1
|
Saiz-Ladera C. Generation of a Mouse Model for the Study of Thyroid Hormones Regulatory Effect on the Immune System. Methods Mol Biol 2025; 2876:61-75. [PMID: 39579308 DOI: 10.1007/978-1-0716-4252-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The generation of hypothyroid and hyperthyroid mouse models is one of the approaches used to investigate the complex interplay between thyroid hormones and the immune system. We present a detailed protocol describing how to induce endotoxic shock by lipopolysaccharide (LPS) administration, and how to investigate the role of immune populations, specifically macrophages, responding to endotoxemia.This book chapter provides the use of different molecular techniques, such as Western Blotting, Immunohistochemistry, q-PCR, Luciferase assays, or ChIP assays, with which researchers can gain valuable insights into the immune system's interaction with hormonal signaling pathways, for instance, examining the effect of thyroid hormones on signaling of STAT3, NF-κB, and ERK in response to LPS, and inflammatory mediators, such as interleukin-6 (IL-6) or tumor necrosis factor-alpha (TNFα) within these cells. The signaling pathways involved and the exploration of the relationship between thyroid hormones and the immune system can be analyzed using several molecular biology technologies in order to clarify their interplay in various disease states.
Collapse
Affiliation(s)
- Cristina Saiz-Ladera
- Unidad de Oncogenómica, Servicio de Oncohematología, Fundación para la Investigación Biomédica del Hospital Universitario Niño Jesús, Madrid, Spain.
| |
Collapse
|
2
|
Ben Patel R, Barnwal SK, Saleh M A AM, Francis D. Leveraging nuclear receptor mediated transcriptional signaling for drug discovery: Historical insights and current advances. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:191-269. [PMID: 39843136 DOI: 10.1016/bs.apcsb.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression in response to physiological signals, such as hormones and other chemical messengers. These receptors either activate or repress the transcription of target genes, which in turn promotes or suppresses physiological processes governing growth, differentiation, and homeostasis. NRs bind to specific DNA sequences and, in response to ligand binding, either promote or hinder the assembly of the transcriptional machinery, thereby influencing gene expression at the transcriptional level. These receptors are involved in a wide range of pathological conditions, including cancer, metabolic disorders, chronic inflammatory diseases, and immune system-related disorders. Modulation of NR function through targeted drugs has shown therapeutic benefits in treating such conditions. NR-targeted drugs, which either completely or selectively activate or block receptor function, represent a significant class of clinically valuable therapeutics. However, the pathways of NR-mediated gene expression and the resulting physiological effects are complex, involving crosstalk between various biomolecular components. As a result, NR-targeted drug discovery is challenging. With improved understanding of how NRs regulate physiological functions and deeper insights into their molecular structure, the process of NR-targeted drug discovery has evolved. While many traditional NR-targeting drugs are associated with side effects of varying severity, new drug candidates are being designed to minimize these adverse effects. Given that NR activity varies according to the tissue in which they are expressed and the specific isoform that is activated or repressed, achieving selectivity in targeting specific tissues and isoform classes may help reduce systemic side effects. In a recent breakthrough, the isoform-selective, hepato-targeted thyroid hormone-β agonist, Resmetirom (marketed as Rezdiffra), was approved for the treatment of non-alcoholic steatohepatitis. This chapter explores the structural and mechanistic principles guiding NR-targeted drug discovery and provides insights into recent developments in this field.
Collapse
Affiliation(s)
- Riya Ben Patel
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Surbhi Kumari Barnwal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arabi Mohammed Saleh M A
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| |
Collapse
|
3
|
Ge YL, Jin SQ, Han LZ, Zhang X. Thyroid Gland as a Metastatic Site for Hepatocellular Carcinoma: A Rare Case Report. Onco Targets Ther 2024; 17:1033-1039. [PMID: 39559727 PMCID: PMC11572053 DOI: 10.2147/ott.s481613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/26/2024] [Indexed: 11/20/2024] Open
Abstract
Background Thyroid gland metastasis from distant primary tumors is uncommon, with liver cancer being a particularly rare source. This case report describes the clinical challenges and diagnostic journey of a thyroid mass in a patient with chronic hepatitis B, liver cirrhosis, and hepatocellular carcinoma, underscoring the rarity and complexity of such metastatic relationships. Case Presentation A 63-year-old male with a long-standing history of hepatitis B-related liver cirrhosis and a recent diagnosis of hepatocellular carcinoma presented with a rapidly enlarging painful right-sided thyroid mass associated with swelling but no systemic symptoms such as fever or dysphonia. This prompted a thorough diagnostic workup. Enhanced neck scans indicated a mass potentially originating from the thyroid with tracheal compression, yet crucially, there was no evidence of lung involvement based on the chest CT. Despite the rarity of liver-to-thyroid metastasis, the patient's multifaceted medical history warranted a broad differential diagnosis. Intervention and Outcome Surgical intervention included a right-sided thyroidectomy and partial left thyroidectomy under general anesthesia. Histopathological examination unexpectedly confirmed the presence of metastatic thyroid cancer originating from the primary liver tumor. This led to further extensive surgical management, including lymph node dissection in the central neck area. The postoperative regimen was adapted to include thyroid hormone replacement and ongoing treatment for hepatocellular carcinoma. The patient's postoperative recovery was closely monitored, reflecting stable disease with no immediate complications. Conclusion This case highlights the clinical rarity and diagnostic challenges of liver cancer metastasizing to the thyroid. It emphasizes the need for vigilance in patients with known primary malignancies, especially hepatocellular carcinoma, presenting with new thyroid abnormalities. This advocates for a comprehensive diagnostic approach in such atypical presentations.
Collapse
Affiliation(s)
- Yang-Lu Ge
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, People’s Republic of China
- Yuyao Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang, People’s Republic of China
| | - Shui-Quan Jin
- Yuyao Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang, People’s Republic of China
| | - Lv-Zhou Han
- Yuyao Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang, People’s Republic of China
| | - Xiang Zhang
- School of Medicine, Shanghai University, Shanghai, People’s Republic of China
- UCL Centre for Kidney and Bladder Health, Royal Free Hospital, London, UK
| |
Collapse
|
4
|
Zhu X, Li M, Gan H, Guo Y. Causal association between hyperthyroidism and risk of gastroesophageal reflux or esophageal cancer: a bidirectional Mendelian randomization investigation. Front Endocrinol (Lausanne) 2024; 15:1411629. [PMID: 39355614 PMCID: PMC11442246 DOI: 10.3389/fendo.2024.1411629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
Background Emerging observational studies indicated an association between hyperthyroidism and gastrointestinal disorders. However, it remains unclear whether this association is causal, particularly in the case of gastroesophageal reflux (GERD) and esophageal cancer. Methods To assess the potential causal relationship between hyperthyroidism and GERD or esophageal cancer, we conducted a bidirectional 2-sample Mendelian randomization study. Independent genetic instruments for hyperthyroidism from the UK Biobank (N case=3,545 and N control=459,388) and public genome-wide association study (GWAS) dataset (N case=3,731 and N control=480,867) were used to investigate the association with esophageal cancer in the UK Biobank study (N case=740 and N control=372,016) and GERD in the public GWAS database (N case=20,381 and N control=464,217). Four different approaches (inverse variance weighted (IVW), weighted mode, MR-Egger, and weighted median regression) were used to ensure that our results more reliable. Additional sensitivity analyses were also performed to validate our results. Results When hyperthyroidism was considered as the exposure factor, it appeared to act as a protective factor for GERD (ORIVW = 0.88, 95% CI, 0.79-0.99, P = 0.039), while as a risk factor for esophageal cancer (ORIVW = 1.03, 95% CI, 1.01-1.06, P = 0.003). However, there is no evidence supporting a reverse causal relationship between genetic susceptibility to hyperthyroidism and GERD or esophageal cancer. Conclusion Our findings provided genetic evidence supporting bidirectional causal relationships between hyperthyroidism and GERD or esophageal cancer. These results substantiate certain discoveries from previous observational studies on a causal level and provide insight into relevant genetic susceptibility factors.
Collapse
Affiliation(s)
- Xingyu Zhu
- Department of Cardiovascular Surgery, West China School of Medicine, West China
Hospital, Sichuan University, Chengdu, China
- Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan
University, Chengdu, China
| | - Ming Li
- Department of Cardiovascular Surgery, West China School of Medicine, West China
Hospital, Sichuan University, Chengdu, China
- Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan
University, Chengdu, China
| | - Hanghang Gan
- Department of Cardiovascular Surgery, West China School of Medicine, West China
Hospital, Sichuan University, Chengdu, China
- Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan
University, Chengdu, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China School of Medicine, West China
Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Jia X, Li J, Jiang Z. Association between thyroid disorders and extra-thyroidal cancers, a review. Clin Transl Oncol 2024; 26:2075-2083. [PMID: 38491294 DOI: 10.1007/s12094-024-03434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Thyroid hormone has been shown to have both tumor-promoting and tumor-suppressing actions, which has led to significant debate over its involvement in the development of cancer. Proliferation, apoptosis, invasiveness, and angiogenesis are all aspects of cancer that are affected by the thyroid hormones T3 and T4, according to research conducted in animal models and in vitro experiments. The effects of thyroid hormones on cancer cells are mediated by many non-genomic mechanisms, one of which involves the activation of the plasma membrane receptor integrin αvβ3. Typically, abnormal amounts of thyroid hormones are linked to a higher occurrence of cancer. Both benign and malignant thyroid disorders were found to be associated with an increased risk of extra-thyroidal malignancies, specifically colon, breast, prostate, melanoma, and lung cancers. The purpose of this review was to shed light on this link to define which types of cancer are sensitive to thyroid hormones and, as a result, are anticipated to respond favorably to treatment of the thyroid hormone axis.
Collapse
Affiliation(s)
- Xin Jia
- Department of Nursing, Zhengzhou Health Vocational College, Zhengzhou, 410005, China
| | - Jingru Li
- Department of Nursing, Zhengzhou Health Vocational College, Zhengzhou, 410005, China.
| | - Zongliang Jiang
- Department of Nursing, Zhengzhou Health Vocational College, Zhengzhou, 410005, China
| |
Collapse
|
6
|
Hantusch B, Kenner L, Stanulović VS, Hoogenkamp M, Brown G. Targeting Androgen, Thyroid Hormone, and Vitamin A and D Receptors to Treat Prostate Cancer. Int J Mol Sci 2024; 25:9245. [PMID: 39273194 PMCID: PMC11394715 DOI: 10.3390/ijms25179245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The nuclear hormone family of receptors regulates gene expression. The androgen receptor (AR), upon ligand binding and homodimerization, shuttles from the cytosol into the nucleus to activate gene expression. Thyroid hormone receptors (TRs), retinoic acid receptors (RARs), and the vitamin D receptor (VDR) are present in the nucleus bound to chromatin as a heterodimer with the retinoid X receptors (RXRs) and repress gene expression. Ligand binding leads to transcription activation. The hormonal ligands for these receptors play crucial roles to ensure the proper conduct of very many tissues and exert effects on prostate cancer (PCa) cells. Androgens support PCa proliferation and androgen deprivation alone or with chemotherapy is the standard therapy for PCa. RARγ activation and 3,5,3'-triiodo-L-thyronine (T3) stimulation of TRβ support the growth of PCa cells. Ligand stimulation of VDR drives growth arrest, differentiation, and apoptosis of PCa cells. Often these receptors are explored as separate avenues to find treatments for PCa and other cancers. However, there is accumulating evidence to support receptor interactions and crosstalk of regulatory events whereby a better understanding might lead to new combinatorial treatments.
