1
|
Neves D, Neto AC, Salazar M, Fernandes AS, Martinho M, Charrua A, Rodrigues AR, Gouveia AM, Almeida H. A narrative review about the intricate crosstalk among endometrium, adipose tissue, and neurons in endometriosis. The multifaceted role of leptin. Obes Rev 2025; 26:e13879. [PMID: 39657320 DOI: 10.1111/obr.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024]
Abstract
Endometriosis is a highly prevalent gynecological disease characterized by the presence of endometrium-like tissue outside the uterus, whose etiopathology is far from being elucidated. The most frequent complains of patients are pelvic pain and infertility. Increasing evidence supports the systemic impact of endometriosis suggesting that an intricate crosstalk among distinct organs underlies the development of the disease. In this setting, endometriosis patients present an increased risk for developing other diseases, such as cancer, cardiovascular pathologies, and autoimmune diseases, and manifest neurologic disturbances, including neuropathic hyperalgesia. Whilst the ovary-secreted estrogen dependency of ectopic endometrium growth is well established, we conjecture that adipose tissue-secreted molecules also intervene in endometriosis development and pain manifestation. In fact, women with endometriosis present a peculiar pattern of adipokine secretion that ensues the disease onset. Unexpectedly, the levels of adipose tissue-secreted molecules in those women present similarities with those found in patients with obesity, despite the recognized association of low body mass index with endometriosis. Taking this evidence into consideration, we hypothesize that endometriosis patients present a dysfunctional adipose tissue, which is associated with enhanced metabolism and unregulated browning that not only intervene in the control of body weight but also in peculiar pain processing pathways.
Collapse
Affiliation(s)
- Delminda Neves
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Ana Catarina Neto
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Maria Salazar
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Ana Sofia Fernandes
- Department of Obstetrics and Gynecology, Faculty of Medicine of the University of Porto, Porto, Portugal/Centro Hospitalar Universitário S. João, Porto, Portugal
| | - Margarida Martinho
- Department of Obstetrics and Gynecology, Faculty of Medicine of the University of Porto, Porto, Portugal/Centro Hospitalar Universitário S. João, Porto, Portugal
| | - Ana Charrua
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal
- RISE-HEALTH@FMUP, Porto, Portugal
| | - Adriana Raquel Rodrigues
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Alexandra Maria Gouveia
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Henrique Almeida
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| |
Collapse
|
2
|
Manju MY, Shetty GB, Sujatha KJ, Shetty P. Influence of hydrotherapy on change in weight: a narrative review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025; 69:295-301. [PMID: 39545999 DOI: 10.1007/s00484-024-02823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
There is a growing interest in weight loss in today's world. Environmental factors are the main contributor behind the rapidly spreading obesity during pandemic. Exercise and diet are two controllable elements that significantly effect on energy balance., The use of cold application such as cold-water immersion, cold abdominal pack, balneotherapy, cold exposure, water drinking, steam, and sauna sessions, has shown a positive impact in weight management. This review explains the mechanism and various types of hydrotherapy applications managing weight through thermogenesis and non-shivering thermogenic pathways, which involve the brown adipose tissue, and dependent on uncoupling protein 1 (UCP1) in the inner mitochondrial membrane. Hence the present literature provides insight into use of hydrotherapy applications for future direction in weight management.
Collapse
Affiliation(s)
- M Y Manju
- Department of Natural Therapeutics,, S.D.M College of Naturopathy and Yogic Sciences, Ujire, Karnataka, India.
| | - Geetha B Shetty
- Department of Acupuncture and Meridian Studies, S.D.M College of Naturopathy and Yogic Sciences, Ujire, Karnataka, India
| | - K J Sujatha
- Department of Natural Therapeutics,, S.D.M College of Naturopathy and Yogic Sciences, Ujire, Karnataka, India
| | - Prashanth Shetty
- Department of Nutrition and Dietetics, S.D.M College of Naturopathy and Yogic Sciences, Ujire, Karnataka, India
| |
Collapse
|
3
|
Abobeleira JP, Neto AC, Mauersberger J, Salazar M, Botelho M, Fernandes AS, Martinho M, Serrão MP, Rodrigues AR, Almeida H, Gouveia AM, Neves D. Evidence of Browning and Inflammation Features in Visceral Adipose Tissue of Women with Endometriosis. Arch Med Res 2024; 55:103064. [PMID: 39244839 DOI: 10.1016/j.arcmed.2024.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Patients with endometriosis tend to have a low body mass index, suggesting an inverse relationship between body fat and risk of disease. This is supported by evidence that miRNAs differentially expressed in endometriosis induce browning of pre-adipocytes in vitro. Thus, we hypothesize that endometriosis may underlie adipose tissue (AT) dysfunction and browning. AIMS Identify inflammation and browning processes in AT collected from endometriosis patients. METHODS Visceral and subcutaneous AT samples were obtained during endometriosis (n = 32) or uterine myoma (n = 14; controls) surgery. Blood catecholamines were determined by high-performance liquid chromatography while IL-6 and TGF-β levels were quantified by ELISA. Adipocyte cross-sectional areas were analyzed in H&E-stained sections by computer-assisted morphometry. Macrophages (F4/80; Galectin-3) and browning activation (UCP-1; PGC-1α) in tissues were identified by dual label immunofluorescence. Expression of inflammatory (IL-6; MCP-1; Galectin-3; CD206; TIMP1; TGF-β) and browning-related (UCP-1; PGC-1α; DIO2; CITED1; CIDEA; TMEM26; TBX1; PRDM16; PPAR-γ) molecules in AT were assessed by RT-PCR and Western blotting. RESULTS Compared to controls, patients presented smaller adipocytes, especially in VAT, and lower norepinephrine levels. Serum IL-6, but not TGF-β, was increased in patients. UCP-1, PGC-1α, IL-6, and MCP-1 were upregulated in VAT from endometriosis women, which also evidenced a reduction of CD206, relative to controls. However, no differences were found in mRNA expression of IL-6, TIMP1, and TGF-β nor Galectin-3 protein levels. In SAT, protein expression remained unchanged between patients and controls. CONCLUSIONS Our findings support an endometriosis' role as a pro-catabolic state along with local signals of VAT browning and inflammation.
Collapse
Affiliation(s)
- José Pedro Abobeleira
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Ana Catarina Neto
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Jan Mauersberger
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Maria Salazar
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Maria Botelho
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Ana Sofia Fernandes
- Department of Obstetrics and Gynecology, Centro Hospitalar Universitário S. João, Porto, Portugal
| | - Margarida Martinho
- Department of Obstetrics and Gynecology, Centro Hospitalar Universitário S. João, Porto, Portugal
| | - Maria Paula Serrão
- Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; MedInUP, Center for Drug Discovery and Innovative Medicines, Porto, Portugal
| | - Adriana Raquel Rodrigues
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Henrique Almeida
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Alexandra Maria Gouveia
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Delminda Neves
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal.
| |
Collapse
|
4
|
Bieerkehazhi S, Abdullahi A, Khalaf F, Barayan D, de Brito Monteiro L, Samadi O, Rix G, Jeschke MG. β-Adrenergic blockade attenuates adverse adipose tissue responses after burn. J Mol Med (Berl) 2024; 102:1245-1254. [PMID: 39145814 DOI: 10.1007/s00109-024-02478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Severe burn injuries are defined by a prolonged hypermetabolic response characterized by increases in resting energy expenditure, systemic catabolism, and multi-organ dysfunction. The sustained elevation of catecholamines following a burn injury is thought to significantly contribute to this hypermetabolic response, leading to changes in adipose tissue such as increased lipolysis and the browning of subcutaneous white adipose tissue (WAT). Failure to mitigate these adverse changes within the adipose tissue has been shown to exacerbate the post-burn hypermetabolic response and lead to negative outcomes. Propranolol, a non-selective β-blocker, has been clinically administered to improve outcomes of pediatric and adult burn patients, but there is inadequate knowledge of its effects on the distinct adipose tissue depots. In this study, we investigated the adipose depot-specific alterations that occur in response to burn injury. Moreover, we explored the therapeutic effects of β-adrenoceptor blockade via the drug propranolol in attenuating these burn-induced pathophysiological changes within the different fat depots. Using a murine model of thermal injury, we show that burn injury induces endoplasmic reticulum (ER) stress in the epididymal (eWAT) but not in the inguinal (iWAT) WAT depot. Conversely, burn injury induces the activation of key lipolytic pathways in both eWAT and iWAT depots. Treatment of burn mice with propranolol effectively mitigated adverse burn-induced alterations in the adipose by alleviating ER stress in the eWAT and reducing lipolysis in both depots. Furthermore, propranolol treatment in post-burn mice attenuated UCP1-mediated subcutaneous WAT browning following injury. Overall, our findings suggest that propranolol serves as an effective therapeutic intervention to mitigate the adverse changes induced by burn injury, including ER stress, lipotoxicity, and WAT browning, in both adipose tissue depots. KEY MESSAGES: Burn injury adversely affects adipose tissue metabolism via distinct changes in both visceral and subcutaneous adipose depots. Propranolol, a non-selective β-adrenergic blocker, attenuates many of the adverse adipose tissue changes mediated by burn injury.
Collapse
Affiliation(s)
- Shayahati Bieerkehazhi
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Abdikarim Abdullahi
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Fadi Khalaf
- Department of Biochemistry, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Dalia Barayan
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Lauar de Brito Monteiro
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Osai Samadi
- Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Graham Rix
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada.
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
- Department of Surgery, McMaster University, Hamilton, ON, Canada.
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada.
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada.
| |
Collapse
|
5
|
Luca T, Pezzino S, Puleo S, Castorina S. Lesson on obesity and anatomy of adipose tissue: new models of study in the era of clinical and translational research. J Transl Med 2024; 22:764. [PMID: 39143643 PMCID: PMC11323604 DOI: 10.1186/s12967-024-05547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/28/2024] [Indexed: 08/16/2024] Open
Abstract
Obesity is a serious global illness that is frequently associated with metabolic syndrome. Adipocytes are the typical cells of adipose organ, which is composed of at least two different tissues, white and brown adipose tissue. They functionally cooperate, interconverting each other under physiological conditions, but differ in their anatomy, physiology, and endocrine functions. Different cellular models have been proposed to study adipose tissue in vitro. They are also useful for elucidating the mechanisms that are responsible for a pathological condition, such as obesity, and for testing therapeutic strategies. Each cell model has its own characteristics, culture conditions, advantages and disadvantages. The choice of one model rather than another depends on the specific study the researcher is conducting. In recent decades, three-dimensional cultures, such as adipose spheroids, have become very attractive because they more closely resemble the phenotype of freshly isolated cells. The use of such models has developed in parallel with the evolution of translational research, an interdisciplinary branch of the biomedical field, which aims to learn a scientific translational approach to improve human health and longevity. The focus of the present review is on the growing body of data linking the use of new cell models and the spread of translational research. Also, we discuss the possibility, for the future, to employ new three-dimensional adipose tissue cell models to promote the transition from benchside to bedsite and vice versa, allowing translational research to become routine, with the final goal of obtaining clinical benefits in the prevention and treatment of obesity and related disorders.
