1
|
Desaulniers AT, White BR. Role of gonadotropin-releasing hormone 2 and its receptor in human reproductive cancers. Front Endocrinol (Lausanne) 2024; 14:1341162. [PMID: 38260130 PMCID: PMC10800933 DOI: 10.3389/fendo.2023.1341162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Gonadotropin-releasing hormone (GnRH1) and its receptor (GnRHR1) drive reproduction by regulating gonadotropins. Another form, GnRH2, and its receptor (GnRHR2), also exist in mammals. In humans, GnRH2 and GnRHR2 genes are present, but coding errors in the GnRHR2 gene are predicted to hinder full-length protein production. Nonetheless, mounting evidence supports the presence of a functional GnRHR2 in humans. GnRH2 and its receptor have been identified throughout the body, including peripheral reproductive tissues like the ovary, uterus, breast, and prostate. In addition, GnRH2 and its receptor have been detected in a wide number of reproductive cancer cells in humans. Notably, GnRH2 analogues have potent anti-proliferative, pro-apoptotic, and/or anti-metastatic effects on various reproductive cancers, including endometrial, breast, placental, ovarian, and prostate. Thus, GnRH2 is an emerging target to treat human reproductive cancers.
Collapse
Affiliation(s)
- Amy T. Desaulniers
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Brett R. White
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
2
|
Casati L, Ciceri S, Maggi R, Bottai D. Physiological and Pharmacological overview of the Gonadotropin Releasing Hormone. Biochem Pharmacol 2023; 212:115553. [PMID: 37075816 DOI: 10.1016/j.bcp.2023.115553] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Gonadotropin-releasing Hormone (GnRH) is a decapeptide responsible for the control of the reproductive functions. It shows C- and N-terminal aminoacid modifications and two other distinct isoforms have been so far identified. The biological effects of GnRH are mediated by binding to high-affinity G-protein couple receptors (GnRHR), showing characteristic very short C tail. In mammals, including humans, GnRH-producing neurons originate in the embryonic nasal compartment and during early embryogenesis they undergo rapid migration towards the hypothalamus; the increasing knowledge of such mechanisms improved diagnostic and therapeutic approaches to infertility. The pharmacological use of GnRH, or its synthetic peptide and non-peptide agonists or antagonists, provides a valid tool for reproductive disorders and assisted reproduction technology (ART). The presence of GnRHR in several organs and tissues indicates additional functions of the peptide. The identification of a GnRH/GnRHR system in the human endometrium, ovary, and prostate has extended the functions of the peptide to the physiology and tumor transformation of such tissues. Likely, the activity of a GnRH/GnRHR system at the level of the hippocampus, as well as its decreased expression in mice brain aging, raised interest in its possible involvement in neurogenesis and neuronal functions. In conclusion, GnRH/GnRHR appears to be a fascinating biological system that exerts several possibly integrated pleiotropic actions in the complex control of reproductive functions, tumor growth, neurogenesis, and neuroprotection. This review aims to provide an overview of the physiology of GnRH and the pharmacological applications of its synthetic analogs in the management of reproductive and non-reproductive diseases.
Collapse
Affiliation(s)
- Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Samuele Ciceri
- Dept. of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Milano Italy
| | - Roberto Maggi
- Dept. of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Milano Italy.
| | - Daniele Bottai
- Dept. of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Milano Italy
| |
Collapse
|
3
|
Li H, Liu Y, Wang Y, Zhao X, Qi X. Hormone therapy for ovarian cancer: Emphasis on mechanisms and applications (Review). Oncol Rep 2021; 46:223. [PMID: 34435651 PMCID: PMC8424487 DOI: 10.3892/or.2021.8174] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) remains the leading cause of mortality due to gynecological malignancies. Epidemiological studies have demonstrated that steroid hormones released from the hypothalamic-pituitary-ovarian axis can play a role in stimulating or inhibiting OC progression, with gonadotropins, estrogens and androgens promoting OC progression, while gonadotropin-releasing hormone (GnRH) and progesterone may be protective factors in OC. Experimental studies have indicated that hormone receptors are expressed in OC cells and mediate the growth stimulatory or growth inhibitory effects of hormones on these cells. Hormone therapy agents have been evaluated in a number of clinical trials. The majority of these trials were conducted in patients with relapsed or refractory OC with average efficacy and limited side-effects. A better understanding of the mechanisms through which hormones affect cell growth may improve the efficacy of hormone therapy. In the present review article, the role of hormones (GnRH, gonadotropins, androgens, estrogens and progestins) and their receptors in OC tumorigenesis, and hormonal therapy in OC treatment is discussed and summarized.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Liu
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
4
|
Fontana F, Limonta P. Dissecting the Hormonal Signaling Landscape in Castration-Resistant Prostate Cancer. Cells 2021; 10:1133. [PMID: 34067217 PMCID: PMC8151003 DOI: 10.3390/cells10051133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the molecular mechanisms underlying prostate cancer (PCa) progression towards its most aggressive, castration-resistant (CRPC) stage is urgently needed to improve the therapeutic options for this almost incurable pathology. Interestingly, CRPC is known to be characterized by a peculiar hormonal landscape. It is now well established that the androgen/androgen receptor (AR) axis is still active in CRPC cells. The persistent activity of this axis in PCa progression has been shown to be related to different mechanisms, such as intratumoral androgen synthesis, AR amplification and mutations, AR mRNA alternative splicing, increased expression/activity of AR-related transcription factors and coregulators. The hypothalamic gonadotropin-releasing hormone (GnRH), by binding to its specific receptors (GnRH-Rs) at the pituitary level, plays a pivotal role in the regulation of the reproductive functions. GnRH and GnRH-R are also expressed in different types of tumors, including PCa. Specifically, it has been demonstrated that, in CRPC cells, the activation of GnRH-Rs is associated with a significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic activity. This antitumor activity is mainly mediated by the GnRH-R-associated Gαi/cAMP signaling pathway. In this review, we dissect the molecular mechanisms underlying the role of the androgen/AR and GnRH/GnRH-R axes in CRPC progression and the possible therapeutic implications.
Collapse
Affiliation(s)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| |
Collapse
|
5
|
Role of Gonadotropin-Releasing Hormone (GnRH) in Ovarian Cancer. Cells 2021; 10:cells10020437. [PMID: 33670761 PMCID: PMC7922220 DOI: 10.3390/cells10020437] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
The hypothalamus–pituitary–gonadal (HPG) axis is the endocrine regulation system that controls the woman’s cycle. The gonadotropin-releasing hormone (GnRH) plays the central role. In addition to the gonadotrophic cells of the pituitary, GnRH receptors are expressed in other reproductive organs, such as the ovary and in tumors originating from the ovary. In ovarian cancer, GnRH is involved in the regulation of proliferation and metastasis. The effects on ovarian tumors can be indirect or direct. GnRH acts indirectly via the HPG axis and directly via GnRH receptors on the surface of ovarian cancer cells. In this systematic review, we will give an overview of the role of GnRH in ovarian cancer development, progression and therapy.
Collapse
|
6
|
Tzoupis H, Nteli A, Androutsou ME, Tselios T. Gonadotropin-Releasing Hormone and GnRH Receptor: Structure, Function and Drug Development. Curr Med Chem 2021; 27:6136-6158. [PMID: 31309882 DOI: 10.2174/0929867326666190712165444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Gonadotropin-Releasing Hormone (GnRH) is a key element in sexual maturation and regulation of the reproductive cycle in the human organism. GnRH interacts with the pituitary cells through the activation of the Gonadotropin Releasing Hormone Receptors (GnRHR). Any impairments/dysfunctions of the GnRH-GnRHR complex lead to the development of various cancer types and disorders. Furthermore, the identification of GnRHR as a potential drug target has led to the development of agonist and antagonist molecules implemented in various treatment protocols. The development of these drugs was based on the information derived from the functional studies of GnRH and GnRHR. OBJECTIVE This review aims at shedding light on the versatile function of GnRH and GnRH receptor and offers an apprehensive summary regarding the development of different agonists, antagonists and non-peptide GnRH analogues. CONCLUSION The information derived from these studies can enhance our understanding of the GnRH-GnRHR versatile nature and offer valuable insight into the design of new more potent molecules.
