LOX promotes PD-L1 expression via histone Lactylation and regulates tumor EMT through TGFβ/IGF1 signaling in gastric Cancer. Cell Signal 2024; 124:111462. [PMID: 39395525 DOI: 10.1016/j.cellsig.2024.111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
In gastric cancer treatment, cancer-associated fibroblasts (CAF) may significantly influence the efficacy of immune checkpoint inhibitors by modulating PD-L1 expression. However, the precise mechanisms remain unclear. This study aims to explore the relationship between CAF and PD-L1 expression, providing new insights for improving PD-L1-targeted therapies. Using primary fibroblasts, transcriptome sequencing, ChIP-qPCR, and a lung metastasis model, we discovered that CAF secrete lysyl oxidase (LOX), which activates the TGFβ signaling pathway in gastric cancer cells, thereby promoting insulin-like growth factor 1(IGF1) expression. Upregulation of IGF1 enhances gastric cancer cell migration, epithelial-mesenchymal transition (EMT), and glycolysis. Additionally, we found that lactate accumulation leads to lysine 18 lactylation on histone H3 (H3K18la), which enriches at the PD-L1 promoter region, thus promoting PD-L1 transcription. These findings suggest that CAF may diminish the effectiveness of PD-1/PD-L1 blockade immunotherapy through LOX-induced glycolysis and lactate accumulation. Consequently, we have constructed a model of the interactions among CAF, lactate, and PD-L1 in gastric cancer progression, providing new experimental evidence for PD-L1-based immunotherapy.
Collapse
Affiliation(s)
- Zedong Li
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China; Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Panping Liang
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Zhengwen Chen
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Zehua Chen
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Tao Jin
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Fengjun He
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Xiaolong Chen
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Kun Yang
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China.
| |
Collapse
|
34
|
Luo M, Ma X, Ye J. Reductive stress-a common metabolic feature of obesity and cancer. Acta Pharm Sin B 2024; 14:5181-5185. [PMID: 39807313 PMCID: PMC11725146 DOI: 10.1016/j.apsb.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 01/16/2025] Open
Abstract
Reductive stress, characterized by rising level of NADH (nicotinamide adenine dinucleotide) for a status of NADH/NAD+ ratio elevation, has been reported in obesity and cancer. However, the mechanism and significance of reductive stress remain to be established in obesity. This perspective is prepared to address the issue with new insights published recently. NADH is used in production of NADPH, glutathione, ATP and heat in the classical biochemistry. In obesity, elevation of NADH/NAD+ ratio, likely from overproduction due to substrate overloading, has been found in the liver for insulin resistance and gluconeogenesis. New evidence demonstrates that the elevation may induce lipogenesis, purine biosynthesis and gluconeogenesis through activation of transcription factors of ChREBP and NRF2. In cancer cells, NADH/NAD+ elevation under the Warburg effect is primarily derived from decreased NADH consumption in the mitochondrial respiration. Alternatively, NRF2 overactivation from gene mutation represents another mechanism of NADH/NAD+ elevation from NADH production in the cancer cells. The elevation is required for quick proliferation of cancer cells through induction of biosynthesis of the essential molecules. It appears that the causes of reductive stress are different between obesity and cancer, while its impact in anabolism is similar in the two conditions.
