1
|
Zheng K, Yan Y, Ma L, Liu R, Zhao T, Wei Y, Zhao Z, Cheng H, Hou D, Liu J, Zhao X, Cheng W, Mi J. Sex difference in the relationship between childhood obesity and abnormal lipid profiles in young adults. BMC Endocr Disord 2025; 25:44. [PMID: 39966782 PMCID: PMC11834628 DOI: 10.1186/s12902-025-01859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Abnormal lipid profiles are a major risk factor for cardiovascular diseases, and childhood obesity has been linked to changes in lipid metabolism in adults. However, the relationship between childhood obesity and adult lipid profiles, as well as the potential sex differences, remain unclear. This study aimed to examine the association between childhood obesity and abnormal lipid metabolism in young adults, specifically focusing on sex differences. METHODS Data were obtained from the Beijing Blood Pressure Cohort Study, which included 1220 participants aged 28-45 years. Childhood obesity was defined based on body mass index (BMI) and subscapular skinfold thickness (SSFT) measurements. Adult lipid profiles, including triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), and total cholesterol (TC), were measured. Logistic regression models were used to assess the association between childhood obesity and adult lipid profiles, adjusting for potential confounders. RESULTS During the follow-up period, 18 (2.9%) of 617 male subjects with normal weight as children were obese as adults. Of 516 female subjects with normal weight as children, 9 (1.7%) were obese as adults. In males, childhood overweight/obesity was positively associated with high TG in adulthood (OR = 1.72, 95%CI 1.03-2.85). In females, childhood overweight/obesity was significantly associated with high TC (OR = 5.96, 95%CI 1.42-25.00) and high LDL-c (OR = 6.91, 95%CI 1.17-40.75) in adulthood. The analysis of change in adiposity status from childhood to adulthood revealed that males with normal childhood weight and adult obesity could have the highest risk of all lipid disorders. In females, those with childhood obesity and normal adult weight seemed to have the highest risk of hypercholesterolemia and high TC. CONCLUSION This study demonstrates a sex difference in the relationship between childhood obesity and abnormal lipid profiles in young adults. Childhood overweight/obesity is associated with adverse lipid profiles in adulthood, with different patterns observed in males and females. These findings highlight the importance of early intervention and prevention strategies for childhood obesity to mitigate the risk of future cardiovascular diseases.
Collapse
Affiliation(s)
- Keyang Zheng
- Center of Hypertension, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yinkun Yan
- Center for Non-communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlish Road, Xicheng District, Beijing, 100045, China
| | - Linlin Ma
- Center of Hypertension, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Rufei Liu
- Center of Hypertension, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Tianzhu Zhao
- Center of Hypertension, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yuxuan Wei
- Center of Hypertension, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Zixu Zhao
- Department of Cardiovascular Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong Cheng
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Dongqing Hou
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Junting Liu
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoyuan Zhao
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Wenli Cheng
- Center of Hypertension, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
| | - Jie Mi
- Center for Non-communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlish Road, Xicheng District, Beijing, 100045, China.
| |
Collapse
|
2
|
Qi C, Liu D, Liu C, Wei X, Ma M, Lu X, Tao M, Zhang C, Wang X, He T, Li J, Dai F, Ding Y, Shen L. Antigen-independent activation is critical for the durable antitumor effect of GUCY2C-targeted CAR-T cells. J Immunother Cancer 2024; 12:e009960. [PMID: 39366753 PMCID: PMC11459315 DOI: 10.1136/jitc-2024-009960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cells face many obstacles in solid tumor therapy, including heterogeneous antigen expression and inefficient T cell persistence. Guanylyl cyclase C (GUCY2C) has been identified as a suitable tumor antigen for targeted therapy due to its intestinal-restricted expression pattern in normal tissues and steady overexpression in gastrointestinal tumors, especially colorectal cancer. An antigen-sensitive and long-lasting CAR-T cell targeting GUCY2C was investigated in this study. METHODS Using constructed tumor cell lines with various GUCY2C expression densities, we screened out an antigen-sensitive single chain variable fragment (scFv) that enabled CAR-T cells to efficiently eradicate the GUCY2C lowly expressed tumor cells. CAR-T cells with different compositions of the hinge, transmembrane and costimulatory domains were also constructed for selection of the long-lasting CAR-T format with durable antitumor efficacy in vitro and in tumor-bearing mice. The underlying mechanism was further investigated based on mutation of the hinge and transmembrane domains. RESULTS We found that the composition of the antigen-sensitive scFv, CD8α hinge, CD8α transmembrane, and CD28 costimulatory domains boosted CAR-T cells to rapidly kill tumors, maintain high expansion capacity, and long-term efficacy in various colorectal cancer models. The durable antitumor function was attributed to the optimal CAR tonic signaling that conferred CAR-T cells with autonomous activation, proliferation, survival and cytokine release in the absence of antigen stimulation. The tonic signaling was associated with the length and the cysteine residues in the CD8α hinge and transmembrane domains. CONCLUSIONS This study demonstrated a potent GUCY2C-targeted CAR-T cell for gastrointestinal tumor therapy and highlights the importance of adequate tonic signaling for effective CAR-T cell therapy against solid tumors.