Collapse
Affiliation(s)
- Brigitte Hantusch
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Christian Doppler Laboratory for Applied Metabolomics, Medical University Vienna, 1090 Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Vesna S. Stanulović
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Deng X, Sun S, Yao W, Yue P, Guo F, Wang Y, Zhang Y. The association between three prevalent autoimmune disorders and the likelihood of developing prostate cancer: a Mendelian randomization study. Sci Rep 2024; 14:11755. [PMID: 38783043 PMCID: PMC11116512 DOI: 10.1038/s41598-024-62716-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Numerous studies establish a significant correlation between autoimmune disorders (AIDs) and prostate cancer (PCa). Our Mendelian randomization (MR) analysis investigates the potential connection between rheumatoid arthritis (RA) and PCa, aiming to confirm causal links between systemic lupus erythematosus (SLE), hyperthyroidism, and PCa. Summary statistics from genome-wide association studies provided data on PCa and three AIDs. MR analysis, using IVW as the main approach, assessed causal relationships, validated by sensitivity analysis. IVW revealed a correlation between genetically anticipated RA and PCa, notably in Europeans (OR = 1.03; 95% CI 1.01-1.04, p = 2*10-5). Evidence supported a lower PCa risk in individuals with SLE (OR = 0.94; 95% CI 0.91-0.97, p = 2*10-4) and hyperthyroidism (OR = 0.02; 95% CI 0.001-0.2, p = 2*10-3). Weighted mode and median confirmed these findings. No pleiotropic effects were observed, and MR heterogeneity tests indicated dataset homogeneity. Our study establishes a causal link between RA, SLE, hyperthyroidism, and PCa.
Collapse
Affiliation(s)
- Xiaoqian Deng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shiwei Sun
- Department of Urology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Wei Yao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Peng Yue
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Fuyu Guo
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yangang Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Gillis NE, Cozzens LM, Wilson ER, Smith NM, Tomczak JA, Bolf EL, Carr FE. TRβ Agonism Induces Tumor Suppression and Enhances Drug Efficacy in Anaplastic Thyroid Cancer in Female Mice. Endocrinology 2023; 164:bqad135. [PMID: 37702560 PMCID: PMC10506733 DOI: 10.1210/endocr/bqad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Thyroid hormone receptor beta (TRβ) is a recognized tumor suppressor in numerous solid cancers. The molecular signaling of TRβ has been elucidated in several cancer types through re-expression models. Remarkably, the potential impact of selective activation of endogenous TRβ on tumor progression remains largely unexplored. We used cell-based and in vivo assays to evaluate the effects of the TRβ agonist sobetirome (GC-1) on a particularly aggressive and dedifferentiated cancer, anaplastic thyroid cancer (ATC). Here we report that GC-1 reduced the tumorigenic phenotype, decreased cancer stem-like cell populations, and induced redifferentiation of the ATC cell lines with different mutational backgrounds. Of note, this selective activation of TRβ amplified the effects of therapeutic agents in blunting the aggressive cell phenotype and stem cell growth. In xenograft assays, GC-1 alone inhibited tumor growth and was as effective as the kinase inhibitor, sorafenib. These results indicate that selective activation of TRβ not only induces a tumor suppression program de novo but enhances the effectiveness of anticancer agents, revealing potential novel combination therapies for ATC and other aggressive solid tumors.
Collapse
Affiliation(s)
- Noelle E Gillis
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Lauren M Cozzens
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Emily R Wilson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Noah M Smith
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jennifer A Tomczak
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Eric L Bolf
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Frances E Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
9
|
Xu F, Chen Z. Causal associations of hyperthyroidism with prostate cancer, colon cancer, and leukemia: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1162224. [PMID: 37274339 PMCID: PMC10233060 DOI: 10.3389/fendo.2023.1162224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Background Observational studies have shown that hyperthyroidism may increase the risk of cancer, but their causal effects and direction are unclear. We conducted a two-sample Mendelian randomization (MR) study to explore the associations between genetic predisposition to hyperthyroidism and nine common types of cancer, including prostate, lung, breast, colon, leukemia, brain, skin, bladder, and esophagus cancer. Methods We obtained summary statistics of hyperthyroidism and nine types of cancers from genome-wide association studies (GWAS). MR analysis is performed to investigate the potential causal relationship between hyperthyroidism and cancers. The inverse variance weighted (IVW) as the primary method was carried out. The robustness of the results was evaluated by sensitivity analysis. Results Genetically predicted hyperthyroidism was associated with a declining risk of occurrence of prostate cancer (odds ratio (OR)IVW= 0.859, P= 0.0004; OR MR-Egger=0.828, P= 0.03; OR weighted median= 0.827, P=0.0009). Additionally, there was a significant association between genetically predicted hyperthyroidism and colon cancer (OR IVW= 1.13, P= 0.011; OR MR-Egger= 1.31, P= 0.004; OR weighted median= 1.18, P= 0.0009). Hyperthyroidism was also suggestively correlated with a higher risk of leukemia based on the result of IVW and weighted median (OR IVW= 1.05, P= 0.01; OR weighted median= 1.08, P= 0.001). Results from a two-sample MR analysis suggested that hyperthyroidism was not associated with the risk of lung cancer, breast cancer, brain cancer, skin cancer, bladder cancer, and esophageal cancer. Conclusion Our study provides evidence of a causal relationship between hyperthyroidism and the risk of prostate cancer, rectal cancer, and leukemia. Further research is needed to clarify the associations between hyperthyroidism and other cancers.
Collapse
Affiliation(s)
- Feipeng Xu
- Department of Endocrinology, The First Hospital of Putian City, Putian, Fujian, China
- Department of Endocrinology, Teaching Hospital, The First Hospital of Putian, Fujian Medical University, Putian, Fujian, China
| | - Zhenxin Chen
- Department of Endocrinology, The First Hospital of Putian City, Putian, Fujian, China
| |
Collapse
|
10
|
Begum TF, Carpenter D. Health effects associated with phthalate activity on nuclear receptors. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:567-583. [PMID: 34592072 DOI: 10.1515/reveh-2020-0162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Phthalates are endocrine disruptors, widely used as plasticizers to impart flexibility in plastics, and as solvents in personal care products. Due to their nearly ubiquitous use in consumer products, most humans are exposed to phthalates daily. There has been extensive research on the reproductive health effects associated with phthalate exposure, but less attention has been paid to other actions. This review aims to summarize the known action of phthalates on different nuclear receptors. Some phthalates bind to and activate the estrogen receptor, making them weakly estrogenic. However, other phthalates antagonize androgen receptors. Some high molecular weight phthalates antagonize thyroid receptors, affecting metabolism. Several phthalates activate and interfere with the normal function of different peroxisome proliferator-activated receptors (PPARs), receptors that have critical roles in lipid metabolism and energy homeostasis. Some phthalates activate the aryl hydrocarbon receptor, which is critical for xenobiotic metabolism. Although phthalates have a short half-life in vivo, because people are continuously exposed, studies should examine the health effects of phthalates associated with long-term exposure. There is limited research on the effects of phthalates on health outcomes aside from reproductive function, particularly concerning are childhood adiposity, behavior, and learning. There is also limited information on actions of phthalates not mediated via nuclear receptors. Humans are exposed to multiple chemicals simultaneously, and how chemical mixtures act on nuclear receptor activity needs study. Although we know a great deal about phthalates, there is still much that remains uncertain. Future studies need to further examine their other potential health effects.
Collapse
Affiliation(s)
- Thoin Farzana Begum
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - David Carpenter
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, USA
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, USA
| |
Collapse
|
11
|
Thyroid Hormone Receptor β Knockdown Reduces Suppression of Progestins by Activating the mTOR Pathway in Endometrial Cancer Cells. Int J Mol Sci 2022; 23:ijms232012517. [PMID: 36293372 PMCID: PMC9604373 DOI: 10.3390/ijms232012517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Progestin resistance is a major obstacle to conservative therapy in patients with endometrial cancer (EC) and endometrial atypical hyperplasia (EAH). However, the related inducing factor is yet unclear. In this study, thyroid hormone and its receptor α (TRα) and β (TRβ) of patients were assayed. THRB-silenced RL95-2 and KLE EC cells were cultured to investigate the response of progestins. Transcriptomics and Western blotting were performed to investigate the changes in signaling pathways. We found that THRB, rather than THRA, knockdown promoted the viability and motilities of RL95-2 cells but not KLE cells. The suppressive effect of progestins on cell growth and motility significantly decreased in THRB-silenced RL95-2 cells. Multiple proliferation-related signaling pathways were enriched, and the activities of mammalian targets of rapamycin (mTOR)/4e-binding protein 1 (4EBP1)/eukaryotic translation initiation factor 4G (eIF4G) rather than phosphorylated protein kinase B (Akt) were remarkably boosted. Progestin treatment enhanced the effects, and the augmentation was partially abated on supplementation with T3. In THRB-knockdown KLE cells, the progestins-activated partial signaling pathway expression (either mTOR or eIF4G), and supplementation with T3 did not induce noticeable alterations. The serum levels of triiodothyronine (T3) were significantly lower in patients with EC compared with healthy women. A strong expression of TRβ was observed in most patients with EC and EAH sensitive to progestin treatment. In contrast, TRα positive expression was detected in less than half of the patients sensitive to progestin therapy. In conclusion, THRB knockdown enhanced the viability and motility of type I EC cells and attenuated the suppressive effects of progestins by activating the mTOR-4EBP1/eIF4G pathway. Lower expression of THRB is likely correlated with progesterone resistance.
Collapse
|
12
|
Fan L, Kishore A, Jansen-Olliges L, Wang D, Stahl F, Psathaki OE, Harre J, Warnecke A, Weder J, Preller M, Zeilinger C. Identification of a Thyroid Hormone Binding Site in Hsp90 with Implications for Its Interaction with Thyroid Hormone Receptor Beta. ACS OMEGA 2022; 7:28932-28945. [PMID: 36033668 PMCID: PMC9404468 DOI: 10.1021/acsomega.2c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
While many proteins are known clients of heat shock protein 90 (Hsp90), it is unclear whether the transcription factor, thyroid hormone receptor beta (TRb), interacts with Hsp90 to control hormonal perception and signaling. Higher Hsp90 expression in mouse fibroblasts was elicited by the addition of triiodothyronine (T3). T3 bound to Hsp90 and enhanced adenosine triphosphate (ATP) binding of Hsp90 due to a specific binding site for T3, as identified by molecular docking experiments. The binding of TRb to Hsp90 was prevented by T3 or by the thyroid mimetic sobetirome. Purified recombinant TRb trapped Hsp90 from cell lysate or purified Hsp90 in pull-down experiments. The affinity of Hsp90 for TRb was 124 nM. Furthermore, T3 induced the release of bound TRb from Hsp90, which was shown by streptavidin-conjugated quantum dot (SAv-QD) masking assay. The data indicate that the T3 interaction with TRb and Hsp90 may be an amplifier of the cellular stress response by blocking Hsp90 activity.
