1
|
Patra S, Mondal H, Dash U, Aziz SM, Maji MS. Designing Peptide-Based Nucleophilic Catalysts Possessing Multiple Identical Active Sites for Late-Stage Chlorination of Peptides and Drugs. Org Lett 2025; 27:3924-3929. [PMID: 40179361 DOI: 10.1021/acs.orglett.5c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
In the quest for developing catalysts with multiple active sites, we designed a series of methionine-based peptide catalysts prepared by classical peptide coupling. Given the widespread presence of aromatic chloro-substituents and their significant pharmacokinetic properties, the performance of these catalysts were evaluated for the late-stage chlorination of tyrosine residue on peptides up to octamer as well as aromatic drug molecules. The operationally simple reaction conditions, excellent catalyst loading up to 0.25 mol %, and gram-scale reactions are major highlights of this method.
Collapse
Affiliation(s)
- Subimal Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Haripriyo Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Umesh Dash
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sk Mohammad Aziz
- Department of Chemistry, Narajole Raj College, Vidyasagar University, Midnapore 721211, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
2
|
Kinateder T, Drexler L, Duran C, Osuna S, Sterner R. A naturally occurring standalone TrpB enzyme provides insights into allosteric communication within tryptophan synthase. Protein Sci 2025; 34:e70103. [PMID: 40100167 PMCID: PMC11917138 DOI: 10.1002/pro.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Allosteric regulation of catalytic activity is a widespread property of multi-enzyme complexes. The tryptophan synthase is a prototypical allosteric enzyme where the constituting α (TrpA) and β (TrpB) subunits mutually activate each other in a manner that is incompletely understood. Experimental and computational studies have shown that LBCA-TrpB from the last bacterial common ancestor contains six residues (Res6) distal from the active site that allow for high stand-alone catalytic activity in the absence of a TrpA subunit. In the present study, a database search revealed that Res6 is also present in the extant plTrpB from Pelodictyon luteolum. The plTrpB enzyme showed a high stand-alone activity and only a moderate activation by plTrpA. The replacement of LBCA-Res6 in plTrpB with the consensus residues from a multiple sequence alignment yielded plTrpB-con, which showed a dramatically decreased stand-alone activity but was strongly stimulated by plTrpA. These findings suggest that the effect of these six key allosteric residues is largely independent of the protein context within a specific TrpB enzyme. Analysis of the conformational landscapes of plTrpB and plTrpB-con revealed that plTrpB in isolation displays efficient closure of both the active site and the communication (COMM) domain. In contrast, these catalytically competent states are destabilized in plTrpB-con but can be recovered by the addition of plTrpA. A correlation-based shortest path map (SPM) analysis reveals that the catalytically and allosterically relevant domains-specifically, the COMM domain in TrpB and loops 2 and 6 in TrpA-are tightly interconnected exclusively in plTrpA:plTrpB-con.
Collapse
Affiliation(s)
- Thomas Kinateder
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
| | - Lukas Drexler
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
| | - Cristina Duran
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
| |
Collapse
|
3
|
Mizutani T, Abe I. Pyridoxal 5'-Phosphate (PLP)-Dependent β- and γ-Substitution Reactions Forming Nonproteinogenic Amino Acids in Natural Product Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2025; 88:211-230. [PMID: 39700331 DOI: 10.1021/acs.jnatprod.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Living organisms synthesize various nonproteinogenic amino acids (NPAAs) as the building blocks of natural products. These NPAAs are often biosynthesized by pyridoxal 5'-phosphate (PLP)-dependent enzymes, which catalyze β- or γ- substitutions. These enzymes contribute to the structural diversification of NPAAs by installing new functional groups to amino acid side chains. Recent developments in genome mining have led to the identification of various PLP-dependent enzymes catalyzing β- or γ- substitutions, which form NPAAs in secondary metabolism. This short review summarizes recently investigated PLP-enzymes catalyzing β- or γ-substitutions in the biosynthesis of NPAAs by covering the literature published from 2015 through 2024.
Collapse
Affiliation(s)
- Taku Mizutani
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
Xu X, Gao J, Qing L, Zhang M, Sun J, Jiang H, Wang S, Dong H, Mao X. Artificial Cascade Transformation Biosystem for One-Pot Biomanufacturing of Odd-Numbered Neoagarooligosaccharides and d-Tagatose through Wiser Agarose Utilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26339-26347. [PMID: 39545938 DOI: 10.1021/acs.jafc.4c08619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The application of agarose oligosaccharides has garnered great attention, with their biological activities varying among different structures. However, it still meets a great bottleneck for the targeted production of odd-numbered neoagarooligosaccharides (NAOSs), such as neoagarotriose (NA3), due to the lack of one-step hydrolases. In this work, the α-agarase AgaA33 and β-galactosidase BgaD were synergistically used to prepare NA3 with agarose as a substrate. Additionally, an l-arabinose isomerase CaLAI from Clostridium acetobutylicum was characterized to valorize low-value byproducts (d-galactose) by forming d-tagatose, which exhibited good thermal stability without the need for additional metal ions. Under the optimal reaction conditions, the production of NA3 and d-galactose catalyzed by these three enzymes was 0.40 and 0.15 g/L, respectively. The artificial three-enzyme-based cascade transformation system not only achieved the highest production of NA3 until now but also allowed for the valorization of d-galactose, providing a wiser application route for agarose utilization.
Collapse
Affiliation(s)
- Xiaohan Xu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Jing Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Liwei Qing
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Mingyue Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hao Dong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
| |
Collapse
|
5
|
Jones AA, Snow CD. Porous protein crystals: synthesis and applications. Chem Commun (Camb) 2024; 60:5790-5803. [PMID: 38756076 DOI: 10.1039/d4cc00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Large-pore protein crystals (LPCs) are an emerging class of biomaterials. The inherent diversity of proteins translates to a diversity of crystal lattice structures, many of which display large pores and solvent channels. These pores can, in turn, be functionalized via directed evolution and rational redesign based on the known crystal structures. LPCs possess extremely high solvent content, as well as extremely high surface area to volume ratios. Because of these characteristics, LPCs continue to be explored in diverse applications including catalysis, targeted therapeutic delivery, templating of nanostructures, structural biology. This Feature review article will describe several of the existing platforms in detail, with particular focus on LPC synthesis approaches and reported applications.
Collapse
Affiliation(s)
- Alec Arthur Jones
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA.
| | - Christopher D Snow
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA
| |
Collapse
|
6
|
Drago VN, Devos JM, Blakeley MP, Forsyth VT, Parks JM, Kovalevsky A, Mueser TC. Neutron diffraction from a microgravity-grown crystal reveals the active site hydrogens of the internal aldimine form of tryptophan synthase. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101827. [PMID: 38645802 PMCID: PMC11027755 DOI: 10.1016/j.xcrp.2024.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Pyridoxal 5'-phosphate (PLP), the biologically active form of vitamin B6, is an essential cofactor in many biosynthetic pathways. The emergence of PLP-dependent enzymes as drug targets and biocatalysts, such as tryptophan synthase (TS), has underlined the demand to understand PLP-dependent catalysis and reaction specificity. The ability of neutron diffraction to resolve the positions of hydrogen atoms makes it an ideal technique to understand how the electrostatic environment and selective protonation of PLP regulates PLP-dependent activities. Facilitated by microgravity crystallization of TS with the Toledo Crystallization Box, we report the 2.1 Å joint X-ray/neutron (XN) structure of TS with PLP in the internal aldimine form. Positions of hydrogens were directly determined in both the α- and β-active sites, including PLP cofactor. The joint XN structure thus provides insight into the selective protonation of the internal aldimine and the electrostatic environment of TS necessary to understand the overall catalytic mechanism.