Collapse
Affiliation(s)
- Changsong Qi
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Early Drug Development Centre, Peking University Cancer Hospital, Beijing, China
| | - Dongqun Liu
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Chang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Centre, Peking University Cancer Hospital, Beijing, China
| | - Xiaofei Wei
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Mingyang Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| | - Xinan Lu
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Min Tao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| | - Cheng Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| | - Xicheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| | - Ting He
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Jian Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| | - Fei Dai
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Yanping Ding
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
3
|
Zhang YF, Lin S, Zhen X, Ho M. A proteomic atlas of glypican-3 interacting partners: Identification of alpha-fetoprotein and other extracellular proteins as potential immunotherapy targets in liver cancer. PROTEOGLYCAN RESEARCH 2024; 2:e70004. [PMID: 39822733 PMCID: PMC11737099 DOI: 10.1002/pgr2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/31/2024] [Indexed: 01/19/2025]
Abstract
Antibody and cell-based therapeutics targeting cell surface receptors have emerged as a major class of immune therapeutics for treating cancer. However, the number of cell surface targets for cancer immunotherapy remains limited. Glypican-3 (GPC3) is a cell surface proteoglycan and an oncofetal antigen. In this study, we report a large-scale tumor-associated GPC3 co-immunoprecipitation (CoIP)-proteomic study using liver cancer xenograft tumors in mice. We identified 153 GPC3-associated proteins through mass spectrometry. To identify potential drug targets, we categorized GPC3-associated proteins based on their subcellular locations using UniProt annotations, with a focus on extracellular proteins. Additionally, we annotated differentially expressed proteins in hepatocellular carcinoma (HCC) versus non-tumor liver samples based on the literature, analyzed expression levels in tumor versus normal tissues using TCGA and GTEx databases via GEPIA, and identified prognostic liver cancer markers according to GEPIA. Among GPC3-associated proteins, Immunoglobulin Superfamily Member 1 (IGSF1), alpha-fetoprotein (AFP), FAT Atypical Cadherin 1 (FAT1), Formin 1 (FMN1), and Guanylate Cyclase 2C (GUCY2C), were identified as potential therapeutic targets. Furthermore, we validated the direct protein interaction between GPC3 and AFP through immunoprecipitation with purified proteins and through co-localization imaging using immunofluorescence microscopy. This study provides large proteomic datasets related to GPC3-associated proteins, enhancing our understanding of glypican biology in cancer cells and offering a new approach to identifying immunotherapy targets.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Shaoli Lin
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Xiao Zhen
- Laboratory of Proteomics and Analytical Technologies, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
4
|
Barton JR, Londregan AK, Alexander TD, Entezari AA, Covarrubias M, Waldman SA. Enteroendocrine cell regulation of the gut-brain axis. Front Neurosci 2023; 17:1272955. [PMID: 38027512 PMCID: PMC10662325 DOI: 10.3389/fnins.2023.1272955] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Enteroendocrine cells (EECs) are an essential interface between the gut and brain that communicate signals about nutrients, pain, and even information from our microbiome. EECs are hormone-producing cells expressed throughout the gastrointestinal epithelium and have been leveraged by pharmaceuticals like semaglutide (Ozempic, Wegovy), terzepatide (Mounjaro), and retatrutide (Phase 2) for diabetes and weight control, and linaclotide (Linzess) to treat irritable bowel syndrome (IBS) and visceral pain. This review focuses on role of intestinal EECs to communicate signals from the gut lumen to the brain. Canonically, EECs communicate information about the intestinal environment through a variety of hormones, dividing EECs into separate classes based on the hormone each cell type secretes. Recent studies have revealed more diverse hormone profiles and communication modalities for EECs including direct synaptic communication with peripheral neurons. EECs known as neuropod cells rapidly relay signals from gut to brain via a direct communication with vagal and primary sensory neurons. Further, this review discusses the complex information processing machinery within EECs, including receptors that transduce intraluminal signals and the ion channel complement that govern initiation and propagation of these signals. Deeper understanding of EEC physiology is necessary to safely treat devastating and pervasive conditions like irritable bowel syndrome and obesity.