Collapse
Affiliation(s)
- Tonia Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, Catania, 95123, Italy.
| | | | - Stefano Puleo
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| | - Sergio Castorina
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, Catania, 95123, Italy
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| |
Collapse
|
6
|
Bieerkehazhi S, Barayan D, Khalaf F, de Brito Monteiro L, Aijaz A, Volk C, Matveev A, Saldanha S, Faour S, Jeschke MG. BURNS INDUCE ALTERATIONS IN THE ACYL PROTEOME OF MICE AND HUMANS. Shock 2024; 61:877-884. [PMID: 38661185 DOI: 10.1097/shk.0000000000002355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT Hypermetabolic reprogramming triggered by thermal injury causes substantial morbidity and mortality. Despite the therapeutic potential of targeting this response, the underlying mechanisms remain poorly understood. Interestingly, protein S-acylation is a reversible posttranslational modification induced by metabolic alterations via DHHC acyltransferases. While this modification aids in the regulation of cellular functions, deregulated S-acylation contributes to various diseases by altering protein structure, stability, and localization. However, whether and how S-acylation may impact morbidity and mortality during postburn hypermetabolism is unknown. In this study, we discovered that alterations in the acyl proteome play a key role in mediating adverse outcomes that occur after burn injury. Using a murine model, we show that burn injury induces profound changes in the expression of various DHHC isoforms in metabolic organs central to regulating postburn hypermetabolism, the adipose tissue, and liver. This was accompanied by increased levels of S-acylated proteins in several pathways involved in mediating the adverse hypermetabolic response, including ER stress, lipolysis, and browning. In fact, similar results were also observed in adipose tissue from severely burned patients, as reflected by increased S-acylation of ERK1/2, eIF2a, ATGL, FGF21, and UCP1 relative to nonburn controls. Importantly, pharmacologically targeting this posttranslational modification using a nonselective DHHC inhibitor effectively attenuated burn-induced ER stress, lipolysis, and browning induction in an ex vivo explant model. Together, these findings suggest that S-acylation may facilitate the protein activation profile that drives burn-induced hypermetabolism and that targeting it could potentially be an effective strategy to restore metabolic function and improve outcomes after injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sara Faour
- David Braley Research Institute, Hamilton, Ontario, Canada
| | | |
Collapse
|
7
|
Quan Y, Li J, Cai J, Liao Y, Zhang Y, Lu F. Transplantation of beige adipose organoids fabricated using adipose acellular matrix hydrogel improves metabolic dysfunction in high-fat diet-induced obesity and type 2 diabetes mice. J Cell Physiol 2024; 239:e31191. [PMID: 38219044 DOI: 10.1002/jcp.31191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
Transplantation of brown adipose tissue (BAT) is a promising approach for treating obesity and metabolic disorders. However, obtaining sufficient amounts of functional BAT or brown adipocytes for transplantation remains a major challenge. In this study, we developed a hydrogel that combining adipose acellular matrix (AAM) and GelMA and HAMA that can be adjusted for stiffness by modulating the duration of light-crosslinking. We used human white adipose tissue-derived microvascular fragments to create beige adipose organoids (BAO) that were encapsulated in either a soft or stiff AAM hydrogel. We found that BAOs cultivated in AAM hydrogels with high stiffness demonstrated increased metabolic activity and upregulation of thermogenesis-related genes. When transplanted into obese and type 2 diabetes mice, the HFD + BAO group showed sustained improvements in metabolic rate, resulting in significant weight loss and decreased blood glucose levels. Furthermore, the mice showed a marked reduction in nonalcoholic liver steatosis, indicating improved liver function. In contrast, transplantation of 2D-cultured beige adipocytes failed to produce these beneficial effects. Our findings demonstrate the feasibility of fabricating beige adipose organoids in vitro and administering them by injection, which may represent a promising therapeutic approach for obesity and diabetes.
Collapse
Affiliation(s)
- Yuping Quan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jian Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Yuteng Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
8
|
Quan Y, Lu F, Zhang Y. Use of brown adipose tissue transplantation and engineering as a thermogenic therapy in obesity and metabolic disease. Obes Rev 2024; 25:e13677. [PMID: 38114233 DOI: 10.1111/obr.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 12/21/2023]
Abstract
The induction of thermogenesis in brown adipose tissue is emerging as an attractive therapy for obesity and metabolic syndrome. However, the long-term efficacy and safety of clinical pharmaceutical agents have yet to be fully characterized. The transplantation of brown adipose tissue represents an alternative approach that might have a therapeutic effect by inducing a long-term increase in energy expenditure. However, limited tissue resources hinder the development of transplantation. Stem cell-based therapy and brown adipose tissue engineering, in addition to transplantation, represent alternative approaches that might resolve this problem. In this article, we discuss recent advances in understanding the mechanisms and applications of brown adipose tissue transplantation in the treatment of obesity and related metabolic disorders. Specifically, the induction of brown adipocytes and the fabrication of engineered brown adipose tissue as novel transplantation resources have long-term effects on ameliorating metabolic defects in rodent models. Additionally, we explore future prospects regarding the development of three-dimensional engineered brown adipose tissue and the associated challenges.
Collapse
Affiliation(s)
- Yuping Quan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuteng Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
McClave SA, Martindale RG. Browning of white adipose tissue may be an appropriate adaptive response to critical illness. JPEN J Parenter Enteral Nutr 2024; 48:37-45. [PMID: 37908064 DOI: 10.1002/jpen.2576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
Both the baseline amount of brown adipose tissue (BAT) and the capacity to stimulate browning of white adipose tissue (WAT) may provide a protective effect to the patient in a critical care setting. Critical illness is associated with reduced mitochondrial volume and function resulting in the increased production of reactive oxygen species, greater demand for adenosine triphosphate, a switch to uncoupled fat metabolism, and hibernation of the organelle, which all contribute to multiple organ failure. Increasing insulin resistance, decreasing fatty acid oxidation, and dependence on carbohydrate metabolism result. Browning of WAT may oppose many of these adverse effects. The presence of BAT and the changes associated with browning may help dissipate oxidative stress, increase consumption and utilization of metabolites, and reduce pro-inflammatory actions. The number of mitochondria increases, and there is greater infiltration of macrophages into adipose tissue. A shift occurs in macrophage expression from the M1 to M2 phenotype, an effect which further dampens inflammation, increases insulin sensitivity, and improves tissue healing and remodeling. Any benefit from these responses may be lost in the disease states of chronic hypermetabolism (such as burns or cancer cachexia) in which the persistence of these physiologic effects may become detrimental, contributing to excessive weight loss, adipose wasting, and loss of lean body mass. This paper discusses the plasticity of adipose tissue and whether shifts in its physiology provide clinical advantages in the intensive care unit.
Collapse
Affiliation(s)
- Stephen A McClave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Robert G Martindale
- Department of Surgery, Oregon Health Sciences University, Portland, Oregon, USA
| |
Collapse
|
10
|
Nakano T, Suzuki A, Goto K. Ablation of diacylglycerol kinase ε promotes whitening of brown adipose tissue under high fat diet feeding. Adv Biol Regul 2024; 91:100994. [PMID: 37875386 DOI: 10.1016/j.jbior.2023.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Adipose tissue (AT) comprises distinct fat depots such as white AT and brown AT. White and brown adipocytes exhibit different morphological and physiological properties. White adipocytes containing large single lipid droplet (LD) provide energy on demand whereas brown adipocytes loaded with multilocular LDs consume energy to generate heat or dissipate excess energy. Recent studies have shown that multilocular brown-like cells emerge in white AT under certain conditions. These cells termed beige adipocytes participate in energy expenditure and heat generation. In the process of lipolysis, TG is broken down into free fatty acid and diacylglycerol (DG). In this regard, DG also serves as a signaling molecule activating some proteins such as protein kinase C. Therefore, DG kinase (DGK), an enzyme which phosphorylates DG into phosphatidic acid (PA), plays a pivotal role in integrating energy homeostasis and intracellular signaling. Recently, we described that DGKε-KO mice exhibit increased adiposity in visceral white AT accompanied with impaired glucose tolerance early (40 days) in the course of high fat diet (HFD) feeding, although these mice exhibit "browning or beiging" in visceral white AT associated with improved glucose tolerance after longer term HFD feeding (180 days). This study was conducted to understand the overall features of adipose tissues and investigate changes in subcutaneous (inguinal) white AT and interscapular brown AT of DGKε-KO mice during the course of HFD feeding. Results demonstrated that fat accumulation is promoted in all fat depots under 40 days of HFD feeding conditions. Remarkably, "whitening" of brown adipocytes was identified in DGKε-deficient brown AT during the course of HFD feeding, suggesting brown adipocyte dysfunction. In addition, insulin levels were considerably elevated in DGKε-KO mice under 180 days of HFD feeding conditions. Collectively, these findings suggest that brown adipocytes are dysfunctional in DGKε-KO mice, which promotes browning or beiging in visceral white AT. Beige adipocytes may take over energy disposal and contribute to improving glucose tolerance with the aid of high levels of insulin in DGKε-KO mice upon excess feeding.
Collapse
Affiliation(s)
- Tomoyuki Nakano
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata City, Yamagata, 9909585, Japan.