Collapse
Affiliation(s)
- Victoria N. Drago
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Juliette M. Devos
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 38000 Grenoble, France
| | - Matthew P. Blakeley
- Large Scale Structures Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - V. Trevor Forsyth
- Faculty of Medicine, Lund University, and LINXS Institute for Advanced Neutron and X-ray Science, Lund, Sweden
| | - Jerry M. Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy C. Mueser
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
- Lead contact
| |
Collapse
|
7
|
Martins NF, Viana MJA, Maigret B. Fungi Tryptophan Synthases: What Is the Role of the Linker Connecting the α and β Structural Domains in Hemileia vastatrix TRPS? A Molecular Dynamics Investigation. Molecules 2024; 29:756. [PMID: 38398508 PMCID: PMC10893352 DOI: 10.3390/molecules29040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Tryptophan synthase (TRPS) is a complex enzyme responsible for tryptophan biosynthesis. It occurs in bacteria, plants, and fungi as an αββα heterotetramer. Although encoded by independent genes in bacteria and plants, in fungi, TRPS is generated by a single gene that concurrently expresses the α and β entities, which are linked by an elongated peculiar segment. We conducted 1 µs all-atom molecular dynamics simulations on Hemileia vastatrix TRPS to address two questions: (i) the role of the linker segment and (ii) the comparative mode of action. Since there is not an experimental structure, we started our simulations with homology modeling. Based on the results, it seems that TRPS makes use of an already-existing tunnel that can spontaneously move the indole moiety from the α catalytic pocket to the β one. Such behavior was completely disrupted in the simulation without the linker. In light of these results and the αβ dimer's low stability, the full-working TRPS single genes might be the result of a particular evolution. Considering the significant losses that Hemileia vastatrix causes to coffee plantations, our next course of action will be to use the TRPS to look for substances that can block tryptophan production and therefore control the disease.
Collapse
Affiliation(s)
- Natália F Martins
- EMBRAPA Agroindústria Tropical, Planalto do Pici, Fortaleza 60511-110, CE, Brazil
| | - Marcos J A Viana
- EMBRAPA Agroindústria Tropical, Planalto do Pici, Fortaleza 60511-110, CE, Brazil
| | - Bernard Maigret
- LORIA, UMR 7504 CNRS, Université de Lorraine, 54000 Vandoeuvre les Nancy, France
| |
Collapse
|
8
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
D'Amico RN, Boehr DD. Allostery, engineering and inhibition of tryptophan synthase. Curr Opin Struct Biol 2023; 82:102657. [PMID: 37467527 DOI: 10.1016/j.sbi.2023.102657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
The final two steps of tryptophan biosynthesis are catalyzed by the enzyme tryptophan synthase (TS), composed of alpha (αTS) and beta (βTS) subunits. Recently, experimental and computational methods have mapped "allosteric networks" that connect the αTS and βTS active sites. In αTS, allosteric networks change across the catalytic cycle, which might help drive the conformational changes associated with its function. Directed evolution studies to increase catalytic function and expand the substrate profile of stand-alone βTS have also revealed the importance of αTS in modulating the conformational changes in βTS. These studies also serve as a foundation for the development of TS inhibitors, which can find utility against Mycobacterium tuberculosis and other bacterial pathogens.
Collapse
Affiliation(s)
- Rebecca N D'Amico
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA, 16802
| | - David D Boehr
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA, 16802.
| |
Collapse
|
10
|
Mehrabi P, Sung S, von Stetten D, Prester A, Hatton CE, Kleine-Döpke S, Berkes A, Gore G, Leimkohl JP, Schikora H, Kollewe M, Rohde H, Wilmanns M, Tellkamp F, Schulz EC. Millisecond cryo-trapping by the spitrobot crystal plunger simplifies time-resolved crystallography. Nat Commun 2023; 14:2365. [PMID: 37185266 PMCID: PMC10130016 DOI: 10.1038/s41467-023-37834-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/01/2023] [Indexed: 05/17/2023] Open
Abstract
We introduce the spitrobot, a protein crystal plunger, enabling reaction quenching via cryo-trapping with a time-resolution in the millisecond range. Protein crystals are mounted on canonical micromeshes on an electropneumatic piston, where the crystals are kept in a humidity and temperature-controlled environment, then reactions are initiated via the liquid application method (LAMA) and plunging into liquid nitrogen is initiated after an electronically set delay time to cryo-trap intermediate states. High-magnification images are automatically recorded before and after droplet deposition, prior to plunging. The SPINE-standard sample holder is directly plunged into a storage puck, enabling compatibility with high-throughput infrastructure. Here we demonstrate binding of glucose and 2,3-butanediol in microcrystals of xylose isomerase, and of avibactam and ampicillin in microcrystals of the extended spectrum beta-lactamase CTX-M-14. We also trap reaction intermediates and conformational changes in macroscopic crystals of tryptophan synthase to demonstrate that the spitrobot enables insight into catalytic events.
Collapse
Affiliation(s)
- Pedram Mehrabi
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany.
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
| | - Sihyun Sung
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - David von Stetten
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Andreas Prester
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Caitlin E Hatton
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany
| | - Stephan Kleine-Döpke
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany
| | - Alexander Berkes
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany
| | - Gargi Gore
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany
| | | | - Hendrik Schikora
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Martin Kollewe
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Holger Rohde
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Friedjof Tellkamp
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
| | - Eike C Schulz
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany.
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
11
|
Milne N, Sáez-Sáez J, Nielsen AM, Dyekjaer JD, Rago D, Kristensen M, Wulff T, Borodina I. Engineering Saccharomyces cerevisiae for the de novo Production of Halogenated Tryptophan and Tryptamine Derivatives. ChemistryOpen 2023; 12:e202200266. [PMID: 36929157 PMCID: PMC10068768 DOI: 10.1002/open.202200266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The indole scaffold is a recurring structure in multiple bioactive heterocycles and natural products. Substituted indoles like the amino acid tryptophan serve as a precursor for a wide range of natural products with pharmaceutical or agrochemical applications. Inspired by the versatility of these compounds, medicinal chemists have for decades exploited indole as a core structure in the drug discovery process. With the aim of tuning the properties of lead drug candidates, regioselective halogenation of the indole scaffold is a common strategy. However, chemical halogenation is generally expensive, has a poor atom economy, lacks regioselectivity, and generates hazardous waste streams. As an alternative, in this work we engineer the industrial workhorse Saccharomyces cerevisiae for the de novo production of halogenated tryptophan and tryptamine derivatives. Functional expression of bacterial tryptophan halogenases together with a partner flavin reductase and a tryptophan decarboxylase resulted in the production of halogenated tryptophan and tryptamine with chlorine or bromine. Furthermore, by combining tryptophan halogenases, production of di-halogenated molecules was also achieved. Overall, this works paves the road for the production of new-to-nature halogenated natural products in yeast.