Collapse
Affiliation(s)
- Man Luo
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
| | - Xiwen Ma
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou 450052, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou 450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Zhengzhou Key laboratory of Obesity Research, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
35
|
Yan X, Yuan C, Wang Z, Xu Z, Wu Z, Wang M, Xu M, Wang Z, Sun Y. Berberine modulates ovarian cancer autophagy and glycolysis through the LINC01123/P65/MAPK10 signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156121. [PMID: 39395322 DOI: 10.1016/j.phymed.2024.156121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Berberine, a readily accessible natural compound known for its ease of synthesis and low toxicity, exhibits anti-tumor properties by modulating inflammatory responses. Recent studies have revealed that berberine can also treat malignant tumors by influencing tumor metabolic reprogramming, making it a potential candidate for metabolic therapy in ovarian cancer. METHODS The anti-proliferative and anti-metastatic effects of berberine on ovarian cancer cells were investigated using CCK-8 assays, scratch assays, EDU proliferation assays, and assays related to glycolysis and autophagy. Differentially expressed lncRNAs in ovarian cancer were identified using data from the TCGA database. A specific lncRNA's role was delineated through RNA pulldown assays, silver staining, mass spectrometry analysis, CHIP assays, and immunoprecipitation experiments, focusing on its involvement in glycolysis and autophagy regulation in ovarian cancer. Additionally, the inhibitory mechanism of berberine on ovarian cancer cells was validated through cell thermal shift assays and cycloheximide protein degradation experiments to confirm its interaction with key targets. RESULTS In vitro experiments revealed that berberine reduces glycolysis and autophagy levels, leading to the inhibition of ovarian cancer cell proliferation and metastasis. Bioinformatics analysis of TCGA data identified LINC00123 as associated with poor prognosis in ovarian cancer. Experimental validation, including RNA pulldown assays, confirmed that the LINC00123/P65/MAPK10 signaling axis regulates glycolysis and autophagy in ovarian cancer. Furthermore, at the molecular level, berberine inhibits the interaction between LINC00123 and P65, thereby reducing P65 protein stability and impeding its transcriptional regulation of downstream MAPK10. These findings were further validated in animal models. CONCLUSION Our study highlights berberine's dual benefits of anti-inflammatory effects and inhibition of ovarian cancer proliferation and metastasis by modulating autophagy and glycolysis levels. Mechanistically, berberine targets the LINC00123/P65/MAPK10 signaling pathway to regulate glycolysis and autophagy in ovarian cancer. These insights not only expand the potential of berberine in ovarian cancer therapy but also provide new targets and therapeutic strategies for metabolic therapy in this cancer type.
Collapse
Affiliation(s)
- Xiao Yan
- Department of Gynecology and Obstetrics, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Chenyue Yuan
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Ziyang Wang
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Zeyu Xu
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Zong Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Mengfei Wang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Meng Xu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Ziliang Wang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai, 200071, China.
| | - Yongning Sun
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai, 200071, China.
| |
Collapse
|
36
|
Wang G, Liu S, Kong X, Jiao H, Tong F, Guo Z, Zhang M, Guan X, Ren N, Li W, Qi L, Wei Y. Lipocalin-2 induced LDHA expression promotes vascular remodelling in pulmonary hypertension. Cell Prolif 2024; 57:e13717. [PMID: 39021353 PMCID: PMC11628741 DOI: 10.1111/cpr.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
Aerobic glycolysis is involved in the pathogenesis of pulmonary hypertension (PH). The mechanisms by which glycolysis is increased and how it contributes to pulmonary vascular remodelling are not yet fully understood. In this study, we demonstrated that elevated lipocalin-2 (LCN2) in PH significantly enhances aerobic glycolysis in human pulmonary artery smooth muscle cells (PASMCs) by up-regulating LDHA expression. Knockout of Lcn2 or having heterozygous LDHA deficiency in mice significantly inhibits the progression of hypoxic PH. Our study reveals that LCN2 stimulates LDHA expression by activating Akt-HIF-1α signalling pathway. Inhibition of Akt or HIF-1α reduces LDHA expression and proliferation of PASMCs. Both Akt and HIF-1α play critical roles in the development of PH and are suppressed in the pulmonary vessels of hypoxic PH mice lacking LCN2. These findings shed light on the LCN2-Akt-HIF1α-LDHA axis in aerobic glycolysis in PH.