Collapse
Affiliation(s)
- Joshua R. Barton
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Annie K. Londregan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tyler D. Alexander
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ariana A. Entezari
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Manuel Covarrubias
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Rampuria P, Mosyak L, Root AR, Svenson K, Agostino MJ, LaVallie ER. Molecular insights into recognition of GUCY2C by T-cell engaging bispecific antibody anti-GUCY2CxCD3. Sci Rep 2023; 13:13408. [PMID: 37591971 PMCID: PMC10435522 DOI: 10.1038/s41598-023-40467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
The intestinal epithelial receptor Guanylyl Cyclase C (GUCY2C) is a tumor-associated cell surface antigen expressed across gastrointestinal malignancies that can serve as an efficacious target for colorectal cancer immunotherapy. Here, we describe a yeast surface-display approach combined with an orthogonal peptide-based mapping strategy to identify the GUCY2C binding epitope of a novel anti-GUCY2CxCD3 bispecific antibody (BsAb) that recently advanced into the clinic for the treatment of cancer. The target epitope was localized to the N-terminal helix H2 of human GUCY2C, which enabled the determination of the crystal structure of the minimal GUCY2C epitope in complex with the anti-GUCY2C antibody domain. To understand if this minimal epitope covers the entire antibody binding region and to investigate the impact of epitope position on the antibody's activity, we further determined the structure of this interaction in the context of the full-length extracellular domain (ECD) of GUCY2C. We found that this epitope is positioned on the protruding membrane-distal helical region of GUCY2C and that its specific location on the surface of GUCY2C dictates the close spatial proximity of the two antigen arms in a diabody arrangement essential to the tumor killing activity of GUCY2CxCD3 BsAb.
Collapse
Affiliation(s)
- Pragya Rampuria
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA.
| | - Lidia Mosyak
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA.
| | - Adam R Root
- Generate Biomedicines Inc, Cambridge, MA, USA
| | - Kristine Svenson
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA
| | | | - Edward R LaVallie
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA
| |
Collapse
|
6
|
Carlos dos Reis D, Dastoor P, Santos AK, Sumigray K, Ameen NA. CFTR high expresser cells in cystic fibrosis and intestinal diseases. Heliyon 2023; 9:e14568. [PMID: 36967909 PMCID: PMC10031467 DOI: 10.1016/j.heliyon.2023.e14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), the Cl-/HCO3 - channel implicated in Cystic Fibrosis, is critical to the pathophysiology of many gastrointestinal diseases. Defects in CFTR lead to intestinal dysfunction, malabsorption, obstruction, infection, inflammation, and cancer that increases morbidity and reduces quality of life. This review will focus on CFTR in the intestine and the implications of the subpopulation of CFTR High Expresser Cells (CHEs) in Cystic Fibrosis (CF), intestinal physiology and pathophysiology of intestinal diseases.