Collapse
Affiliation(s)
- Nicholas Milne
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.,Octarine Bio ApS, Lersø Parkallé 42, 1. Sal, 2100, Copenhagen, Denmark
| | - Javier Sáez-Sáez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Annette Munch Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.,Octarine Bio ApS, Lersø Parkallé 42, 1. Sal, 2100, Copenhagen, Denmark
| | - Jane Dannow Dyekjaer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Tune Wulff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Favilla LD, Herman TS, Goersch CDS, de Andrade RV, Felipe MSS, Bocca AL, Fernandes L. Expanding the Toolbox for Functional Genomics in Fonsecaea pedrosoi: The Use of Split-Marker and Biolistic Transformation for Inactivation of Tryptophan Synthase ( trpB) Gene. J Fungi (Basel) 2023; 9:jof9020224. [PMID: 36836338 PMCID: PMC9963410 DOI: 10.3390/jof9020224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Chromoblastomycosis (CBM) is a disease caused by several dematiaceous fungi from different genera, and Fonsecaea is the most common which has been clinically isolated. Genetic transformation methods have recently been described; however, molecular tools for the functional study of genes have been scarcely reported for those fungi. In this work, we demonstrated that gene deletion and generation of the null mutant by homologous recombination are achievable for Fonsecaea pedrosoi by the use of two approaches: use of double-joint PCR for cassette construction, followed by delivery of the split-marker by biolistic transformation. Through in silico analyses, we identified that F. pedrosoi presents the complete enzymatic apparatus required for tryptophan (trp) biosynthesis. The gene encoding a tryptophan synthase trpB -which converts chorismate to trp-was disrupted. The ΔtrpB auxotrophic mutant can grow with external trp supply, but germination, viability of conidia, and radial growth are defective compared to the wild-type and reconstituted strains. The use of 5-FAA for selection of trp- phenotypes and for counter-selection of strains carrying the trp gene was also demonstrated. The molecular tools for the functional study of genes, allied to the genetic information from genomic databases, significantly boost our understanding of the biology and pathogenicity of CBM causative agents.
Collapse
Affiliation(s)
- Luísa Dan Favilla
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Tatiana Sobianski Herman
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Patology, Faculty of Medicine, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Camila da Silva Goersch
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Microbial Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Rosangela Vieira de Andrade
- Graduate Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Federal District, Taguatinga 70790-160, Brazil
| | - Maria Sueli Soares Felipe
- Graduate Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Federal District, Taguatinga 70790-160, Brazil
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Patology, Faculty of Medicine, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Larissa Fernandes
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Microbial Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Centro Metropolitano, Faculty of Ceilândia, Campus UnB Ceilândia, University of Brasília, Ceilândia Sul, Federal District, Brasilia 72220-275, Brazil
- Correspondence:
| |
Collapse
|
13
|
Liu F, Wei B, Cheng L, Zhao Y, Liu X, Yuan Q, Liang H. Co-Immobilizing Two Glycosidases Based on Cross-Linked Enzyme Aggregates to Enhance Enzymatic Properties for Achieving High Titer Icaritin Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11631-11642. [PMID: 36044714 DOI: 10.1021/acs.jafc.2c04253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Icaritin is a rare and high-value isopentane flavonoid compound with remarkable activities. Increasing yields while reducing cost has been a great challenge in icaritin production. Herein, we first reported a high titer icaritin biosynthesis strategy from epimedin C through co-immobilizing α-l-rhamnosidase (Rha1) and β-glucosidase (Glu4) using cross-linked enzyme aggregates (CLEAs). The created CLEAs exhibited excellent performances in terms of catalytic activity, thermal stability, pH stability, and reusability. Notably, Rha1-CLEAs (Ki: 1 M) and Glu4-CLEAs (Ki: 0.1 M) were more tolerant to sugars (glucose or rhamnose) than free enzymes (0.1 M for Rha1 and 0.007 M for Glu4) by immobilization, achieving the highest icaritin productivity under the highest substrate concentration ever reported. Finally, about 34.24 g/L icaritin could be obtained from 100 g/L epimedin C within 8 h, indicating the great potential for industrialization. This study also provides a promising strategy for the low-cost production of other high-value aglycone compounds by solving poor stability and sugar inhibition of glycosidase.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Leiyu Cheng
- Zhejiang NHU Company Ltd., Xinchang County 312500, Zhejiang Province, P. R. China
| | - Yuxuan Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaojie Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
14
|
Ghosh RK, Hilario E, Chang CEA, Mueller LJ, Dunn MF. Allosteric regulation of substrate channeling: Salmonella typhimurium tryptophan synthase. Front Mol Biosci 2022; 9:923042. [PMID: 36172042 PMCID: PMC9512447 DOI: 10.3389/fmolb.2022.923042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The regulation of the synthesis of L-tryptophan (L-Trp) in enteric bacteria begins at the level of gene expression where the cellular concentration of L-Trp tightly controls expression of the five enzymes of the Trp operon responsible for the synthesis of L-Trp. Two of these enzymes, trpA and trpB, form an αββα bienzyme complex, designated as tryptophan synthase (TS). TS carries out the last two enzymatic processes comprising the synthesis of L-Trp. The TS α-subunits catalyze the cleavage of 3-indole D-glyceraldehyde 3′-phosphate to indole and D-glyceraldehyde 3-phosphate; the pyridoxal phosphate-requiring β-subunits catalyze a nine-step reaction sequence to replace the L-Ser hydroxyl by indole giving L-Trp and a water molecule. Within αβ dimeric units of the αββα bienzyme complex, the common intermediate indole is channeled from the α site to the β site via an interconnecting 25 Å-long tunnel. The TS system provides an unusual example of allosteric control wherein the structures of the nine different covalent intermediates along the β-reaction catalytic path and substrate binding to the α-site provide the allosteric triggers for switching the αββα system between the open (T) and closed (R) allosteric states. This triggering provides a linkage that couples the allosteric conformational coordinate to the covalent chemical reaction coordinates at the α- and β-sites. This coupling drives the α- and β-sites between T and R conformations to achieve regulation of substrate binding and/or product release, modulation of the α- and β-site catalytic activities, prevention of indole escape from the confines of the active sites and the interconnecting tunnel, and synchronization of the α- and β-site catalytic activities. Here we review recent advances in the understanding of the relationships between structure, function, and allosteric regulation of the complex found in Salmonella typhimurium.