Collapse
Affiliation(s)
- Guoliang Wang
- Department of Tumor and Immunology, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Shenghua Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaohui Kong
- Department of Tumor and Immunology, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Hong Jiao
- Department of Tumor and Immunology, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Feng Tong
- Department of Cardiac Surgery, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Zhangke Guo
- Department of Cardiac Surgery, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Meng Zhang
- Department of Pathology, Beijing Children's Hospital, Capital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Xiaoxing Guan
- Department of Pathology, Beijing Children's Hospital, Capital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Na Ren
- Department of Clinical Laboratory Center, Beijing Children's HospitalCapital Medical UniversityBeijingChina
| | - Wanzhen Li
- Department of Lipidomics Experimental Platform, State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Lihua Qi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Yingjie Wei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
37
|
Hu Y, Liu W, Fang W, Dong Y, Zhang H, Luo Q. Tumor energy metabolism: implications for therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:63. [PMID: 39609317 PMCID: PMC11604893 DOI: 10.1186/s43556-024-00229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Tumor energy metabolism plays a crucial role in the occurrence, progression, and drug resistance of tumors. The study of tumor energy metabolism has gradually become an emerging field of tumor treatment. Recent studies have shown that epigenetic regulation is closely linked to tumor energy metabolism, influencing the metabolic remodeling and biological traits of tumor cells. This review focuses on the primary pathways of tumor energy metabolism and explores therapeutic strategies to target these pathways. It covers key areas such as glycolysis, the Warburg effect, mitochondrial function, oxidative phosphorylation, and the metabolic adaptability of tumors. Additionally, this article examines the role of the epigenetic regulator SWI/SNF complex in tumor metabolism, specifically its interactions with glucose, lipids, and amino acids. Summarizing therapeutic strategies aimed at these metabolic pathways, including inhibitors of glycolysis, mitochondrial-targeted drugs, exploitation of metabolic vulnerabilities, and recent developments related to SWI/SNF complexes as potential targets. The clinical significance, challenges, and future directions of tumor metabolism research are discussed, including strategies to overcome drug resistance, the potential of combination therapy, and the application of new technologies.
Collapse
Affiliation(s)
- Youwu Hu
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wanqing Liu
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - WanDi Fang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yudi Dong
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
| | - Hong Zhang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qing Luo
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China.
- Guizhou Provincial Key Laboratory of Cell Engineering, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
38
|
Papaneophytou C. The Warburg Effect: Is it Always an Enemy? FRONT BIOSCI-LANDMRK 2024; 29:402. [PMID: 39735988 DOI: 10.31083/j.fbl2912402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 12/31/2024]
Abstract
The Warburg effect, also known as 'aerobic' glycolysis, describes the preference of cancer cells to favor glycolysis over oxidative phosphorylation for energy (adenosine triphosphate-ATP) production, despite having high amounts of oxygen and fully active mitochondria, a phenomenon first identified by Otto Warburg. This metabolic pathway is traditionally viewed as a hallmark of cancer, supporting rapid growth and proliferation by supplying energy and biosynthetic precursors. However, emerging research indicates that the Warburg effect is not just a strategy for cancer cells to proliferate at higher rates compared to normal cells; thus, it should not be considered an 'enemy' since it also plays complex roles in normal cellular functions and/or under stress conditions, prompting a reconsideration of its purely detrimental characterization. Moreover, this review highlights that distinguishing glycolysis as 'aerobic' and 'anaerobic' should not exist, as lactate is likely the final product of glycolysis, regardless of the presence of oxygen. Finally, this review explores the nuanced contributions of the Warburg effect beyond oncology, including its regulatory roles in various cellular environments and the potential effects on systemic physiological processes. By expanding our understanding of these mechanisms, we can uncover novel therapeutic strategies that target metabolic reprogramming, offering new avenues for treating cancer and other diseases characterized by metabolic dysregulation. This comprehensive reevaluation not only challenges traditional views but also enhances our understanding of cellular metabolism's adaptability and its implications in health and disease.
Collapse
Affiliation(s)
- Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| |
Collapse
|
39
|
Xiong Z, Fang G, Mondal RK, Liao Y, Nie N, Chen YC, Kim M. On-Chip NADH Detection in Multicellular Models Using an AlGaN/GaN Photodetector Array with Enhanced Sensitivity. NANO LETTERS 2024; 24:14993-15000. [PMID: 39475050 DOI: 10.1021/acs.nanolett.4c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a pivotal coenzyme, existing in its oxidized form (NAD+) and reduced form (NADH). Both are essential in cellular redox reactions and are implicated in energy production and cancer. Current NADH detection methods often involve complex optical measurements. We propose a miniaturized, on-chip photoelectric sensor array using AlGaN/GaN two-dimensional electron gas (2DEG) photodetectors for NADH quantification. The device exhibits an ultralow dark current and ultrahigh UV light responsivity, enabling sensitive NADH detection. By exploiting the absorbance disparity between NADH and NAD+, our sensor achieves rapid, sensitive detection, surpassing commercial assays. It effectively detects NADH levels in 3D multicellular models, promising cancer screening and monitoring. This sensor platform offers a significant advancement in NADH quantification, with the potential for high-throughput testing and point-of-care diagnostics. Our study presents an efficient approach for NADH sensing, addressing the need for rapid and sensitive detection methods in biomedical research and clinical practice.