Collapse
Affiliation(s)
- Diego Carlos dos Reis
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
| | - Parinaz Dastoor
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
| | - Anderson Kenedy Santos
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Kaelyn Sumigray
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Nadia A. Ameen
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT06510, USA
- Corresponding author. Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA.
| |
Collapse
|
7
|
Di Guglielmo MD, Holbrook J, Stabley D, Robbins KM, Boyce B, Hardy H, Adeyemi A. The Intestinal Tract Brush Border in Young Children Uniformly Expresses Guanylate Cyclase C. Appl Immunohistochem Mol Morphol 2023; 31:154-162. [PMID: 36735491 DOI: 10.1097/pai.0000000000001104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023]
Abstract
The present study examined staining of guanylate cyclase C (GCC/GUCY2C) in the small and large intestines of children younger than age 7 years. Normal intestinal tissue from children aged 0 to 7 years was stained using GCC, uroguanylin, and villin antibodies and scored for staining intensity. A subset underwent quantitative real-time polymerase chain reaction. Data were analyzed using t test of independent means, descriptive statistics, and logistic regression. Four hundred sixty-four specimens underwent immunohistochemistry; 291 specimens underwent real-time polymerase chain reaction. GCC, villin, and uroguanylin were detected across age groups and anatomic sites. No significant differences were identifiable across age groups. GUCY2C and uroguanylin mRNA was detected in all samples, with no variability of statistical significance of either target-to-villin normalization between any age cohorts. A gradient of expression of GCC across age groups does not seem to exist.
Collapse
Affiliation(s)
| | - Jennifer Holbrook
- Nemours Biomedical Research, Nemours Children's Health, Nemours Children's Hospital, Delaware Valley, DE
| | - Deborah Stabley
- Nemours Biomedical Research, Nemours Children's Health, Nemours Children's Hospital, Delaware Valley, DE
| | - Katherine M Robbins
- Nemours Biomedical Research, Nemours Children's Health, Nemours Children's Hospital, Delaware Valley, DE
| | - Bobbie Boyce
- Nemours Biomedical Research, Nemours Children's Health, Nemours Children's Hospital, Delaware Valley, DE
| | - Heather Hardy
- Nemours Biomedical Research, Nemours Children's Health, Nemours Children's Hospital, Delaware Valley, DE
| | | |
Collapse
|
8
|
Qu W, Jeong A, Zhong R, Thieschafer JS, Gram A, Li L. Deletion of Small GTPase H-Ras Rescues Memory Deficits and Reduces Amyloid Plaque-Associated Dendritic Spine Loss in Transgenic Alzheimer's Mice. Mol Neurobiol 2023; 60:495-511. [PMID: 36287323 PMCID: PMC10771223 DOI: 10.1007/s12035-022-03082-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disorder, affecting millions of lives without a cure. While the molecular mechanism of AD remains obscure, emerging evidence suggests that small GTPases, a group of GTP-binding proteins that regulate a plethora of essential cellular events, modulate the pathogenic process of AD. Among those, the small GTPase H-Ras, extensively studied in cancer, regulates synaptic function, and both upstream and downstream signaling pathways of H-Ras have been implicated in AD. However, the role of H-Ras per se in AD pathogenesis had not been explored previously. In the present study, the impact of Hras deletion on cognitive function and amyloid pathology was investigated in transgenic APP/PS1 mice of AD. Behavioral assessments showed that the absence of Hras rescued spatial memory deficit in APP/PS1 mice at 9 months of age. The pathological evaluation demonstrated that Hras deletion reduced cortical amyloid deposition and astrogliosis. Furthermore, Hras deficiency protected against amyloid plaque-associated loss of dendritic spines in APP/PS1 mice. Intriguingly, canonical signaling pathways downstream of H-Ras were not affected by the absence of Hras in the brain. Unbiased transcriptomic analysis revealed that lack of H-Ras affected the expression of select genes in the brain of AD mice and identified a novel connection between H-Ras and Annexin A4, a calcium-dependent phospholipid-binding protein that has been shown to regulate membrane repair, neuroinflammation, and calcium homeostasis. Taken together, these data indicate that H-Ras modifies the pathogenic process of AD and may serve as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Wenhui Qu
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Rui Zhong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Josslen S Thieschafer
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrea Gram
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ling Li
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Beena TB, Jesil MA, Harikumar KB. Cross-talk between AMP-activated protein kinase and the sonic hedgehog pathway in the high-fat diet triggered colorectal cancer. Arch Biochem Biophys 2023; 735:109500. [PMID: 36608915 DOI: 10.1016/j.abb.2022.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
The major cause of colorectal cancer (CRC) related mortality is due to its metastasis. Signaling pathways play a definite role in the development and progression of CRC. Recent studies demonstrate that the regulation of the sonic hedgehog (Shh) pathway is beneficial in the CRC treatment strategy. Also, 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a well-known regulator of metabolism and inflammation, making it a suitable treatment option for CRC. Consumption of a high-fat diet (HFD) is a significant cause of CRC genesis. Also, the lipids play an indispensable role in aberrant activation of the Shh pathway. This review explains in detail the interconnection between HFD consumption, Shh pathway activation, and the progression of CRC. According to recent studies and literature, AMPK is a potential regulator that can control the complexities of CRC and reduce lipid levels and may directly inhibit shh signalling. The review also suggests the possible risk elements of AMPK activation in CRC due to its context-dependent role. Also, the activation of AMPK in HFD-induced CRC may modulate cancer progression by regulating the Shh pathway and metabolism.