Collapse
Affiliation(s)
| | - Agathi Nteli
- Department of Chemistry, University of Patras, Rion GR-26504, Greece
| | - Maria-Eleni Androutsou
- Vianex S.A., Tatoiou Str., 18th km Athens-Lamia National Road, Nea Erythrea 14671, Greece
| | - Theodore Tselios
- Department of Chemistry, University of Patras, Rion GR-26504, Greece
| |
Collapse
|
7
|
Gonadotropin-Releasing Hormone Receptors in Prostate Cancer: Molecular Aspects and Biological Functions. Int J Mol Sci 2020; 21:ijms21249511. [PMID: 33327545 PMCID: PMC7765031 DOI: 10.3390/ijms21249511] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Pituitary Gonadotropin-Releasing Hormone receptors (GnRH-R) mediate the activity of the hypothalamic decapeptide GnRH, thus playing a key role in the regulation of the reproductive axis. Early-stage prostate cancer (PCa) is dependent on serum androgen levels, and androgen-deprivation therapy (ADT), based on GnRH agonists and antagonists, represents the standard therapeutic approach for PCa patients. Unfortunately, the tumor often progresses towards the more aggressive castration-resistant prostate cancer (CRPC) stage. GnRH receptors are also expressed in CRPC tissues, where their binding to both GnRH agonists and antagonists is associated with significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic effects, mediated by the Gαi/cAMP signaling cascade. GnRH agonists and antagonists are now considered as an effective therapeutic strategy for CRPC patients with many clinical trials demonstrating that the combined use of these drugs with standard therapies (i.e., docetaxel, enzalutamide, abiraterone) significantly improves disease-free survival. In this context, GnRH-based bioconjugates (cytotoxic drugs covalently linked to a GnRH-based decapeptide) have been recently developed. The rationale of this treatment is that the GnRH peptide selectively binds to its receptors, delivering the cytotoxic drug to CRPC cells while sparing nontumor cells. Some of these compounds have already entered clinical trials.
Collapse
|
8
|
Peacey L, Peacey C, Gutzinger A, Jones CE. Copper(II) Binding by the Earliest Vertebrate Gonadotropin-Releasing Hormone, the Type II Isoform, Suggests an Ancient Role for the Metal. Int J Mol Sci 2020; 21:ijms21217900. [PMID: 33114333 PMCID: PMC7663483 DOI: 10.3390/ijms21217900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
In vertebrate reproductive biology copper can influence peptide and protein function both in the pituitary and in the gonads. In the pituitary, copper binds to the key reproductive peptides gonadotropin-releasing hormone I (GnRH-I) and neurokinin B, to modify their structure and function, and in the male gonads, copper plays a role in testosterone production, sperm morphology and, thus, fertility. In addition to GnRH-I, most vertebrates express a second isoform, GnRH-II. GnRH-II can promote testosterone release in some species and has other non-reproductive roles. The primary sequence of GnRH-II has remained largely invariant over millennia, and it is considered the ancestral GnRH peptide in vertebrates. In this work, we use a range of spectroscopic techniques to show that, like GnRH-I, GnRH-II can bind copper. Phylogenetic analysis shows that the proposed copper-binding ligands are retained in GnRH-II peptides from all vertebrates, suggesting that copper-binding is an ancient feature of GnRH peptides.
Collapse
|
9
|
Kim MS, Ma S, Chelariu-Raicu A, Leuschner C, Alila HW, Lee S, Coleman RL, Sood AK. Enhanced Immunotherapy with LHRH-R Targeted Lytic Peptide in Ovarian Cancer. Mol Cancer Ther 2020; 19:2396-2406. [PMID: 32943548 DOI: 10.1158/1535-7163.mct-20-0030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/08/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
Here, we examined the role of EP-100 [luteinizing hormone-releasing hormone (LHRH) ligand joined to a lytic peptide], improving the efficacy of immune checkpoint blockade. LHRH-R-positive murine ovarian cancer cells (ID8, IG10, IF5, and 2C12) were sensitive to EP-100 and were specifically killed at low micromolar levels through LHRH-R. EP-100 increased PD-L1 levels on murine ovarian cancer cells. In vivo syngeneic mouse models (ID8 and IG10) demonstrated that single-agent EP-100 reduced tumor volume, tumor weight, and ascites volume. The greatest reductions in tumor and ascites volume were observed with the combination of EP-100 with an anti-PD-L1 antibody. Immune profiling analysis showed that the population of CD8+ T cells, natural killer cells, dendritic cells, and macrophages were significantly increased in tumor and ascitic fluid samples treated with anti-PD-L1, EP-100, and the combination. However, monocytic myeloid suppressor cells, B cells, and regulatory T cells were decreased in tumors treated with anti-PD-L1, EP-100, or the combination. In vitro cytokine arrays revealed that EP-100 induced IL1α, IL33, CCL20, VEGF, and Low-density lipoprotein receptor (LDLR) secretion. Of these, we validated increasing IL33 levels following EP-100 treatment in vitro and in vivo; we determined the specific biological role of CD8+ T-cell activation with IL33 gene silencing using siRNA and Cas9-CRISPR approaches. In addition, we found that CD8+ T cells expressed very low level of LHRH-R and were not affected by EP-100. Taken together, EP-100 treatment had a substantial antitumor efficacy, particularly in combination with an anti-PD-L1 antibody. These results warrant further clinical development of this combination.
Collapse
Affiliation(s)
- Mark Seungwook Kim
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Anca Chelariu-Raicu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Obstetrics and Gynecology, University of Hospital, LMU Munich, Germany
| | | | | | - Sanghoon Lee
- Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
10
|
Abstract
Gonadotropin-releasing hormone (GnRH) is recognized as the central regulator of the functions of the pituitary-gonadal axis. The increasing knowledge on the mechanisms controlling the development and the function of GnRH-producing neurons is leading to a better diagnostic and therapeutic approach for hypogonadotropic hypogonadisms and for alterations of the puberty onset. During female life span, the function of the GnRH pulse generator may be affected by a number of inputs from other neuronal systems, offering alternative strategies for diagnostic and therapeutic interventions. Moreover, the identification of a GnRH/GnRH receptor system in both human ovary and endometrium has widened the spectrum of action of the peptide outside its hypothalamic functions. The pharmacological use of GnRH itself or its synthetic analogs (agonists and antagonists) provides a valid tool to either stimulate or block gonadotropin secretion and to modulate the female fertility in several reproductive disorders and in assisted reproduction technology. The use of GnRH agonists in young female patients undergoing chemotherapy is also considered a promising therapeutic approach to counteract iatrogenic ovarian failure.
Collapse
|
11
|
Lents CA, Thorson JF, Desaulniers AT, White BR. RFamide‐related peptide 3 and gonadotropin‐releasing hormone‐II are autocrine–paracrine regulators of testicular function in the boar. Mol Reprod Dev 2017; 84:994-1003. [DOI: 10.1002/mrd.22830] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Clay A. Lents
- United States Department of Agriculture, Agricultural Research ServiceU. S. Meat Animal Research CenterClay CenterNebraska
| | - Jennifer F. Thorson
- United States Department of Agriculture, Agricultural Research ServiceU. S. Meat Animal Research CenterClay CenterNebraska
| | - Amy T. Desaulniers
- University of Nebraska‐LincolnDepartment of Animal ScienceLincolnNebraska
| | - Brett R. White
- University of Nebraska‐LincolnDepartment of Animal ScienceLincolnNebraska
| |
Collapse
|
12
|
Desaulniers AT, Cederberg RA, Lents CA, White BR. Expression and Role of Gonadotropin-Releasing Hormone 2 and Its Receptor in Mammals. Front Endocrinol (Lausanne) 2017; 8:269. [PMID: 29312140 PMCID: PMC5732264 DOI: 10.3389/fendo.2017.00269] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone 1 (GnRH1) and its receptor (GnRHR1) drive mammalian reproduction via regulation of the gonadotropins. Yet, a second form of GnRH (GnRH2) and its receptor (GnRHR2) also exist in mammals. GnRH2 has been completely conserved throughout 500 million years of evolution, signifying high selection pressure and a critical biological role. However, the GnRH2 gene is absent (e.g., rat) or inactivated (e.g., cow and sheep) in some species but retained in others (e.g., human, horse, and pig). Likewise, many species (e.g., human, chimpanzee, cow, and sheep) retain the GnRHR2 gene but lack the appropriate coding sequence to produce a full-length protein due to gene coding errors; although production of GnRHR2 in humans remains controversial. Certain mammals lack the GnRHR2 gene (e.g., mouse) or most exons entirely (e.g., rat). In contrast, old world monkeys, musk shrews, and pigs maintain the coding sequence required to produce a functional GnRHR2. Like GnRHR1, GnRHR2 is a 7-transmembrane, G protein-coupled receptor that interacts with Gαq/11 to mediate cell signaling. However, GnRHR2 retains a cytoplasmic tail and is only 40% homologous to GnRHR1. A role for GnRH2 and its receptor in mammals has been elusive, likely because common laboratory models lack both the ligand and receptor. Uniquely, both GnRH2 and GnRHR2 are ubiquitously expressed; transcript levels are abundant in peripheral tissues and scarcely found in regions of the brain associated with gonadotropin secretion, suggesting a divergent role from GnRH1/GnRHR1. Indeed, GnRH2 and its receptor are not physiological modulators of gonadotropin secretion in mammals. Instead, GnRH2 and GnRHR2 coordinate the interaction between nutritional status and sexual behavior in the female brain. Within peripheral tissues, GnRH2 and its receptor are novel regulators of reproductive organs. GnRH2 and GnRHR2 directly stimulate steroidogenesis within the porcine testis. In the female, GnRH2 and its receptor may help mediate placental function, implantation, and ovarian steroidogenesis. Furthermore, both the GnRH2 and GnRHR2 genes are expressed in human reproductive tumors and represent emerging targets for cancer treatment. Thus, GnRH2 and GnRHR2 have diverse functions in mammals which remain largely unexplored.