| | - Ayako Suzuki
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata City, Yamagata, 9909585, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata City, Yamagata, 9909585, Japan
| |
Collapse
|
11
|
El-Yazbi AF, Elrewiny MA, Habib HM, Eid AH, Elzahhar PA, Belal ASF. Thermogenic Modulation of Adipose Depots: A Perspective on Possible Therapeutic Intervention with Early Cardiorenal Complications of Metabolic Impairment. Mol Pharmacol 2023; 104:187-194. [PMID: 37567782 DOI: 10.1124/molpharm.123.000704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular complications of diabetes and obesity remain a major cause for morbidity and mortality worldwide. Despite significant advances in the pharmacotherapy of metabolic disease, the available approaches do not prevent or slow the progression of complications. Moreover, a majority of patients present with significant vascular involvement at early stages of dysfunction prior to overt metabolic changes. The lack of disease-modifying therapies affects millions of patients globally, causing a massive economic burden due to these complications. Significantly, adipose tissue inflammation was implicated in the pathogenesis of metabolic syndrome, diabetes, and obesity. Specifically, perivascular adipose tissue (PVAT) and perirenal adipose tissue (PRAT) depots influence cardiovascular and renal structure and function. Accumulating evidence implicates localized PVAT/PRAT inflammation as the earliest response to metabolic impairment leading to cardiorenal dysfunction. Increased mitochondrial uncoupling protein 1 (UCP1) expression and function lead to PVAT/PRAT hypoxia and inflammation as well as vascular, cardiac, and renal dysfunction. As UCP1 function remains an undruggable target so far, modulation of the augmented UCP1-mediated PVAT/PRAT thermogenesis constitutes a lucrative target for drug development to mitigate early cardiorenal involvement. This can be achieved either by subtle targeted reduction in UCP-1 expression using innovative proteolysis activating chimeric molecules (PROTACs) or by supplementation with cyclocreatine phosphate, which augments the mitochondrial futile creatine cycling and thus decreases UCP1 activity, enhances the efficiency of oxygen use, and reduces hypoxia. Once developed, these molecules will be first-in-class therapeutic tools to directly interfere with and reverse the earliest pathology underlying cardiac, vascular, and renal dysfunction accompanying the early metabolic deterioration. SIGNIFICANCE STATEMENT: Adipose tissue dysfunction plays a major role in the pathogenesis of metabolic diseases and their complications. Although mitochondrial alterations are common in metabolic impairment, it was only recently shown that the early stages of metabolic challenge involve inflammatory changes in select adipose depots associated with increased uncoupling protein 1 thermogenesis and hypoxia. Manipulating this mode of thermogenesis can help mitigate the early inflammation and the consequent cardiorenal complications.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Mohamed A Elrewiny
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Hosam M Habib
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Perihan A Elzahhar
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ahmed S F Belal
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
12
|
Barayan D, Abdullahi A, Knuth CM, Khalaf F, Rehou S, Screaton RA, Jeschke MG. Lactate shuttling drives the browning of white adipose tissue after burn. Am J Physiol Endocrinol Metab 2023; 325:E180-E191. [PMID: 37406182 PMCID: PMC10396278 DOI: 10.1152/ajpendo.00084.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
High levels of plasma lactate are associated with increased mortality in critically injured patients, including those with severe burns. Although lactate has long been considered a waste product of glycolysis, it was recently revealed that it acts as a potent inducer of white adipose tissue (WAT) browning, a response implicated in mediating postburn cachexia, hepatic steatosis, and sustained hypermetabolism. Despite the clinical presentation of hyperlactatemia and browning in burns, whether these two pathological responses are linked is currently unknown. Here, we report that elevated lactate plays a causal signaling role in mediating adverse outcomes after burn trauma by directly promoting WAT browning. Using WAT obtained from human burn patients and mouse models of thermal injury, we show that the induction of postburn browning is positively correlated with a shift toward lactate import and metabolism. Furthermore, daily administration of l-lactate is sufficient to augment burn-induced mortality and weight loss in vivo. At the organ level, increased lactate transport amplified the thermogenic activation of WAT and its associated wasting, thereby driving postburn hepatic lipotoxicity and dysfunction. Mechanistically, the thermogenic effects of lactate appeared to result from increased import through MCT transporters, which in turn increased intracellular redox pressure, [NADH/NAD+], and expression of the batokine, FGF21. In fact, pharmacological inhibition of MCT-mediated lactate uptake attenuated browning and improved hepatic function in mice after injury. Collectively, our findings identify a signaling role for lactate that impacts multiple aspects of postburn hypermetabolism, necessitating further investigation of this multifaceted metabolite in trauma and critical illness.NEW & NOTEWORTHY To our knowledge, this study was the first to investigate the role of lactate signaling in mediating white adipose tissue browning after burn trauma. We show that the induction of browning in both human burn patients and mice is positively correlated with a shift toward lactate import and metabolism. Daily l-lactate administration augments burn-induced mortality, browning, and hepatic lipotoxicity in vivo, whereas pharmacologically targeting lactate transport alleviates burn-induced browning and improves liver dysfunction after injury.
Collapse
Affiliation(s)
- Dalia Barayan
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Abdikarim Abdullahi
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Carly M Knuth
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Fadi Khalaf
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sarah Rehou
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Robert A Screaton
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Marc G Jeschke
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Qin Y, Ge G, Yang P, Wang L, Qiao Y, Pan G, Yang H, Bai J, Cui W, Geng D. An Update on Adipose-Derived Stem Cells for Regenerative Medicine: Where Challenge Meets Opportunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207334. [PMID: 37162248 PMCID: PMC10369252 DOI: 10.1002/advs.202207334] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/24/2023] [Indexed: 05/11/2023]
Abstract
Over the last decade, adipose-derived stem cells (ADSCs) have attracted increasing attention in the field of regenerative medicine. ADSCs appear to be the most advantageous cell type for regenerative therapies owing to their easy accessibility, multipotency, and active paracrine activity. This review highlights current challenges in translating ADSC-based therapies into clinical settings and discusses novel strategies to overcome the limitations of ADSCs. To further establish ADSC-based therapies as an emerging platform for regenerative medicine, this review also provides an update on the advancements in this field, including fat grafting, wound healing, bone regeneration, skeletal muscle repair, tendon reconstruction, cartilage regeneration, cardiac repair, and nerve regeneration. ADSC-based therapies are expected to be more tissue-specific and increasingly important in regenerative medicine.
Collapse
Affiliation(s)
- Yi Qin
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Gaoran Ge
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Peng Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Liangliang Wang
- Department of OrthopaedicsThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouJiangsu213000China
| | - Yusen Qiao
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| | - Huilin Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Jiaxiang Bai
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Dechun Geng
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| |
Collapse
|
14
|
Huang L. Editorial: Signaling crosstalk in obesity and adipose tissue-derived metabolic diseases. Front Physiol 2023; 14:1233284. [PMID: 37378076 PMCID: PMC10291690 DOI: 10.3389/fphys.2023.1233284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
|
15
|
Portales AE, Miguel I, Rodriguez MJ, Novaro V, Gambaro SE, Giovambattista A. CDK4/6 are necessary for UCP1-mediated thermogenesis of white adipose tissue. Life Sci 2023; 322:121652. [PMID: 37011871 DOI: 10.1016/j.lfs.2023.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
AIMS In white adipose tissue (WAT) the cell cycle regulators CDK4 and CDK6 (CDK4/6) promote adipogenesis and maintain the adipocyte mature state. Here we aimed to investigate their role in the Ucp1-mediated thermogenesis of WAT depots and in the biogenesis of beige adipocytes. MAIN METHODS We treated mice with the CDK4/6 inhibitor palbociclib at room temperature (RT) or cold and analyzed thermogenic markers in the epididymal (abdominal) and inguinal (subcutaneous) WAT depots. We also assessed the effect of in vivo palbociclib-treatment on the percentage of beige precursors in the stroma vascular fraction (SVF), and on its beige adipogenic potential. Finally, we treated SVFs and mature adipocytes from WAT depots with palbociclib in vitro to study the role of CDK4/6 in beige adipocytes biogenesis. KEY FINDINGS In vivo CDK4/6 inhibition downregulated thermogenesis at RT and impaired cold-induced browning of both WAT depots. It also reduced the percentage of beige precursors and the beige adipogenic potential of the SVF upon differentiation. A similar result was observed with direct CDK4/6 inhibition in the SVF of control mice in vitro. Importantly, CDK4/6 inhibition also downregulated the thermogenic program of beige differentiated- and depots-derived adipocytes. SIGNIFICANCE CDK4/6 modulate Ucp1-mediated thermogenesis of WAT depots in basal and cold-stressing conditions controlling beige adipocytes biogenesis by adipogenesis and transdifferentiation. This shows a pivotal role of CDK4/6 in WAT browning that could be applied to fight obesity or browning-associated hypermetabolic conditions such as cancer cachexia.
Collapse
|
16
|
Serrano E, Shenoy P, Martinez Cantarin MP. Adipose tissue metabolic changes in chronic kidney disease. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2023; 5:e00023. [PMID: 37128293 PMCID: PMC10144329 DOI: 10.1097/in9.0000000000000023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Adipose tissue is a complex organ whose functions go beyond being an energy reservoir to sustain proper body energy homeostasis. Functioning as an endocrine organ, the adipose tissue has an active role in the body's metabolic balance regulation through several secreted factors generally termed as adipokines. Thus, adipose tissue dysregulation in chronic kidney disease (CKD) can have a deep impact in the pathophysiology of diseases associated with metabolic dysregulation including metabolic syndrome, insulin resistance (IR), atherosclerosis, and even cachexia. CKD is a progressive disorder linked to increased morbidity and mortality. Despite being characterized by renal function loss, CKD is accompanied by metabolic disturbances such as dyslipidemia, protein energy wasting, chronic low-grade inflammation, IR, and lipid redistribution. Thus far, the mechanisms by which these changes occur and the role of adipose tissue in CKD development and progression are unclear. Further understanding of how these factors develop could have implications for the management of CKD by helping identify pharmacological targets to improve CKD outcomes.
Collapse
Affiliation(s)
- Eurico Serrano
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Prashamsa Shenoy
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria Paula Martinez Cantarin
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
- *Correspondence: Maria Paula Martinez Cantarin, E-mail:
| |
Collapse
|
17
|
Barthelemy J, Bogard G, Wolowczuk I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front Immunol 2023; 14:1083191. [PMID: 36936928 PMCID: PMC10019896 DOI: 10.3389/fimmu.2023.1083191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
18
|
Song Q, Chen Y, Ding Q, Griffiths A, Liu L, Park J, Liew CW, Nieto N, Li S, Dou X, Jiang Y, Song Z. mTORC1 inhibition uncouples lipolysis and thermogenesis in white adipose tissue to contribute to alcoholic liver disease. Hepatol Commun 2023; 7:e0059. [PMID: 36757400 PMCID: PMC9915967 DOI: 10.1097/hc9.0000000000000059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/21/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Adipose tissue thermogenic activities use fatty acids from lipolysis for heat generation. Therefore, a tight coupling between lipolysis and thermogenesis is physiologically imperative in maintaining not only body temperature but also lipids homeostasis. Adipose tissue dysfunction contributes to alcoholic liver disease (ALD). Here, studies were conducted to examine how alcohol intake affects adipose tissue thermogenic activities and whether altered adipose tissue thermogenesis contributes to ALD. METHODS Both the Lieber-DeCarli and the NIAAA mouse models of ALD were used. Denervation surgery in epididymal fat pads was performed. CL316,243, a selective β3-adrenoceptor agonist, SR59230A, a selective β3 adrenoceptor (ADRB3) antagonist, and rapamycin, a selective mechanistic target of rapamycin complex 1 (mTORC1) inhibitor, were administrated through i.p. injection. Adipocyte-specific Prdm16 knockout mice were subjected to alcohol-containing diet chronically. RESULTS Chronic alcohol consumption, which enhances adipose tissue lipolysis, inhibits thermogenic activities of beige adipocytes in inguinal white adipose tissue (WAT), leading to an uncoupling status between lipolysis and thermogenesis in WAT at both basal and ADRB3 stimulation states. CL316,243 administration exacerbates liver pathologies of ALD. Alcohol intake inhibits mTORC1 activities in WAT. In mice, mTORC1 inhibition by rapamycin inhibits the thermogenesis of iWAT, whereas enhancing WAT lipolysis. Further investigations using adipocyte-specific Prdm16 knockout mice revealed that functional deficiency of beige adipocytes aggravates liver pathologies of ALD, suggesting that the inhibitory effect of alcohol on WAT browning/thermogenesis contributes to ALD pathogenesis. CONCLUSION Chronic alcohol consumption induces an "uncoupling status" between lipolysis and browning/thermogenesis in WAT by inhibiting mTORC1 activation. Diminished WAT browning/thermogenesis, concomitant with enhanced lipolysis, contributes to ALD pathogenesis.
Collapse
Affiliation(s)
- Qing Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yingli Chen
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Qinchao Ding
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Alexandra Griffiths
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lifeng Liu
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jooman Park
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Chong Wee Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Songtao Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaobing Dou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Li M, Qian M, Jiang Q, Tan B, Yin Y, Han X. Evidence of Flavonoids on Disease Prevention. Antioxidants (Basel) 2023; 12:antiox12020527. [PMID: 36830086 PMCID: PMC9952065 DOI: 10.3390/antiox12020527] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
A growing body of evidence highlights the properties of flavonoids in natural foods for disease prevention. Due to their antioxidative, anti-inflammatory, and anti-carcinogenic activities, flavonoids have been revealed to benefit skeletal muscle, liver, pancreas, adipocytes, and neural cells. In this review, we introduced the basic classification, natural sources, and biochemical properties of flavonoids, then summarize the experimental results and underlying molecular mechanisms concerning the effects of flavonoid consumption on obesity, cancers, and neurogenerative diseases that greatly threaten public health. Especially, the dosage and duration of flavonoids intervening in these diseases are discussed, which might guide healthy dietary habits for people of different physical status.