Collapse
Affiliation(s)
- T B Beena
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Mathew A Jesil
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India.
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala State, India
| |
Collapse
|
10
|
Mathur D, Root AR, Bugaj-Gaweda B, Bisulco S, Tan X, Fang W, Kearney JC, Lucas J, Guffroy M, Golas J, Rohde CM, Stevens C, Kamperschroer C, Kelleher K, Lawrence-Henderson RF, Upeslacis E, Yao J, Narula J, LaVallie ER, Fernandez DR, Buetow BS, Rosfjord E, Bloom L, King LE, Tchistiakova L, Nguyen A, Sapra P. A Novel GUCY2C-CD3 T-Cell Engaging Bispecific Construct (PF-07062119) for the Treatment of Gastrointestinal Cancers. Clin Cancer Res 2020; 26:2188-2202. [DOI: 10.1158/1078-0432.ccr-19-3275] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/19/2019] [Accepted: 01/27/2020] [Indexed: 12/24/2022]
|
11
|
Folgueira C, Torres-Leal FL, Beiroa D, Pena-León V, Da Silva Lima N, Milbank E, Senra A, Al-Massadi O, López M, Diéguez C, Seoane LM, Nogueiras R. Oral Pharmacological Activation of Hypothalamic Guanylate Cyclase 2C Receptor Stimulates Brown Fat Thermogenesis to Reduce Body Weight. Neuroendocrinology 2020; 110:1042-1054. [PMID: 31945763 DOI: 10.1159/000505972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
Linaclotide is a synthetic peptide approved by the FDA for the treatment of constipation-predominant irritable bowel syndrome and chronic constipation. Linaclotide binds and activates the transmembrane receptor guanylate cyclase 2C (Gucy2c). Uroguanylin (UGN) is a 16 amino acid peptide that is mainly secreted by enterochromaffin cells in the duodenum and proximal small intestine. UGN is the endogenous ligand of Gucy2c and decreases body weight in diet-induced obese (DIO) mice via the activation of the thermogenic program in brown adipose tissue. Therefore, we wanted to evaluate whether oral linaclotide could also improve DIO mice metabolic phenotype. In this study, we have demonstrated that DIO mice orally treated with linaclotide exhibited a significant reduction of body weight without modifying food intake. Linaclotide exerts its actions through the central nervous system, and more specifically, via Gucy2c receptors located in the mediobasal hypothalamus, leading to the activation of the sympathetic nervous system to trigger the thermogenic activity of brown fat stimulating energy expenditure. These findings indicate for first time that, in addition to its effects at intestinal level to treat irritable bowel syndrome with constipation and chronic constipation, linaclotide also exerts a beneficial effect in whole body metabolism.