Collapse
Affiliation(s)
- Amy T. Desaulniers
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rebecca A. Cederberg
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Brett R. White
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
- *Correspondence: Brett R. White,
| |
Collapse
|
13
|
Gründker C, Emons G. The Role of Gonadotropin-Releasing Hormone in Cancer Cell Proliferation and Metastasis. Front Endocrinol (Lausanne) 2017; 8:187. [PMID: 28824547 PMCID: PMC5543040 DOI: 10.3389/fendo.2017.00187] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022] Open
Abstract
In several human malignant tumors of the urogenital tract, including cancers of the endometrium, ovary, urinary bladder, and prostate, it has been possible to identify expression of gonadotropin-releasing hormone (GnRH) and its receptor as part of an autocrine system, which regulates cell proliferation. The expression of GnRH receptor has also been identified in breast cancers and non-reproductive cancers such as pancreatic cancers and glioblastoma. Various investigators have observed dose- and time-dependent growth inhibitory effects of GnRH agonists in cell lines derived from these cancers. GnRH antagonists have also shown marked growth inhibitory effects on most cancer cell lines. This indicates that in the GnRH system in cancer cells, there may not be a dichotomy between GnRH agonists and antagonists. The well-known signaling mechanisms of the GnRH receptor, which are present in pituitary gonadotrophs, are not involved in forwarding the antiproliferative effects of GnRH analogs in cancer cells. Instead, the GnRH receptor activates a phosphotyrosine phosphatase (PTP) and counteracts with the mitogenic signal transduction of growth factor receptors, which results in a reduction of cancer cell proliferation. The PTP activation, which is induced by GnRH, also inhibits G-protein-coupled estrogen receptor 1 (GPER), which is a membrane-bound receptor for estrogens. GPER plays an important role in breast cancers, which do not express the estrogen receptor α (ERα). In metastatic breast, ovarian, and endometrial cancer cells, GnRH reduces cell invasion in vitro, metastasis in vivo, and the increased expression of S100A4 and CYR61. All of these factors play important roles in epithelial-mesenchymal transition. This review will summarize the present state of knowledge about the GnRH receptor and its signaling in human cancers.
Collapse
Affiliation(s)
- Carsten Gründker
- Department of Gynecology and Obstetrics, Georg-August-University, Göttingen, Germany
| | - Günter Emons
- Department of Gynecology and Obstetrics, Georg-August-University, Göttingen, Germany
| |
Collapse
|
14
|
Brauer VM, Wiarda-Bell JR, Desaulniers AT, Cederberg RA, White BR. Functional activity of the porcine Gnrhr2 gene promoter in testis-derived cells is partially conferred by nuclear factor-κB, specificity protein 1 and 3 (SP1/3) and overlapping early growth response 1/SP1/3 binding sites. Gene 2016; 587:137-46. [PMID: 27134031 DOI: 10.1016/j.gene.2016.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/02/2016] [Accepted: 04/26/2016] [Indexed: 11/30/2022]
Abstract
Unlike the classical gonadotropin-releasing hormone (GnRH1), the second mammalian isoform (GnRH2) is ubiquitously expressed, suggesting a divergent function. Indeed, we demonstrated that GnRH2 governs LH-independent testosterone secretion in porcine testes via interaction with its receptor (GnRHR2) on Leydig cells. Transient transfections with luciferase reporter vectors containing 3009bp of 5' flanking sequence for the porcine Gnrhr2 gene (-3009pGL3) revealed promoter activity in all 15 cell lines examined, including swine testis-derived (ST) cells. Therefore, ST cells were utilized to explore the molecular mechanisms underlying transcriptional regulation of the porcine Gnrhr2 gene in the testis. Reporter plasmids containing progressive 5' deletions of the Gnrhr2 promoter indicated that the -708/-490 region contained elements critical to promoter activity. Electrophoretic mobility shift assays (EMSAs) with radiolabeled oligonucleotides spanning the -708/-490bp region and ST nuclear extracts, identified specific binding complexes for the -513/-490, -591/-571 and -606/-581bp segments of promoter. Antibody addition to EMSAs indicated that the p65 and p52 subunits of nuclear factor-κB (NF-κB) comprised the specific complex bound to the oligonucleotide probe for the -513/-490bp promoter region, specificity protein (SP) 1 and 3 bound the -591/-571bp probe and early growth response 1 (EGR1), SP1 and SP3 bound the -606/-581 radiolabeled oligonucleotide. Transient transfections with vectors containing mutations of the NF-κB (-499/-493), SP1/3 (-582/-575) or overlapping EGR1/SP1/3 (-597/-587) binding sites reduced luciferase activity by 26%, 61% and 56%, respectively (P<0.05). Thus, NF-κB, SP1/3 and overlapping EGR1/SP1/3 binding sites are critical to expression of the porcine Gnrhr2 gene in ST cells.
Collapse
Affiliation(s)
- Vanessa M Brauer
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Jocelyn R Wiarda-Bell
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Amy T Desaulniers
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Rebecca A Cederberg
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Brett R White
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA.
| |
Collapse
|
15
|
Maggi R, Cariboni AM, Marelli MM, Moretti RM, Andrè V, Marzagalli M, Limonta P. GnRH and GnRH receptors in the pathophysiology of the human female reproductive system. Hum Reprod Update 2015; 22:358-81. [PMID: 26715597 DOI: 10.1093/humupd/dmv059] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Human reproduction depends on an intact hypothalamic-pituitary-gonadal (HPG) axis. Hypothalamic gonadotrophin-releasing hormone (GnRH) has been recognized, since its identification in 1971, as the central regulator of the production and release of the pituitary gonadotrophins that, in turn, regulate the gonadal functions and the production of sex steroids. The characteristic peculiar development, distribution and episodic activity of GnRH-producing neurons have solicited an interdisciplinary interest on the etiopathogenesis of several reproductive diseases. The more recent identification of a GnRH/GnRH receptor (GnRHR) system in both the human endometrium and ovary has widened the spectrum of action of the peptide and of its analogues beyond its hypothalamic function. METHODS An analysis of research and review articles published in international journals until June 2015 has been carried out to comprehensively summarize both the well established and the most recent knowledge on the physiopathology of the GnRH system in the central and peripheral control of female reproductive functions and diseases. RESULTS This review focuses on the role of GnRH neurons in the control of the reproductive axis. New knowledge is accumulating on the genetic programme that drives GnRH neuron development to ameliorate the diagnosis and treatment of GnRH deficiency and consequent delayed or absent puberty. Moreover, a better understanding of the mechanisms controlling the episodic release of GnRH during the onset of puberty and the ovulatory cycle has enabled the pharmacological use of GnRH itself or its synthetic analogues (agonists and antagonists) to either stimulate or to block the gonadotrophin secretion and modulate the functions of the reproductive axis in several reproductive diseases and in assisted reproduction technology. Several inputs from other neuronal populations, as well as metabolic, somatic and age-related signals, may greatly affect the functions of the GnRH pulse generator during the female lifespan; their modulation may offer new possible strategies for diagnostic and therapeutic interventions. A GnRH/GnRHR system is also expressed in female reproductive tissues (e.g. endometrium and ovary), both in normal and pathological conditions. The expression of this system in the human endometrium and ovary supports its physiological regulatory role in the processes of trophoblast invasion of the maternal endometrium and embryo implantation as well as of follicular development and corpus luteum functions. The GnRH/GnRHR system that is expressed in diseased tissues of the female reproductive tract (both benign and malignant) is at present considered an effective molecular target for the development of novel therapeutic approaches for these pathologies. GnRH agonists are also considered as a promising therapeutic approach to counteract ovarian failure in young female patients undergoing chemotherapy. CONCLUSIONS Increasing knowledge about the regulation of GnRH pulsatile release, as well as the therapeutic use of its analogues, offers interesting new perspectives in the diagnosis, treatment and outcome of female reproductive disorders, including tumoral and iatrogenic diseases.