Collapse
Affiliation(s)
- Rittik K. Ghosh
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Leonard J. Mueller
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| | - Michael F. Dunn
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| |
Collapse
|
15
|
Pose-Boirazian T, Martínez-Costas J, Eibes G. 3D Printing: An Emerging Technology for Biocatalyst Immobilization. Macromol Biosci 2022; 22:e2200110. [PMID: 35579179 DOI: 10.1002/mabi.202200110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Indexed: 11/10/2022]
Abstract
Employment of enzymes as biocatalysts offers immense benefits across diverse sectors in the context of green chemistry, biodegradability, and sustainability. When compared to free enzymes in solution, enzyme immobilization proposes an effective means of improving functional efficiency and operational stability. The advance of printable and functional materials utilized in additive manufacturing, coupled with the capability to produce bespoke geometries, has sparked great interest towards the 3D printing of immobilized enzymes. Printable biocatalysts represent a new generation of enzyme immobilization in a more customizable and adaptable manner, unleashing their potential functionalities for countless applications in industrial biotechnology. This review provides an overview of enzyme immobilization techniques and 3D printing technologies, followed by illustrations of the latest 3D printed enzyme-immobilized industrial and clinical applications. The unique advantages of harnessing 3D printing as an enzyme immobilization technique will be presented, alongside a discussion on its potential limitations. Finally, the future perspectives of integrating 3D printing with enzyme immobilization will be considered, highlighting the endless possibilities that are achievable in both research and industry. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Jose Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Gemma Eibes
- CRETUS, Dept. of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
16
|
Drago VN, Devos JM, Blakeley MP, Forsyth VT, Kovalevsky AY, Schall CA, Mueser TC. Microgravity crystallization of perdeuterated tryptophan synthase for neutron diffraction. NPJ Microgravity 2022; 8:13. [PMID: 35508463 PMCID: PMC9068912 DOI: 10.1038/s41526-022-00199-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Biologically active vitamin B6-derivative pyridoxal 5'-phosphate (PLP) is an essential cofactor in amino acid metabolic pathways. PLP-dependent enzymes catalyze a multitude of chemical reactions but, how reaction diversity of PLP-dependent enzymes is achieved is still not well understood. Such comprehension requires atomic-level structural studies of PLP-dependent enzymes. Neutron diffraction affords the ability to directly observe hydrogen positions and therefore assign protonation states to the PLP cofactor and key active site residues. The low fluxes of neutron beamlines require large crystals (≥0.5 mm3). Tryptophan synthase (TS), a Fold Type II PLP-dependent enzyme, crystallizes in unit gravity with inclusions and high mosaicity, resulting in poor diffraction. Microgravity offers the opportunity to grow large, well-ordered crystals by reducing gravity-driven convection currents that impede crystal growth. We developed the Toledo Crystallization Box (TCB), a membrane-barrier capillary-dialysis device, to grow neutron diffraction-quality crystals of perdeuterated TS in microgravity. Here, we present the design of the TCB and its implementation on Center for Advancement of Science in Space (CASIS) supported International Space Station (ISS) Missions Protein Crystal Growth (PCG)-8 and PCG-15. The TCB demonstrated the ability to improve X-ray diffraction and mosaicity on PCG-8. In comparison to ground control crystals of the same size, microgravity-grown crystals from PCG-15 produced higher quality neutron diffraction data. Neutron diffraction data to a resolution of 2.1 Å has been collected using microgravity-grown perdeuterated TS crystals from PCG-15.
Collapse
Affiliation(s)
- Victoria N Drago
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH, 43606, USA
| | - Juliette M Devos
- Life Sciences Group, Institut Laue-Langevin, 38000, Grenoble, France
- Partnership for Structural Biology (PSB), 38000, Grenoble, France
| | - Matthew P Blakeley
- Large-Scale Structures Group, Institut Laue-Langevin, 38000, Grenoble, France
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue-Langevin, 38000, Grenoble, France
- Partnership for Structural Biology (PSB), 38000, Grenoble, France
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
- Faculty of Medicine, Lund University, and LINXS Institute for Advanced Neutron and X-ray Science, Lund, Sweden
| | - Andrey Y Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Constance A Schall
- Department of Chemical Engineering, University of Toledo, Toledo, OH, 43606, USA
| | - Timothy C Mueser
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH, 43606, USA.
| |
Collapse
|
17
|
Shon H, Matveeva EA, Jull EC, Hu Y, Coupet TA, Lee YS. Evidence Supporting Substrate Channeling between Domains of Human PAICS: A Time-Course Analysis of 13C-Bicarbonate Incorporation. Biochemistry 2022; 61:575-582. [PMID: 35285625 PMCID: PMC8988938 DOI: 10.1021/acs.biochem.1c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human phosphoribosylaminoimidazole carboxylase phosphoribosylaminoimdiazole succinocarboxamide synthetase (PAICS) is a dual activity enzyme catalyzing two consecutive reactions in de novo purine nucleotide synthesis. Crystallographic structures of recombinant human PAICS suggested the channeling of 4-carboxy-5-aminoimidazole-1-ribose-5'-phosphate (CAIR) between two active sites of PAICS, while a prior work of an avian PAICS suggested otherwise. Here, we present time-course mass spectrometric data supporting the channeling of CAIR between domains of recombinant human PAICS. Time-course mass spectral analysis showed that CAIR added to the bulk solution (CAIRbulk) is decarboxylated and re-carboxylated before the accumulation of succinyl-5-aminoimidazole-4-carboxamide-1-ribose-5'-phosphate (SAICAR). An experiment with 13C-bicarbonate showed that SAICAR production was proportional to re-carboxylated CAIR instead of total CAIR or CAIRbulk. This result indicates that the SAICAR synthase domain selectively uses enzyme-made CAIR over CAIRbulk, which is consistent with the channeling model. This channeling between PAICS domains may be a part of a larger channeling process in de novo purine nucleotide synthesis.
Collapse
Affiliation(s)
- Hyungjoo Shon
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Elena A Matveeva
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Ella C Jull
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yijia Hu
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tiffany A Coupet
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Young-Sam Lee
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
18
|
Bosken YK, Ai R, Hilario E, Ghosh RK, Dunn MF, Kan S, Niks D, Zhou H, Ma W, Mueller LJ, Fan L, Chang CA. Discovery of antimicrobial agent targeting tryptophan synthase. Protein Sci 2022; 31:432-442. [PMID: 34767267 PMCID: PMC8820114 DOI: 10.1002/pro.4236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
Antibiotic resistance is a continually growing challenge in the treatment of various bacterial infections worldwide. New drugs and new drug targets are necessary to curb the threat of infectious diseases caused by multidrug-resistant pathogens. The tryptophan biosynthesis pathway is essential for bacterial growth but is absent in higher animals and humans. Drugs that can inhibit the bacterial biosynthesis of tryptophan offer a new class of antibiotics. In this work, we combined a structure-based strategy using in silico docking screening and molecular dynamics (MD) simulations to identify compounds targeting the α subunit of tryptophan synthase with experimental methods involving the whole-cell minimum inhibitory concentration (MIC) test, solution state NMR, and crystallography to confirm the inhibition of L-tryptophan biosynthesis. Screening 1,800 compounds from the National Cancer Institute Diversity Set I against α subunit revealed 28 compounds for experimental validation; four of the 28 hit compounds showed promising activity in MIC testing. We performed solution state NMR experiments to demonstrate that a one successful inhibitor, 3-amino-3-imino-2-phenyldiazenylpropanamide (Compound 1) binds to the α subunit. We also report a crystal structure of Salmonella enterica serotype Typhimurium tryptophan synthase in complex with Compound 1 which revealed a binding site at the αβ interface of the dimeric enzyme. MD simulations were carried out to examine two binding sites for the compound. Our results show that this small molecule inhibitor could be a promising lead for future drug development.