Collapse
Affiliation(s)
- Zhongshu Xiong
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Guocheng Fang
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Ramit Kumar Mondal
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Yikai Liao
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Ningyuan Nie
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Yu-Cheng Chen
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Munho Kim
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| |
Collapse
|
40
|
Zhou H, Zhang C, Li Z, Xia M, Li Z, Wang Z, Tan GY, Luo Y, Zhang L, Wang W. Systematic development of a highly efficient cell factory for 5-aminolevulinic acid production. Trends Biotechnol 2024; 42:1479-1502. [PMID: 39112275 DOI: 10.1016/j.tibtech.2024.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 11/17/2024]
Abstract
The versatile applications of 5-aminolevulinic acid (5-ALA) across the fields of agriculture, livestock, and medicine necessitate a cost-efficient biomanufacturing process. In this study, we achieved the economic viability of biomanufacturing this compound through a systematic engineering framework. First, we obtained a 5-ALA synthase (ALAS) with superior performance by exploring its natural diversity with divergent evolution. Subsequently, using a genome-scale model, we identified and modified four key targets from distinct pathways in Escherichia coli, resulting in a final enhancement of 5-ALA titers up to 21.82 g/l in a 5-l bioreactor. Furthermore, recognizing that an imbalance of redox equivalents hindered further titer improvement, we developed a dynamic control system that effectively balances redox status and carbon flux. Ultimately, we collaboratively optimized the artificial redox homeostasis system at the transcription level with other cofactors at the feeding level, demonstrating the highest recorded performance to date with a titer of 63.39 g/l for the biomanufacturing of 5-ALA.
Collapse
Affiliation(s)
- Houming Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Menglei Xia
- Metabolism and Fermentation Process Control, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenghong Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
41
|
Zhang X, Ge J, Wang Y, Chen M, Guo X, Zhu S, Wang H, Wang Q. Integrative Omics Reveals the Metabolic Patterns During Oocyte Growth. Mol Cell Proteomics 2024; 23:100862. [PMID: 39414232 PMCID: PMC11585809 DOI: 10.1016/j.mcpro.2024.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024] Open
Abstract
Well-controlled metabolism is associated with high-quality oocytes and optimal development of a healthy embryo. However, the metabolic framework that controls mammalian oocyte growth remains unknown. In the present study, we comprehensively depict the temporal metabolic dynamics of mouse oocytes during in vivo growth through the integrated analysis of metabolomics and proteomics. Many novel metabolic features are discovered during this process. Of note, glycolysis is enhanced, and oxidative phosphorylation capacity is reduced in the growing oocytes, presenting a Warburg-like metabolic program. For nucleotide biosynthesis, the salvage pathway is markedly activated during oocyte growth, whereas the de novo pathway is evidently suppressed. Fatty acid synthesis and channeling into phosphoinositides are specifically elevated in oocytes accompanying primordial follicle activation; nevertheless, fatty acid oxidation is reduced in these oocytes simultaneously. Our data establish the metabolic landscape during in vivo oocyte growth and serve as a broad resource for probing mammalian oocyte metabolism.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Yue Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Minjian Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China.