Collapse
Affiliation(s)
- Roberto Maggi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133 Milano, Italy
| | - Anna Maria Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133 Milano, Italy
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133 Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133 Milano, Italy
| | - Valentina Andrè
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133 Milano, Italy
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133 Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133 Milano, Italy
| |
Collapse
|
16
|
Roch GJ, Busby ER, Sherwood NM. GnRH receptors and peptides: skating backward. Gen Comp Endocrinol 2014; 209:118-34. [PMID: 25107740 DOI: 10.1016/j.ygcen.2014.07.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/22/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) and its receptor are essential for reproduction in vertebrates. Although there are three major types of GnRH peptides and two major types of receptors in vertebrates, the pattern of distribution is unusual. Evidence is presented from genome mining that type I GnRHRs are not restricted to mammals, but can be found in the lobe-finned and cartilaginous fishes. This implies that this tail-less GnRH receptor emerged early in vertebrate evolution, followed by several independent losses in different lineages. Also, we have identified representatives from the three major GnRH peptide types (mammalian GnRH1, vertebrate GnRH2 and dogfish GnRH3) in a single cartilaginous fish, the little skate. Skate and coelacanth are the only examples of animals with both type I and II GnRH receptors and all three peptide types, suggesting this was the ancestral condition in vertebrates. Our analysis of receptor synteny in combination with phylogeny suggests that there were three GnRH receptor types present before the two rounds of whole genome duplication in early vertebrates. To further understand the origin of the GnRH peptide-receptor system, the relationship of vertebrate and invertebrate homologs was examined. Our evidence supports the hypothesis of a GnRH superfamily with a common ancestor for the vertebrate GnRHs, invertebrate (inv)GnRHs, corazonins and adipokinetic hormones. The invertebrate deuterostomes (echinoderms, hemichordates and amphioxus) have derived GnRH-like peptides, although one amphioxus GnRH with a syntenic relationship to human GnRHs has been shown to be functional. Phylogenetic analysis suggests that gene duplications in the ancestral bilaterian produced two receptor types, one of which became adipokinetic hormone receptor/GnRHR and the other corazonin receptor/invGnRHR. It appears that the ancestral deuterostome had both a GnRHR and invGnRHR, and this is still the case in amphioxus. During the transition to vertebrates both the invertebrate-type peptide and receptor were lost, leaving only the vertebrate-type system that presently exists.
Collapse
Affiliation(s)
- Graeme J Roch
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| | - Ellen R Busby
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| | - Nancy M Sherwood
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|
17
|
Durán-Prado M, Gahete MD, Delgado-Niebla E, Martínez-Fuentes AJ, Vázquez-Martínez R, García-Navarro S, Gracia-Navarro F, Malagon MM, Luque RM, Castaño JP. Truncated variants of pig somatostatin receptor subtype 5 (sst5) act as dominant-negative modulators for sst2-mediated signaling. Am J Physiol Endocrinol Metab 2012; 303:E1325-34. [PMID: 23032684 DOI: 10.1152/ajpendo.00445.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Somatostatin (SST) and its related peptide cortistatin (CORT) exert their multiple actions through binding to the SST receptor (sst) family, generally considered to comprise five G protein-coupled receptors with seven transmembrane domains (TMD), named sst1-sst5, plus a splice sst2B variant. However, we recently discovered that human and rodent sst5 gene expression also generates, through noncanonical alternative splicing, novel truncated albeit functional sst5 variants with less than seven TMD. Here, we cloned and characterized for the first time the porcine wild-type sst5 (psst5, full-length) and identified two novel truncated psst5 variants with six and three TMD, thus termed psst5TMD6 and psst5TMD3, respectively. In line with that observed in human and rodent truncated sst5 variants, psst5TMD6 and psst5TMD3 are functional (e.g., activate calcium signaling), selectively respond to SST and CORT, respectively, and exhibit specific tissue expression profiles that differ from full-length psst5 and often overlaps with psst2 expression. Moreover, fluorescence resonance energy transfer analysis shows that psst5 truncated variants physically interact with psst2, thereby altering their localization at the plasma membrane and specifically disrupting the cellular response to SST and/or CORT. These results represent the first characterization of a key porcine SST receptor, psst5, and, together with our previous results, provide strong evidence that alternative splicing-derived, truncated sst5 variants with distinct functional capacities exist in the mammalian lineage, where they can act as dominant-negative receptors, by interacting directly with long, seven TMD variants, potentially contributing to modulate normal and pathological SST and CORT signaling.
Collapse
Affiliation(s)
- Mario Durán-Prado
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Reina Sofía University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Limonta P, Montagnani Marelli M, Mai S, Motta M, Martini L, Moretti RM. GnRH receptors in cancer: from cell biology to novel targeted therapeutic strategies. Endocr Rev 2012; 33:784-811. [PMID: 22778172 DOI: 10.1210/er.2012-1014] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The crucial role of pituitary GnRH receptors (GnRH-R) in the control of reproductive functions is well established. These receptors are the target of GnRH agonists (through receptor desensitization) and antagonists (through receptor blockade) for the treatment of steroid-dependent pathologies, including hormone-dependent tumors. It has also become increasingly clear that GnRH-R are expressed in cancer tissues, either related (i.e. prostate, breast, endometrial, and ovarian cancers) or unrelated (i.e. melanoma, glioblastoma, lung, and pancreatic cancers) to the reproductive system. In hormone-related tumors, GnRH-R appear to be expressed even when the tumor has escaped steroid dependence (such as castration-resistant prostate cancer). These receptors are coupled to a G(αi)-mediated intracellular signaling pathway. Activation of tumor GnRH-R by means of GnRH agonists elicits a strong antiproliferative, antimetastatic, and antiangiogenic (more recently demonstrated) activity. Interestingly, GnRH antagonists have also been shown to elicit a direct antitumor effect; thus, these compounds behave as antagonists of GnRH-R at the pituitary level and as agonists of the same receptors expressed in tumors. According to the ligand-induced selective-signaling theory, GnRH-R might assume various conformations, endowed with different activities for GnRH analogs and with different intracellular signaling pathways, according to the cell context. Based on these consistent experimental observations, tumor GnRH-R are now considered a very interesting candidate for novel molecular, GnRH analog-based, targeted strategies for the treatment of tumors expressing these receptors. These agents include GnRH agonists and antagonists, GnRH analog-based cytotoxic (i.e. doxorubicin) or nutraceutic (i.e. curcumin) hybrids, and GnRH-R-targeted nanoparticles delivering anticancer compounds.
Collapse
Affiliation(s)
- Patrizia Limonta
- Section of Biomedicine and Endocrinology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Leurs U, Lajkó E, Mező G, Orbán E, Öhlschläger P, Marquardt A, Kőhidai L, Manea M. GnRH-III based multifunctional drug delivery systems containing daunorubicin and methotrexate. Eur J Med Chem 2012; 52:173-83. [DOI: 10.1016/j.ejmech.2012.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 11/16/2022]
|
20
|
Córdoba-Chacón J, Gahete MD, Durán-Prado M, Luque RM, Castaño JP. Truncated somatostatin receptors as new players in somatostatin-cortistatin pathophysiology. Ann N Y Acad Sci 2011; 1220:6-15. [PMID: 21388399 DOI: 10.1111/j.1749-6632.2011.05985.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Somatostatin (SST) and cortistatin (CORT) act through a family of seven transmembrane domain (TMD) receptors (sst1-5) to govern multiple functions, from growth hormone (GH) secretion to neurotransmission, metabolic homeostasis, gastrointestinal and immune function, and tumor cell growth. Thus, SST analogs are used to treat endocrine/tumoral pathologies. Yet, some SST/CORT actions cannot be explained by their interaction with known ssts. We recently identified novel sst5 variants in human, pig, mouse, and rat that lack one or more TMDs and display unique molecular/functional features: they exhibit distinct tissue distribution, divergent responses to SST/CORT, and intracellular localization as opposed to the typical plasma-membrane distribution of full-length ssts. When coexpressed in the same cell, truncated sst5 variants colocalize and physically interact with full-length ssts, providing a molecular basis to disrupt normal sst2/sst5 functioning. This may explain the inverse correlation between hsst5TMD4 expression in pituitary tumors and octreotide responsiveness in acromegaly. Discovery of these new truncated sst5 variants provides novel insights on SST/CORT/sst pathophysiology and suggests new research avenues for the therapeutic potential of this system.