Collapse
Affiliation(s)
- Cintia Folgueira
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria Santiago de Compostela, Complejo Hospitalario Universitario Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain
| | - Francisco Leonardo Torres-Leal
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Department of Biophysics and Physiology, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Center for Health Sciences, Federal University of Piaui, Teresina, Brazil
| | - Daniel Beiroa
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain
| | - Verónica Pena-León
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria Santiago de Compostela, Complejo Hospitalario Universitario Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Natália Da Silva Lima
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Edward Milbank
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Omar Al-Massadi
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain
| | - Miguel López
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain
| | - Luisa M Seoane
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria Santiago de Compostela, Complejo Hospitalario Universitario Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain,
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain,
- Galician Agency of Innovation, Xunta de Galicia, Santiago de Compostela, Spain,
| |
Collapse
|
12
|
Uroguanylin Improves Leptin Responsiveness in Diet-Induced Obese Mice. Nutrients 2019; 11:nu11040752. [PMID: 30935076 PMCID: PMC6520813 DOI: 10.3390/nu11040752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal-brain axis is a key mediator of the body weight and energy homeostasis regulation. Uroguanylin (UGN) has been recently proposed to be a part of this gut-brain axis regulating food intake, body weight and energy expenditure. Expression of UGN is regulated by the nutritional status and dependent on leptin levels. However, the exact molecular mechanisms underlying this UGN-leptin metabolic regulation at a hypothalamic level still remains unclear. Using leptin resistant diet-induced obese (DIO) mice, we aimed to determine whether UGN could improve hypothalamic leptin sensitivity. The present work demonstrates that the central co-administration of UGN and leptin potentiates leptin’s ability to decrease the food intake and body weight in DIO mice, and that UGN activates the hypothalamic signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositide 3-kinases (PI3K) pathways. At a functional level, the blockade of PI3K, but not STAT3, blunted UGN-mediated leptin responsiveness in DIO mice. Overall, these findings indicate that UGN improves leptin sensitivity in DIO mice.
Collapse
|
13
|
Circulating Pro-Uroguanylin Levels In Children And Their Relation To Obesity, Sex And Puberty. Sci Rep 2018; 8:14541. [PMID: 30266914 PMCID: PMC6162323 DOI: 10.1038/s41598-018-32767-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 09/07/2018] [Indexed: 01/13/2023] Open
Abstract
Uroguanylin is a 16 amino acid peptide that constitutes a key component of the gut- brain axis with special relevance in body weight regulation. In childhood and adolescence, periods of life with notable metabolic changes; limited data exist, with measurements of pro-uroguanylin in adolescence but not in prepubertal children. This study investigates pro-uroguanylin circulating levels in children with obesity and its relationship with obesity, sex and pubertal development. We analyzed circulating prouroguanylin levels in 117 children (62) and adolescents (55), including 73 with obesity and 44 with normal weight. The pro-uroguanylin concentration is higher in lean girls during pre-puberty versus lean boys (1111 vs 635, p < 0.001). During puberty, pro-uroguanylin levels are higher in lean males with respect to lean females (1060 vs 698, p < 0.01). In girls, a negative correlation exists between pro-uroguanylin and age, Tanner stage, weight, height, BMI (body mass index), waist circumference and plasma levels of leptin and testosterone; a positive correlation was found between pro-uroguanylin and free triiodothyronine. In boys, a positive correlation was found between pro-uroguanylin and BMI and waist circumference and a negative correlation was found with high density lipoprotein-cholesterol. We conclude that a sexual dimorphism exists in circulating pro-uroguanylin levels with respect to BMI. Uroguanylin presents also an opposed circulating pattern during puberty in both sexes.
Collapse
|
14
|
Yarla NS, Gali H, Pathuri G, Smriti S, Farooqui M, Panneerselvam J, Kumar G, Madka V, Rao CV. Targeting the paracrine hormone-dependent guanylate cyclase/cGMP/phosphodiesterases signaling pathway for colorectal cancer prevention. Semin Cancer Biol 2018; 56:168-174. [PMID: 30189250 DOI: 10.1016/j.semcancer.2018.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer related-deaths. The risk of development of CRC is complex and multifactorial, and includes disruption of homeostasis of the intestinal epithelial layer mediated though dysregulations of tumor suppressing/promoting signaling pathways. Guanylate cyclase 2C (GUCY2C), a membrane-bound guanylate cyclase receptor, is present in the apical membranes of intestinal epithelial cells and maintains homeostasis. GUCY2C is activated upon binding of paracrine hormones (guanylin and uroguanylin) that lead to formation of cyclic GMP from GTP and activation of downstream signaling pathways that are associated with normal homeostasis. Dysregulation/suppression of the GUCY2C-mediated signaling promotes CRC tumorigenesis. High-calorie diet-induced obesity is associated with deficiency of guanylin expression and silencing of GUCY2C-signaling in colon epithelial cells, leading to tumorigenesis. Thus, GUCY2C agonists, such as linaclotide, exhibit considerable role in preventing CRC tumorigenesis. However, phosphodiesterases (PDEs) are elevated in intestinal epithelial cells during CRC tumorigenesis and block GUCY2C-mediated signaling by degrading cyclic GMP to 5`-GMP. PDE5-specific inhibitors, such as sildenafil, show considerable anti-tumorigenic potential against CRC by amplifying the GUCY2C/cGMP signaling pathway, but cannot achieve complete anti-tumorigenic effects. Hence, dual targeting the elevation of cGMP by providing paracrine hormone stimuli to GUCY2C and by inhibition of PDEs may be a better strategy for CRC prevention than alone. This review delineates the involvement of the GUCY2C/cGMP/PDEs signaling pathway in the homeostasis of intestinal epithelial cells. Further, the events are associated with dysregulation of this pathway during CRC tumorigenesis are also discussed. In addition, current updates on targeting the GUCY2C/cGMP/PDEs pathway with GUCY2C agonists and PDEs inhibitors for CRC prevention and treatment are described in detail.