Collapse
Affiliation(s)
- Yuliana K. Bosken
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia
| | - Rizi Ai
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia
| | - Eduardo Hilario
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia
| | - Rittik K. Ghosh
- Department of BiochemistryUniversity of California at RiversideRiversideCalifornia
| | - Michael F. Dunn
- Department of BiochemistryUniversity of California at RiversideRiversideCalifornia
| | - Shih‐Hsin Kan
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia,Present address:
CHOC Research InstituteOrangeCalifornia
| | - Dimitri Niks
- Department of BiochemistryUniversity of California at RiversideRiversideCalifornia
| | - Huanbin Zhou
- Department of Microbiology and Plant PathologyUniversity of California at RiversideRiversideCalifornia,Present address:
Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Wenbo Ma
- Department of Microbiology and Plant PathologyUniversity of California at RiversideRiversideCalifornia,Present address:
The Sainsbury LaboratoryNorwich Research ParkNorwichUK
| | - Leonard J. Mueller
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia
| | - Li Fan
- Department of BiochemistryUniversity of California at RiversideRiversideCalifornia
| | - Chia‐En A. Chang
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia
| |
Collapse
|
19
|
Holmes JB, Liu V, Caulkins BG, Hilario E, Ghosh RK, Drago VN, Young RP, Romero JA, Gill AD, Bogie PM, Paulino J, Wang X, Riviere G, Bosken YK, Struppe J, Hassan A, Guidoulianov J, Perrone B, Mentink-Vigier F, Chang CEA, Long JR, Hooley RJ, Mueser TC, Dunn MF, Mueller LJ. Imaging active site chemistry and protonation states: NMR crystallography of the tryptophan synthase α-aminoacrylate intermediate. Proc Natl Acad Sci U S A 2022; 119:e2109235119. [PMID: 34996869 PMCID: PMC8764694 DOI: 10.1073/pnas.2109235119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
NMR-assisted crystallography-the integrated application of solid-state NMR, X-ray crystallography, and first-principles computational chemistry-holds significant promise for mechanistic enzymology: by providing atomic-resolution characterization of stable intermediates in enzyme active sites, including hydrogen atom locations and tautomeric equilibria, NMR crystallography offers insight into both structure and chemical dynamics. Here, this integrated approach is used to characterize the tryptophan synthase α-aminoacrylate intermediate, a defining species for pyridoxal-5'-phosphate-dependent enzymes that catalyze β-elimination and replacement reactions. For this intermediate, NMR-assisted crystallography is able to identify the protonation states of the ionizable sites on the cofactor, substrate, and catalytic side chains as well as the location and orientation of crystallographic waters within the active site. Most notable is the water molecule immediately adjacent to the substrate β-carbon, which serves as a hydrogen bond donor to the ε-amino group of the acid-base catalytic residue βLys87. From this analysis, a detailed three-dimensional picture of structure and reactivity emerges, highlighting the fate of the L-serine hydroxyl leaving group and the reaction pathway back to the preceding transition state. Reaction of the α-aminoacrylate intermediate with benzimidazole, an isostere of the natural substrate indole, shows benzimidazole bound in the active site and poised for, but unable to initiate, the subsequent bond formation step. When modeled into the benzimidazole position, indole is positioned with C3 in contact with the α-aminoacrylate Cβ and aligned for nucleophilic attack. Here, the chemically detailed, three-dimensional structure from NMR-assisted crystallography is key to understanding why benzimidazole does not react, while indole does.
Collapse
Affiliation(s)
- Jacob B Holmes
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Viktoriia Liu
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Bethany G Caulkins
- Department of Chemistry, University of California, Riverside, CA 92521
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Rittik K Ghosh
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Victoria N Drago
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606
| | - Robert P Young
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Jennifer A Romero
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Adam D Gill
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Paul M Bogie
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Joana Paulino
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310
| | - Xiaoling Wang
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310
| | - Gwladys Riviere
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute, National High Magnetic Field Laboratory, University of Florida, Gainesville, FL 32610
| | - Yuliana K Bosken
- Department of Biochemistry, University of California, Riverside, CA 92521
| | | | - Alia Hassan
- Bruker Switzerland AG 8117 Fällanden, Switzerland
| | | | | | | | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute, National High Magnetic Field Laboratory, University of Florida, Gainesville, FL 32610
| | - Richard J Hooley
- Department of Chemistry, University of California, Riverside, CA 92521
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Timothy C Mueser
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606
| | - Michael F Dunn
- Department of Biochemistry, University of California, Riverside, CA 92521;
| | - Leonard J Mueller
- Department of Chemistry, University of California, Riverside, CA 92521;
| |
Collapse
|
20
|
Papageorgiou AC. Structural Characterization of Multienzyme Assemblies: An Overview. Methods Mol Biol 2022; 2487:51-72. [PMID: 35687229 DOI: 10.1007/978-1-0716-2269-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multienzyme assemblies have attracted significant attention in recent years for use in industrial applications instead of single enzymes. Owing to their ability to catalyze cascade reactions, multienzyme assemblies have become inspirational tools for the in vitro construction of multienzyme molecular machines. The use of such molecular machines could offer several advantages such as fewer side reactions, a high product yield, a fast reaction speed, easy product separation, a tolerable toxic environment, and robust system operability compared to current microbial cell catalytic systems. Besides, they can provide all the benefits found in the use of enzymes, including reusability, catalytic efficiency, and specificity. Similar to single enzymes, multienzyme assemblies could offer economical and environmentally friendly alternatives to conventional catalysts and play a central role as biocatalysts in green chemistry applications. However, detailed characterization of multienzyme assemblies and a full understanding of their mechanistic details are required for their efficient use in industrial biotransformations. Since the determination of the first enzyme structure in 1965, structural information has played a pivotal role in the characterization of enzymes and elucidation of their structure-function relationship. Among the structural biology techniques, X-ray crystallography has provided key mechanistic details into multienzyme assemblies. Here, the structural characterization of multienzyme assemblies is reviewed and several examples are provided.
Collapse
|
21
|
Korasick DA, Christgen SL, Qureshi IA, Becker DF, Tanner JJ. Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA). Arch Biochem Biophys 2021; 712:109025. [PMID: 34506758 DOI: 10.1016/j.abb.2021.109025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/18/2022]
Abstract
In many bacteria, the reactions of proline catabolism are catalyzed by the bifunctional enzyme known as proline utilization A (PutA). PutA catalyzes the two-step oxidation of l-proline to l-glutamate using distinct proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH) active sites, which are separated by over 40 Å and connected by a complex tunnel system. The tunnel system consists of a main tunnel that connects the two active sites and functions in substrate channeling, plus six ancillary tunnels whose functions are unknown. Here we used tunnel-blocking mutagenesis to probe the role of a dynamic ancillary tunnel (tunnel 2a) whose shape is modulated by ligand binding to the PRODH active site. The 1.90 Å resolution crystal structure of Geobacter sulfurreducens PutA variant A206W verified that the side chain of Trp206 cleanly blocks tunnel 2a without perturbing the surrounding structure. Steady-state kinetic measurements indicate the mutation impaired PRODH activity without affecting the GSALDH activity. Single-turnover experiments corroborated a severe impairment of PRODH activity with flavin reduction decreased by nearly 600-fold in A206W relative to wild-type. Substrate channeling is also significantly impacted as A206W exhibited a 3000-fold lower catalytic efficiency in coupled PRODH-GSALDH activity assays, which measure NADH formation as a function of proline. The structure suggests that Trp206 inhibits binding of the substrate l-proline by preventing the formation of a conserved glutamate-arginine ion pair and closure of the PRODH active site. Our data are consistent with tunnel 2a serving as an open space through which the glutamate of the ion pair travels during the opening and closing of the active site in response to binding l-proline. These results confirm the essentiality of the conserved ion pair in binding l-proline and support the hypothesis that the ion pair functions as a gate that controls access to the PRODH active site.