| | - Hui Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
42
|
Fujii J. Redox remodeling of central metabolism as a driving force for cellular protection, proliferation, differentiation, and dysfunction. Free Radic Res 2024; 58:606-629. [PMID: 39316831 DOI: 10.1080/10715762.2024.2407147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The production of reactive oxygen species (ROS) is elevated via metabolic hyperactivation in response to a variety of stimuli such as growth factors and inflammation. Tolerable amounts of ROS moderately inactivate enzymes via oxidative modification, which can be reversed back to the native form in a redox-dependent manner. The excessive production of ROS, however, causes cell dysfunction and death. Redox-reactive enzymes are present in primary metabolic pathways such as glycolysis and the tricarboxylic acid cycle, and these act as floodgates for carbon flux. Oxidation of a specific form of cysteine inhibits glyceraldehyde-3-phosphate dehydrogenase, which is reversible, and causes an accumulation of upstream intermediary compounds that increases the flux of glucose-6-phosphate to the pentose phosphate pathway. These reactions increase the NADPH and ribose-5-phosphate that are available for reductive reactions and nucleotide synthesis, respectively. On the other hand, oxidative inactivation of mitochondrial aconitase increases citrate, which is then recruited to synthesize fatty acids in the cytoplasm. Decreases in the use of carbohydrate for ATP production can be compensated via amino acid catabolism, and this metabolic change makes nitrogen available for nucleic acid synthesis. Coupling of the urea cycle also converts nitrogen to urea and polyamine, the latter of which supports cell growth. This metabolic remodeling stimulates the proliferation of tumor cells and fibrosis in oxidatively damaged tissues. Oxidative modification of these enzymes is generally reversible in the early stages of oxidizing reactions, which suggests that early treatment with appropriate antioxidants promotes the maintenance of natural metabolism.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
43
|
Zhao M, Chen YL, Yang LH. Advancements in the study of glucose metabolism in relation to tumor progression and treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 192:11-18. [PMID: 39111717 DOI: 10.1016/j.pbiomolbio.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Sugar serves as the primary energy source for mammals, with glucose metabolism facilitating energy acquisition in human cells. The proper functioning of intracellular glucose metabolism is essential for the maintenance of orderly and healthy physiological activities. Tumor cells, characterized by uncontrolled growth, exhibit dysregulated proliferation and apoptosis processes, leading to abnormal alterations in glucose metabolism. Specifically, tumor cells exhibit a shift towards aerobic glycolysis, resulting in the production of lactic acid that can be utilized as a metabolic intermediate for sustained tumor cell growth. This article provides a comprehensive overview of the enzymes involved in glucose metabolism and the alterations in gene expression that occur during tumor progression. It also examines the current research on targeting abnormal glucose metabolism processes for tumor treatment and discusses potential future directions for utilizing glucose metabolism as a therapeutic target.
Collapse
Affiliation(s)
- Meng Zhao
- Clinical Biochemistry Teaching and Research Office, Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Department of Pathophysiology, College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Lian-He Yang
- Clinical Biochemistry Teaching and Research Office, Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
44
|
Man X, Li W, Zhu M, Li S, Xu G, Zhang Z, Liang H, Yang F. Rational Design of a Hetero-multinuclear Gadolinium(III)-Copper(II) Complex: Integrating Magnetic Resonance Imaging, Photoacoustic Imaging, Mild Photothermal Therapy, Chemotherapy and Immunotherapy of Cancer. J Med Chem 2024; 67:15606-15619. [PMID: 39143701 DOI: 10.1021/acs.jmedchem.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
For more accurate diagnosis and effective treatment of cancer, we proposed to develop a hetero-multinuclear metal complex based on the property of apoferritin (AFt) for targeting tumor theranostics by integrating dual-modality imaging diagnosis and multimodality therapy. To this end, we rational designed and synthesized a trinuclear Gd(III)-Cu(II) thiosemicarbazone complex (Gd-2Cu) and then constructed a Gd-2Cu@AFt nanoparticle (NP) delivery system. Gd-2Cu/Gd-2Cu@AFt NPs not only had significant T1-weighted magnetic resonance imaging and photoacoustic imaging of the tumor but also effectively inhibited tumor growth through a combination of mild photothermal therapy, chemotherapy, and immunotherapy. Gd-2Cu@AFt NPs optimized the behavior of imaging diagnosis and therapy of Gd-2Cu, improved its targeting ability, and reduced the side effects in vivo. Besides, we revealed and clarified the anticancer mechanism of Gd-2Cu: interrupting energy metabolism of the tumor cell, inducing apoptosis of the tumor cell, and activating a systemic immune response by inducing immunogenic cell death of cancer cells.