Collapse
Affiliation(s)
- N S Yarla
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - H Gali
- Department of Pharmaceutical Sciences, College of Pharmacy, and Stephenson Oklahoma Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - G Pathuri
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - S Smriti
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - M Farooqui
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Panneerselvam
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - G Kumar
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; VA Medical Center, Oklahoma City, OK, USA
| | - V Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - C V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
15
|
Pilot Study Measuring the Novel Satiety Hormone, Pro-Uroguanylin, in Adolescents With and Without Obesity. J Pediatr Gastroenterol Nutr 2018; 66:489-495. [PMID: 29112082 PMCID: PMC5825243 DOI: 10.1097/mpg.0000000000001796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Disruption of satiety signaling may lead to increased caloric intake and obesity. Uroguanylin, the intestinal hormone, travels as a precursor to the central nervous system where it activates guanylyl cyclase C and stimulates pro-satiety neurons. Rodent studies have demonstrated that guanylyl cyclase C-knockout mice overeat and have increased weight gain versus wild-type mice and hyper-caloric obesity diminishes uroguanylin expression. We measured circulating plasma pro-uroguanylin, along with other gastrointestinal peptides and inflammatory markers, in human adolescents with and without obesity, as a pilot study. We hypothesized that adolescents with obesity would have less circulating pro-uroguanylin than adolescents without obesity have. METHODS We recruited 24 adolescents (age 14-17 years) with and without obesity (body mass index >95% or body mass index <95%) and measured plasma pro-uroguanylin at fasting and successive time points after a meal. We measured 3 other satiety hormones and 2 inflammatory markers to characterize overall satiety signaling and highlight any link between uroguanylin and inflammation. RESULTS Female adolescents with obesity had lower circulating pro-uroguanylin levels than female adolescents without obesity; we observed no difference in males. Other measured gastrointestinal peptides varied in their differences between cohorts. Inflammatory markers were higher in female participants with obesity. CONCLUSIONS In adolescents with and without obesity, we can measure circulating pro-uroguanylin levels. In female adolescents without obesity, levels are particularly higher. Pro-uroguanylin secretion patterns differ from other circulating gastrointestinal peptides. In female adolescents with obesity, inflammation correlates with decreased pro-uroguanylin levels.
Collapse
|
16
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Kim GW, Lin JE, Snook AE, Aing AS, Merlino DJ, Li P, Waldman SA. Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity. Nutr Diabetes 2016; 6:e211. [PMID: 27214655 PMCID: PMC4895379 DOI: 10.1038/nutd.2016.18] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/16/2016] [Accepted: 04/07/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/OBJECTIVES The uroguanylin-GUCY2C gut-brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). SUBJECTS/METHODS Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ER(T2)-Rosa-STOP(loxP/loxP)-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. RESULTS DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. CONCLUSIONS These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression of intestinal uroguanylin impairs hypothalamic mechanisms regulating food consumption through loss of anorexigenic endocrine signaling. The correlative therapeutic paradigm suggests that, in the context of hormone insufficiency with preservation of receptor sensitivity, obesity may be prevented or treated by GUCY2C hormone replacement.