Collapse
Affiliation(s)
- Lu Fan
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Anusha Kishore
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| | - Linda Jansen-Olliges
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| | - Dahua Wang
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Frank Stahl
- Institut
für Technische Chemie, Gottfried-Wilhelm-Leibniz
University of Hannover, Hannover 30167, Germany
| | - Olympia Ekaterini Psathaki
- Center
of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, Osnabrück 49076, Germany
| | - Jennifer Harre
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Athanasia Warnecke
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Julia Weder
- Institute
for Biophysical Chemistry, Hannover Medical
School, Carl-Neuberg-Straβe
1, Hannover 30625, Germany
- Institute
for Functional Gene Analytics (IFGA), Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Matthias Preller
- Institute
for Biophysical Chemistry, Hannover Medical
School, Carl-Neuberg-Straβe
1, Hannover 30625, Germany
- Institute
for Functional Gene Analytics (IFGA), Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Carsten Zeilinger
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| |
Collapse
|
13
|
López-Mateo I, Rodríguez-Muñoz D, de La Rosa JV, Castrillo A, Alemany S, Aranda A. Regulation of metabolic and transcriptional responses by the thyroid hormone in cellular models of murine macrophages. Front Immunol 2022; 13:923727. [PMID: 35935955 PMCID: PMC9353060 DOI: 10.3389/fimmu.2022.923727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Oncogene-immortalized bone marrow-derived macrophages are considered to be a good model for the study of immune cell functions, but the factors required for their survival and proliferation are still unknown. Although the effect of the thyroid hormones on global metabolic and transcriptional responses in macrophages has not yet been examined, there is increasing evidence that they could modulate macrophage functions. We show here that the thyroid hormone T3 is an absolute requirement for the growth of immortal macrophages. The hormone regulates the activity of the main signaling pathways required for proliferation and anabolic processes, including the phosphorylation of ERK and p38 MAPKs, AKT, ribosomal S6 protein, AMPK and Sirtuin-1. T3 also alters the levels of metabolites controlling transcriptional and post-transcriptional actions in macrophages, and causes widespread transcriptomic changes, up-regulating genes needed for protein synthesis and cell proliferation, while down-regulating genes involved in immune responses and endocytosis, among others. This is not observed in primary bone marrow-derived macrophages, where only p38 and AMPK activation is regulated by T3 and in which the metabolic and transcriptomic effects of the hormone are much weaker. However, the response to IFN-γ is reduced by T3 similarly in immortalized macrophages and in the primary cells, confirming previous results showing that the thyroid hormones can antagonize JAK/STAT-mediated signaling. These results provide new perspectives on the relevant pathways involved in proliferation and survival of macrophage cell culture models and on the crosstalk between the thyroid hormones and the immune system.
Collapse
Affiliation(s)
- Irene López-Mateo
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Rodríguez-Muñoz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Vladimir de La Rosa
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Susana Alemany
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Ana Aranda,
| |
Collapse
|
14
|
Doolittle WKL, Zhu X, Park S, Zhu YJ, Zhao L, Meltzer P, Cheng SY. Regulation of cancer stem cell activity by thyroid hormone receptor β. Oncogene 2022; 41:2315-2325. [PMID: 35256781 PMCID: PMC9018601 DOI: 10.1038/s41388-022-02242-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
Increasing numbers of cancer stem cell markers have been recently identified. It is not known, however, whether a member of the nuclear receptor superfamily, thyroid hormone receptor β (TRβ), can function to regulate cancer stem cell (CSC) activity. Using anaplastic thyroid cancer cells (ATC) as a model, we highlight the role of TRβ in CSC activity. ATC is one of the most aggressive solid cancers in humans and is resistant to currently available therapeutics. Recent studies provide evidence that CSC activity underlies aggressiveness and therapeutic resistance of ATC. Here we show that TRβ inhibits CSC activity by suppressing tumor-sphere formation of human ATC cells and their tumor-initiating capacity. TRβ suppresses the expression of CSC regulators, including ALDH, KLF2, SOX2, b-catenin, and ABCG2, in ATC cell-induced xenograft tumors. Single-cell transcriptomic analysis shows that TRβ reduces CSC population in ATC-induced xenograft tumors. Analysis of The Cancer Genome Atlas (TCGA) database demonstrates that the inhibition of CSC capacity by TRβ contributes to favorable clinical outcomes in human cancer. Our studies show that TRβ is a newly identified transcription regulator that acts to suppress CSC activity and that TRβ could be considered as a molecular target for therapeutic intervention of ATC.
Collapse
Affiliation(s)
- Woo Kyung Lee Doolittle
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sunmi Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yuelin Jack Zhu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li Zhao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Paul Meltzer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Overexpression of miR-375 and L-type Amino Acid Transporter 1 in Pheochromocytoma and Their Molecular and Functional Implications. Int J Mol Sci 2022; 23:ijms23052413. [PMID: 35269556 PMCID: PMC8910416 DOI: 10.3390/ijms23052413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Pheochromocytoma (Pheo) is a tumor derived from chromaffin cells. It can be studied using 18F-dihydroxyphenylalanine (DOPA)—positron emission tomography (PET) due to its overexpression of L-type amino acid transporters (LAT1 and LAT2). The oncogenic pathways involved are still poorly understood. This study examined the relationship between 18F-DOPA-PET uptake and LAT1 expression, and we explored the role of miR-375 and putative target genes. A consecutive series of 58 Pheo patients were retrospectively analyzed, performing 18F-DOPA-PET in 32/58 patients. Real-time quantitative PCR was used to assess the expression of LAT1, LAT2, phenylethanolamine N-methyltransferase (PNMT), miR-375, and the major components of the Hippo and Wingless/Integrated pathways. Principal germline mutations associated with hereditary Pheo were also studied. Pheo tissues had significantly higher LAT1, LAT2, and PNMT mRNA levels than normal adrenal tissues. MiR-375 was strongly overexpressed. Yes-associated protein 1 and tankyrase 1 were upregulated, while beta-catenin, axin2, monocarboxylate transporter 8, and Frizzled 8 were downregulated. A positive relationship was found between 18F-DOPA-PET SUV mean and LAT1 gene expression and for 24 h-urinary norepinephrine and LAT1. This is the first experimental evidence of 18F-DOPA uptake correlating with LAT1 overexpression. We also demonstrated miR-375 overexpression and downregulated (Wnt) signaling and identified the Hippo pathway as a new potentially oncogenic feature of Pheo.
Collapse
|
16
|
Schnoell J, Kotowski U, Jank BJ, Stoiber S, Gurnhofer E, Schlederer M, Heiduschka G, Kenner L, Kadletz-Wanke L. Prognostic Relevance of Thyroid-Hormone-Associated Proteins in Adenoid Cystic Carcinoma of the Head and Neck. J Pers Med 2021; 11:jpm11121352. [PMID: 34945824 PMCID: PMC8703850 DOI: 10.3390/jpm11121352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
The proteins sodium iodide symporter (NIS), μ-crystallin (CRYM), and thyroid hormone receptor beta (THRB) have been associated with prognosis in various cancer entities. While NIS and THRB may serve as possible therapeutic targets, the role of CRYM in cancer is still unclear. Protein levels of 44 patients with adenoid cystic carcinoma of the head and neck were analyzed using immunohistochemistry and correlated with clinicopathological data and outcome. NIS was positive in 72%, CRYM was positive in 55%, and THRB was positive in 39% of the patients. CRYM-positive adenoid cystic carcinomas were associated with a better cause-specific survival. Thus, our data indicate that CRYM might be a suitable positive prognostic marker in adenoid cystic carcinoma of the head and neck. Furthermore, expression of NIS was present in most patients and therefore evaluation of the use of radioiodine treatment is recommended.
Collapse
Affiliation(s)
- Julia Schnoell
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (U.K.); (B.J.J.); (L.K.-W.)
| | - Ulana Kotowski
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (U.K.); (B.J.J.); (L.K.-W.)
| | - Bernhard J. Jank
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (U.K.); (B.J.J.); (L.K.-W.)
| | - Stefan Stoiber
- Department of Pathology, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (S.S.); (E.G.); (M.S.)
- Christian Doppler Laboratory for Applied Metabolomics, 1090 Vienna, Austria
| | - Elisabeth Gurnhofer
- Department of Pathology, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (S.S.); (E.G.); (M.S.)
| | - Michaela Schlederer
- Department of Pathology, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (S.S.); (E.G.); (M.S.)
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (U.K.); (B.J.J.); (L.K.-W.)
- Correspondence: (G.H.); (L.K.)
| | - Lukas Kenner
- Department of Pathology, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (S.S.); (E.G.); (M.S.)
- Christian Doppler Laboratory for Applied Metabolomics, 1090 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
- CBmed GmbH-Center for Biomarker Research in Medicine, 8010 Graz, Austria
- Correspondence: (G.H.); (L.K.)
| | - Lorenz Kadletz-Wanke
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (U.K.); (B.J.J.); (L.K.-W.)
| |
Collapse
|
17
|
Davidson CD, Gillis NE, Carr FE. Thyroid Hormone Receptor Beta as Tumor Suppressor: Untapped Potential in Treatment and Diagnostics in Solid Tumors. Cancers (Basel) 2021; 13:4254. [PMID: 34503062 PMCID: PMC8428233 DOI: 10.3390/cancers13174254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023] Open
Abstract
There is compelling evidence that the nuclear receptor TRβ, a member of the thyroid hormone receptor (TR) family, is a tumor suppressor in thyroid, breast, and other solid tumors. Cell-based and animal studies reveal that the liganded TRβ induces apoptosis, reduces an aggressive phenotype, decreases stem cell populations, and slows tumor growth through modulation of a complex interplay of transcriptional networks. TRβ-driven tumor suppressive transcriptomic signatures include repression of known drivers of proliferation such as PI3K/Akt pathway, activation of novel signaling such as JAK1/STAT1, and metabolic reprogramming in both thyroid and breast cancers. The presence of TRβ is also correlated with a positive prognosis and response to therapeutics in BRCA+ and triple-negative breast cancers, respectively. Ligand activation of TRβ enhances sensitivity to chemotherapeutics. TRβ co-regulators and bromodomain-containing chromatin remodeling proteins are emergent therapeutic targets. This review considers TRβ as a potential biomolecular diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Cole D. Davidson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| | - Noelle E. Gillis
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| | - Frances E. Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| |
Collapse
|
18
|
Abstract
The present review traces the road leading to discovery of L-thyroxine, thyroid hormone (3,5,3´-triiodo-L-thyronine, T3) and its cognate nuclear receptors. Thyroid hormone is a pleio-tropic regulator of growth, differentiation, and tissue homeostasis in higher organisms. The major site of the thyroid hormone action is predominantly a cell nucleus. T3 specific binding sites in the cell nuclei have opened a new era in the field of the thyroid hormone receptors (TRs) discovery. T3 actions are mediated by high affinity nuclear TRs, TRalpha and TRbeta, which function as T3-activated transcription factors playing an essential role as transcription-modulating proteins affecting the transcriptional responses in target genes. Discovery and characterization of nuclear retinoid X receptors (RXRs), which form with TRs a heterodimer RXR/TR, positioned RXRs at the epicenter of molecular endocrinology. Transcriptional control via nuclear RXR/TR heterodimer represents a direct action of thyroid hormone. T3 plays a crucial role in the development of brain, it exerts significant effects on the cardiovascular system, skeletal muscle contractile function, bone development and growth, both female and male reproductive systems, and skin. It plays an important role in maintaining the hepatic, kidney and intestine homeostasis and in pancreas, it stimulates the beta-cell proliferation and survival. The TRs cross-talk with other signaling pathways intensifies the T3 action at cellular level. The role of thyroid hormone in human cancers, acting via its cognate nuclear receptors, has not been fully elucidated yet. This review is aimed to describe the history of T3 receptors, starting from discovery of T3 binding sites in the cell nuclei to revelation of T3 receptors as T3-inducible transcription factors in relation to T3 action at cellular level. It also focuses on milestones of investigation, comprising RXR/TR dimerization, cross-talk between T3 receptors, and other regulatory pathways within the cell and mainly on genomic action of T3. This review also focuses on novel directions of investigation on relationships between T3 receptors and cancer. Based on the update of available literature and the author's experimental experience, it is devoted to clinicians and medical students.
Collapse
|
19
|
Aranda A. MicroRNAs and thyroid hormone action. Mol Cell Endocrinol 2021; 525:111175. [PMID: 33515639 DOI: 10.1016/j.mce.2021.111175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally repress gene expression by binding generally to the 3'-untranslated regions of their target mRNAs. miRNAs regulate a large fraction of the genome, playing a key role in most physiological and pathological processes. The thyroid hormones (T4 and T3) are major regulators of development, metabolism and cell growth. The thyroid hormones (THs) are synthetized in the thyroid gland and enter the cells through transporter proteins. In the cells, T4 and T3 are metabolized by deiodinase enzymes and bind to nuclear receptors (TRs), which have a higher affinity by T3. TRs act as hormone dependent transcription factors by binding to thyroid hormone response elements (TREs) in the target genes and recruiting transcriptional coregulators. There is increasing evidence that a variety of miRNAs target deiodinases and the receptor, thus regulating TH signaling is different tissues. In turn, the THs have been shown to modulate the expression of specific miRNAs and their mRNA targets in different cell types and organs. In many cases, the existence of TREs in the regulatory regions of these miRNAs has been identified, and the hormone bound receptors transcriptionally regulate expression of these molecules. Changes in the levels of miRNAs have been demonstrated to mediate some of the important actions of the THs in processes such as muscle and heart function, lipid liver metabolism or skin physiology. In addition, miRNA regulation is involved in the effects of TRs on cell proliferation and cancer.