Collapse
Affiliation(s)
- José Córdoba-Chacón
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | | | | | | | | |
Collapse
|
21
|
Leurs U, Mező G, Orbán E, Öhlschläger P, Marquardt A, Manea M. Design, synthesis, in vitro stability and cytostatic effect of multifunctional anticancer drug-bioconjugates containing GnRH-III as a targeting moiety. Biopolymers 2011; 98:1-10. [PMID: 21509746 DOI: 10.1002/bip.21640] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/16/2011] [Accepted: 03/28/2011] [Indexed: 11/09/2022]
Abstract
Bioconjugates containing the GnRH-III hormone decapeptide as a targeting moiety are able to deliver chemotherapeutic agents specifically to cancer cells expressing GnRH receptors, thereby increasing their local efficacy while limiting the peripheral toxicity. However, the number of GnRH receptors on cancer cells is limited and they desensitize under continuous hormone treatment. A possible approach to increase the receptor mediated tumor targeting and consequently the cytostatic effect of the bioconjugates would be the attachment of more than one chemotherapeutic agent to one GnRH-III molecule. Here we report on the design, synthesis and biochemical characterization of multifunctional bioconjugates containing GnRH-III as a targeting moiety and daunorubicin as a chemotherapeutic agent. Two different drug design approaches were pursued. The first one was based on the bifunctional [(4)Lys]-GnRH-III (Glp-His-Trp-Lys-His-Asp-Trp-Lys-Pro-Gly-NH(2)) containing two lysine residues in positions 4 and 8, whose ε-amino groups were used for the coupling of daunorubicin. In the second drug design, the native GnRH-III (Glp-His-Trp-Ser-His-Asp-Trp-Lys-Pro-Gly-NH(2)) was used as a scaffold; an additional lysine residue was coupled to the ϵ-amino group of (8) Lys in order to generate two free amino groups available for conjugation of daunorubicin. The in vitro stability/degradation of all synthesized compounds was investigated in human serum, as well as in the presence of rat liver lysosomal homogenate. Their cellular uptake was determined on human breast cancer cells and the cytostatic effect was evaluated on human breast, colon and prostate cancer cell lines. Compared with a monofunctional compound, both drug design approaches resulted in multifunctional bioconjugates with increased cytostatic effect.
Collapse
Affiliation(s)
- Ulrike Leurs
- Department of Chemistry, Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Brüssow KP, Schneider F, Tuchscherer A, Kanitz W. Influence of synthetic lamprey GnRH-III on gonadotropin release and steroid hormone levels in gilts. Theriogenology 2010; 74:1570-8. [DOI: 10.1016/j.theriogenology.2010.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/17/2010] [Accepted: 06/19/2010] [Indexed: 11/30/2022]
|
23
|
Córdoba-Chacón J, Gahete MD, Duran-Prado M, Pozo-Salas AI, Malagón MM, Gracia-Navarro F, Kineman RD, Luque RM, Castaño JP. Identification and characterization of new functional truncated variants of somatostatin receptor subtype 5 in rodents. Cell Mol Life Sci 2010; 67:1147-63. [PMID: 20063038 PMCID: PMC11115927 DOI: 10.1007/s00018-009-0240-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/08/2009] [Accepted: 12/18/2009] [Indexed: 12/11/2022]
Abstract
Somatostatin and cortistatin exert multiple biological actions through five receptors (sst1-5); however, not all their effects can be explained by activation of sst1-5. Indeed, we recently identified novel truncated but functional human sst5-variants, present in normal and tumoral tissues. In this study, we identified and characterized three novel truncated sst5 variants in mice and one in rats displaying different numbers of transmembrane-domains [TMD; sst5TMD4, sst5TMD2, sst5TMD1 (mouse-variants) and sst5TMD1 (rat-variant)]. These sst5 variants: (1) are functional to mediate ligand-selective-induced variations in [Ca(2+)]i and cAMP despite being truncated; (2) display preferential intracellular distribution; (3) mostly share full-length sst5 tissue distribution, but exhibit unique differences; (4) are differentially regulated by changes in hormonal/metabolic environment in a tissue- (e.g., central vs. systemic) and ligand-dependent manner. Altogether, our results demonstrate the existence of new truncated sst5-variants with unique ligand-selective signaling properties, which could contribute to further understanding the complex, distinct pathophysiological roles of somatostatin and cortistatin.
Collapse
Affiliation(s)
- Jose Córdoba-Chacón
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Manuel D. Gahete
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Mario Duran-Prado
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Ana I. Pozo-Salas
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - María M. Malagón
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - F. Gracia-Navarro
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Rhonda D. Kineman
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL USA
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Raul M. Luque
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Justo P. Castaño
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| |
Collapse
|
24
|
Wilkinson SJ, Kucukmetin A, Cross P, Darby S, Gnanapragasam VJ, Calvert AH, Robson CN, Edmondson RJ. Expression of gonadotrophin releasing hormone receptor I is a favorable prognostic factor in epithelial ovarian cancer. Hum Pathol 2008; 39:1197-204. [PMID: 18495208 DOI: 10.1016/j.humpath.2007.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 12/10/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
The majority of epithelial ovarian cancers originate in the ovarian surface epithelium. The ovarian surface epithelium is a hormonally responsive tissue, and hormones are thought to play a key role in the development of this type of cancer. Gonadotrophin releasing hormone II is one of 2 isoforms which are thought to act through gonadotrophin releasing hormone receptor I, and gonadotrophin releasing hormone II has been shown to cause growth inhibition of cultured ovarian surface epithelium. The aim of this study was to investigate the expression levels and prognostic significance of gonadotrophin releasing hormone II and the gonadotrophin releasing hormone receptor I in epithelial ovarian cancer. Gonadotrophin releasing hormone II and gonadotrophin releasing hormone receptor I messenger RNA expression was examined in 23 cancers and 7 normal ovarian surface epithelium samples by quantitative real time polymerase chain reaction. An ovarian cancer tissue microarray containing 139 cases was constructed and immunohistochemical analysis of gonadotrophin releasing hormone II and gonadotrophin releasing hormone receptor I protein expression was performed and correlated with clinical outcome data. Gonadotrophin releasing hormone II messenger RNA expression was lower in cancer samples compared to normal ovarian surface epithelium samples (P < .05). Gonadotrophin releasing hormone II protein expression correlated with histologic subtype (25% serous versus 45% nonserous, P < .05) but not with overall survival. Gonadotrophin releasing hormone receptor I messenger RNA expression was highest in serous tumors when compared to non serous (P < .05) and normal tissue (P < .001). Expression of the gonadotrophin releasing hormone receptor I protein was also found to correlate with patient survival (P < .05). We have demonstrated gonadotrophin releasing hormone II and its receptor, gonadotrophin releasing hormone receptor I, are present in clinical ovarian samples, and that gonadotrophin releasing hormone receptor I protein expression is a favorable prognostic factor, suggesting these proteins play an important role in the development of epithelial ovarian cancer.
Collapse
Affiliation(s)
- S J Wilkinson
- Northern Institute for Cancer Research, Newcastle University, NE2 4HH Newcastle, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Reichler IM, Barth A, Piché CA, Jöchle W, Roos M, Hubler M, Arnold S. Urodynamic parameters and plasma LH/FSH in spayed Beagle bitches before and 8 weeks after GnRH depot analogue treatment. Theriogenology 2006; 66:2127-36. [PMID: 16876857 DOI: 10.1016/j.theriogenology.2006.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 06/16/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
The pathophysiology of urinary incontinence due to spaying remains unknown. Incontinent bitches can be treated successfully with depot preparations of GnRH-analogues and there are differences in plasma gonadotropin levels between continent and incontinent spayed bitches. It is therefore assumed that the supraordinated hormones, GnRH, FSH, and/or LH, have an effect on the urodynamic parameters. In this study, the potential influence of these hormones on the lower urinary tract was investigated by measuring urethral pressure profiles and cystometry. Simultaneously, plasma concentrations in 10 spayed Beagle bitches were determined 5 weeks prior to and 8 weeks after treatment with the GnRH analogue leuprolide. Within 1 week of GnRH analogue administration, plasma FSH and LH levels decreased from 72.5 and 7.7 to 7.75 and 0.72ng/mL, respectively. These plasma gonadotropin levels correspond with those of intact bitches during anoestrus. Urethral pressure profiles indicated that the treatment had no significant effect on maximum urethral closure pressure, functional and total length of the urethra, or area of the closure pressure curve. The data obtained by cystometry regarding mean bladder threshold volume showed a significant increase from 109 to 172mL. The improvement in bladder function after the application of GnRH-application is presumably a direct effect of the GnRH as a relationship between the plasma gonadotropin levels and the urodynamic parameters could not demonstrated.