Collapse
Affiliation(s)
- G W Kim
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - J E Lin
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - A E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - A S Aing
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - D J Merlino
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - P Li
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - S A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
18
|
Guanylin and uroguanylin stimulate lipolysis in human visceral adipocytes. Int J Obes (Lond) 2016; 40:1405-15. [PMID: 27108812 DOI: 10.1038/ijo.2016.66] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/02/2016] [Accepted: 03/20/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND/OBJECTIVES Uroguanylin and guanylin are secreted by intestinal epithelial cells as prohormones postprandially and act on the hypothalamus to induce satiety. The impact of obesity and obesity-associated type 2 diabetes (T2D) on proguanylin and prouroguanylin expression/secretion as well as the potential role of guanylin and uroguanylin in the control of lipolysis in humans was evaluated. SUBJECTS/METHODS Circulating and gastrointestinal expression of proguanylin (GUCA2A) and prouroguanylin (GUCA2B) were measured in 134 subjects. In addition, plasma proguanylin and prouroguanylin were measured before and after weight loss achieved either by Roux-en-Y gastric bypass (RYGB) (n=24) or after a conventional diet (n=15). The effect of guanylin and uroguanylin (1-100 nmol l(-1)) on lipolysis was determined in vitro in omental adipocytes. RESULTS Circulating concentrations of prouroguanylin, but not proguanylin, were decreased in obesity in relation to adiposity. Weight loss achieved by RYGB increased plasma proguanylin and prouroguanylin. Obese T2D individuals showed higher expression of intestinal GUCA2A as well as of the receptors of the guanylin system, GUCY2C and GUCY2D, in omental adipocytes. The incubation with guanylin and uroguanylin significantly stimulated lipolysis in differentiated omental adipocytes, as evidenced by hormone-sensitive lipase phosphorylation at Ser563, an increase in fatty acids and glycerol release together with an upregulation of several lipolysis-related genes, including AQP3, AQP7, FATP1 or CD36. CONCLUSIONS Both guanylin and uroguanylin trigger lipolysis in human visceral adipocytes. Given the lipolytic action of the guanylin system on visceral adipocytes, the herein reported decrease of circulating prouroguanylin concentrations in obese patients may have a role in excessive fat accumulation in obesity.
Collapse
|
19
|
Immunotherapeutic Strategies for Colon Cancer: Monoclonal Antibody Therapy. CURRENT COLORECTAL CANCER REPORTS 2015. [DOI: 10.1007/s11888-015-0260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Folgueira C, Sanchez-Rebordelo E, Barja-Fernandez S, Leis R, Tovar S, Casanueva FF, Dieguez C, Nogueiras R, Seoane LM. Uroguanylin levels in intestine and plasma are regulated by nutritional status in a leptin-dependent manner. Eur J Nutr 2015; 55:529-536. [DOI: 10.1007/s00394-015-0869-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/25/2015] [Indexed: 01/09/2023]
|
21
|
Choi M, Thakur A. Identifying Appropriate Colorectal Cancer-Associated Antigens for the Clinical Trials. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0256-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Davis K, You YJ. Appetite control: why we fail to stop eating even when we are full? ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1309-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Xiang B, Snook AE, Magee MS, Waldman SA. Colorectal cancer immunotherapy. DISCOVERY MEDICINE 2013; 15:301-308. [PMID: 23725603 PMCID: PMC4042089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Antitumor immunotherapy for colorectal cancer has been studied at the bench and bedside for decades. Some clinical trials of cancer immunotherapy have demonstrated a potential benefit for patients with colorectal cancer, yet immunotherapy remains only an experimental option for this disease. Here, we review the major immunotherapeutic approaches currently under investigation for colorectal cancer, including cancer vaccines and adoptive cell therapy. Weakness and advantages of each strategy and progress in clinical trials will be described. Examination of previous and ongoing research in colorectal cancer therapy should define a path towards identification, approval, and mainstream adoption of colorectal cancer immunotherapeutics.
Collapse
Affiliation(s)
| | - Adam E. Snook
- CORRESPONDING AUTHOR: 1020 Locust Street, JAH 368, Philadelphia, PA 19107, Tel + (1) 215 503 7445, Fax + (1) 215 955 7006;
| | | | | |
Collapse
|