Collapse
Affiliation(s)
- Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
45
|
Shi L, Zhang Z, Huang Y, Zheng Y. FOXCUT regulates the malignant phenotype of triple-negative breast Cancer via the miR-337-3p/ANP32E Axis. Genomics 2024; 116:110892. [PMID: 38944356 DOI: 10.1016/j.ygeno.2024.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND The lack of specific molecular targets and the rapid spread lead to a worse prognosis of triple-negative breast cancer (TNBC). Therefore, identifying new therapeutic and prognostic biomarkers helps to develop effective treatment strategies for TNBC. METHODS Through preliminary bioinformatics analysis, FOXCUT was found to be significantly overexpressed in breast cancer, especially in TNBC. Tissue samples were collected from 15 TNBC patients, and qRT-PCR was employed to validate the expression of FOXCUT in both TNBC patient tissues and TNBC cell lines. We also carried out the GSEA analysis and KEGG enrichment analysis of FOXCUT. Additionally, the effects of FOXCUT knockdown on TNBC cell malignant behaviors, and aerobic glycolysis were assessed by methods including CCK-8, Transwell, western blot, and Seahorse XF 96 analyses. Moreover, utilizing databases predicting interactions between ceRNAs, corresponding lncRNA-miRNA binding relationships, and miRNA-mRNA interactions were predicted. These predictions were subsequently validated through RNA immunoprecipitation and dual-luciferase reporter assays. RESULTS FOXCUT exhibited high expression in both TNBC tissues and cell lines, fostering cell malignant behaviors and glycolysis. FOXCUT was found to sponge miR-337-3p, while miR-337-3p negatively regulated the expression of ANP32E. Consequently, FOXCUT ultimately facilitated the malignant phenotype of TNBC by upregulating ANP32E expression. CONCLUSION This study elucidated the role of FOXCUT in elevating aerobic glycolysis levels in TNBC and driving malignant cancer cell development via the miR-337-3p/ANP32E regulatory axis.
Collapse
Affiliation(s)
- Lei Shi
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Ziwen Zhang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Yuan Huang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Yabing Zheng
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
46
|
Si Y, Ou H, Jin X, Gu M, Sheng S, Peng W, Yang D, Zhan X, Zhang L, Yu Q, Liu X, Liu Y. G protein pathway suppressor 2 suppresses aerobic glycolysis through RACK1-mediated HIF-1α degradation in breast cancer. Free Radic Biol Med 2024; 222:478-492. [PMID: 38942092 DOI: 10.1016/j.freeradbiomed.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Aerobic glycolysis has been recognized as a hallmark of human cancer. G protein pathway suppressor 2 (GPS2) is a negative regulator of the G protein-MAPK pathway and a core subunit of the NCoR/SMRT transcriptional co-repressor complex. However, how its biological properties intersect with cellular metabolism in breast cancer (BC) development remains poorly elucidated. Here, we report that GPS2 is low expressed in BC tissues and negatively correlated with poor prognosis. Both in vitro and in vivo studies demonstrate that GPS2 suppresses malignant progression of BC. Moreover, GPS2 suppresses aerobic glycolysis in BC cells. Mechanistically, GPS2 destabilizes HIF-1α to reduce the transcription of its downstream glycolytic regulators (PGK1, PGAM1, ENO1, PKM2, LDHA, PDK1, PDK2, and PDK4), and then suppresses cellular aerobic glycolysis. Notably, receptor for activated C kinase 1 (RACK1) is identified as a key ubiquitin ligase for GPS2 to promote HIF-1α degradation. GPS2 stabilizes the binding of HIF-1α to RACK1 by directly binding to RACK1, resulting in polyubiquitination and instability of HIF-1α. Amino acid residues 70-92 aa of the GPS2 N-terminus bind RACK1. A 23-amino-acid-long GPS2-derived peptide was developed based on this N-terminal region, which promotes the interaction of RACK1 with HIF-1α, downregulates HIF-1α expression and significantly suppresses BC tumorigenesis in vitro and in vivo. In conclusion, our findings indicate that GPS2 decreases the stability of HIF-1α, which in turn suppresses aerobic glycolysis and tumorigenesis in BC, suggesting that targeting HIF-1α degradation and treating with peptides may be a promising approach to treat BC.