Collapse
Affiliation(s)
- Meng Li
- Hainan Institute, Zhejiang University, Sanya 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengqi Qian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Sanya 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-0571-88982446
| |
Collapse
|
20
|
Warrier M, Paules EM, Silva-Gomez J, Friday WB, Bramlett F, Kim H, Zhang K, Trujillo-Gonzalez I. Homocysteine-induced endoplasmic reticulum stress activates FGF21 and is associated with browning and atrophy of white adipose tissue in Bhmt knockout mice. Heliyon 2023; 9:e13216. [PMID: 36755585 PMCID: PMC9900266 DOI: 10.1016/j.heliyon.2023.e13216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Betaine-homocysteine methyltransferase (BHMT) catalyzes the transfer of methyl groups from betaine to homocysteine (Hcy), producing methionine and dimethylglycine. In this work, we characterize Bhmt wild type (Bhmt-WT) and knockout (Bhmt-KO) mice that were fully backcrossed to a C57Bl6/J background. Consistent with our previous findings, Bhmt-KO mice had decreased body weight, fat mass, and adipose tissue weight compared to WT. Histological analyses and gene expression profiling indicate that adipose browning was activated in KO mice and contributed to the adipose atrophy observed. BHMT is not expressed in adipose tissue but is abundant in liver; thus, a signal must originate from the liver that modulates adipose tissue. We found that, in Bhmt-KO mice, homocysteine-induced endoplasmic reticulum (ER) stress is associated with activation of the hepatic transcription factor cyclic AMP response element binding protein (CREBH), and an increase in hepatic and plasma concentrations of fibroblast growth factor 21 (FGF21), which is known to induce adipose browning. Our data indicate that the deletion of a single gene in one-carbon metabolism modifies adipose biology and energy metabolism. Future studies could focus on identifying if functional polymorphisms in BHMT result in a similar adipose atrophy phenotype.
Collapse
Affiliation(s)
- Manya Warrier
- Department of Nutrition, UNC Nutrition Research Institute, UNC-Chapel Hill, Kannapolis, NC, USA
| | - Evan M. Paules
- Department of Nutrition, UNC Nutrition Research Institute, UNC-Chapel Hill, Kannapolis, NC, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Jorge Silva-Gomez
- Department of Nutrition, UNC Nutrition Research Institute, UNC-Chapel Hill, Kannapolis, NC, USA
| | - Walter B. Friday
- Department of Nutrition, UNC Nutrition Research Institute, UNC-Chapel Hill, Kannapolis, NC, USA
| | - Frances Bramlett
- Department of Nutrition, UNC Nutrition Research Institute, UNC-Chapel Hill, Kannapolis, NC, USA
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Isis Trujillo-Gonzalez
- Department of Nutrition, UNC Nutrition Research Institute, UNC-Chapel Hill, Kannapolis, NC, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| |
Collapse
|
21
|
Ma D, Wu T, Qu Y, Yang J, Cai L, Li X, Wang Y. Astragalus polysaccharide prevents heart failure-induced cachexia by alleviating excessive adipose expenditure in white and brown adipose tissue. Lipids Health Dis 2023; 22:9. [PMID: 36670439 PMCID: PMC9863193 DOI: 10.1186/s12944-022-01770-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Astragalus polysaccharide (APS) is a key active ingredient isolated from Astragalus membranaceus that has been reported to be a potential treatment for obesity and diabetes by regulating lipid metabolism and adipogenesis, alleviating inflammation, and improving insulin resistance. However, whether APS regulates lipid metabolism in the context of cachexia remains unclear. Therefore, this study analysed the effects of APS on lipid metabolism and adipose expenditure in a heart failure (HF)-induced cardiac cachexia rat model. METHODS: A salt-sensitive hypertension-induced cardiac cachexia rat model was used in the present study. Cardiac function was detected by echocardiography. The histological features and fat droplets in fat tissue and liver were observed by H&E staining and Oil O Red staining. Immunohistochemical staining, Western blotting and RT‒qPCR were used to detect markers of lipolysis and adipose browning in white adipose tissue (WAT) and thermogenesis in brown adipose tissue (BAT). Additionally, sympathetic nerve activity and inflammation in adipose tissue were detected. RESULTS Rats with HF exhibited decreased cardiac function and reduced adipose accumulation as well as adipocyte atrophy. In contrast, administration of APS not only improved cardiac function and increased adipose weight but also prevented adipose atrophy and FFA efflux in HF-induced cachexia. Moreover, APS inhibited HF-induced lipolysis and browning of white adipocytes since the expression levels of lipid droplet enzymes, including HSL and perilipin, and beige adipocyte markers, including UCP-1, Cd137 and Zic-1, were suppressed after administration of APS. In BAT, treatment with APS inhibited PKA-p38 MAPK signalling, and these effects were accompanied by decreased thermogenesis reflected by decreased expression of UCP-1, PPAR-γ and PGC-1α and reduced FFA β-oxidation in mitochondria reflected by decreased Cd36, Fatp-1 and Cpt1. Moreover, sympathetic nerve activity and interleukin-6 levels were abnormally elevated in HF rats, and astragalus polysaccharide could inhibit their activity. CONCLUSION APS prevented lipolysis and adipose browning in WAT and decreased BAT thermogenesis. These effects may be related to suppressed sympathetic activity and inflammation. This study provides a potential approach to treat HF-induced cardiac cachexia.
Collapse
Affiliation(s)
- Dufang Ma
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, 250014, Jinan, China
| | - Tao Wu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiwei Qu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinlong Yang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, 250014, Jinan, China
| | - Lu Cai
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, 250014, Jinan, China
| | - Xiao Li
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, 250014, Jinan, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, 250014, Jinan, China.
| |
Collapse
|
22
|
Fang R, Yan L, Liao Z. Abnormal lipid metabolism in cancer-associated cachexia and potential therapy strategy. Front Oncol 2023; 13:1123567. [PMID: 37205195 PMCID: PMC10185845 DOI: 10.3389/fonc.2023.1123567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a major characteristic of advanced cancer, associates with almost all types of cancer. Recent studies have found that lipopenia is an important feature of CAC, and it even occurs earlier than sarcopenia. Different types of adipose tissue are all important in the process of CAC. In CAC patients, the catabolism of white adipose tissue (WAT) is increased, leading to an increase in circulating free fatty acids (FFAs), resulting in " lipotoxic". At the same time, WAT also is induced by a variety of mechanisms, browning into brown adipose tissue (BAT). BAT is activated in CAC and greatly increases energy expenditure in patients. In addition, the production of lipid is reduced in CAC, and the cross-talk between adipose tissue and other systems, such as muscle tissue and immune system, also aggravates the progression of CAC. The treatment of CAC is still a vital clinical problem, and the abnormal lipid metabolism in CAC provides a new way for the treatment of CAC. In this article, we will review the mechanism of metabolic abnormalities of adipose tissue in CAC and its role in treatment.
Collapse
Affiliation(s)
- Ruoxin Fang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Ling Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, China
- *Correspondence: Zhengkai Liao, ; Ling Yan,
| | - Zhengkai Liao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
- *Correspondence: Zhengkai Liao, ; Ling Yan,
| |
Collapse
|
23
|
Burkhardt LM, Bucher CH, Löffler J, Rinne C, Duda GN, Geissler S, Schulz TJ, Schmidt-Bleek K. The benefits of adipocyte metabolism in bone health and regeneration. Front Cell Dev Biol 2023; 11:1104709. [PMID: 36895792 PMCID: PMC9988968 DOI: 10.3389/fcell.2023.1104709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Patients suffering from musculoskeletal diseases must cope with a diminished quality of life and an increased burden on medical expenses. The interaction of immune cells and mesenchymal stromal cells during bone regeneration is one of the key requirements for the restoration of skeletal integrity. While stromal cells of the osteo-chondral lineage support bone regeneration, an excessive accumulation of cells of the adipogenic lineage is thought to promote low-grade inflammation and impair bone regeneration. Increasing evidence indicates that pro-inflammatory signaling from adipocytes is responsible for various chronic musculoskeletal diseases. This review aims to summarize the features of bone marrow adipocytes by phenotype, function, secretory features, metabolic properties and their impact on bone formation. In detail, the master regulator of adipogenesis and prominent diabetes drug target, peroxisome proliferator-activated receptor γ (PPARG), will be debated as a potential therapeutic approach to enhance bone regeneration. We will explore the possibilities of using clinically established PPARG agonists, the thiazolidinediones (TZDs), as a treatment strategy to guide the induction of a pro-regenerative, metabolically active bone marrow adipose tissue. The impact of this PPARG induced bone marrow adipose tissue type on providing the necessary metabolites to sustain osteogenic-as well as beneficial immune cells during bone fracture healing will be highlighted.
Collapse
Affiliation(s)
- Lisa-Marie Burkhardt
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Christian H Bucher
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Julia Löffler
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Charlotte Rinne
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
24
|
Nanduri R, Furusawa T, Lobanov A, He B, Xie C, Dadkhah K, Kelly MC, Gavrilova O, Gonzalez FJ, Bustin M. Epigenetic regulation of white adipose tissue plasticity and energy metabolism by nucleosome binding HMGN proteins. Nat Commun 2022; 13:7303. [PMID: 36435799 PMCID: PMC9701217 DOI: 10.1038/s41467-022-34964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022] Open
Abstract
White adipose tissue browning is a key metabolic process controlled by epigenetic factors that facilitate changes in gene expression leading to altered cell identity. We find that male mice lacking the nucleosome binding proteins HMGN1 and HMGN2 (DKO mice), show decreased body weight and inguinal WAT mass, but elevated food intake, WAT browning and energy expenditure. DKO white preadipocytes show reduced chromatin accessibility and lower FRA2 and JUN binding at Pparγ and Pparα promoters. White preadipocytes and mouse embryonic fibroblasts from DKO mice show enhanced rate of differentiation into brown-like adipocytes. Differentiating DKO adipocytes show reduced H3K27ac levels at white adipocyte-specific enhancers but elevated H3K27ac levels at brown adipocyte-specific enhancers, suggesting a faster rate of change in cell identity, from white to brown-like adipocytes. Thus, HMGN proteins function as epigenetic factors that stabilize white adipocyte cell identity, thereby modulating the rate of white adipose tissue browning and affecting energy metabolism in mice.