Collapse
Affiliation(s)
- Iris Margaret Reichler
- Section of Small Animal Reproduction, Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Khan MAH, Prevost M, Waterston MM, Harvey MJA, Ferro VA. Effect of immunisation against gonadotrophin releasing hormone isoforms (mammalian GnRH-I, chicken GnRH-II and lamprey GnRH-III) on murine spermatogenesis. Vaccine 2006; 25:2051-63. [PMID: 17240004 DOI: 10.1016/j.vaccine.2006.11.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 11/16/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
In mammals, the hypothalamic decapeptide, gonadotrophin releasing hormone (GnRH-I), is regarded as the major fertility regulating peptide. However, a range of isoforms also exists, varying only in the core region between amino acids 5-8. The physiological role of two of these, GnRH-II and GnRH-III, remains controversial, particularly with regard to fertility. The basis of the present study was to examine whether there is potential for GnRH-II and GnRH-III to be developed into highly specific vaccines, and to determine what the impact of their neutralisation would be on fertility. Computer modelling was used to predict how many common amino acids could be sequentially removed from the N-terminus, without loss of conformational structure. Sequences predicted to retain structure, were synthesised and conjugated to tetanus toxoid. Male mice were actively immunised, in study weeks 0, 2, 4 and 6 and peptide specific ELISA carried out. Mice immunised with TT-GnRH-I, TT-GnRH-II and TT-GnRH-III conjugates induced high antibody titres to the respective peptide. However, serum from TT-GnRH-I treated mice showed cross-reactivity to GnRH-II and GnRH-III peptides, and serum from TT-GnRH-II immunised mice showed cross-reactivity to GnRH-III. On the other hand, serum from only two of the TT-GnRH-III treated animals showed cross-reactivity to GnRH-II. Histological examination of the testes enabled comparative quantification of the disruption to spermatogenesis. Immunisation against TT-GnRH-I and TT-GnRH-III caused 66% and 68%, respectively, of seminiferous tubules viewed to show evidence of spermatogenesis, compared with 82% and 92% against TT-GnRH-II and untreated controls, respectively. Endocrine analysis revealed that only the TT-GnRH-I immunised animals showed significant reduction (p<0.05) in follicle stimulating hormone, while testosterone levels were reduced in the TT-GnRH-I and TT-GnRH-III treated animals. Taken together, our data suggests that GnRH-I and GnRH-III are implicated in spermatogenesis, unlike GnRH-II.
Collapse
Affiliation(s)
- Mohammad A H Khan
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka 565 0871, Japan
| | | | | | | | | |
Collapse
|
27
|
Bowen A, Khan S, Berghman L, Kirby JD, Wettemann RP, Vizcarra JA. Immunization of pigs against chicken gonadotropin-releasing hormone-II and lamprey gonadotropin-releasing hormone-III: Effects on gonadotropin secretion and testicular function1. J Anim Sci 2006; 84:2990-9. [PMID: 17032793 DOI: 10.2527/jas.2006-235] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this experiment was to evaluate the effects of active immunization against 2 GnRH isoforms on gonadotropin secretion and testicular function in pigs. Synthetic chicken (c) GnRH-II and lamprey (l) GnRH-III peptides, with the common pGlu-His-Trp-Ser sequence at the N-terminal omitted, were conjugated to BSA. Forty-eight male piglets were randomly assigned to 1 of 4 treatments. Pigs on treatment 1 were actively immunized against cGnRH-II, whereas pigs on treatment 2 were actively immunized against lGnRH-III. Control pigs on treatment 3 were actively immunized against the carrier protein (BSA), and pigs on treatment 4 were castrated and actively immunized against BSA. The BSA conjugate was emulsified in Freund's Incomplete Adjuvant and diethylaminoethyldextran. Primary immunization was given at 13 wk of age (WOA) with booster immunizations given at 16 and 19 WOA. Body weight and plasma samples were collected weekly beginning at 11 WOA. Treatments did not affect BW during the experimental period. Antibody titers were increased in animals immunized against cGnRH-II and lGnRH-III (P < 0.001). Cross-reactivity of the antibodies to mammalian GnRH or between cGnRH-II and lGnRH-III was minimal. Concentrations of testosterone were maximal in control boars (treatment 3) and minimal in control barrows (treatment 4) and immunized pigs (treatment x week; P < 0.01). Immunized animals had concentrations of LH (P < 0.001) and FSH (treatment x week; P < 0.03) that were less than control barrows and similar to control boars. At the end of the experiment, intact (noncastrated) pigs were exsanguinated. Testes were removed immediately; Leydig cells were isolated and treated with 0, 1, or 10 ng/mL of LH. There was an LH x GnRH treatment effect on testosterone concentrations (P < 0.03), indicating that Leydig cells were sensitive to the immunization protocol and doses of LH. Taken together, these data suggest that immunization against GnRH isoforms decreased gonadotropin secretion compared with control barrows. Additionally, immunization against cGnRH-II and lGnRH-III reduced the ability of Leydig cells to respond to LH challenges.
Collapse
Affiliation(s)
- A Bowen
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | | | | | | | | | |
Collapse
|
28
|
Song JA, Oh DY, Moon JS, Geum D, Kwon HB, Seong JY. Involvement of the ser-glu-pro motif in ligand species-dependent desensitisation of the rat gonadotrophin-releasing hormone receptor. J Neuroendocrinol 2006; 18:757-66. [PMID: 16965294 DOI: 10.1111/j.1365-2826.2006.01469.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are two forms of gonadotrophin-releasing hormone (GnRH), GnRH-I and GnRH-II, in the vertebrate brain. Both GnRH-I and GnRH-II are thought to interact with the type-I GnRH receptor (GnRHR). The present study attempted to demonstrate whether GnRH-I and GnRH-II induce differential desensitisation of GnRHR and to identify the motif involved. Time course inositol phosphate (IP) accumulation assay reveals that, in cells expressing the wild-type rat GnRHR, GnRH-I induced continuous increase in IP production, whereas GnRH-II-induced IP production rate at later time points (30-120 min after ligand treatment) became attenuated. However, in cells expressing the mutant receptor in which the Ser-Glu-Pro (SEP) motif in extracellular loop 3 was replaced by Pro-Glu-Val (PEV), IP accumulation rates at later time points were more decreased by GnRH-I than GnRH-II. Ca2+ responses to repetitive GnRH applications reveal that GnRH-II desensitised the wild-type receptor faster than GnRH-I, whereas the opposite situation was observed in the PEV mutant. In addition, cell surface loss of GFP-tagged wild-type receptor was more facilitated by GnRH-II than GnRH-I, whereas that of the GFP-tagged PEV mutant receptor was more enhanced by GnRH-I than GnRH-II. The present study indicates that the SEP motif is potentially responsible for ligand species-dependent receptor desensitisation. Together, these results suggest that GnRH-I and GnRH-II may have different effects on mammalian type-I GnRHR via modulation of desensitisation rates.
Collapse
Affiliation(s)
- J A Song
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Reichler IM, Jöchle W, Piché CA, Roos M, Arnold S. Effect of a long acting GnRH analogue or placebo on plasma LH/FSH, urethral pressure profiles and clinical signs of urinary incontinence due to Sphincter mechanism incompetence in bitches. Theriogenology 2006; 66:1227-36. [PMID: 16672159 DOI: 10.1016/j.theriogenology.2006.03.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/22/2006] [Accepted: 03/26/2006] [Indexed: 11/19/2022]
Abstract
In 23 bitches with urinary incontinence due to spaying, the effect of treatment with a long-acting formulation of leuprolide acetate on frequency of incontinence, plasma gonadotropin levels and urodynamic parameters was evaluated. In addition, the clinical effect was compared with that of treatment with alpha-adrenergics. Before treatment, the dogs' incontinent episodes occurred, on average, 4 times per day on up to 6 days per week. In the pre-trial after therapy with phenylpropanolamine (n=23) the episodes of incontinence decreased by 92%, in the double-blind study 5 weeks after GnRH-analogue (n=11) by 71%; and by 28% after the placebo (n=12). By the end of the study, nine of twenty-two leuprolide treated bitches responded completely to treatment and were continent for periods lasting 70-575 days after treatment. In another 10 dogs, response to therapy was partial and the frequency of incontinence was reduced by at least 50%. After therapy with placebo, one bitch had no episodes of incontinence for 412 days. Treatment with the GnRH-analogue significantly decreased the plasma gonadotropin levels but there was no correlation between the effect on gonadotropin levels and response to treatment. Treatment with leuprolide or placebo had no effect on urethral closure pressure regardless of the response to treatment. The hypothesis that the change of the plasma gonadotropin levels after spaying is the cause of reduced urethral closure function was not supported by the results of this study. A possible direct effect of GnRH-analogues on the bladder is discussed. Long acting GnRH analogues appear to be a well-tolerated alternative for urinary incontinence treatment, but they appear to be less effective than the alpha-adrenergics.