Collapse
Affiliation(s)
- David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Shelbi L Christgen
- Department Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, NE, 68588, United States
| | - Insaf A Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Donald F Becker
- Department Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, NE, 68588, United States.
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
22
|
Ghosh RK, Hilario E, Liu V, Wang Y, Niks D, Holmes JB, Sakhrani VV, Mueller LJ, Dunn MF. Mutation of βGln114 to Ala Alters the Stabilities of Allosteric States in Tryptophan Synthase Catalysis. Biochemistry 2021; 60:3173-3186. [PMID: 34595921 PMCID: PMC9122093 DOI: 10.1021/acs.biochem.1c00383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tryptophan synthase (TS) bienzyme complexes found in bacteria, yeasts, and molds are pyridoxal 5'-phosphate (PLP)-requiring enzymes that synthesize l-Trp. In the TS catalytic cycle, switching between the open and closed states of the α- and β-subunits via allosteric interactions is key to the efficient conversion of 3-indole-d-glycerol-3'-phosphate and l-Ser to l-Trp. In this process, the roles played by β-site residues proximal to the PLP cofactor have not yet been fully established. βGln114 is one such residue. To explore the roles played by βQ114, we conducted a detailed investigation of the βQ114A mutation on the structure and function of tryptophan synthase. Initial steady-state kinetic and static ultraviolet-visible spectroscopic analyses showed the Q to A mutation impairs catalytic activity and alters the stabilities of intermediates in the β-reaction. Therefore, we conducted X-ray structural and solid-state nuclear magnetic resonance spectroscopic studies to compare the wild-type and βQ114A mutant enzymes. These comparisons establish that the protein structural changes are limited to the Gln to Ala replacement, the loss of hydrogen bonds among the side chains of βGln114, βAsn145, and βArg148, and the inclusion of waters in the cavity created by substitution of the smaller Ala side chain. Because the conformations of the open and closed allosteric states are not changed by the mutation, we hypothesize that the altered properties arise from the lost hydrogen bonds that alter the relative stabilities of the open (βT state) and closed (βR state) conformations of the β-subunit and consequently alter the distribution of intermediates along the β-subunit catalytic path.
Collapse
Affiliation(s)
- Rittik K. Ghosh
- Department of Biochemistry, University of California, Riverside, California, 92521 USA
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Viktoriia Liu
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Yangyang Wang
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Dimitri Niks
- Department of Biochemistry, University of California, Riverside, California, 92521 USA
| | - Jacob B. Holmes
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Varun V. Sakhrani
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Leonard J. Mueller
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Michael F. Dunn
- Department of Biochemistry, University of California, Riverside, California, 92521 USA
| |
Collapse
|
23
|
Ren X, Fasan R. Engineered and Artificial Metalloenzymes for Selective C-H Functionalization. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2021; 31:100494. [PMID: 34395950 PMCID: PMC8357270 DOI: 10.1016/j.cogsc.2021.100494] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The direct functionalization of C-H bonds constitutes a powerful strategy to construct and diversify organic molecules. However, controlling the chemo- and site-selectivity of this transformation in particularly complex molecular settings represents a significant challenge. Metalloenzymes are ideal platforms for achieving catalyst-controlled selective C-H bond functionalization as their reactivities can be tuned by protein engineering and/or redesign of their cofactor environment. In this review, we highlight recent progress in the development of engineered and artificial metalloenzymes for C-H functionalization, with a focus on biocatalytic strategies for selective C-H oxyfunctionalization and halogenation as well as C-H amination and C-H carbene insertion via abiological nitrene and carbene transfer chemistries. Engineered heme- and non-heme iron dependent enzymes have emerged as promising scaffolds for executing these transformations with high chemo-, regio- and stereocontrol as well as tunable selectivity. These emerging systems and methodologies have expanded the toolbox of sustainable strategies for organic synthesis and created new opportunities for the generation of chiral building blocks, the late-stage C-H functionalization of complex molecules, and the total synthesis of natural products.
Collapse
Affiliation(s)
- Xinkun Ren
- Department of Chemistry, University of Rochester, Hutchison Hall, 120 Trustee Rd, Rochester NY 14627, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Hutchison Hall, 120 Trustee Rd, Rochester NY 14627, USA
| |
Collapse
|
24
|
Han J, Feng H, Wu J, Li Y, Zhou Y, Wang L, Luo P, Wang Y. Construction of Multienzyme Co-immobilized Hybrid Nanoflowers for an Efficient Conversion of Cellulose into Glucose in a Cascade Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7910-7921. [PMID: 34241999 DOI: 10.1021/acs.jafc.1c02056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Today, we are seeking an efficient biotransformation of cellulosic material into sustainable biochemical products to meet the increasing global energy demand. Herein, we report the fabrication of multienzyme hybrid nanoflowers (ECG-NFs) by co-immobilizing three recombinant enzymes (cellobiohydrolase (CBH), endo-glucanase (EG), and β-glucosidase (BG)) integrating a binary tag composed of elastin-like polypeptide (ELP) and His-tag to act as a tri-enzyme biocatalyst, which catalyzes the hydrolysis of cellulose into glucose. The prepared ECG-NFs exhibited excellent performance in terms of pH stability, thermal stability, storage stability, and catalytic efficiency compared to free multienzyme system. Notably, ECG-NFs could be recycled for up to eight consecutive runs. The Km and kcat/Km values for ECG-NFs were 9.33 g L-1 and 0.0051 L min-1 g-1, respectively, which were better than those of the free multienzyme system, indicating a better substrate affinity. Finally, the overall enzyme activity of ECG-NFs increased by 1.12 times and the degradation efficiency of ECG-NFs was superior to the free multienzyme system, which revealed that ECG-NFs could facilitate an effective one-pot hydrolysis of cellulose into glucose.
Collapse
Affiliation(s)
- Juan Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hui Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jiacong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuanyuan Li
- Jingjiang College, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Peng Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
25
|
Wu X, Zhang C, Xing XH, Yun Z, Zhao L, Wu Q. Construction and characterization of novel bifunctional fusion proteins composed of alcohol dehydrogenase and NADH oxidase with efficient oxidized cofactor regeneration. Biotechnol Appl Biochem 2021; 69:1535-1544. [PMID: 34269481 DOI: 10.1002/bab.2225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 11/10/2022]
Abstract
To tune the efficiency of oxidized cofactor recycling between alcohol dehydrogenase (ADH) and NADH oxidase (NOX) for the production of aromatic chiral alcohols, we designed and constructed four novel bifunctional fusion proteins composed of thermostable ADH and NOX from Thermococcus kodakarensis KOD1. ADH was linked to the N- or C-terminus of NOX with a typical rigid linker (EAAAK)3 and a flexible linker (GGGGS)3 , respectively. Compared with the parental enzymes, the NOX moieties in the four fusion proteins exhibited higher specific activities (141%-282%), while the ADH moieties exhibited varying levels of specific activity (69%-167%). All fusion proteins showed decreased affinities toward the cofactors, with increased Km values toward NADH (159%-406%) and NAD+ (202%-372%). In the enantioselective oxidation of (RS)-1-phenylethanol coupled with cofactor regeneration, the four fusion proteins displayed different positive and negative effects on the recycling efficiency of the oxidized cofactor. The two fusion proteins composed of NOX at the N-terminus exhibited higher total turnover numbers than the corresponding mixtures of individual enzymes with equal activities, particularly at low cofactor concentrations. These findings suggest high cofactor recycling efficiencies of the fusion proteins with appropriate design and their potential application in the biosynthesis of chiral alcohols.