Collapse
Affiliation(s)
- Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
20
|
Tan L, Bogush N, Naqvi E, Calvert JW, Graham RM, Taylor WR, Naqvi N, Husain A. Thyroid hormone plus dual-specificity phosphatase-5 siRNA increases the number of cardiac muscle cells and improves left ventricular contractile function in chronic doxorubicin-injured hearts. Theranostics 2021; 11:4790-4808. [PMID: 33754028 PMCID: PMC7978295 DOI: 10.7150/thno.57456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/15/2021] [Indexed: 01/05/2023] Open
Abstract
Rationale: Doxorubicin is a widely used anticancer drug. However, its major side effect, cardiotoxicity, results from cardiomyocyte loss that causes left ventricle (LV) wall thinning, chronic LV dysfunction and heart failure. Cardiomyocyte number expansion by thyroid hormone (T3) during preadolescence is suppressed by the developmental induction of an ERK1/2-specific dual specificity phosphatase 5 (DUSP5). Here, we sought to determine if a brief course of combined DUSP5 suppression plus T3 therapy replaces cardiomyocytes lost due to preexisting doxorubicin injury and reverses heart failure. Methods: We used in vivo-jetPEI to deliver DUSP5 or scrambled siRNA to ~5-week-old C57BL6 mice followed by 5 daily injections of T3 (2 ng/µg body weight). Genetic lineage tracing using Myh6-MerCreMer::Rosa26fs-Confetti mice and direct cardiomyocyte number counting, along with cell cycle inhibition (danusertib), was used to test if this treatment leads to de novo cardiomyocyte generation and improves LV contractile function. Three doses of doxorubicin (20 µg/g) given at 2-weekly intervals, starting at 5-weeks of age in C57BL6 mice, caused severe heart failure, as evident by a decrease in LV ejection fraction. Mice with an ~40 percentage point decrease in LVEF post-doxorubicin injury were randomized to receive either DUSP5 siRNA plus T3, or scrambled siRNA plus vehicle for T3. Age-matched mice without doxorubicin injury served as controls. Results: In uninjured adult mice, transient therapy with DUSP5 siRNA and T3 increases cardiomyocyte numbers, which is required for the associated increase in LV contractile function, since both are blocked by danusertib. In mice with chronic doxorubicin injury, DUSP5 siRNA plus T3 therapy rebuilds LV muscle by increasing cardiomyocyte numbers, which reverses LV dysfunction and prevents progressive chamber dilatation. Conclusion: RNA therapies are showing great potential. Importantly, a GMP compliant in vivo-jetPEI system for delivery of siRNA is already in use in humans, as is T3. Given these considerations, our findings provide a potentially highly translatable strategy for addressing doxorubicin cardiomyopathy, a currently untreatable condition.
Collapse
Affiliation(s)
- Lin Tan
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA, USA
| | - Nikolay Bogush
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA, USA
| | - Emmen Naqvi
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA, USA
| | - John W. Calvert
- Department of Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - W. Robert Taylor
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Cardiology Division, Atlanta, GA, USA
- Emory University School of Medicine and Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, GA, USA
| | - Nawazish Naqvi
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA, USA
| | - Ahsan Husain
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
21
|
Martínez-Iglesias O, Ruiz-Llorente L, Jurado CC, Aranda A. Thyroid Hormone Receptors and their Role in Cell Proliferation and Cancer. CELLULAR ENDOCRINOLOGY IN HEALTH AND DISEASE 2021:229-246. [DOI: 10.1016/b978-0-12-819801-8.00011-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Font-Díaz J, Jiménez-Panizo A, Caelles C, Vivanco MDM, Pérez P, Aranda A, Estébanez-Perpiñá E, Castrillo A, Ricote M, Valledor AF. Nuclear receptors: Lipid and hormone sensors with essential roles in the control of cancer development. Semin Cancer Biol 2020; 73:58-75. [PMID: 33309851 DOI: 10.1016/j.semcancer.2020.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that act as biological sensors and use a combination of mechanisms to modulate positively and negatively gene expression in a spatial and temporal manner. The highly orchestrated biological actions of several NRs influence the proliferation, differentiation, and apoptosis of many different cell types. Synthetic ligands for several NRs have been the focus of extensive drug discovery efforts for cancer intervention. This review summarizes the roles in tumour growth and metastasis of several relevant NR family members, namely androgen receptor (AR), estrogen receptor (ER), glucocorticoid receptor (GR), thyroid hormone receptor (TR), retinoic acid receptors (RARs), retinoid X receptors (RXRs), peroxisome proliferator-activated receptors (PPARs), and liver X receptors (LXRs). These studies are key to develop improved therapeutic agents based on novel modes of action with reduced side effects and overcoming resistance.
Collapse
Affiliation(s)
- Joan Font-Díaz
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain
| | - Alba Jiménez-Panizo
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Carme Caelles
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, Spain
| | - María dM Vivanco
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Derio, 48160, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, Valencia, 46010, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Eva Estébanez-Perpiñá
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, 28029, Spain; Unidad de Biomedicina, (Unidad Asociada al CSIC), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Universidad de Las Palmas, Gran Canaria, 35001, Spain
| | - Mercedes Ricote
- Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Annabel F Valledor
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain.
| |
Collapse
|
23
|
In silico studies of some 2-anilinopyrimidine derivatives as anti-triple-negative breast cancer agents. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00041-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer is a major form of health problem on the globe and the second cause of death related to cancer amidst women. A prediction of about 1 to 1.3 million cases on cancer of the breast are detected yearly globally. Triple-negative type of breast cancers (TNBCs) are described by the lack of human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), and progesterone receptor (PR). TNBCs metastasize to the central nervous system and lungs regularly. Such metastatic actions reduce the life expectancy of patients with TNBC than patients with non-TNBC due to non-enhanced inhibitor compounds. The purpose of this research was to explore the anti-proliferative activities of 2-anilinopyrimidine derivatives against triple-negative cancer cell line MDA-MB-468 via in silico studies like QSAR and molecular docking studies to further design and develop new anti-breast cancer drug with high potency and low toxicity.
Results
The quantitative structure–activity relationship QSAR model predicts the bioactivities of the compounds, and molecular docking studies comprehend the interaction between the derivatives (ligand) and thyroid hormone (TRβ1) (receptor). Model 4 was chosen as the best model from the statistical assessment; R2 = 0.8760, R2adj = 0.8451, Q2 = 0.6141, and R2pred of 0.5390. From the external validation of the QSAR model, the coefficient of the mean effect on the model parameters indicates that decreasing (VR1_Dzv and MOMI-R) and increasing (SpMin1_Bh and C3SP3) would increase the anti-proliferative activities (pIC50) of the compounds. The molecular docking studies revealed that ligands 15 and 18 had the highest docking scores of − 7.3 and − 7.4 kcal/mol with thyroid hormone receptor (TRβ1). The ligands had docking scores better than the standard anti-breast cancer drug gefitinib (− 5.3 kcal/mol).
Conclusions
The results indicate that model 4 can be used in developing new 2-anilinopyrimidine derivatives, with better anti-breast cancer prediction activity and performance. It was proved that some series of 2-anilinopyrimidine derivative compounds bind tightly to the receptor, stabilizing the receptor (TRβ1) which is evident from the receptor–ligand interactions, and these compounds would serve as the most promising inhibitors against TRβ1. This shows a breakthrough for pharmaceutical researchers in designing and developing new anti-triple-negative breast cancer drugs.
Collapse
|
24
|
Sohn W, Chang Y, Cho YK, Kim Y, Shin H, Ryu S. Abnormal and Euthyroid Ranges of Thyroid Hormones in Serum and Liver Cancer Mortality: A Cohort Study. Cancer Epidemiol Biomarkers Prev 2020; 29:2002-2009. [PMID: 32699077 DOI: 10.1158/1055-9965.epi-20-0283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the relationship of serum thyrotropin (TSH) and thyroid hormone concentration with liver cancer mortality. METHODS A cohort of 517,996 Korean adults, who did not have liver cancer at baseline and attended a health screening including free thyroxine (FT4) and TSH, were followed for up to 16 years. High and low TSH and FT4 were defined as those above the upper bound of reference interval and those below the lower bound of reference interval of their corresponding reference intervals, respectively. Mortality information was ascertained through National Death Records. The adjusted HR (aHR) with 95% confidence interval (CI) were estimated using a Cox proportional hazard model. RESULTS During a median follow-up of 8.1 years, 376 deaths from liver cancer were identified. Subjects with low FT4 levels were associated with an elevated risk of liver cancer mortality with a corresponding multivariable aHR 2.25 (95% CI: 1.62-3.12) compared with those with normal FT4 levels. Within the euthyroid range, there was also a dose-dependent inverse relationship between FT4 level and liver cancer mortality (P < 0.001). Levels of TSH and free T3 had no significant association with liver cancer mortality. CONCLUSIONS The risk of liver cancer mortality increased as FT4 level decreased, both within the normal and abnormal ranges of thyroid function. IMPACT Thyroid function within the abnormal and normal ranges might affect liver cancer mortality. Further study is warranted to elucidate the role of thyroid hormone in development of liver cancer including the underlying biological mechanism.
Collapse
Affiliation(s)
- Won Sohn
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Yong Kyun Cho
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Yejin Kim
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hocheol Shin
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea. .,Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
25
|
Kotolloshi R, Mirzakhani K, Ahlburg J, Kraft F, Pungsrinont T, Baniahmad A. Thyroid hormone induces cellular senescence in prostate cancer cells through induction of DEC1. J Steroid Biochem Mol Biol 2020; 201:105689. [PMID: 32360904 DOI: 10.1016/j.jsbmb.2020.105689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
While several studies link a state of hypothyroidism to extended lifespan of humans and mice, the role of thyroid hormone in cancer is more controversial since tumor-promoting as well as tumor-suppressive effects are known. In general, aberrant thyroid hormone levels are associated with increased cancer incidence. For prostate cancer (PCa) a prospective cohort study indicates that lower thyrotropin (TSH) and higher thyroxin (T4) levels are associated with an increased risk of PCa. However, triiodothyronine (T3) can attenuate PCa progression. Here we show that T3 treatment of human PCa cells reduces cell proliferation, by induction of cellular senescence. Interestingly, we could neither detect an increased expression of p16INK4A nor p21CIP1 cell cycle inhibitors, which are mediators of the two major pathways for senescence induction. This suggests that the T3-induced cellular senescence of PCa cells is driven by an alternative pathway. We show that T3-mediated cellular senescence is associated with increase of DEC1 expression encoded by the BHLHE40 gene and p15INK4B encoded by CDKN2B. Each DEC1/BHLHE40 and p15INK4B/CDKN2B knockdown reduced significantly the level of T3-mediated cellular senescence. The data suggest that DEC1 and p15INK4B are crucial for the T3-induced cellular senescence. In line with a protective role of cellular senescence in cancer, public databases provide evidence linking low DEC1 expression to poor survival of PCa patients. Further we show that the BHLHE40 promoter is responsive to T3 suggesting BHLHE40 being a target gene for the thyroid hormone receptor (TR). Taken together, the data suggest that T3 mediates cellular senescence in PCa cells through induction of DEC1- and p15INK4B -dependent pathway.