Collapse
Affiliation(s)
- Ravikanth Nanduri
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Takashi Furusawa
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bing He
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carol Xie
- Nucleic Acid Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kimia Dadkhah
- CCR Single Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Bethesda, MD, 20892, USA
| | - Michael C Kelly
- CCR Single Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Bethesda, MD, 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Frank J Gonzalez
- Nucleic Acid Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Zinngrebe J, Fischer-Posovszky P. AcroBATics: how dying brown adipocytes trigger browning. Nat Rev Endocrinol 2022; 18:661-662. [PMID: 36064975 DOI: 10.1038/s41574-022-00743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia Zinngrebe
- Ulm University Medical Center, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | | |
Collapse
|
26
|
Zhang Z, Wang J, Lin Y, Chen J, Liu J, Zhang X. Nutritional activities of luteolin in obesity and associated metabolic diseases: an eye on adipose tissues. Crit Rev Food Sci Nutr 2022; 64:4016-4030. [PMID: 36300856 DOI: 10.1080/10408398.2022.2138257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is characterized by excessive body fat accumulation and is a high-risk factor for metabolic comorbidities, including type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular disease. In lean individuals, adipose tissue (AT) is not only an important regulatory organ for energy storage and metabolism, but also an indispensable immune and endocrine organ. The sustained energy imbalance induces adipocyte hypotrophy and hyperplasia as well as AT remodeling, accompanied by chronic low-grade inflammation and adipocytes dysfunction in AT, ultimately leading to systemic insulin resistance and ectopic lipid deposition. Luteolin is a natural flavonoid widely distributed in fruits and vegetables and possesses multifold biological activities, such as antioxidant, anticancer, and anti-inflammatory activities. Diet supplementation of this flavonoid has been reported to inhibit AT lipogenesis and inflammation as well as the ectopic lipid deposition, increase AT thermogenesis and systemic energy expenditure, and finally improve obesity and associated metabolic diseases. The purpose of this review is to reveal the nutritional activities of luteolin in obesity and its complications with emphasis on its action on AT energy metabolism, immunoregulation, and endocrine intervention.
Collapse
Affiliation(s)
- Zhixin Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jiahui Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
- Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, Anhui, China
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
27
|
Yin X, Chen Y, Ruze R, Xu R, Song J, Wang C, Xu Q. The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Signal Transduct Target Ther 2022; 7:324. [PMID: 36114195 PMCID: PMC9481605 DOI: 10.1038/s41392-022-01178-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractThe incidence of metabolism-related diseases like obesity and type 2 diabetes mellitus has reached pandemic levels worldwide and increased gradually. Most of them are listed on the table of high-risk factors for malignancy, and metabolic disorders systematically or locally contribute to cancer progression and poor prognosis of patients. Importantly, adipose tissue is fundamental to the occurrence and development of these metabolic disorders. White adipose tissue stores excessive energy, while thermogenic fat including brown and beige adipose tissue dissipates energy to generate heat. In addition to thermogenesis, beige and brown adipocytes also function as dynamic secretory cells and a metabolic sink of nutrients, like glucose, fatty acids, and amino acids. Accordingly, strategies that activate and expand thermogenic adipose tissue offer therapeutic promise to combat overweight, diabetes, and other metabolic disorders through increasing energy expenditure and enhancing glucose tolerance. With a better understanding of its origins and biological functions and the advances in imaging techniques detecting thermogenesis, the roles of thermogenic adipose tissue in tumors have been revealed gradually. On the one hand, enhanced browning of subcutaneous fatty tissue results in weight loss and cancer-associated cachexia. On the other hand, locally activated thermogenic adipocytes in the tumor microenvironment accelerate cancer progression by offering fuel sources and is likely to develop resistance to chemotherapy. Here, we enumerate current knowledge about the significant advances made in the origin and physiological functions of thermogenic fat. In addition, we discuss the multiple roles of thermogenic adipocytes in different tumors. Ultimately, we summarize imaging technologies for identifying thermogenic adipose tissue and pharmacologic agents via modulating thermogenesis in preclinical experiments and clinical trials.
Collapse
|
28
|
Radugin FM, Timkina NV, Karonova TL. Metabolic properties of irisin in health and in diabetes mellitus. OBESITY AND METABOLISM 2022; 19:332-339. [DOI: 10.14341/omet12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Irisin is a polypeptide hormone of muscle tissue (myokine), the synthesis and secretion of which increase against the background of physical exertion, which plays a significant role in the metabolism of fat, muscle and bone tissues. It is known that irisin promotes the transformation of white adipose tissue into brown adipose tissue. It has also been experimentally proven that the introduction of irisin contributed to an increase in bone mass and the prevention of osteoporosis and muscular atrophy. There are works indicating a positive effect of irisin in the functioning of bone, fat and muscle tissues in humans. Diabetes mellitus (DM) is an independent risk factor for osteoporotic fractures and the development of specific diabetic myopathy, at the cellular level similar to the aging of muscle tissue, and type 2 diabetes is also associated with the presence of obesity. Thus, it is of particular interest to study the effect of irisin on the state of bone, muscle and adipose tissues and glucose homeostasis in patients with diabetes. This literature review highlights the biological functions of irisin in healthy people and patients with DM.
Collapse
|
29
|
Zhao Y, Dai J, Jiang Y, Wu H, Cui Y, Li X, Mao H, Wang B, Ju S, Peng XG. Reducing White Adipose Tissue Browning Using p38α MAPK Inhibitors Ameliorates Cancer-Associated Cachexia as Assessed by Magnetic Resonance Imaging. Nutrients 2022; 14:nu14153013. [PMID: 35893867 PMCID: PMC9331061 DOI: 10.3390/nu14153013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Up to 80% of pancreatic cancer patients suffer from cachexia. White adipose tissue (WAT) browning caused by the tumorigenicity and progression aggravates the cancer-associated cachexia (CAC). Cancer-initiated changes in the protein-38 mitogen-activated protein kinases (p38 MAPK) pathway are likely involved in the development of CAC. Methods: p38 MAPK inhibitors, VCP979 or SB203580, were used in the in vitro and in vivo models of pancreatic cancer cachexia. Expression of uncoupling protein 1 (UCP1) in the p38 MARK pathway and the properties and level of white adipocytes were analyzed and correlated to browning, followed by immunohistochemistry and Western blotting validations. Changes in the volume and fat fraction of WAT in animals were monitored by magnetic resonance imaging (MRI). Results: The size of white adipocytes was increased after being treated with the p38 MAPK inhibitors, along with increase in the MRI-measured volume and fat fraction of WAT. Comparing two p38 MAPK inhibitors, the p38α subunit-specific inhibitor VCP979 had a better therapeutic effect than SB203580, which targets both p38α and β subunits. Conclusions: Blockade of p38 MAPK reduced the WAT browning that contributes to CAC. Thus, p38 MARK inhibitors can potentially be used as a therapy for treating CAC. Non-invasive MRI can also be applied to assess the progression and treatment responses of CAC.
Collapse
Affiliation(s)
- Yufei Zhao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China; (Y.Z.); (J.D.); (Y.J.); (H.W.); (Y.C.); (X.L.); (S.J.)
| | - Jingyue Dai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China; (Y.Z.); (J.D.); (Y.J.); (H.W.); (Y.C.); (X.L.); (S.J.)
| | - Yang Jiang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China; (Y.Z.); (J.D.); (Y.J.); (H.W.); (Y.C.); (X.L.); (S.J.)
| | - Honghong Wu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China; (Y.Z.); (J.D.); (Y.J.); (H.W.); (Y.C.); (X.L.); (S.J.)
| | - Ying Cui
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China; (Y.Z.); (J.D.); (Y.J.); (H.W.); (Y.C.); (X.L.); (S.J.)
| | - Xinxiang Li
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China; (Y.Z.); (J.D.); (Y.J.); (H.W.); (Y.C.); (X.L.); (S.J.)
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA;
| | - Binghui Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia;
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China; (Y.Z.); (J.D.); (Y.J.); (H.W.); (Y.C.); (X.L.); (S.J.)
| | - Xin-Gui Peng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China; (Y.Z.); (J.D.); (Y.J.); (H.W.); (Y.C.); (X.L.); (S.J.)
- People’s Hospital of Lishui District, 86 Chongwen Road, Yongyang Town, Lishui District, Nanjing 211299, China
- Correspondence: ; Tel.: +86-025-83272115
| |
Collapse
|
30
|
Chiang CH, Cheng CY, Lien YT, Huang KC, Lin WW. P2X7 Activation Enhances Lipid Accumulation During Adipocytes Differentiation Through Suppressing the Expression of Sirtuin-3, Sirtuin-5, and Browning Genes. Front Pharmacol 2022; 13:852858. [PMID: 35462937 PMCID: PMC9019299 DOI: 10.3389/fphar.2022.852858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
P2X7 signaling has been explored in adipose tissue because of its potential to promote ATP-activated inflammatory cascades during obesogenic environments. However, limited literature has investigated the role of the P2X7 receptor in lipid metabolism during adipocyte differentiation. This study sought to explore the regulatory roles of P2X7 in adipocytes. This study utilized the in vitro 3T3-L1 differentiation model. Lipid accumulation, intracellular triglyceride, and extracellular glycerol were determined. The selective P2X7 agonist BzATP and antagonist A438079 were administered to investigate the functions of P2X7. We found that the expression of P2X7 and the lipid accumulation increased during adipocyte differentiation from D0 to D4. When administered at D0/D2, A438079 attenuated, while BzATP enhanced the degree of lipid accumulation during adipocyte differentiation. Neither did BzATP and A438079 administration affect the expression of PPARγ and C/EBPα genes that increased at D4. In addition, both intracellular triglyceride and extracellular glycerol levels at D4 were reduced by A438079 treatment and enhanced by BzATP administration. When administered at stage 2 of adipocyte differentiation, BzATP consistently enhanced lipid accumulation and intracellular triglyceride and extracellular glycerol levels without affecting mRNA and protein levels of PPARγ and C/EBPα that increased at D4. However, treating A438079 or BzATP at D4 did not affect intracellular triglyceride formation and extracellular glycerol release in differentiated adipocytes at D7. Notably, BzATP administration at stage 2 exerted a concentration-dependent inhibition on the enhanced expression of PRDM16, PGC-1α, and UCP-1 at D4. Furthermore, BzATP administration at D0/D2 inhibited the protein and mRNA levels of sirtuin-3/5 at D4. BzATP treatment at stage 2 also suppressed the mRNA levels of sirtuin-3/5 genes upregulated by insulin. In conclusion, this study demonstrated P2X7 enhances lipid accumulation during adipogenesis by suppressing the expression of sirtuin-3/5 and the browning genes.
Collapse
Affiliation(s)
- Chien-Hsieh Chiang
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Family Medicine, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan
| | - Ching-Yuan Cheng
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ting Lien
- Department of Family Medicine, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan
| | - Kuo-Chin Huang
- Department of Family Medicine, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan
| | - Wan-Wan Lin
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
31
|
Huang L, Liu P, Yang Q, Wang Y. The KRAB Domain-Containing Protein ZFP961 Represses Adipose Thermogenesis and Energy Expenditure through Interaction with PPARα. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102949. [PMID: 34747141 PMCID: PMC8805557 DOI: 10.1002/advs.202102949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Adipose thermogenesis plays a pivotal role in whole-body metabolic homeostasis. Although transcriptional mechanisms that promote thermogenesis are extensively studied, the negative regulatory network is still poorly understood. Here, a Krüppel-associated box (KRAB) domain-containing zinc finger protein, ZFP961, as a potent repressor of the thermogenic program is identified. ZFP961 expression is induced by cold and β3-adrenergic agonist in adipose tissue. ZFP961 represses brown fat-selective gene expression and mitochondrial respiration without any effect on general adipogenesis in cultured adipocytes. Adipose-specific knockdown and overexpression of ZFP961 produce remarkable and opposite phenotypes of white fat remodeling. ZFP961 knockout mice display robust inguinal white adipose tissue browning, which is abolished by reexpression of full-length ZFP961, but not by KRAB domain-deleted ZFP961 mutant. ZFP961-deficient mice are cold tolerant and resistant to high-fat diet-induced obesity, hyperglycemia, and hepatic steatosis. ZFP961 suppresses thermogenic gene expression by directly interacting with PPARα and blocking its transcriptional activity, which can be completely negated by the PPARα agonist. The findings uncover ZFP961 as a critical physiological brake that limits adipose thermogenesis and provides insights into the regulatory mechanisms that maintain energy balance and tissue homeostasis.