Collapse
Affiliation(s)
- Xi Wu
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Chong Zhang
- Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Xin-Hui Xing
- Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Zhenyu Yun
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Lin Zhao
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Qi Wu
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| |
Collapse
|
26
|
Tao M, Xiao K, Zheng Y, Li Z, Luo Q, Wang G, Hu Z. Identification and characterization of a novel Channelrhodopsin gene HpChR1 in Haematococcus pluvialis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Lee YS, Lim K, Minteer SD. Cascaded Biocatalysis and Bioelectrocatalysis: Overview and Recent Advances. Annu Rev Phys Chem 2021; 72:467-488. [DOI: 10.1146/annurev-physchem-090519-050109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enzyme cascades are plentiful in nature, but they also have potential in artificial applications due to the possibility of using the target substrate in biofuel cells, electrosynthesis, and biosensors. Cascade reactions from enzymes or hybrid bioorganic catalyst systems exhibit extended substrate range, reaction depth, and increased overall performance. This review addresses the strategies of cascade biocatalysis and bioelectrocatalysis for ( a) CO2 fixation, ( b) high value-added product formation, ( c) sustainable energy sources via deep oxidation, and ( d) cascaded electrochemical enzymatic biosensors. These recent updates in the field provide fundamental concepts, designs of artificial electrocatalytic oxidation-reduction pathways (using a flexible setup involving organic catalysts and engineered enzymes), and advances in hybrid cascaded sensors for sensitive analyte detection.
Collapse
Affiliation(s)
- Yoo Seok Lee
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Koun Lim
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
28
|
Berlinberg AJ, Regner EH, Stahly A, Brar A, Reisz JA, Gerich ME, Fennimore BP, Scott FI, Freeman AE, Kuhn KA. Multi 'Omics Analysis of Intestinal Tissue in Ankylosing Spondylitis Identifies Alterations in the Tryptophan Metabolism Pathway. Front Immunol 2021; 12:587119. [PMID: 33746944 PMCID: PMC7966505 DOI: 10.3389/fimmu.2021.587119] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
Intestinal microbial dysbiosis, intestinal inflammation, and Th17 immunity are all linked to the pathophysiology of spondyloarthritis (SpA); however, the mechanisms linking them remain unknown. One potential hypothesis suggests that the dysbiotic gut microbiome as a whole produces metabolites that influence human immune cells. To identify potential disease-relevant, microbiome-produced metabolites, we performed metabolomics screening and shotgun metagenomics on paired colon biopsies and fecal samples, respectively, from subjects with axial SpA (axSpA, N=21), Crohn's disease (CD, N=27), and Crohn's-axSpA overlap (CD-axSpA, N=12), as well as controls (HC, N=24). Using LC-MS based metabolomics of 4 non-inflamed pinch biopsies of the distal colon from subjects, we identified significant alterations in tryptophan pathway metabolites, including an expansion of indole-3-acetate (IAA) in axSpA and CD-axSpA compared to HC and CD and indole-3-acetaldehyde (I3Ald) in axSpA and CD-axSpA but not CD compared to HC, suggesting possible specificity to the development of axSpA. We then performed shotgun metagenomics of fecal samples to characterize gut microbial dysbiosis across these disease states. In spite of no significant differences in alpha-diversity among the 4 groups, our results confirmed differences in gene abundances of numerous enzymes involved in tryptophan metabolism. Specifically, gene abundance of indolepyruvate decarboxylase, which generates IAA and I3Ald, was significantly elevated in individuals with axSpA while gene abundances in HC demonstrated a propensity towards tryptophan synthesis. Such genetic changes were not observed in CD, again suggesting disease specificity for axSpA. Given the emerging role of tryptophan and its metabolites in immune function, altogether these data indicate that tryptophan metabolism into I3Ald and then IAA is one mechanism by which the gut microbiome potentially influences the development of axSpA.
Collapse
Affiliation(s)
- Adam J. Berlinberg
- Division of Rheumatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Emilie H. Regner
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Andrew Stahly
- Division of Rheumatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Ana Brar
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, United States
| | - Mark E. Gerich
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Blair P. Fennimore
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Frank I. Scott
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Alison E. Freeman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Kristine A. Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
29
|
Research progress and the biotechnological applications of multienzyme complex. Appl Microbiol Biotechnol 2021; 105:1759-1777. [PMID: 33564922 DOI: 10.1007/s00253-021-11121-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 11/26/2022]
Abstract
The multienzyme complex system has become a research focus in synthetic biology due to its highly efficient overall catalytic ability and has been applied to various fields. Multienzyme complexes are formed by cascading complexes, which are multiple functionally related enzymes that continuously and efficiently catalyze the production of substrates. Compared with current mainstream microbial cell catalytic systems, in vitro multienzyme molecular machines have many advantages, such as fewer side reactions, a high product yield, a fast reaction speed, easy product separation, a tolerable toxic environment, and robust system operability, showing increasing competitiveness in the field of biomanufacturing. In this review, the research progress of multienzyme complexes in nature and multienzyme cascades in vivo or in vitro will be introduced, and the discovered enzyme cascades concerning scaffolding proteins will also be discussed. This review is expected to provide a more theoretical basis for the modification of multienzyme complexes and broaden their application in the field of synthetic biology. KEY POINTS: • The cascade reactions of some natural multienzyme complexes are reviewed. • The main approaches of constructing artificial multienzyme complexes are summarized. • The structure and application of cellulosomes are discussed and prospected.
Collapse
|
30
|
Simeth NA, Kinateder T, Rajendran C, Nazet J, Merkl R, Sterner R, König B, Kneuttinger AC. Towards Photochromic Azobenzene-Based Inhibitors for Tryptophan Synthase. Chemistry 2021; 27:2439-2451. [PMID: 33078454 PMCID: PMC7898615 DOI: 10.1002/chem.202004061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/16/2020] [Indexed: 01/25/2023]
Abstract
Light regulation of drug molecules has gained growing interest in biochemical and pharmacological research in recent years. In addition, a serious need for novel molecular targets of antibiotics has emerged presently. Herein, the development of a photocontrollable, azobenzene-based antibiotic precursor towards tryptophan synthase (TS), an essential metabolic multienzyme complex in bacteria, is presented. The compound exhibited moderately strong inhibition of TS in its E configuration and five times lower inhibition strength in its Z configuration. A combination of biochemical, crystallographic, and computational analyses was used to characterize the inhibition mode of this compound. Remarkably, binding of the inhibitor to a hitherto-unconsidered cavity results in an unproductive conformation of TS leading to noncompetitive inhibition of tryptophan production. In conclusion, we created a promising lead compound for combatting bacterial diseases, which targets an essential metabolic enzyme, and whose inhibition strength can be controlled with light.