Collapse
Affiliation(s)
- Iris Margaret Reichler
- Section of Small Animal Reproduction, Department of Reproduction, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
30
|
Gonadotrophin-releasing hormone (GnRH). Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
31
|
Kraus S, Naor Z, Seger R. Gonadotropin-releasing hormone in apoptosis of prostate cancer cells. Cancer Lett 2006; 234:109-23. [PMID: 16546667 DOI: 10.1016/j.canlet.2005.02.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
GnRH and its analogs (GnRH-a) are used extensively for the treatment of prostate cancer and other hormone-dependent diseases via the desensitization of pituitary gonadotropes, which consequently leads to the inhibition of gonadotropins, gonadal steroids and tumor growth. The actions of GnRH-a are mediated by the GnRH receptor (GnRHR) that is expressed in both the pituitary and extrapituitary sites, including normal tissues and tumors. Several studies have provided evidence that besides its pituitary effects, GnRH-a may exert direct anti-proliferative and apoptotic effects in tumor cells. These effects are mediated by the GnRHRs via signal transduction mechanisms that are distinct from the classical pituitary mechanisms. Here we describe the direct effects of GnRH-a on prostate cancer and other types of cancer. Interestingly, androgen ablation by GnRH-a is the main treatment for hormone-dependent prostate cancer. However, most of these tumors become eventually hormone-refractory, and are no longer sensitive to the GnRH-a-mediated reduction in androgen levels. Hence, the ability of GnRH-a to induce direct effects such as apoptosis may have large implications regarding the clinical use of GnRH-a. Therefore, an understanding of the cellular mechanisms involved in GnRH-a action may lead to better therapeutic modalities for the treatment of advanced prostate cancer and other malignancies.
Collapse
Affiliation(s)
- Sarah Kraus
- Department of Microbiology and Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
32
|
Barnett DK, Bunnell TM, Millar RP, Abbott DH. Gonadotropin-releasing hormone II stimulates female sexual behavior in marmoset monkeys. Endocrinology 2006; 147:615-23. [PMID: 16179411 DOI: 10.1210/en.2005-0662] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
GnRH II (pGlu-His-Trp-Ser-Try-Gly-Leu-Arg-Pro-GlyNH2), an evolutionarily conserved member of the GnRH family, stimulates reproductive behavior in a number of vertebrates. To explore a role for GnRH II in regulating primate sexual behavior, eight adult female common marmosets, each fitted with an indwelling intracerebroventricular (icv) cannula, were ovariectomized, implanted subcutaneously with empty (n = 4) or estradiol-filled (n = 4) SILASTIC brand capsules, and pair housed with an adult male mate. After icv infusion of vehicle or peptides, females were placed in an observation cage for 90 min, out of visual contact with other marmosets, before the 30-min behavioral test with their male partner. Compared with vehicle, GnRH II (1 and 10 microg) increased the total number of proceptive (sexual solicitation) behaviors (tongue flicking, proceptive stares, and frozen postures) exhibited by females toward their pair mates and specifically increased the frequency of freeze postures. Effects were maximal at 1 microg and not dependent upon estradiol supplementation. GnRH II agonists/GnRH I antagonists 135-18 (1 microg) and 132-25 (1 microg), which stimulate inositol phosphate production via the marmoset type II receptor, increased the frequency of total proceptive behavior but did not specifically stimulate freeze-posture behavior. In contrast, GnRH I, at 1 mug, did not alter the frequency of proceptive behaviors. Female receptivity (female compliance with male sexual behavior) was not altered by any of the peptides tested. These findings implicate a role for GnRH II and the cognate GnRH type II receptor in stimulating female marmoset sexual behavior.
Collapse
Affiliation(s)
- Deborah K Barnett
- National Primate Research Center, University of Wisconsin, Madison, Wisconsin 53715, USA.
| | | | | | | |
Collapse
|
33
|
Enomoto M, Utsumi M, Park MK. Gonadotropin-releasing hormone induces actin cytoskeleton remodeling and affects cell migration in a cell-type-specific manner in TSU-Pr1 and DU145 cells. Endocrinology 2006; 147:530-42. [PMID: 16195410 DOI: 10.1210/en.2005-0460] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH was first identified as the hypothalamic decapeptide that promotes gonadotropin release from pituitary gonadotropes. Thereafter, direct stimulatory and inhibitory effects of GnRH on cell proliferation were demonstrated in a number of types of primary cultured cells and established cell lines. Recently, the effects of GnRH on cell attachment, cytoskeleton remodeling, and cell migration have also been reported. Thus, the effects of GnRH on various cell activities are of great interest among researchers who study the actions of GnRH. In this study, we demonstrated that GnRH induces actin cytoskeleton remodeling and affects cell migration using two human prostatic carcinoma cell lines, TSU-Pr1 and DU145. In TSU-Pr1, GnRH-I and -II induced the filopodia formation of the cells and promoted cell migration, whereas in DU145, GnRH-I and -II induced the formation of the cells with stress fiber and inhibited cell migration. In our previous studies, we reported the stimulatory and inhibitory effects of GnRH on the cell proliferation of TSU-Pr1 and DU145 cells. This study provides the first evidence for the effects of GnRH on actin cytoskeleton remodeling and cell migration of cells in which cell proliferation was affected by GnRH at the same time. Moreover, we also demonstrated that the same human GnRH receptor subtype, human type I GnRH receptor, is essential for the effects of GnRH-I and -II on actin cytoskeleton remodeling and cell migration in both TSU-Pr1 and DU145 cells using the technique of gene knock-down by RNA interference.
Collapse
Affiliation(s)
- Masahiro Enomoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
34
|
Hapgood JP, Sadie H, van Biljon W, Ronacher K. Regulation of expression of mammalian gonadotrophin-releasing hormone receptor genes. J Neuroendocrinol 2005; 17:619-38. [PMID: 16159375 DOI: 10.1111/j.1365-2826.2005.01353.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gonadotrophin-releasing hormone (GnRH), acting via its cognate GnRH receptor (GnRHR), is the primary regulator of mammalian reproductive function, and hence GnRH analogues are extensively used in the treatment of hormone-dependent diseases, as well as for assisted reproductive techniques. In addition to its established endocrine role in gonadotrophin regulation in the pituitary, evidence is rapidly accumulating to support the expression and functional roles for two forms of GnRHR (GnRHR I and GnRHR II) in multiple and diverse extra-pituitary mammalian tissues and cells. These findings, together with findings indicating that mutations of the GnRHR are linked to the disease hypogonadotrophic hypogonadism and that GnRHRs play a direct role in neuronal migration and reproductive cancers, have presented new therapeutic targets and intensified research into the structure, function and mechanisms of regulation of expression of GnRHR genes. The present review focuses on the current knowledge on tissue-specific and hormonal regulation of transcription of mammalian GnRH receptor genes. Emerging insights, such as the discovery of diverse regulatory mechanisms in pituitary and extra-pituitary cell types, nonclassical mechanisms of steroid regulation, the use of composite elements for cell-specific expression, the increasing profile of hormones involved in regulation, the complexity of kinase pathways that target the GnRHR I gene, as well as species-differences, are highlighted. Although further research is necessary to understand the mechanisms of regulation of expression of GnRHR I and GnRHR II genes, the GnRHR is emerging as a potential target gene for facilitating cross-talk between neuroendocrine, immune and stress-response systems in multiple tissues via autocrine, paracrine and endocrine signalling.
Collapse
Affiliation(s)
- J P Hapgood
- Department of Biochemistry, University of Stellenbosch, Matieland, South Africa.
| | | | | | | |
Collapse
|
35
|
Kauffold J, Schneider F, Zaremba W, Brüssow KP. Lamprey GnRH-III Stimulates FSH Secretion in Barrows. Reprod Domest Anim 2005; 40:475-9. [PMID: 16149955 DOI: 10.1111/j.1439-0531.2005.00609.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although studies have indicated that follicle-stimulating hormone (FSH) and luteinizing hormone (LH) release can be dissociated in the pig, the underlying mechanisms are still to be answered. Since it was demonstrated that lamprey gonadotropin-releasing hormone (l-GnRH-III) has preferential FSH-releasing potency in several mammalian species, we have investigated the gonadotropin-releasing activity of l-GnRH-III in barrows. Each of nine barrows (body weight: 85-90 kg; age: 207 days) received 2 ml saline (S-barrow), followed by 150 microg l-GnRH-III (1.6-1.7 microg/kg body weight) dissolved in 2 ml saline intramuscularly 7 days later. Three pre-treatment and 13 post-treatment blood samples were taken at intervals of 30 min to 8 h to assess basal and treatment-associated concentrations of FSH and LH, respectively, by radioimmunoassay. Animals were defined as having responded to treatment if, 2 h post-treatment, plasma FSH and/or LH levels were >3 SD of the respective basal concentrations. There was no treatment-associated FSH response after saline treatment, but a clear FSH response in all l-GnRH-III-injected barrows. On average, the maximum FSH level (205% of the basal concentration) was observed at 1 h post-treatment. Mean FSH values were elevated until 10 h post-treatment. There was no LH response either to saline or to l-GnRH-III. In conclusion, this study demonstrates a selective FSH-releasing activity of 150 microg l-GnRH-III in barrows. Further studies are needed to investigate whether this effect is ubiquitous in the pig and what the physiological relevance is.