Collapse
Affiliation(s)
- Lei Huang
- Department of Molecular, Cell and Cancer BiologyProgram in Molecular MedicineUniversity of Massachusetts Medical School364 Plantation StreetWorcesterMA01605USA
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer BiologyProgram in Molecular MedicineUniversity of Massachusetts Medical School364 Plantation StreetWorcesterMA01605USA
| | - Qiyuan Yang
- Department of Molecular, Cell and Cancer BiologyProgram in Molecular MedicineUniversity of Massachusetts Medical School364 Plantation StreetWorcesterMA01605USA
| | - Yong‐Xu Wang
- Department of Molecular, Cell and Cancer BiologyProgram in Molecular MedicineUniversity of Massachusetts Medical School364 Plantation StreetWorcesterMA01605USA
| |
Collapse
|
32
|
Wang Z, Zeng M, Wang Z, Qin F, Wang Y, Chen J, Christian M, He Z. Food phenolics stimulate adipocyte browning via regulating gut microecology. Crit Rev Food Sci Nutr 2021:1-27. [PMID: 34738509 DOI: 10.1080/10408398.2021.1997905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fat browning has piqued the interest of researchers as a potential target for treating obesity and related metabolic disorders. Recruitment of brown adipocytes leads to enhanced energy dissipation and reduced adiposity, thus facilitating the maintenance of metabolic homeostasis. Evidence is increasing to support the crucial roles of polyphenols and gut microecology in turning fat "brown". However, it is not clear whether the intestinal microecology is involved in polyphenol-mediated regulation of adipose browning, so this concept is worthy of exploration. In this review, we summarize the current knowledge, mostly from studies with murine models, supporting the concept that the effects of food phenolics on brown fat activation and white fat browning can be attributed to their regulatory actions on gut microecology, including microbial community profile, gut metabolites, and gut-derived hormones. Furthermore, the potential underlying pathways involved are also discussed. Basically, understanding gut microecology paves the way to determine the underlying roles and mechanisms of food phenolics in adipose browning.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yongzhi Wang
- Food and Beverage Department of Damin Food (Zhangzhou) Co., Ltd, Zhangzhou, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
33
|
Newly characterized bovine mammary stromal region with epithelial properties supports representative epithelial outgrowth development from transplanted stem cells. Cell Tissue Res 2021; 387:39-61. [PMID: 34698917 DOI: 10.1007/s00441-021-03545-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Limited outgrowth development of bovine mammary epithelial stem cells transplanted into de-epithelialized mouse fat pads restricts advanced studies on this productive organ's development and renewal. We challenged the mouse-bovine incompatibility by implanting parenchymal adjacent or distant bovine stromal layers (close and far stroma, respectively) into the mouse fat pad to serve as an endogenous niche for transplanted stem cells. The close stroma better supported stem cell take rate and outgrowth development. The diameter of these open duct-like structures represented and occasionally exceeded that of the endogenous ducts and appeared 8.3-fold wider than the capsule-like structures developed in the mouse fat pad after similar cell transplantation. RNA-Seq revealed lower complement activity in this layer, associated with secretion of specific laminins and WNT proteins favoring epithelial outgrowth development. The close stroma appeared genetically more similar to the parenchyma than to the far stroma due to epithelial characteristics, mainly of fibroblasts, including expression of epithelial markers, milk protein genes, and functional mammary claudins. Gene markers and activators of the mesenchymal-to-epithelial transition were highly enriched in the epithelial gene cluster and may contribute to the acquired epithelial properties of this stromal layer.
Collapse
|
34
|
Ma D, Li X, Wang Y, Cai L, Wang Y. Excessive fat expenditure in cachexia is associated with dysregulated circadian rhythm: a review. Nutr Metab (Lond) 2021; 18:89. [PMID: 34627306 PMCID: PMC8502262 DOI: 10.1186/s12986-021-00616-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/20/2021] [Indexed: 01/06/2023] Open
Abstract
Cachexia is a progressive metabolic disorder characterized by the excessive depletion of adipose tissue. This hypermetabolic condition has catastrophic impacts on the survival and quality of life for patients suffering from critical illness. However, efficient therapies to prevent adipose expenditure have not been discovered. It has been established that the circadian clock plays an important role in modulating fat metabolic processes. Recently, an increasing number of studies had provided evidence showing that disrupted circadian rhythm leads to insulin resistance and obesity; however, studies analyzing the relationship between circadian misalignment and adipose tissue expenditure in cachexia are scarce. In the present review, we cover the involvement of the circadian clocks in the regulation of adipogenesis, lipid metabolism and thermogenesis as well as inflammation in white and brown adipose tissue. According to the present review, we conclude that circadian clock disruption is associated with lipid metabolism imbalance and elevated adipose tissue inflammation. Moreover, under cachexia conditions, lipid synthesis and storage processes lost rhythm and decreased, while lipolysis and thermogenesis activities remained high for 24 h. Therefore, disordered circadian clock may be responsible for fat expenditure in cachexia by adversely influencing lipid synthesis/ storage/lipolysis/utilization. Further study needs to be performed to explore the direct interaction between circadian clock and fat expenditure in cachexia, it will likely provide potential efficient drugs for the treatment of fat expenditure in cachexia.
Collapse
Affiliation(s)
- Dufang Ma
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Xiao Li
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Yongcheng Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Lu Cai
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China.
| |
Collapse
|
35
|
Giroud M, Jodeleit H, Prentice KJ, Bartelt A. Adipocyte function and the development of cardiometabolic disease. J Physiol 2021; 600:1189-1208. [PMID: 34555180 DOI: 10.1113/jp281979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022] Open
Abstract
Obesity is a medical disorder caused by multiple mechanisms of dysregulated energy balance. A major consequence of obesity is an increased risk to develop diabetes, diabetic complications and cardiovascular disease. While a better understanding of the molecular mechanisms linking obesity, insulin resistance and cardiovascular disease is needed, translational research of the human pathology is hampered by the available cellular and rodent model systems. Major barriers are the species-specific differences in energy balance, vascular biology and adipose tissue physiology, especially related to white and brown adipocytes, and adipose tissue browning. In rodents, non-shivering thermogenesis is responsible for a large part of energy expenditure, but humans possess much less thermogenic fat, which means temperature is an important variable in translational research. Mouse models with predisposition to dyslipidaemia housed at thermoneutrality and fed a high-fat diet more closely reflect human physiology. Also, adipocytes play a key role in the endocrine regulation of cardiovascular function. Adipocytes secrete a variety of hormones, lipid mediators and other metabolites that directly influence the local microenvironment as well as distant tissues. This is specifically apparent in perivascular depots, where adipocytes modulate vascular function and inflammation. Altogether, these mechanisms highlight the critical role of adipocytes in the development of cardiometabolic disease.
Collapse
Affiliation(s)
- Maude Giroud
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.,Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany
| | - Henrika Jodeleit
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Bavaria, Germany
| | - Kacey J Prentice
- Department of Molecular Metabolism & Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.,Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Bavaria, Germany.,Department of Molecular Metabolism & Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
36
|
Abdullahi A, Knuth CM, Auger C, Sivayoganathan T, Parousis A, Jeschke MG. Adipose browning response to burn trauma is impaired with aging. JCI Insight 2021; 6:e143451. [PMID: 34423787 PMCID: PMC8409980 DOI: 10.1172/jci.insight.143451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The incidence of burn injuries in older patients is dramatically increasing as the population of older people grows. Despite the increased demand for elderly burn care, the mechanisms that mediate increased morbidity and mortality in older trauma patients are unknown. We recently showed that a burn injury invokes white adipose tissue browning that leads to a substantially increased hypermetabolic response associated with poor outcomes. Therefore, the aim of this study was to determine the effect of age on the metabolic adipose response of browning after a burn injury. METHOD One hundred and seventy patients with burn injury admitted to the Ross Tilley Burn Centre were prospectively enrolled and grouped by age as older (≥50 years) and young (≤35 years). Adipose tissue and sera were collected and analyzed for browning markers and metabolic state via histology, gene expression, and resting energy expenditure assays. RESULTS We found that older patients with burn injury lacked the adipose browning response, as they showed significant reductions in uncoupling protein 1 (UCP1) expression. This failure of the browning response was associated with reduced whole-body metabolism and decreased survival in older patients with burn injury. Mechanistically, we found that the adipose of both aged patients after burn trauma and aged mice after a burn showed impairments in macrophage infiltration and IL-6, key immunological regulators of the browning process after a severe trauma. CONCLUSION Targeting pathways that activate the browning response represents a potential therapeutic approach to improve outcomes after burn trauma for elderly patients. FUNDING NIH (R01-GM087285-01), Canadian Institutes of Health Research (grant no. 123336), and Canada Foundation for Innovation Leaders Opportunity Fund (no. 25407).
Collapse
Affiliation(s)
- Abdikarim Abdullahi
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Carly M Knuth
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Christopher Auger
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Alexandra Parousis
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Marc G Jeschke
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Ross Tilley Burn Centre, Sunnybrook Hospital, Toronto, Ontario, Canada.,Department of Surgery, Division of Plastic Surgery, and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Zhao B, Liu M, Liu H, Xie J, Yan J, Hou X, Liu J. Zeaxanthin promotes browning by enhancing mitochondrial biogenesis through the PKA pathway in 3T3-L1 adipocytes. Food Funct 2021; 12:6283-6293. [PMID: 34047728 DOI: 10.1039/d1fo00524c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity is closely associated with maintaining mitochondrial homeostasis, and mitochondrial dysfunction can lead to systemic lipid metabolism disorders. Zeaxanthin (ZEA) is a kind of carotenoid with potent antioxidant activity and has been reported to promote mitochondrial biogenesis. Nevertheless, the molecular mechanism has not been explained. In this study, we first discovered that ZEA stimulated 3T3-L1 adipocyte browning by increasing the expression of specific markers (Cd137, Tbx1, Sirt1, Cidea, Ucp1, Tmem26, and Cited1), thereby reducing lipid accumulation. Besides, ZEA promoted mitochondrial biogenesis by increasing the expression of PRDM16, UCP1, NRF2, PGC-1α, and SIRT1. Moreover, the uncoupled oxygen consumption rate (OCR) of protons leaked in 3T3-L1 adipocytes was rapidly increased by ZEA treatment, which improved mitochondrial respiration and energy metabolism. Furthermore, we found that ZEA promotes browning by enhancing mitochondrial biogenesis partly through the protein kinase A (PKA) pathway. This study provided new insight into the promotion of browning and mitochondrial biogenesis by ZEA, suggesting that ZEA probably has potential therapeutic effects on obesity.