Collapse
Affiliation(s)
- Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Hongling Ou
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xin Jin
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Manxiang Gu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Songran Sheng
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenkang Peng
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Dan Yang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiangrong Zhan
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qingqing Yu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
47
|
Qin W, Deng Y, Ren H, Liu Y, Liu L, Liu W, Zhao Y, Li C, Yang Z. Exploring the anticancer mechanism of cardiac glycosides using proteome integral solubility alteration approach. Cancer Med 2024; 13:e70252. [PMID: 39350574 PMCID: PMC11442762 DOI: 10.1002/cam4.70252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND AND AIMS Cardiac glycosides (CGs), traditionally used for heart failure, have shown potential as anti-cancer agents. This study aims to explore their multifaceted mechanisms in cancer cell biology using proteome integral solubility alteration (PISA), focusing on the interaction with key proteins implicated in cellular metabolism and mitochondrial function. METHODS We conducted lysate-based and intact-cell PISA assays on cancer cells treated with CGs (Digoxin, Digitoxin, Ouabain) to analyze protein solubility changes. This was followed by mass spectrometric analysis and bioinformatics to identify differentially soluble proteins (DSPs). Molecular docking simulations were performed to predict protein-CG interactions. Public data including gene expression changes upon CG treatment were re-analyzed for validation. RESULTS The PISA assays revealed CGs' broad-spectrum interactions, particularly affecting proteins like PKM2, ANXA2, SLC16A1, GOT2 and GLUD1. Molecular docking confirmed stable interactions between CGs and these DSPs. Re-analysis of public data supported the impact of CGs on cancer metabolism and cell signaling pathways. CONCLUSION Our findings suggest that CGs could be repurposed for cancer therapy by modulating cellular processes. The PISA data provide insights into the polypharmacological effects of CGs, warranting further exploration of their mechanisms and clinical potential.
Collapse
Affiliation(s)
- Wenjie Qin
- Department of PharmacyThe First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital)ChangshaChina
| | - Yinhua Deng
- Department of PharmacyThe First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital)ChangshaChina
| | - Huan Ren
- Department of PharmacyThe First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital)ChangshaChina
| | - Yanling Liu
- Department of PharmacyThe First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital)ChangshaChina
| | - Ling Liu
- Department of PharmacyThe First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital)ChangshaChina
| | - Wenhui Liu
- Department of PharmacyThe Second Xiangya Hospital, Central South UniversityChangshaChina
- Institute of Clinical Pharmacy, Central South UniversityChangshaChina
| | - Yuxi Zhao
- Shenzhen Wininnovate Bio‐Tech Co., LtdShenzhenChina
| | - Chen Li
- Department of PharmacyThe First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital)ChangshaChina
| | - Zhiling Yang
- Department of PharmacyThe First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital)ChangshaChina
| |
Collapse
|
48
|
Kenaan N, Hanna G, Sardini M, Iyoun MO, Layka K, Hannouneh ZA, Alshehabi Z. Advances in early detection of non-small cell lung cancer: A comprehensive review. Cancer Med 2024; 13:e70156. [PMID: 39300939 PMCID: PMC11413414 DOI: 10.1002/cam4.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Lung cancer has the highest mortality rate among malignancies globally. In addition, due to the growing number of smokers there is considerable concern over its growth. Early detection is an essential step towards reducing complications in this regard and helps to ensure the most effective treatment, reduce health care costs, and increase survival rates. AIMS To define the most efficient and cost-effective method of early detection in clinical practice. MATERIALS AND METHODS We collected the Information used to write this review by searching papers through PUBMED that were published from 2021 to 2024, mainly systematic reviews, meta-analyses and clinical-trials. We also included other older but notable papers that we found essential and valuable for understanding. RESULTS EB-OCT has a varied sensitivity and specificity-an average of 94.3% and 89.9 for each. On the other hand, detecting biomarkers via liquid biopsy carries an average sensitivity of 91.4% for RNA molecules detection, and 97% for combined methylated DNA panels. Moreover, CTCs detection did not prove to have a significant role as a screening method due to the rarity of CTCs in the bloodstream thus the need for more blood samples and for enrichment techniques. DISCUSSION Although low-dose CT scan (LDCT) is the current golden standard screening procedure, it is accompanied by a highly false positive rate. In comparison to other radiological screening methods, Endobronchial optical coherence tomography (EB-OCT) has shown a noticeable advantage with a significant degree of accuracy in distinguishing between subtypes of non-small cell lung cancer. Moreover, numerous biomarkers, including RNA molecules, circulating tumor cells, CTCs, and methylated DNA, have been studied in the literature. Many of these biomarkers have a specific high sensitivity and specificity, making them potential candidates for future early detection approaches. CONCLUSION LDCT is still the golden standard and the only recommended screening procedure for its high sensitivity and specificity and proven cost-effectiveness. Nevertheless, the notable false positive results acquired during the LDCT examination caused a presumed concern, which drives researchers to investigate better screening procedures and approaches, particularly with the rise of the AI era or by combining two methods in a well-studied screening program like LDCT and liquid biopsy. we suggest conducting more clinical studies on larger populations with a clear demographical target and adopting approaches for combining one of these new methods with LDCT to decrease false-positive cases in early detection.