Collapse
Affiliation(s)
- Roland Kotolloshi
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Kimia Mirzakhani
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Joana Ahlburg
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Florian Kraft
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
26
|
Kowalik MA, Puliga E, Cabras L, Sulas P, Petrelli A, Perra A, Ledda-Columbano GM, Morandi A, Merlin S, Orrù C, Sanchez-Martin C, Fornari F, Gramantieri L, Parri M, Rasola A, Bellomo SE, Sebastian C, Follenzi A, Giordano S, Columbano A. Thyroid hormone inhibits hepatocellular carcinoma progression via induction of differentiation and metabolic reprogramming. J Hepatol 2020; 72:1159-1169. [PMID: 31954205 DOI: 10.1016/j.jhep.2019.12.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Only limited therapeutic options are currently available for hepatocellular carcinoma (HCC), making the development of effective alternatives essential. Based on the recent finding that systemic or local hypothyroidism is associated with HCC development in humans and rodents, we investigated whether the thyroid hormone triiodothyronine (T3) could inhibit the progression of HCCs. METHODS Different rat and mouse models of hepatocarcinogenesis were investigated. The effect of T3 on tumorigenesis and metabolism/differentiation was evaluated by transcriptomic analysis, quantitative reverse transcription PCR, immunohistochemistry, and enzymatic assay. RESULTS A short treatment with T3 caused a shift in the global expression profile of the most aggressive preneoplastic nodules towards that of normal liver. This genomic reprogramming preceded the disappearance of nodules and involved reprogramming of metabolic genes, as well as pro-differentiating transcription factors, including Kruppel-like factor 9, a target of the thyroid hormone receptor β (TRβ). Treatment of HCC-bearing rats with T3 strongly reduced the number and burden of HCCs. Reactivation of a local T3/TRβ axis, a switch from Warburg to oxidative metabolism and loss of markers of poorly differentiated hepatocytes accompanied the reduced burden of HCC. This effect persisted 1 month after T3 withdrawal, suggesting a long-lasting effect of the hormone. The antitumorigenic effect of T3 was further supported by its inhibitory activity on cell growth and the tumorigenic ability of human HCC cell lines. CONCLUSIONS Collectively, these findings suggest that reactivation of the T3/TRβ axis induces differentiation of neoplastic cells towards a more benign phenotype and that T3 or its analogs, particularly agonists of TRβ, could be useful tools in HCC therapy. LAY SUMMARY Hepatocellular carcinoma (HCC) represents an important challenge for global health. Recent findings showed that systemic or local hypothyroidism is associated with HCC development. In rat models, we showed that administration of the thyroid hormone T3 impaired HCC progression, even when given at late stages. This is relevant from a translational point of view as HCC is often diagnosed at an advanced stage when it is no longer amenable to curative treatments. Thyroid hormones and/or thyromimetics could be useful for the treatment of patients with HCC.
Collapse
Affiliation(s)
- Marta Anna Kowalik
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, Italy
| | - Elisabetta Puliga
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, Italy; Department of Oncology, University of Turin, Italy; Present address: Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Lavinia Cabras
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, Italy
| | - Pia Sulas
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, Italy
| | | | - Andrea Perra
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, Italy
| | | | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Claudia Orrù
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, Italy; Department of Oncology, University of Turin, Italy; Present address: Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | | | - Francesca Fornari
- CRBA Azienda Ospedaliero-Universitaria Policlinico S. Orsola Malpighi, 40138, Bologna, Italy
| | - Laura Gramantieri
- CRBA Azienda Ospedaliero-Universitaria Policlinico S. Orsola Malpighi, 40138, Bologna, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Italy
| | | | | | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvia Giordano
- Candiolo Cancer Institute -FPO, IRCCS, Candiolo, Italy; Department of Oncology, University of Turin, Italy.
| | - Amedeo Columbano
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, Italy.
| |
Collapse
|
27
|
López-Mateo I, Alonso-Merino E, Suarez-Cabrera C, Park JW, Cheng SY, Alemany S, Paramio JM, Aranda A. Thyroid Hormone Receptor β Inhibits Self-Renewal Capacity of Breast Cancer Stem Cells. Thyroid 2020; 30:116-132. [PMID: 31760908 PMCID: PMC6998057 DOI: 10.1089/thy.2019.0175] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: A subpopulation of cancer stem cells (CSCs) with capacity for self-renewal is believed to drive initiation, progression, and relapse of breast tumors. Methods: Since the thyroid hormone receptor β (TRβ) appears to suppress breast tumor growth and metastasis, we have analyzed the possibility that TRβ could affect the CSC population using MCF-7 cells grown under adherent conditions or as mammospheres, as well as inoculation into immunodeficient mice. Results: Treatment of TRβ-expressing MCF-7 cells (MCF7-TRβ cells) with the thyroid hormone triiodothyronine (T3) decreased significantly CD44+/CD24- and ALDH+ cell subpopulations, the efficiency of mammosphere formation, the self-renewal capacity of CSCs in limiting dilution assays, the expression of the pluripotency factors in the mammospheres, and tumor initiating capacity in immunodeficient mice, indicating that the hormone reduces the CSC population present within the bulk MCF7-TRβ cultures. T3 also decreased migration and invasion, a hallmark of CSCs. Transcriptome analysis showed downregulation of the estrogen receptor alpha (ERα) and ER-responsive genes by T3. Furthermore, among the T3-repressed genes, there was an enrichment in genes containing binding sites for transcription factors that are key determinants of luminal-type breast cancers and are required for ER binding to chromatin. Conclusion: We demonstrate a novel role of TRβ in the biology of CSCs that may be related to its action as a tumor suppressor in breast cancer.
Collapse
Affiliation(s)
- Irene López-Mateo
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
| | - Elvira Alonso-Merino
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
| | | | - Jeong Won Park
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland
| | - Susana Alemany
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
| | - Jesús M. Paramio
- Molecular Oncology Unit, CIEMAT, Madrid, Spain
- Institute of Biomedical Research, Hosp Univ. “12 de Octubre,” Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ana Aranda
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Address correspondence to: Ana Aranda, PhD, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols”, Arturo Duperier 4, Madrid 28029, Spain
| |
Collapse
|
28
|
Elevated Free Thyroxine Levels Are Associated with Poorer Overall Survival in Patients with Gastroesophageal Cancer: A Retrospective Single Center Analysis. Discov Oncol 2019; 11:42-51. [PMID: 31884578 DOI: 10.1007/s12672-019-00374-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/15/2019] [Indexed: 01/22/2023] Open
Abstract
As endocrinological parameters such as thyroid hormones modulate proliferative, metabolic, and angiogenic pathways, it is surmised that their levels can be associated with cancer development and progression. Most patients with gastroesophageal cancer are diagnosed very late and have a poor prognosis, yet the association with endocrinological parameters has not been addressed so far. The aim of this study was to correlate hormones with the outcome, so new prognostic and potentially therapeutic markers can be defined. We analyzed clinical and endocrinological parameters including history of thyroid disorders and laboratory analyses of thyroid hormones and correlated these with the overall survival in a large European cohort of patients with inoperable locally advanced or metastatic gastroesophageal cancer treated between 2002 and 2018 at the Vienna General Hospital, Austria. In total, the survival outcome of 258 patients was evaluated. Higher levels of fT4 (p = 0.041, HR = 2.202) and lower levels of T3 (p = 0,003, HR = 0,141) were associated with significantly shorter survival. However, the overall survival of patients with known thyroid disorders did not differ significantly from euthyroid patients (euthyroid, 283 days; hyperthyroid, 354 days; hypothyroid, 284 days; p = 0.472). Elevated fT4 levels are associated with poorer overall survival of patients with gastroesophageal cancer in advanced stages. Since data on the correlation of endocrinological parameters and gastroesophageal cancer are scarce, this analysis is an important impulse for further studies concerning the impact of thyroxine on patients with cancer of the upper GI tract.
Collapse
|
29
|
Bolf EL, Gillis NE, Barnum MS, Beaudet CM, Yu GY, Tomczak JA, Stein JL, Lian JB, Stein GS, Carr FE. The Thyroid Hormone Receptor-RUNX2 Axis: A Novel Tumor Suppressive Pathway in Breast Cancer. Discov Oncol 2019; 11:34-41. [PMID: 31865591 DOI: 10.1007/s12672-019-00373-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
Metastatic breast cancer is refractory to conventional therapies and is an end-stage disease. RUNX2 is a transcription factor that becomes oncogenic when aberrantly expressed in multiple tumor types, including breast cancer, supporting tumor progression and metastases. Our previous work demonstrated that the thyroid hormone receptor beta (TRβ) inhibits RUNX2 expression and tumorigenic characteristics in thyroid cells. As TRβ is a tumor suppressor, we investigated the compelling question whether TRβ also regulates RUNX2 in breast cancer. The Cancer Genome Atlas indicates that TRβ expression is decreased in the most aggressive basal-like subtype of breast cancer. We established that modulated levels of TRβ results in corresponding changes in the high levels of RUNX2 expression in metastatic, basal-like breast cells. The MDA-MB-231 triple-negative breast cancer cell line exhibits low expression of TRβ and high levels of RUNX2. Increased expression of TRβ decreased RUNX2 levels. The thyroid hormone-mediated suppression of RUNX2 is TRβ specific as TRα overexpression failed to alter RUNX2 expression. Consistent with these findings, knockdown of TRβ in non-tumor MCF10A mammary epithelial-like cells results in an increase in RUNX2 and RUNX2 target genes. Mechanistically, TRβ directly interacts with the proximal promoter of RUNX2 through a thyroid hormone response element to reduce promoter activity. The TRβ suppression of the oncogene RUNX2 is a signaling pathway shared by thyroid and breast cancers. Our findings provide a novel mechanism for TRβ-mediated tumor suppression in breast cancers. This pathway may be common to many solid tumors and impact treatment for metastatic cancers.
Collapse
Affiliation(s)
- Eric L Bolf
- Department of Pharmacology, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.,University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Noelle E Gillis
- Department of Pharmacology, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.,University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Michael S Barnum
- Department of Pharmacology, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Caitlin M Beaudet
- Department of Pharmacology, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Grace Y Yu
- Department of Pharmacology, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Jennifer A Tomczak
- Department of Pharmacology, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Janet L Stein
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.,Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Jane B Lian
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.,Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Gary S Stein
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.,Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Frances E Carr
- Department of Pharmacology, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA. .,University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.
| |
Collapse
|
30
|
Carr FE. THYROID CANCER. Cancer 2019. [DOI: 10.1002/9781119645214.ch23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Chen CY, Wu SM, Lin YH, Chi HC, Lin SL, Yeh CT, Chuang WY, Lin KH. Induction of nuclear protein-1 by thyroid hormone enhances platelet-derived growth factor A mediated angiogenesis in liver cancer. Am J Cancer Res 2019; 9:2361-2379. [PMID: 31149049 PMCID: PMC6531305 DOI: 10.7150/thno.29628] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/24/2019] [Indexed: 01/03/2023] Open
Abstract
Background & Aims: Hepatocellular carcinoma (HCC) is among the leading causes of cancer deaths worldwide. Many studies indicate that disruption of cellular thyroid hormone signaling promotes HCC progression. However, the mechanisms underlying the regulation of genes downstream of thyroid hormone actions in HCC have remained elusive. In the current study, we identified NUPR1 (nuclear protein-1), a stress-induced protein that overexpresses in various neoplasia, is upregulated by triiodothyronine/thyroid hormone receptor (T3/TR) signaling and aimed to elucidate its role in angiogenesis in cancer progression. Methods: Quantitative reverse transcription-PCR, luciferase promoter and chromatin immunoprecipitation assays were performed to identify the NUPR1 regulatory mechanism by T3/TR. In vitro and In vivo vascular formations were performed to detect the angiogenic function of NUPR1. Human angiogenesis arrays were performed to identify the downstream angiogenic pathway. The sorafenib resistant ability of TR/NUPR1 was further examined in vitro and in vivo. Clinical relevance of TR, NUPR1 and platelet-derived growth factor A (PDGFA) were investigate in HCC samples using qRT-PCR and western blot. Results: Our experiments disclosed positive regulation of NUPR1 expression by T3/TR through direct binding to the -2066 to -1910 region of the NUPR1 promoter. Elevated NUPR1 and TR expression link to poor survival in clinical HCC specimens. An analysis of clinicopathological parameters showed that expression of NUPR1 is associated with vascular invasion and pathology stage. Functional studies revealed that NUPR1 induced endothelial cell angiogenesis in vitro and in vivo. Using a human angiogenesis array, we identified PDGFA as a target of NUPR1 in the downstream angiogenic pathway. NUPR1 induced transcription of PDGFA through direct binding to the corresponding promoter region, and inhibition of the PDGFA signaling pathway impaired angiogenesis in human umbilical vein endothelial cells (HUVECs). Notably, the angiogenic effects of NUPR1/PDGFA were mediated by the MEK/ERK signaling pathway. TR/NUPR1 expression increased cell viability and resistance to sorafenib treatment. Moreover NUPR1 expression was positively correlated with TRα, TRβ, and PDGFA expression. Conclusions: We propose that the T3/TR/NUPR1/PDGFA/MEK/ERK axis has a vital role in hepatocarcinogenesis and suggest NUPR1 as a potential therapeutic target in HCC.