Collapse
Affiliation(s)
- Bailing Zhao
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Pikatza-Menoio O, Elicegui A, Bengoetxea X, Naldaiz-Gastesi N, López de Munain A, Gerenu G, Gil-Bea FJ, Alonso-Martín S. The Skeletal Muscle Emerges as a New Disease Target in Amyotrophic Lateral Sclerosis. J Pers Med 2021; 11:671. [PMID: 34357138 PMCID: PMC8307751 DOI: 10.3390/jpm11070671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons (MNs) and severe muscle atrophy without effective treatment. Most research on ALS has been focused on the study of MNs and supporting cells of the central nervous system. Strikingly, the recent observations of pathological changes in muscle occurring before disease onset and independent from MN degeneration have bolstered the interest for the study of muscle tissue as a potential target for delivery of therapies for ALS. Skeletal muscle has just been described as a tissue with an important secretory function that is toxic to MNs in the context of ALS. Moreover, a fine-tuning balance between biosynthetic and atrophic pathways is necessary to induce myogenesis for muscle tissue repair. Compromising this response due to primary metabolic abnormalities in the muscle could trigger defective muscle regeneration and neuromuscular junction restoration, with deleterious consequences for MNs and thereby hastening the development of ALS. However, it remains puzzling how backward signaling from the muscle could impinge on MN death. This review provides a comprehensive analysis on the current state-of-the-art of the role of the skeletal muscle in ALS, highlighting its contribution to the neurodegeneration in ALS through backward-signaling processes as a newly uncovered mechanism for a peripheral etiopathogenesis of the disease.
Collapse
Affiliation(s)
- Oihane Pikatza-Menoio
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Amaia Elicegui
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Xabier Bengoetxea
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
| | - Neia Naldaiz-Gastesi
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014 Donostia/San Sebastián, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country UPV-EHU, 20014 Donostia/San Sebastián, Spain
| | - Gorka Gerenu
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
- Department of Physiology, University of the Basque Country UPV-EHU, 48940 Leioa, Spain
| | - Francisco Javier Gil-Bea
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Sonia Alonso-Martín
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| |
Collapse
|
39
|
Maak S, Norheim F, Drevon CA, Erickson HP. Progress and Challenges in the Biology of FNDC5 and Irisin. Endocr Rev 2021; 42:436-456. [PMID: 33493316 PMCID: PMC8284618 DOI: 10.1210/endrev/bnab003] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Indexed: 01/10/2023]
Abstract
In 2002, a transmembrane protein-now known as FNDC5-was discovered and shown to be expressed in skeletal muscle, heart, and brain. It was virtually ignored for 10 years, until a study in 2012 proposed that, in response to exercise, the ectodomain of skeletal muscle FNDC5 was cleaved, traveled to white adipose tissue, and induced browning. The wasted energy of this browning raised the possibility that this myokine, named irisin, might mediate some beneficial effects of exercise. Since then, more than 1000 papers have been published exploring the roles of irisin. A major interest has been on adipose tissue and metabolism, following up the major proposal from 2012. Many studies correlating plasma irisin levels with physiological conditions have been questioned for using flawed assays for irisin concentration. However, experiments altering irisin levels by injecting recombinant irisin or by gene knockout are more promising. Recent discoveries have suggested potential roles of irisin in bone remodeling and in the brain, with effects potentially related to Alzheimer's disease. We discuss some discrepancies between research groups and the mechanisms that are yet to be determined. Some important questions raised in the initial discovery of irisin, such as the role of the mutant start codon of human FNDC5 and the mechanism of ectodomain cleavage, remain to be answered. Apart from these specific questions, a promising new tool has been developed-mice with a global or tissue-specific knockout of FNDC5. In this review, we critically examine the current knowledge and delineate potential solutions to resolve existing ambiguities.
Collapse
Affiliation(s)
- Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
40
|
Liu T, Fu S, Wang Q, Cheng H, Mu D, Luan J. Browning of White Adipocytes in Fat Grafts Associated With Higher Level of Necrosis and Type 2 Macrophage Recruitment. Aesthet Surg J 2021; 41:NP1092-NP1101. [PMID: 33783476 DOI: 10.1093/asj/sjab144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Induced browning adipocytes were assumed less viable and more prone to necrosis for their hypermetabolic property. A previous study showed that browning of adipocytes was more evident in fat grafts with necrosis in humans. OBJECTIVES The authors aimed to estimate whether fat transfer-induced browning biogenesis was associated with necrosis and its potential inflammation mechanisms in murine models. METHODS Human subcutaneous adipose from thigh or abdomen of 5 patients via liposuction was injected in 100 µL or 500 µL (n = 20 per group) into the dorsal flank of 6- to 8-week-old female nude mice fed with normal chow diet and harvested after 2, 4, 8, and 12 weeks. Control groups did not receive any grafting procedures (sham operation), where lipoaspirates were analyzed immediately after harvest. Histology and electronic microscopy, immunological analyses of browning markers, necrosis marker, and type I/II macrophages markers in mice were performed. RESULTS Histology and electronic microscopy showed browning adipocytes in fat grafts with a higher level of necrosis (0.435 ± 0.017 pg/mL for cleaved caspase-3, **P < 0.01), IL-6 (749.0 ± 134.1 pg/mL,***P < 0.001) and infiltration of type 2 macrophage profiles in mice (twofold increase, *P < 0.05). CONCLUSIONS Browning of adipocytes induced by fat transfer in mice is in parallel with post-grafting necrotic levels associated with elevated interleukin-6 and activated type 2 macrophage profiles, which promote browning development.
Collapse
Affiliation(s)
- Tong Liu
- Breast Plastic Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Su Fu
- Breast Plastic Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qian Wang
- Breast Plastic Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hao Cheng
- Breast Plastic Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Dali Mu
- Breast Plastic Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie Luan
- Breast Plastic Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Kaur S, Auger C, Barayan D, Shah P, Matveev A, Knuth CM, Harris TE, Jeschke MG. Adipose-specific ATGL ablation reduces burn injury-induced metabolic derangements in mice. Clin Transl Med 2021; 11:e417. [PMID: 34185433 PMCID: PMC8181198 DOI: 10.1002/ctm2.417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/25/2022] Open
Abstract
Hypermetabolism following severe burn injuries is associated with adipocyte dysfunction, elevated beige adipocyte formation, and increased energy expenditure. The resulting catabolism of adipose leads to detrimental sequelae such as fatty liver, increased risk of infections, sepsis, and even death. While the phenomenon of pathological white adipose tissue (WAT) browning is well-documented in cachexia and burn models, the molecular mechanisms are essentially unknown. Here, we report that adipose triglyceride lipase (ATGL) plays a central role in burn-induced WAT dysfunction and systemic outcomes. Targeting adipose-specific ATGL in a murine (AKO) model resulted in diminished browning, decreased circulating fatty acids, and mitigation of burn-induced hepatomegaly. To assess the clinical applicability of targeting ATGL, we demonstrate that the selective ATGL inhibitor atglistatin mimics the AKO results, suggesting a path forward for improving patient outcomes.
Collapse
Affiliation(s)
- Supreet Kaur
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Christopher Auger
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Dalia Barayan
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| | - Priyal Shah
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| | - Anna Matveev
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Carly M. Knuth
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| | - Thurl E. Harris
- Department of PharmacologyUniversity of Virginia School of MedicineCharlottesville VAUSA
| | - Marc G. Jeschke
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
42
|
Barayan D, Abdullahi A, Vinaik R, Knuth CM, Auger C, Jeschke MG. Interleukin-6 blockade, a potential adjunct therapy for post-burn hypermetabolism. FASEB J 2021; 35:e21596. [PMID: 33871073 PMCID: PMC8982752 DOI: 10.1096/fj.202100388r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023]
Abstract
Severe burns remain a leading cause of death and disability worldwide. Despite advances in patient care, the excessive and uncontrolled hypermetabolic stress response induced by this trauma inevitably affects every organ system causing substantial morbidity and mortality. Recent evidence suggests interleukin-6 (IL-6) is a major culprit underlying post-burn hypermetabolism. Indeed, genetic deletion of IL-6 alleviates various complications associated with poor clinical outcomes including the adverse remodeling of adipose tissue, cachexia and hepatic steatosis. Thus, pharmacological blockade of IL-6 may be a more favorable treatment option to fully restore metabolic function after injury. To test this, we investigated the safety and effectiveness of blocking IL-6 for post-burn hypermetabolism using a validated anti-IL-6 monoclonal antibody (mAb) in our experimental murine model. Here, we show daily anti-IL-6 mAb administration protects against burn-induced weight loss (P < .0001) without any adverse effect on mortality. At the organ level, post-burn treatment with the IL-6 blocker suppressed the thermogenic activation of adipose tissue (P < .01) and its associated wasting (P < .05). The reduction of browning-induced lipolysis (P < .0001) indirectly decreased hepatic lipotoxicity (P < .01) which improved liver dysfunction (P < .05). Importantly, the beneficial effects of this anti-IL-6 agent extended to the skin, reflected by the decrease in excessive collagen deposition (P < .001) and genes involved in pathologic fibrosis and scarring (P < .05). Together, our results indicate that post-burn IL-6 blockade leads to significant improvements in systemic hypermetabolism by inhibiting pathological alterations in key immunometabolic organs. These findings support the therapeutic potential of anti-IL-6 interventions to improve care, quality of life, and survival in burned patients.
Collapse
Affiliation(s)
| | | | - Roohi Vinaik
- Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | - Marc G. Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
43
|
Knuth CM, Auger C, Jeschke MG. Burn-induced hypermetabolism and skeletal muscle dysfunction. Am J Physiol Cell Physiol 2021; 321:C58-C71. [PMID: 33909503 DOI: 10.1152/ajpcell.00106.2021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Critical illnesses, including sepsis, cancer cachexia, and burn injury, invoke a milieu of systemic metabolic and inflammatory derangements that ultimately results in increased energy expenditure leading to fat and lean mass catabolism. Burn injuries present a unique clinical challenge given the magnitude and duration of the hypermetabolic response compared with other forms of critical illness, which drastically increase the risk of morbidity and mortality. Skeletal muscle metabolism is particularly altered as a consequence of burn-induced hypermetabolism, as it primarily provides a main source of fuel in support of wound healing. Interestingly, muscle catabolism is sustained long after the wound has healed, indicating that additional mechanisms beyond wound healing are involved. In this review, we discuss the distinctive pathophysiological response to burn injury with a focus on skeletal muscle function and metabolism. We first examine the diverse consequences on skeletal muscle dysfunction between thermal, electrical, and chemical burns. We then provide a comprehensive overview of the known mechanisms underlying skeletal muscle dysfunction that may be attributed to hypermetabolism. Finally, we review the most promising current treatment options to mitigate muscle catabolism, and by extension improve morbidity and mortality, and end with future directions that have the potential to significantly improve patient care.
Collapse
Affiliation(s)
- Carly M Knuth
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Auger
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Zhang X, Zhang B, Zhang C, Sun G, Sun X. Effect of Panax notoginseng Saponins and Major Anti-Obesity Components on Weight Loss. Front Pharmacol 2021; 11:601751. [PMID: 33841133 PMCID: PMC8027240 DOI: 10.3389/fphar.2020.601751] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
The prevalence of individuals who are overweight or obese is rising rapidly globally. Currently, majority of drugs used to treat obesity are ineffective or are accompanied by obvious side effects; hence, the options are very limited. Therefore, it is necessary to find more effective and safer anti-obesity drugs. It has been proven in vivo and in vitro that the active ingredient notoginsenosides isolated from traditional Chinese medicine Panax notoginseng (Burk.) F. H. Chen exhibits anti-obesity effects. Notoginsenosides can treat obesity by reducing lipid synthesis, inhibiting adipogenesis, promoting white adipose tissue browning, increasing energy consumption, and improving insulin sensitivity. Although notoginsenosides are potential drugs for the treatment of obesity, their effects and mechanisms have not been analyzed in depth. In this review, the anti-obesity potential and mechanism of action of notoginsenosides were analyzed; thus laying emphasis on the timely prevention and treatment of obesity.