Collapse
Affiliation(s)
- Nour Kenaan
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Faculty of MedicineTishreen UniversityLattakiaSyrian Arab Republic
| | - George Hanna
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Faculty of MedicineTishreen UniversityLattakiaSyrian Arab Republic
| | - Moustafa Sardini
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Faculty of MedicineTishreen UniversityLattakiaSyrian Arab Republic
| | - Mhd Omar Iyoun
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Faculty of MedicineTishreen UniversityLattakiaSyrian Arab Republic
| | - Khedr Layka
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Department of pathologyTishreen University hospitalLattakiaSyrian Arab Republic
| | - Zein Alabdin Hannouneh
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Faculty of MedicineAl Andalus University for Medical SciencesTartusSyrian Arab Republic
| | - Zuheir Alshehabi
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Department of pathologyTishreen University hospitalLattakiaSyrian Arab Republic
| |
Collapse
|
49
|
Yang C, Xu L, Liao F, Liao C, Zhao Y, Chen Y, Yu Q, Peng B, Liu H. Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis. Sci Rep 2024; 14:19027. [PMID: 39152229 PMCID: PMC11329790 DOI: 10.1038/s41598-024-69862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
Pulsed electromagnetic field (PEMF) therapy has been extensively investigated in clinical studies for the treatment of angiogenesis-related diseases. However, there is a lack of research on the impact of PEMFs on energy metabolism and mitochondrial dynamics during angiogenesis. The present study included tube formation and CCK-8 assays. A Seahorse assay was conducted to analyze energy metabolism, and mitochondrial membrane potential assays, mitochondrial imaging, and reactive oxygen species assays were used to measure changes in mitochondrial structure and function in human umbilical vein endothelial cells (HUVECs) exposed to PEMFs. Real-time polymerase chain reaction was used to analyze the mRNA expression levels of antioxidants, glycolytic pathway-related genes, and genes associated with mitochondrial fission and fusion. The tube formation assay demonstrated a significantly greater tube network in the PEMF group compared to the control group. The glycolysis and mitochondrial stress tests revealed that PEMFs promoted a shift in the energy metabolism pattern of HUVECs from oxidative phosphorylation to aerobic glycolysis. Mitochondrial imaging revealed a wire-like mitochondrial morphology in the control group, and treatment with PEMFs led to shorter and more granular mitochondria. Our major findings indicate that exposure to PEMFs accelerates angiogenesis in HUVECs, likely by inducing energy metabolism reprogramming and mitochondrial fission.
Collapse
Affiliation(s)
- Chengyi Yang
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Li Xu
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Feng Liao
- Department of Orthopaedics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Chunmei Liao
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Yunying Zhao
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Yijie Chen
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Qian Yu
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Bo Peng
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
| | - Huifang Liu
- Department of Rehabilitation Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
50
|
Kim Y, Jang Y, Kim MS, Kang C. Metabolic remodeling in cancer and senescence and its therapeutic implications. Trends Endocrinol Metab 2024; 35:732-744. [PMID: 38453603 DOI: 10.1016/j.tem.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Cellular metabolism is a flexible and plastic network that often dictates physiological and pathological states of the cell, including differentiation, cancer, and aging. Recent advances in cancer metabolism represent a tremendous opportunity to treat cancer by targeting its altered metabolism. Interestingly, despite their stable growth arrest, senescent cells - a critical component of the aging process - undergo metabolic changes similar to cancer metabolism. A deeper understanding of the similarities and differences between these disparate pathological conditions will help identify which metabolic reprogramming is most relevant to the therapeutic liabilities of senescence. Here, we compare and contrast cancer and senescence metabolism and discuss how metabolic therapies can be established as a new modality of senotherapy for healthy aging.
Collapse
Affiliation(s)
- Yeonju Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Yeji Jang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Mi-Sung Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|