Collapse
Affiliation(s)
- J Kauffold
- Large Animal Clinic for Theriogenology and Ambulatory Services, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| | | | | | | |
Collapse
|
36
|
Eicke N, Günthert AR, Viereck V, Siebold D, Béhé M, Becker T, Emons G, Gründker C. GnRH-II receptor-like antigenicity in human placenta and in cancers of the human reproductive organs. Eur J Endocrinol 2005; 153:605-12. [PMID: 16189182 DOI: 10.1530/eje.1.02005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have recently demonstrated that the antiproliferative activity of GnRH-II on human endometrial and ovarian cancer cell lines is not mediated through the GnRH-I receptor. A functional receptor for human GnRH-II has not yet been identified. In this study, we have generated a polyclonal antiserum to the putative human GnRH-II receptor using a peptide (YSPTMLTEVPPC) corresponding to the third extracellular domain coupled to keyhole limpet haemocyanin via the Cys residue. A database search showed no identical peptide sequences in any other human gene. To avoid cross-reactions against two similar amino acid sequences the antiserum was pre-absorbed using these peptides. Immune histological sections of human placenta and human endometrial, ovarian and prostate cancers using rabbit anti-human GnRH-II receptor antiserum showed GnRH-II receptor-like staining. Western blot analysis of cell membrane preparations of human endometrial and ovarian cancer cell lines yielded a band at approximately 43 kDa whereas Western blot analysis of cell membrane preparations of ovaries obtained from the marmoset monkey (Callithrix jacchus) yielded a band at approximately 54 kDa. To identify the GnRH-II receptor-like antigen we used the photo-affinity labelling technique. Photochemical reaction of (125)I-labelled (4-azidobenzoyl)-N-hydroxysuccinimide-[d-Lys(6)]-GnRH-II (10(-9) M) with cell membrane preparations of human endometrial and ovarian cancer cells yielded a band at approximately 43 kDa. In competition experiments, the GnRH-I agonist Triptorelin (10(-7) M) showed a weak decrease of (125)I-labelled (4-azidobenzoyl)-N-hydroxysuccinimide-[d-Lys(6)]-GnRH-II binding to its binding site. The GnRH-I antagonist Cetrorelix (10(-7) M) showed a clearly stronger decrease, whereas GnRH-II agonist [d-Lys(6)]-GnRH-II (10(-7) M) was the most potent competitor. Western blot analysis of the same gel using rabbit anti-human GnRH-II receptor antiserum identified this band as GnRH-II receptor-like antigen.
Collapse
Affiliation(s)
- Nicola Eicke
- Department of Gynecology and Obstetrics, Georg-August-University, Robert-Koch-Street 40, D-37075 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kawamura K, Fukuda J, Kumagai J, Shimizu Y, Kodama H, Nakamura A, Tanaka T. Gonadotropin-releasing hormone I analog acts as an antiapoptotic factor in mouse blastocysts. Endocrinology 2005; 146:4105-16. [PMID: 15932933 DOI: 10.1210/en.2004-1646] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both GnRH-I and its receptor (GnRHR)-I have been shown to be expressed in the mammalian preimplantation embryo. In this study, we investigated the molecular mechanisms of GnRH-I in the regulation of early embryonic development in mouse. We found that GnRH-I and GnRHR-I mRNAs were detectable throughout early embryonic stages and that expression levels of both increased significantly after the early blastocyst stage. In blastocysts, GnRH-I and GnRHR-I expression was detected in both inner cell mass and trophectoderm cells. The pregnant uterus also expressed both genes, suggesting that preimplantation embryos could be affected by GnRH through both paracrine and autocrine signaling. Treatment with GnRH-I agonist, buserelin, promoted development of two-cell-stage embryos to the expanded and hatched blastocyst stages and inhibited apoptosis in a dose-dependent manner. In contrast, treatment with GnRH-I antagonist, ganirelix acetate, inhibited development of preimplantation embryos beyond the expanded blastocyst stage and induced apoptosis; both effects could be reversed by cotreatment with GnRH-I agonist. GnRH-I antagonist-induced cell death was mediated by disruption of mitochondrial function, release of cytochrome c, and activation of caspase-3. Furthermore, treatment with GnRH-I antagonist decreased expression of two antiapoptotic growth factors, epidermal growth factor and IGF-II, in blastocysts. These results indicate that GnRH-I, acting as an antiapoptotic factor, is an important growth factor in development of mouse blastocysts.
Collapse
Affiliation(s)
- Kazuhiro Kawamura
- Department of Obstetrics and Gynecology, Akita University School of Medicine, Hondo 1-1-1, Akita 010-8543, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Pawson AJ, Maudsley S, Morgan K, Davidson L, Naor Z, Millar RP. Inhibition of human type i gonadotropin-releasing hormone receptor (GnRHR) function by expression of a human type II GnRHR gene fragment. Endocrinology 2005; 146:2639-49. [PMID: 15761034 DOI: 10.1210/en.2005-0133] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Humans possess only one functional GnRH receptor, the type I GnRH receptor (GnRHR-I). A type II GnRH receptor (GnRHR-II) gene homolog exists, but it is disrupted by a frame shift and premature stop codon, suggesting that a conventional receptor is not translated from this gene. However, the gene remains transcriptionally active and displays alternative splicing. We identified a putative translational start site 117 bp downstream of the premature stop codon. Use of this start codon encodes a protein (designated as the GnRHR-II-reliquum) corresponding to the domains from the cytoplasmic end of transmembrane domain-5 to the carboxyl terminus of the putative full-length receptor. Immunocytochemistry revealed that GnRHR-II-reliquum expression appeared to be localized throughout the cytoplasm. Transient cotransfection of GnRHR-I and GnRHR-II-reliquum constructs into COS-7 cells resulted in reduced expression of the GnRHR-I at the cell surface and impaired signaling via the GnRHR-I as revealed by reduction of GnRH-induced inositol phosphate accumulation. This inhibitory effect was specific and dependent on the degree of GnRHR-II-reliquum coexpressed. Immunoblot analysis revealed that the total cell GnRHR-I complement, i.e. both cell-surface and nascent intracellular receptors, was markedly reduced by coexpression of the GnRHR-II-reliquum. Treatments with cell-permeable agents that blocked either de novo protein synthesis (cycloheximide) or proteinase-mediated degradation (leupeptin and phenylmethylsulfonyl fluoride) failed to alter the inhibitory effect of GnRHR-II-reliquum coexpression, suggesting that the inhibitory effect is exerted at the nucleus/endoplasmic reticulum or Golgi apparatus level, possibly by perturbing normal processing of GnRHR-I from these sites. We suggest that the GnRHR-II-reliquum plays a modulatory role in GnRHR-I expression.
Collapse
Affiliation(s)
- Adam J Pawson
- Human Reproductive Sciences Unit, Medical Research Council, The University of Edinburgh Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
39
|
Parhar IS. GnRH and gpcr: laser-captured single cell gene profiling. FISH PHYSIOLOGY AND BIOCHEMISTRY 2005; 31:153-156. [PMID: 20035450 DOI: 10.1007/s10695-006-0018-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have developed a novel single cell real-time quantitative PCR technique, which incorporates harvesting marker-identified single cells using laser-capture. Here, for the first time in a vertebrate species, using this innovative single cell gene profiling technique, we report the presence of G-protein coupled receptors in individual gonadotropin-releasing hormone (GnRH) neurons and endocrine cells of the pituitary of the tilapia Oreochromis niloticus. The differential expression of multiple combinations of three GnRH receptor types (R1, R2 and R3) in individual gonadotropic and nongonadotropic cells demonstrates cellular and functional heterogeneity. The differential use of GnRH receptors in corticotropes, melanotropes and thyrotropes during gonadal maturation and reproductive behaviors suggests new roles for these hormones. Further, we provide evidence of the structure of a novel nonmammalian G-protein coupled receptor (GPR54) for kisspeptins, encoded by Kiss-1 gene, which is highly conserved during evolution and expressed in GnRH1, GnRH2 and GnRH3 neurons. We hypothesize GPR54 stimulates GnRH secretion and is crucial for pubertal maturation. We speculate, the use of this method will allow the identification and quantification of known and unknown genes in single cells, which would greatly facilitate our understanding of the complex interactions that govern the physiology of individual cells in vertebrates species.
Collapse
Affiliation(s)
- Ishwar S Parhar
- School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 46150 Petaling Jaya, Malaysia,
| |
Collapse
|