Collapse
|
32
|
Fritz AJ, Gillis NE, Gerrard DL, Rodriguez PD, Hong D, Rose JT, Ghule PN, Bolf EL, Gordon JA, Tye CE, Boyd JR, Tracy KM, Nickerson JA, van Wijnen AJ, Imbalzano AN, Heath JL, Frietze SE, Zaidi SK, Carr FE, Lian JB, Stein JL, Stein GS. Higher order genomic organization and epigenetic control maintain cellular identity and prevent breast cancer. Genes Chromosomes Cancer 2019; 58:484-499. [PMID: 30873710 DOI: 10.1002/gcc.22731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
Cells establish and sustain structural and functional integrity of the genome to support cellular identity and prevent malignant transformation. In this review, we present a strategic overview of epigenetic regulatory mechanisms including histone modifications and higher order chromatin organization (HCO) that are perturbed in breast cancer onset and progression. Implications for dysfunctions that occur in hormone regulation, cell cycle control, and mitotic bookmarking in breast cancer are considered, with an emphasis on epithelial-to-mesenchymal transition and cancer stem cell activities. The architectural organization of regulatory machinery is addressed within the contexts of translating cancer-compromised genomic organization to advances in breast cancer risk assessment, diagnosis, prognosis, and identification of novel therapeutic targets with high specificity and minimal off target effects.
Collapse
Affiliation(s)
- A J Fritz
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - N E Gillis
- University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - D L Gerrard
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - P D Rodriguez
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - D Hong
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - J T Rose
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - P N Ghule
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - E L Bolf
- University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - J A Gordon
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - C E Tye
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J R Boyd
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - K M Tracy
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J A Nickerson
- Division of Genes and Development of the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - A J van Wijnen
- Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic Minnesota, Rochester, Minnesota
| | - A N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - J L Heath
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont.,Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - S E Frietze
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - S K Zaidi
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - F E Carr
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - J B Lian
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J L Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - G S Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| |
Collapse
|
33
|
Li Z, Qi DL, Singh HP, Zou Y, Shen B, Cobrinik D. A novel thyroid hormone receptor isoform, TRβ2-46, promotes SKP2 expression and retinoblastoma cell proliferation. J Biol Chem 2019; 294:2961-2969. [PMID: 30643022 DOI: 10.1074/jbc.ac118.006041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Retinoblastoma is a childhood retinal tumor that develops from cone photoreceptor precursors in response to inactivating RB1 mutations and loss of functional RB protein. The cone precursor's response to RB loss involves cell type-specific signaling circuitry that helps to drive tumorigenesis. One component of the cone precursor circuitry, the thyroid hormone receptor β2 (TRβ2), enables the aberrant proliferation of diverse RB-deficient cells in part by opposing the down-regulation of S-phase kinase-associated protein 2 (SKP2) by the more widely expressed and tumor-suppressive TRβ1. However, it is unclear how TRβ2 opposes TRβ1 to enable SKP2 expression and cell proliferation. Here, we show that in human retinoblastoma cells TRβ2 mRNA encodes two TRβ2 protein isoforms: a predominantly cytoplasmic 54-kDa protein (TRβ2-54) corresponding to the well-characterized full-length murine Trβ2 and an N-terminally truncated and exclusively cytoplasmic 46-kDa protein (TRβ2-46) that starts at Met-79. Whereas TRβ2 knockdown decreased SKP2 expression and impaired retinoblastoma cell cycle progression, re-expression of TRβ2-46 but not TRβ2-54 stabilized SKP2 and restored proliferation to an extent similar to that of ectopic SKP2 restoration. We conclude that TRβ2-46 is an oncogenic thyroid hormone receptor isoform that promotes SKP2 expression and SKP2-dependent retinoblastoma cell proliferation.
Collapse
Affiliation(s)
- Zhengke Li
- From The Vision Center and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, .,Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010.,Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, and
| | - Dong-Lai Qi
- From The Vision Center and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027
| | - Hardeep P Singh
- From The Vision Center and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027
| | - Yue Zou
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, and
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010
| | - David Cobrinik
- From The Vision Center and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, .,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, and USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033
| |
Collapse
|
34
|
Lin HY, Chen YR, Li ZL, Shih YJ, Davis P, Whang-Peng J, Wang K. Thyroid hormone, PD-L1, and cancer. JOURNAL OF CANCER RESEARCH AND PRACTICE 2019. [DOI: 10.4103/jcrp.jcrp_26_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
35
|
The Antiarrhythmic Drug, Dronedarone, Demonstrates Cytotoxic Effects in Breast Cancer Independent of Thyroid Hormone Receptor Alpha 1 (THRα1) Antagonism. Sci Rep 2018; 8:16562. [PMID: 30410118 PMCID: PMC6224430 DOI: 10.1038/s41598-018-34348-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/10/2018] [Indexed: 01/22/2023] Open
Abstract
Previous research has suggested that thyroid hormone receptor alpha 1 (THRα1), a hormone responsive splice variant, may play a role in breast cancer progression. Whether THRα1 can be exploited for anti-cancer therapy is unknown. The antiproliferative and antitumor effects of dronedarone, an FDA-approved anti-arrhythmic drug which has been shown to antagonize THRα1, was evaluated in breast cancer cell lines in vitro and in vivo. The THRα1 splice variant and the entire receptor, THRα, were also independently targeted using siRNA to determine the effect of target knockdown in vitro. In our study, dronedarone demonstrates cytotoxic effects in vitro and in vivo in breast cancer cell lines at doses and concentrations that may be clinically relevant. However, knockdown of either THRα1 or THRα did not cause substantial anti-proliferative or cytotoxic effects in vitro, nor did it alter the sensitivity to dronedarone. Thus, we conclude that dronedarone’s cytotoxic effect in breast cancer cell lines are independent of THRα or THRα1 antagonism. Further, the depletion of THRα or THRα1 does not affect cell viability or proliferation. Characterizing the mechanism of dronedarone’s anti-tumor action may facilitate drug repurposing or the development of new anti-cancer agents.
Collapse
|
36
|
Ruiz-Llorente L, Contreras-Jurado C, Martínez-Fernández M, Paramio JM, Aranda A. Thyroid Hormone Receptors Regulate the Expression of microRNAs with Key Roles in Skin Homeostasis. Thyroid 2018; 28:921-932. [PMID: 29742977 DOI: 10.1089/thy.2017.0369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) play a unique role in posttranscriptional regulation of gene expression and control different aspects of skin development, homeostasis, and disease. Although it is generally accepted that thyroid hormone signaling is important in skin pathophysiology, the role of their nuclear receptors (TRs) in cutaneous miRNA expression has yet to be explored. METHODS RNAseq was used to compare the skin miRnome of wild-type mice and genetically modified mice lacking both TRα1 and TRβ, the main thyroid hormone binding isoforms. Changes in miRNAs with a crucial role in skin physiopathology were confirmed by stem-loop quantitative polymerase chain reaction in both total skin and isolated keratinocytes, and the levels of their target mRNAs were evaluated by real-time polymerase chain reaction. RESULTS The skin of TRα1/TRβ knockout mice displays altered levels of >50 miRNAs. Among the downregulated species are several miRNAs, including miR-21, miR-31, miR-34, and miR-203, with crucial roles in skin homeostasis. TRα1 appears to be the main isoform responsible for their regulation. Increased levels of gene transcripts previously shown to be bona fide targets of these miRNAs are also found in the skin and keratinocytes of TR-deficient mice. This suggests that multiple miRNAs that are downregulated in the absence of TRs cooperate to regulate gene expression in the skin. CONCLUSIONS The miRNAs reduced in TRα1/TRβ knockout mice are known to play crucial roles in epidermal proliferation, hair cycling, wound healing, stem-cell function, and tumor development, all processes altered in the absence of TRs. These results suggest that their regulation could contribute to the skin defects found in these mice and to the skin disorders associated with altered thyroid status in humans.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols ," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid, Spain
| | - Constanza Contreras-Jurado
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols ," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) , Madrid, Spain
| | - Mónica Martínez-Fernández
- 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) , Madrid, Spain
- 4 Molecular Oncology Unit , Division of Biomedicine, CIEMAT, Madrid, Spain
| | - Jesús M Paramio
- 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) , Madrid, Spain
- 4 Molecular Oncology Unit , Division of Biomedicine, CIEMAT, Madrid, Spain
| | - Ana Aranda
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols ," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) , Madrid, Spain
| |
Collapse
|
37
|
Thyroid hormone receptor beta-1 expression in early breast cancer: a validation study. Breast Cancer Res Treat 2018; 171:709-717. [DOI: 10.1007/s10549-018-4844-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022]
|
38
|
Gillis NE, Taber TH, Bolf EL, Beaudet CM, Tomczak JA, White JH, Stein JL, Stein GS, Lian JB, Frietze S, Carr FE. Thyroid Hormone Receptor β Suppression of RUNX2 Is Mediated by Brahma-Related Gene 1-Dependent Chromatin Remodeling. Endocrinology 2018; 159:2484-2494. [PMID: 29750276 PMCID: PMC6692870 DOI: 10.1210/en.2018-00128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Thyroid hormone receptor β (TRβ) suppresses tumor growth through regulation of gene expression, yet the associated TRβ-mediated changes in chromatin assembly are not known. The chromatin ATPase brahma-related gene 1 (BRG1; SMARCA4), a key component of chromatin-remodeling complexes, is altered in many cancers, but its role in thyroid tumorigenesis and TRβ-mediated gene expression is unknown. We previously identified the oncogene runt-related transcription factor 2 (RUNX2) as a repressive target of TRβ. Here, we report differential expression of BRG1 in nonmalignant and malignant thyroid cells concordant with TRβ. BRG1 and TRβ have similar nuclear distribution patterns and significant colocalization. BRG1 interacts with TRβ, and together, they are part of the regulatory complex at the RUNX2 promoter. Loss of BRG1 increases RUNX2 levels, whereas reintroduction of TRβ and BRG1 synergistically decreases RUNX2 expression. RUNX2 promoter accessibility corresponded to RUNX2 expression levels. Inhibition of BRG1 activity increased accessibility of the RUNX2 promoter and corresponding expression. Our results reveal a mechanism of TRβ repression of oncogenic gene expression: TRβ recruitment of BRG1 induces chromatin compaction and diminishes RUNX2 expression. Therefore, BRG1-mediated chromatin remodeling may be obligatory for TRβ transcriptional repression and tumor suppressor function in thyroid tumorigenesis.