Collapse
Affiliation(s)
- Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
45
|
Hua L, Li J, Feng B, Jiang D, Jiang X, Luo T, Che L, Xu S, Lin Y, Fang Z, Wu D, Zhuo Y. Dietary Intake Regulates White Adipose Tissues Angiogenesis via Liver Fibroblast Growth Factor 21 in Male Mice. Endocrinology 2021; 162:6054191. [PMID: 33369618 PMCID: PMC7814301 DOI: 10.1210/endocr/bqaa244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Indexed: 11/19/2022]
Abstract
Obesity and related metabolic disorders have become epidemic diseases. Intermittent fasting has been shown to promote adipose tissue angiogenesis and have an anti-obesity feature; however, the mechanisms of how intermittent fasting modulates adipose tissues angiogenesis are poorly understood. We investigated the effect of fasting on vascular endothelial growth factor (VEGF) levels in white adipose tissues (WAT) and the function of fibroblast growth factor 21 (FGF21) in 1-time fasting and long-term intermittent fasting-induced VEGF expression. In the current study, fasting induced a selective and drastic elevation of VEGF levels in WAT, which did not occur in interscapular brown adipose tissue and liver. The fasting-induced Vegfa expression occurred predominantly in mature adipocytes, but not in the stromal vascular fraction in epididymal WAT and inguinal WAT (iWAT). Furthermore, a single bolus of recombinant mouse FGF21 injection increased VEGF levels in WAT. Long-term intermittent fasting for 16 weeks increased WAT angiogenesis, iWAT browning, and improved insulin resistance and inflammation, but the effect was blunted in FGF21 liver-specific knockout mice. In summary, these data suggest that FGF21 is a potent regulator of VEGF levels in WAT. The interorgan FGF21 signaling-induced WAT angiogenesis by VEGF could be a potential new therapeutic target in combination with obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jing Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dandan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ting Luo
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Correspondence: Yong Zhuo, 211 Huimin Road, Wenjiang District, Chengdu, PR China, 611130. ; De Wu, 211 Huimin Road, Wenjiang District, Chengdu, PR China, 611130.
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Correspondence: Yong Zhuo, 211 Huimin Road, Wenjiang District, Chengdu, PR China, 611130. ; De Wu, 211 Huimin Road, Wenjiang District, Chengdu, PR China, 611130.
| |
Collapse
|
46
|
Zhang P, Zou B, Liou YC, Huang C. The pathogenesis and diagnosis of sepsis post burn injury. BURNS & TRAUMA 2021; 9:tkaa047. [PMID: 33654698 PMCID: PMC7901709 DOI: 10.1093/burnst/tkaa047] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Indexed: 02/05/2023]
Abstract
Burn is an under-appreciated trauma that is associated with unacceptably high morbidity and mortality. Although the survival rate after devastating burn injuries has continued to increase in previous decades due to medical advances in burn wound care, nutritional and fluid resuscitation and improved infection control practices, there are still large numbers of patients at a high risk of death. One of the most common complications of burn is sepsis, which is defined as “severe organ dysfunction attributed to host's disordered response to infection” and is the primary cause of death in burn patients. Indeed, burn injuries are accompanied by a series of events that lead to sepsis and multiple organ dysfunction syndrome, such as a hypovolaemic state, immune and inflammatory responses and metabolic changes. Therefore, clear diagnostic criteria and predictive biomarkers are especially important in the prevention and treatment of sepsis and septic shock. In this review, we focus on the pathogenesis of burn wound infection and the post-burn events leading to sepsis. Moreover, the clinical and promising biomarkers of burn sepsis will also be summarized.
Collapse
Affiliation(s)
- Pengju Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17 People's South Road, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, China
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17 People's South Road, Chengdu, 610041, China
| |
Collapse
|
47
|
Pervin S, Reddy ST, Singh R. Novel Roles of Follistatin/Myostatin in Transforming Growth Factor-β Signaling and Adipose Browning: Potential for Therapeutic Intervention in Obesity Related Metabolic Disorders. Front Endocrinol (Lausanne) 2021; 12:653179. [PMID: 33897620 PMCID: PMC8062757 DOI: 10.3389/fendo.2021.653179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a global health problem and a major risk factor for several metabolic conditions including dyslipidemia, diabetes, insulin resistance and cardiovascular diseases. Obesity develops from chronic imbalance between energy intake and energy expenditure. Stimulation of cellular energy burning process has the potential to dissipate excess calories in the form of heat via the activation of uncoupling protein-1 (UCP1) in white and brown adipose tissues. Recent studies have shown that activation of transforming growth factor-β (TGF-β) signaling pathway significantly contributes to the development of obesity, and blockade or inhibition is reported to protect from obesity by promoting white adipose browning and increasing mitochondrial biogenesis. Identification of novel compounds that activate beige/brown adipose characteristics to burn surplus calories and reduce excess storage of fat are actively sought in the fight against obesity. In this review, we present recent developments in our understanding of key modulators of TGF-β signaling pathways including follistatin (FST) and myostatin (MST) in regulating adipose browning and brown adipose mass and activity. While MST is a key ligand for TGF-β family, FST can bind and regulate biological activity of several TGF-β superfamily members including activins, bone morphogenic proteins (BMP) and inhibins. Here, we review the literature supporting the critical roles for FST, MST and other proteins in modulating TGF-β signaling to influence beige and brown adipose characteristics. We further review the potential therapeutic utility of FST for the treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Shehla Pervin
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Srinivasa T. Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Rajan Singh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Department of Endocrinology, Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Boston, MA, United States
- *Correspondence: Rajan Singh,
| |
Collapse
|
48
|
Alipoor E, Hosseinzadeh-Attar MJ, Rezaei M, Jazayeri S, Chapman M. White adipose tissue browning in critical illness: A review of the evidence, mechanisms and future perspectives. Obes Rev 2020; 21:e13085. [PMID: 32608573 DOI: 10.1111/obr.13085] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Observational studies suggest better clinical outcomes following critical illness in patients with overweight and obesity (obesity paradox). An understanding of the morphologic, physiologic and metabolic changes in adipose tissue in critical illness may provide an explanation. Recent studies have demonstrated the transformation of white to brown-like adipocytes due to the "browning process," which has been of interest as a potential novel therapy in obesity during the last decade. The characteristics of the browning of white adipose tissue (WAT) include the appearance of smaller, multilocular adipocytes, increased UCP1 mRNA expression, mitochondrial density and respiratory capacity. These changes have been identified in some critical illnesses, which specifically refers to burns, sepsis and cancer cachexia in this study. The pathophysiological nature of WAT browning, underlying mechanisms, main regulators and potential benefits and harms of this process are interesting new areas that warrants further investigations. In this review, we discuss emerging scientific discipline of adipose tissue physiology in metabolic stress, available data, gaps of knowledge and future perspectives. Future investigations in this field may provide insights into the underlying mechanisms and clinical aspects of browning that may further our understanding of the proposed obesity paradox following critical illness, which may in turn open up opportunities for novel therapies to save lives and improve recovery.
Collapse
Affiliation(s)
- Elham Alipoor
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Cardiac Primary Prevention Research Center (CPPRC), Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Rezaei
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Jazayeri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Marianne Chapman
- Discipline of Acute Care Medicine, School of Medicine, University of Adelaide, Adelaide, Australia.,Intensive Care Research Unit, Royal Adelaide Hospital, Adelaide, Australia.,National Health and Medical Research Council of Australia Centre for Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| |
Collapse
|
49
|
Gharanei S, Shabir K, Brown JE, Weickert MO, Barber TM, Kyrou I, Randeva HS. Regulatory microRNAs in Brown, Brite and White Adipose Tissue. Cells 2020; 9:cells9112489. [PMID: 33207733 PMCID: PMC7696849 DOI: 10.3390/cells9112489] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a class of short noncoding RNAs which regulate gene expression by targeting messenger RNA, inducing translational repression and messenger RNA degradation. This regulation of gene expression by miRNAs in adipose tissue (AT) can impact on the regulation of metabolism and energy homeostasis, particularly considering the different types of adipocytes which exist in mammals, i.e., white adipocytes (white AT; WAT), brown adipocytes (brown AT; BAT), and inducible brown adipocytes in WAT (beige or brite or brown-in-white adipocytes). Indeed, an increasing number of miRNAs has been identified to regulate key signaling pathways of adipogenesis in BAT, brite AT, and WAT by acting on transcription factors that promote or inhibit adipocyte differentiation. For example, MiR-328, MiR-378, MiR-30b/c, MiR-455, MiR-32, and MiR-193b-365 activate brown adipogenesis, whereas MiR-34a, MiR-133, MiR-155, and MiR-27b are brown adipogenesis inhibitors. Given that WAT mainly stores energy as lipids, whilst BAT mainly dissipates energy as heat, clarifying the effects of miRNAs in different types of AT has recently attracted significant research interest, aiming to also develop novel miRNA-based therapies against obesity, diabetes, and other obesity-related diseases. Therefore, this review presents an up-to-date comprehensive overview of the role of key regulatory miRNAs in BAT, brite AT, and WAT.
Collapse
Affiliation(s)
- Seley Gharanei
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Kiran Shabir
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
| | - James E. Brown
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
- Correspondence:
| |
Collapse
|
50
|
Chen C, Zhang X, Deng Y, Cui Q, Zhu J, Ren H, Liu Y, Hu X, Zuo J, Peng Y. Regulatory roles of circRNAs in adipogenesis and lipid metabolism: emerging insights into lipid-related diseases. FEBS J 2020; 288:3663-3682. [PMID: 32798313 DOI: 10.1111/febs.15525] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
Disorder of lipid metabolism has become an urgent health problem that brings about a variety of metabolic syndromes, including hepatic steatosis, adipose tissue dysfunction, diabetes and obesity. Circular RNAs (circRNAs), a class of emerging RNA molecules with unique structure and extensive effects, have been verified to participate in various biological programs through distinct mechanisms, especially in lipid-related processes. In this review, the biogenesis, characteristics, and functional mechanisms of circRNAs are discussed. Furthermore, the methods for circRNA identification and expression profiles of circRNAs associated with adipogenesis and lipid metabolism are described. Additionally, we emphasize the regulatory roles of circRNAs in adipogenesis, lipid metabolism, and lipid-related diseases. Finally, the diagnostic and therapeutic potential of circRNAs is highlighted, showing potential for the clinical application of circRNAs in the treatment of lipid-related diseases in the near future.
Collapse
Affiliation(s)
- Chen Chen
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Xing Zhang
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Yuan Deng
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Qingming Cui
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Ji Zhu
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Huibo Ren
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Yingying Liu
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Xionggui Hu
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Jianbo Zuo
- Hunan Institute of Animal & Veterinary Science, Changsha, China
| | - Yinglin Peng
- Hunan Institute of Animal & Veterinary Science, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|