Collapse
Affiliation(s)
- Noelle E Gillis
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Thomas H Taber
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Eric L Bolf
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Caitlin M Beaudet
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jennifer A Tomczak
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jeffrey H White
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Janet L Stein
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Gary S Stein
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jane B Lian
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Seth Frietze
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Medical Laboratory Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Frances E Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Correspondence: Frances E. Carr, PhD, Department of Pharmacology, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, Vermont 05405. E-mail:
| |
Collapse
|
39
|
Varlamova EG, Goltyaev MV, Kuznetsova JP. Effect of Sodium Selenite on Gene Expression of SELF, SELW, and TGR Selenoproteins in Adenocarcinoma Cells of the Human Prostate. Mol Biol 2018. [DOI: 10.1134/s0026893318030147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Martínez-Iglesias O, Olmeda D, Alonso-Merino E, Gómez-Rey S, González-López AM, Luengo E, Soengas MS, Palacios J, Regadera J, Aranda A. The nuclear corepressor 1 and the thyroid hormone receptor β suppress breast tumor lymphangiogenesis. Oncotarget 2018; 7:78971-78984. [PMID: 27806339 PMCID: PMC5346691 DOI: 10.18632/oncotarget.12978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/22/2016] [Indexed: 12/20/2022] Open
Abstract
Vascular Endotelial Growth Factors C and D (VEGF-C and VEGF-D) are crucial regulators of lymphangiogenesis, a main event in the metastatic spread of breast cancer tumors. Although inhibition of lymphangiogenic gene expression might be a useful therapeutic strategy to restrict the progression of cancer, the factors involved in the transcriptional repression of these genes are still unknown. We have previously shown that Nuclear Receptor Corepressor 1 (NCoR) and the thyroid hormone receptor β1 (TRβ) inhibit tumor invasion. Here we show that these molecules repress VEGF-C and VEGF-D gene transcription in breast cancer cells, reducing lymphatic vessel density and sentinel lymph node invasion in tumor xenografts. The clinical significance of these results is stressed by the finding that NCoR and TRβ transcripts correlate negatively with those of the lymphangiogenic genes and the lymphatic vessel marker LYVE-1 in human breast tumors. Our results point to the use of NCoR and TRβ as potential biomarkers for diagnosis or prognosis in breast cancer and suggest that further studies of these molecules as potential targets for anti-lymphangiogenic therapy are warranted.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - David Olmeda
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Universidad Autónoma de Madrid, Spain
| | - Elvira Alonso-Merino
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - Sara Gómez-Rey
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - Ana M González-López
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - Enrique Luengo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - María S Soengas
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Universidad Autónoma de Madrid, Spain
| | - José Palacios
- Departamento de Anatomía Patológica, Hospital Universitario Ramón y Cajal, Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Universidad de Alcalá, Spain
| | - Javier Regadera
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| |
Collapse
|
41
|
Abstract
Thyroid hormone is a major determinant of tissue functions in vivo. The deiodinase family controls the tissue-specific activation or inactivation of intracellular thyroid hormones. Precise control of the T3-dependent transcriptional program is required by multiple cell systems, including the stem cell. In this context, the identification of a close connection between thyroid hormones and different signal pathways involved in the control of stem cell functions suggested that the deiodinases may play a role in the definition of stem cell biology and physiology. Stem cells have an unlimited self-renewal capacity and the potential to differentiate into different types of mature cells. Deciphering how all these events are achieved, how the T3 signal is controlled and integrated in stem cells and their niches, and how it can impact on them is essentially unknown and represents a challenge for coming years. In this review, I will explore the role played by the deiodinases in the modulation of the TH signal in stem cells of adult tissues, namely muscle and intestine, and how their actions control the delicate balance among self-renewal, proliferation and differentiation. Elucidation of the molecular mechanisms presiding thyroid hormone action in stem cells may reveal therapeutic potential, for example in the fields of regenerative diseases and cancer.
Collapse
Affiliation(s)
- D Salvatore
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
42
|
Columbano A, Chiellini G, Kowalik MA. GC-1: A Thyromimetic With Multiple Therapeutic Applications in Liver Disease. Gene Expr 2017; 17:265-275. [PMID: 28635586 PMCID: PMC5885148 DOI: 10.3727/105221617x14968563796227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thyroid hormones (THs), namely, 3,5,3'-triiodo-l-thyronine (T3) and 3,5,3',5'-tetraiodo-l-thyronine (thyroxine or T4), influence a variety of physiological processes that have important implications in fetal development, metabolism, cell growth, and proliferation. While THs elicit several beneficial effects on lipid metabolism and improve myocardial contractility, these therapeutically desirable effects are associated to a thyrotoxic state that severely limits the possible use of THs as therapeutic agents. Therefore, several efforts have been made to develop T3 analogs that could retain the beneficial actions (triglyceride, cholesterol, obesity, and body mass lowering) without the adverse TH-dependent side effects. This goal was achieved by the synthesis of TRβ-selective agonists. In this review, we summarize the current knowledge on the effects of one of the best characterized TH analogs, the TRβ1-selective thyromimetic, GC-1. In particular, we review some of the effects of GC-1 on different liver disorders, with reference to its possible clinical application. A brief comment on the possible therapeutic use of GC-1 in extrahepatic disorders is also included.
Collapse
Affiliation(s)
- Amedeo Columbano
- *Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Grazia Chiellini
- †Department of Surgical, Medical and Molecular Pathology, University of Pisa, Pisa, Italy
| | - Marta Anna Kowalik
- *Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
43
|
Goemann IM, Romitti M, Meyer ELS, Wajner SM, Maia AL. Role of thyroid hormones in the neoplastic process: an overview. Endocr Relat Cancer 2017; 24:R367-R385. [PMID: 28928142 DOI: 10.1530/erc-17-0192] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022]
Abstract
Thyroid hormones (TH) are critical regulators of several physiological processes, which include development, differentiation and growth in virtually all tissues. In past decades, several studies have shown that changes in TH levels caused by thyroid dysfunction, disruption of deiodinases and/or thyroid hormone receptor (TR) expression in tumor cells, influence cell proliferation, differentiation, survival and invasion in a variety of neoplasms in a cell type-specific manner. The function of THs and TRs in neoplastic cell proliferation involves complex mechanisms that seem to be cell specific, exerting effects via genomic and nongenomic pathways, repressing or stimulating transcription factors, influencing angiogenesis and promoting invasiveness. Taken together, these observations indicate an important role of TH status in the pathogenesis and/or development of human neoplasia. Here, we aim to present an updated and comprehensive picture of the accumulated knowledge and the current understanding of the potential role of TH status on the different hallmarks of the neoplastic process.
Collapse
Affiliation(s)
- Iuri Martin Goemann
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirian Romitti
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Erika L Souza Meyer
- Department of Internal MedicineUniversidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Simone Magagnin Wajner
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Luiza Maia
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
44
|
Xu XL, Li Z, Liu A, Fan X, Hu DN, Qi DL, Chitty DW, Jia R, Qui J, Wang JQ, Sharaf J, Zou J, Weiss R, Huang H, Joseph WJ, Ng L, Rosen R, Shen B, Reid MW, Forrest D, Abramson DH, Singer S, Cobrinik D, Jhanwar SC. SKP2 Activation by Thyroid Hormone Receptor β2 Bypasses Rb-Dependent Proliferation in Rb-Deficient Cells. Cancer Res 2017; 77:6838-6850. [PMID: 28972075 DOI: 10.1158/0008-5472.can-16-3299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/29/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
Abstract
Germline RB1 mutations strongly predispose humans to cone precursor-derived retinoblastomas and strongly predispose mice to pituitary tumors, yet shared cell type-specific circuitry that sensitizes these different cell types to the loss of RB1 has not been defined. Here we show that the cell type-restricted thyroid hormone receptor isoform TRβ2 sensitizes to RB1 loss in both settings by antagonizing the widely expressed and tumor-suppressive TRβ1. TRβ2 promoted expression of the E3 ubiquitin ligase SKP2, a critical factor for RB1-mutant tumors, by enabling EMI1/FBXO5-dependent inhibition of SKP2 degradation. In RB1 wild-type neuroblastoma cells, endogenous Rb or ectopic TRβ2 was required to sustain SKP2 expression as well as cell viability and proliferation. These results suggest that in certain contexts, Rb loss enables TRβ1-dependent suppression of SKP2 as a safeguard against RB1-deficient tumorigenesis. TRβ2 counteracts TRβ1, thus disrupting this safeguard and promoting development of RB1-deficient malignancies. Cancer Res; 77(24); 6838-50. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaoliang L Xu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York.,Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York.,Zhongshan Ophthalmic Center, Zhongshan University, Guangzhou, P.R. China.,New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Zhengke Li
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California
| | - Aihong Liu
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Dan-Ning Hu
- New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Dong-Lai Qi
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - David W Chitty
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Renbing Jia
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Jianping Qui
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Justin Q Wang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jake Sharaf
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jun Zou
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Rebecca Weiss
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Hongyan Huang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Walter J Joseph
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lily Ng
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Richard Rosen
- New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California
| | - Mark W Reid
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Douglas Forrest
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - David H Abramson
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - David Cobrinik
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.
| | - Suresh C Jhanwar
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York. .,Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
45
|
Flamini MI, Uzair ID, Pennacchio GE, Neira FJ, Mondaca JM, Cuello-Carrión FD, Jahn GA, Simoncini T, Sanchez AM. Thyroid Hormone Controls Breast Cancer Cell Movement via Integrin αV/β3/SRC/FAK/PI3-Kinases. Discov Oncol 2017; 8:16-27. [PMID: 28050799 DOI: 10.1007/s12672-016-0280-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/20/2016] [Indexed: 11/26/2022] Open
Abstract
Thyroid hormones (TH) play a fundamental role in diverse processes, including cellular movement. Cell migration requires the integration of events that induce changes in cell structure towards the direction of migration. These actions are driven by actin remodeling and stabilized by the development of adhesion sites to extracellular matrix via transmembrane receptors linked to the actin cytoskeleton. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that promotes cell migration and invasion through the control of focal adhesion turnover. In this work, we demonstrate that the thyroid hormone triiodothyronine (T3) regulates actin remodeling and cell movement in breast cancer T-47D cells through the recruitment of FAK. T3 controls FAK phosphorylation and translocation at sites where focal adhesion complexes are assembled. This process is triggered via rapid signaling to integrin αV/β3, Src, phosphatidylinositol 3-OH kinase (PI3K), and FAK. In addition, we established a cellular model with different concentration of T3 levels: normal, absence, and excess in T-47D breast cancer cells. We found that the expression of Src, FAK, and PI3K remained at normal levels in the excess of T3 model, while it was significantly reduced in the absence model. In conclusion, these results suggest a novel role for T3 as an important modulator of cell migration, providing a starting point for the development of new therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Marina Inés Flamini
- Laboratorio de Biología Tumoral. Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Ivonne Denise Uzair
- Laboratorio de Transducción de Señales y Movimiento Celular. Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ruiz Leal s/n. Parque Gral. San Martin CC855, 5500, Mendoza, Argentina
| | - Gisela Erika Pennacchio
- Laboratorio de Reproducción y Lactancia. Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Flavia Judith Neira
- Laboratorio de Transducción de Señales y Movimiento Celular. Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ruiz Leal s/n. Parque Gral. San Martin CC855, 5500, Mendoza, Argentina
| | - Joselina Magali Mondaca
- Laboratorio de Transducción de Señales y Movimiento Celular. Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ruiz Leal s/n. Parque Gral. San Martin CC855, 5500, Mendoza, Argentina
| | - Fernando Dario Cuello-Carrión
- Laboratorio de Oncología. Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Graciela Alma Jahn
- Laboratorio de Reproducción y Lactancia. Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, 56100, Pisa, Italy
| | - Angel Matías Sanchez
- Laboratorio de Transducción de Señales y Movimiento Celular. Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ruiz Leal s/n. Parque Gral. San Martin CC855, 5500, Mendoza, Argentina.
| |
Collapse
|
46
|
Varlamova EG, Cheremushkina IV. Contribution of mammalian selenocysteine-containing proteins to carcinogenesis. J Trace Elem Med Biol 2017; 39:76-85. [PMID: 27908428 DOI: 10.1016/j.jtemb.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Oxidative stress caused by a sharp growth of free radicals in the organism is a major cause underlying the occurrence of all kinds of malignant formations. Selenium is an important essential trace element found in selenoproteins in the form of selenocysteine, an amino acid differing from cysteine for the presence of selenium instead of sulfur and making such proteins highly active. To date the role of selenium has been extensively investigated through studying the functions of selenoproteins in carcinogenesis. Analysis of the obtained results clearly demonstrates that selenoproteins can act as oncosuppressors, but can also, on the contrary, favor the formation of malignant tumors.
Collapse
Affiliation(s)
- Elena Gennadyevna Varlamova
- Federal State Institution of Science Institute of Cell Biophysics, Russian Academy of Sciences, Moscow Region, Institutskaya st. 3, 142290, Pushchino, Russia.
| | - Irina Valentinovna Cheremushkina
- Federal State Educational Institution of Higher Education Voronezh State University of Engineering Technology, Prospect revolution st. 19, 394000, Voronezh, Russia.
| |
Collapse
|
47
|
Khan SR, Chaker L, Ruiter R, Aerts JGJV, Hofman A, Dehghan A, Franco OH, Stricker BHC, Peeters RP. Thyroid Function and Cancer Risk: The Rotterdam Study. J Clin Endocrinol Metab 2016; 101:5030-5036. [PMID: 27648963 DOI: 10.1210/jc.2016-2104] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT In vitro and in vivo experiments have assigned both oncosuppressive and oncogenic properties to thyroid hormones. Population-based studies have found inconclusive results. OBJECTIVE We aimed to prospectively assess the relation between thyroid function and incident cancer in a population-based setting. DESIGN, SETTING, AND PARTICIPANTS The current study is a prospective population-based cohort study including 10 318 participants for whom baseline measurements of free T4 (FT4) and/or TSH were available. MAIN OUTCOME MEASURES Cox proportional hazards models were used to assess hazard ratios (HRs) of any solid non-skin cancer, as well as lung, breast, prostate, and gastrointestinal cancer specifically. RESULTS Higher FT4 levels were associated with a higher risk of any solid cancer (HR, 1.42; 95% confidence interval [CI], 1.12-1.79), lung cancer (HR, 2.33; 95% CI, 1.39-3.92) and breast (HR, 1.77; 95% CI, 1.10-2.84) cancer. The risk estimates were similar after exclusion of thyroid-altering medication, but the association lost significance for breast cancer. Compared with the lowest FT4 tertile, the highest tertile was associated with a 1.13-fold increased risk of any solid, 1.79-fold increased risk of lung, and 1.14-fold increased risk of breast cancer (P for trend <.05 for all). For TSH levels we found no associations with cancer risk. There was no differential effect of sex or age on the association between thyroid function and cancer risk. CONCLUSIONS Higher FT4 levels are significantly associated with an increased risk of any solid, lung, and breast cancer. Further research should elucidate the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Samer R Khan
- Rotterdam Thyroid Center (S.R.K., L.C., R.P.P.), Department of Epidemiology (S.R.K., L.C., R.R., A.H., A.D., O.H.F., B.H.C.S., R.P.P.), Department of Internal Medicine (L.C., R.P.P.), and Department of Pulmonology (J.G.J.V.A.), Erasmus University Medical Center, 3015 GE, Rotterdam, The Netherlands; and Department of Epidemiology (A.H.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Layal Chaker
- Rotterdam Thyroid Center (S.R.K., L.C., R.P.P.), Department of Epidemiology (S.R.K., L.C., R.R., A.H., A.D., O.H.F., B.H.C.S., R.P.P.), Department of Internal Medicine (L.C., R.P.P.), and Department of Pulmonology (J.G.J.V.A.), Erasmus University Medical Center, 3015 GE, Rotterdam, The Netherlands; and Department of Epidemiology (A.H.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Rikje Ruiter
- Rotterdam Thyroid Center (S.R.K., L.C., R.P.P.), Department of Epidemiology (S.R.K., L.C., R.R., A.H., A.D., O.H.F., B.H.C.S., R.P.P.), Department of Internal Medicine (L.C., R.P.P.), and Department of Pulmonology (J.G.J.V.A.), Erasmus University Medical Center, 3015 GE, Rotterdam, The Netherlands; and Department of Epidemiology (A.H.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Joachim G J V Aerts
- Rotterdam Thyroid Center (S.R.K., L.C., R.P.P.), Department of Epidemiology (S.R.K., L.C., R.R., A.H., A.D., O.H.F., B.H.C.S., R.P.P.), Department of Internal Medicine (L.C., R.P.P.), and Department of Pulmonology (J.G.J.V.A.), Erasmus University Medical Center, 3015 GE, Rotterdam, The Netherlands; and Department of Epidemiology (A.H.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Albert Hofman
- Rotterdam Thyroid Center (S.R.K., L.C., R.P.P.), Department of Epidemiology (S.R.K., L.C., R.R., A.H., A.D., O.H.F., B.H.C.S., R.P.P.), Department of Internal Medicine (L.C., R.P.P.), and Department of Pulmonology (J.G.J.V.A.), Erasmus University Medical Center, 3015 GE, Rotterdam, The Netherlands; and Department of Epidemiology (A.H.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Abbas Dehghan
- Rotterdam Thyroid Center (S.R.K., L.C., R.P.P.), Department of Epidemiology (S.R.K., L.C., R.R., A.H., A.D., O.H.F., B.H.C.S., R.P.P.), Department of Internal Medicine (L.C., R.P.P.), and Department of Pulmonology (J.G.J.V.A.), Erasmus University Medical Center, 3015 GE, Rotterdam, The Netherlands; and Department of Epidemiology (A.H.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Oscar H Franco
- Rotterdam Thyroid Center (S.R.K., L.C., R.P.P.), Department of Epidemiology (S.R.K., L.C., R.R., A.H., A.D., O.H.F., B.H.C.S., R.P.P.), Department of Internal Medicine (L.C., R.P.P.), and Department of Pulmonology (J.G.J.V.A.), Erasmus University Medical Center, 3015 GE, Rotterdam, The Netherlands; and Department of Epidemiology (A.H.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Bruno H C Stricker
- Rotterdam Thyroid Center (S.R.K., L.C., R.P.P.), Department of Epidemiology (S.R.K., L.C., R.R., A.H., A.D., O.H.F., B.H.C.S., R.P.P.), Department of Internal Medicine (L.C., R.P.P.), and Department of Pulmonology (J.G.J.V.A.), Erasmus University Medical Center, 3015 GE, Rotterdam, The Netherlands; and Department of Epidemiology (A.H.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Robin P Peeters
- Rotterdam Thyroid Center (S.R.K., L.C., R.P.P.), Department of Epidemiology (S.R.K., L.C., R.R., A.H., A.D., O.H.F., B.H.C.S., R.P.P.), Department of Internal Medicine (L.C., R.P.P.), and Department of Pulmonology (J.G.J.V.A.), Erasmus University Medical Center, 3015 GE, Rotterdam, The Netherlands; and Department of Epidemiology (A.H.), Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
48
|
Ligand Independent and Subtype-Selective Actions of Thyroid Hormone Receptors in Human Adipose Derived Stem Cells. PLoS One 2016; 11:e0164407. [PMID: 27732649 PMCID: PMC5061422 DOI: 10.1371/journal.pone.0164407] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
Thyroid hormone (TH) receptors (TRs α and β) are homologous ligand-dependent transcription factors (TFs). While the TRs display distinct actions in development, metabolic regulation and other processes, comparisons of TRα and TRβ dependent gene regulation mostly reveal similar mechanisms of action and few TR subtype specific genes. Here, we show that TRα predominates in multipotent human adipose derived stem cells (hADSC) whereas TRβ is expressed at lower levels and is upregulated during hADSC differentiation. The TRs display several unusual properties in parental hADSC. First, TRs display predominantly cytoplasmic intracellular distribution and major TRα variants TRα1 and TRα2 colocalize with mitochondria. Second, knockdown experiments reveal that endogenous TRs influence hADSC cell morphology and expression of hundreds of genes in the absence of hormone, but do not respond to exogenous TH. Third, TRα and TRβ affect hADSC in completely distinct ways; TRα regulates cell cycle associated processes while TRβ may repress aspects of differentiation. TRα splice variant specific knockdown reveals that TRα1 and TRα2 both contribute to TRα-dependent gene expression in a gene specific manner. We propose that TRs work in a non-canonical and hormone independent manner in hADSC and that prominent subtype-specific activities emerge in the context of these unusual actions.
Collapse
|
49
|
Carr FE, Tai PWL, Barnum MS, Gillis NE, Evans KG, Taber TH, White JH, Tomczak JA, Jaworski DM, Zaidi SK, Lian JB, Stein JL, Stein GS. Thyroid Hormone Receptor-β (TRβ) Mediates Runt-Related Transcription Factor 2 (Runx2) Expression in Thyroid Cancer Cells: A Novel Signaling Pathway in Thyroid Cancer. Endocrinology 2016; 157:3278-92. [PMID: 27253998 PMCID: PMC4967127 DOI: 10.1210/en.2015-2046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dysregulation of the thyroid hormone receptor (TR)β is common in human cancers. Restoration of functional TRβ delays tumor progression in models of thyroid and breast cancers implicating TRβ as a tumor suppressor. Conversely, aberrant expression of the runt-related transcription factor 2 (Runx2) is established in the progression and metastasis of thyroid, breast, and other cancers. Silencing of Runx2 diminishes tumor invasive characteristics. With TRβ as a tumor suppressor and Runx2 as a tumor promoter, a compelling question is whether there is a functional relationship between these regulatory factors in thyroid tumorigenesis. Here, we demonstrated that these proteins are reciprocally expressed in normal and malignant thyroid cells; TRβ is high in normal cells, and Runx2 is high in malignant cells. T3 induced a time- and concentration-dependent decrease in Runx2 expression. Silencing of TRβ by small interfering RNA knockdown resulted in a corresponding increase in Runx2 and Runx2-regulated genes, indicating that TRβ levels directly impact Runx2 expression and associated epithelial to mesenchymal transition molecules. TRβ specifically bound to 3 putative thyroid hormone-response element motifs within the Runx2-P1 promoter ((-)105/(+)133) as detected by EMSA and chromatin immunoprecipitation. TRβ suppressed Runx2 transcriptional activities, thus confirming TRβ regulation of Runx2 at functional thyroid hormone-response elements. Significantly, these findings indicate that a ratio of the tumor-suppressor TRβ and tumor-promoting Runx2 may reflect tumor aggression and serve as biomarkers in biopsy tissues. The discovery of this TRβ-Runx2 signaling supports the emerging role of TRβ as a tumor suppressor and reveals a novel pathway for intervention.
Collapse
Affiliation(s)
- Frances E Carr
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Phillip W L Tai
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Michael S Barnum
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Noelle E Gillis
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Katherine G Evans
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Thomas H Taber
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jeffrey H White
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jennifer A Tomczak
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Diane M Jaworski
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Sayyed K Zaidi
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jane B Lian
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Janet L Stein
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Gary S Stein
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
50
|
Lin H, Chin Y, Yang YSH, Lai H, Whang‐Peng J, Liu LF, Tang H, Davis PJ. Thyroid Hormone, Cancer, and Apoptosis. Compr Physiol 2016; 6:1221-37. [DOI: 10.1002/cphy.c150035] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|