Collapse
Affiliation(s)
- Nadja A. Simeth
- Institute for Organic ChemistryDepartment of Chemistry and PharmacyUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
- Stratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Thomas Kinateder
- Institute for Biophysics and Physical BiochemistryRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Chitra Rajendran
- Institute for Biophysics and Physical BiochemistryRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Julian Nazet
- Institute for Biophysics and Physical BiochemistryRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Rainer Merkl
- Institute for Biophysics and Physical BiochemistryRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Reinhard Sterner
- Institute for Biophysics and Physical BiochemistryRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Burkhard König
- Institute for Organic ChemistryDepartment of Chemistry and PharmacyUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Andrea C. Kneuttinger
- Institute for Biophysics and Physical BiochemistryRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| |
Collapse
|
31
|
Phillips RS, Harris AP. Structural Basis of the Stereochemistry of Inhibition of Tryptophan Synthase by Tryptophan and Derivatives. Biochemistry 2021; 60:231-244. [PMID: 33428374 DOI: 10.1021/acs.biochem.0c00635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have examined the reaction of Salmonella enterica serovar typhimurium tryptophan (Trp) synthase α2β2 complex with l-Trp, d-Trp, oxindolyl-l-alanine (OIA), and dioxindolyl-l-alanine (DOA) in the presence of disodium (dl)-α-glycerol phosphate (GP), using stopped-flow spectrophotometry and X-ray crystallography. All structures contained the d-isomer of GP bound at the α-active site. (3S)-OIA reacts with the pyridoxal-5'-phosphate (PLP) of Trp synthase to form a mixture of external aldimine and quinonoid complexes. The α-carboxylate of OIA rotates about 90° to become planar with the PLP when the quinonoid complex is formed, resulting in a conformational change in the loop of residues 110-115. The COMM domain of the Trp synthase-OIA complex is found as a mixture of two conformations. The (3R)-diastereomer of DOA binds about 5-fold more tightly than (3S)-OIA and also forms a mixture of aldimine and quinonoid complexes. DOA forms an additional H-bond between the 3-OH of DOA and βLys-87. l-Trp does not form a covalent complex with the PLP of Trp synthase. However, d-Trp forms a mixture of two external aldimine complexes which differ in the orientation of the α-carboxylate. In one conformation, the α-carboxylate is in the plane of the PLP, while in the other conformation, the α-carboxylate is perpendicular to the PLP plane. These results confirm that the stereochemistry of the transient indolenine quinonoid intermediate in the mechanism of Trp synthase is (3S) and demonstrate the linkage between aldimine and quinonoid reaction intermediates in the β-active site and allosteric communications with the α-active site.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Austin P Harris
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
32
|
Liao L, Zhang Y, Wang Y, Fu Y, Zhang A, Qiu R, Yang S, Fang B. Construction and characterization of a novel glucose dehydrogenase-leucine dehydrogenase fusion enzyme for the biosynthesis of L-tert-leucine. Microb Cell Fact 2021; 20:3. [PMID: 33407464 PMCID: PMC7788806 DOI: 10.1186/s12934-020-01501-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022] Open
Abstract
Background Biosynthesis of l-tert-leucine (l-tle), a significant pharmaceutical intermediate, by a cofactor regeneration system friendly and efficiently is a worthful goal all the time. The cofactor regeneration system of leucine dehydrogenase (LeuDH) and glucose dehydrogenase (GDH) has showed great coupling catalytic efficiency in the synthesis of l-tle, however the multi-enzyme complex of GDH and LeuDH has never been constructed successfully. Results In this work, a novel fusion enzyme (GDH–R3–LeuDH) for the efficient biosynthesis of l-tle was constructed by the fusion of LeuDH and GDH mediated with a rigid peptide linker. Compared with the free enzymes, both the environmental tolerance and thermal stability of GDH–R3–LeuDH had a great improved since the fusion structure. The fusion structure also accelerated the cofactor regeneration rate and maintained the enzyme activity, so the productivity and yield of l-tle by GDH–R3–LeuDH was all enhanced by twofold. Finally, the space–time yield of l-tle catalyzing by GDH–R3–LeuDH whole cells could achieve 2136 g/L/day in a 200 mL scale system under the optimal catalysis conditions (pH 9.0, 30 °C, 0.4 mM of NAD+ and 500 mM of a substrate including trimethylpyruvic acid and glucose). Conclusions It is the first report about the fusion of GDH and LeuDH as the multi-enzyme complex to synthesize l-tle and reach the highest space–time yield up to now. These results demonstrated the great potential of the GDH–R3–LeuDH fusion enzyme for the efficient biosynthesis of l-tle.
Collapse
Affiliation(s)
- Langxing Liao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yonghui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.,College of Food and Biological Engineering, Jimei University, Xiamen, People's Republic of China
| | - Yali Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yousi Fu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Aihui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Ruodian Qiu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Shuhao Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China. .,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, Fujian, People's Republic of China.
| |
Collapse
|
33
|
Vanderstraeten J, Briers Y. Synthetic protein scaffolds for the colocalisation of co-acting enzymes. Biotechnol Adv 2020; 44:107627. [DOI: 10.1016/j.biotechadv.2020.107627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
|
34
|
Misra BB, Das V, Landi M, Abenavoli MR, Araniti F. Short-term effects of the allelochemical umbelliferone on Triticum durum L. metabolism through GC-MS based untargeted metabolomics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110548. [PMID: 32771160 DOI: 10.1016/j.plantsci.2020.110548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/21/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The present study used untargeted metabolomics to investigate the short-term metabolic changes induced in wheat seedlings by the specialized metabolite umbelliferone, an allelochemical. We used 10 day-old wheat seedlings treated with 104 μM umbelliferone over a time course experiment covering 6 time points (0 h, 6 h, 12 h, 24 h, 48 h, and 96 h), and compared the metabolomic changes to control (mock-treated) plants. Using gas chromatography mass spectrometry (GCMS)-based metabolomics, we obtained quantitative data on 177 metabolites that were derivatized (either derivatized singly or multiple times) or not, representing 139 non-redundant (unique) metabolites. Of these 139 metabolites, 118 were associated with a unique Human Metabolome Database (HMDB) identifier, while 113 were associated with a Kyoto Encyclopedia of Genes and Genomes (KEGG) identifier. Relative quantification of these metabolites across the time-course of umbelliferone treatment revealed 22 compounds (sugars, fatty acids, secondary metabolites, organic acids, and amino acids) that changed significantly (repeated measures ANOVA, P-value < 0.05) over time. Using multivariate partial least squares discriminant analysis (PLS-DA), we showed the grouping of samples based on time-course across the control and umbelliferone-treated plants, whereas the metabolite-metabolite Pearson correlations revealed tightly formed clusters of umbelliferone-derived metabolites, fatty acids, amino acids, and carbohydrates. Also, the time-course umbelliferone treatment revealed that phospho-l-serine, maltose, and dehydroquinic acid were the top three metabolites showing highest importance in discrimination among the time-points. Overall, the biochemical changes converge towards a mechanistic explanation of the plant metabolic responses induced by umbelliferone. In particular, the perturbation of metabolites involved in tryptophan metabolism, as well as the imbalance of the shikimate pathways, which are strictly interconnected, were significantly altered by the treatment, suggesting a possible mechanism of action of this natural compound.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, 27157, NC, USA.
| | - Vivek Das
- Novo Nordisk Research Center Seattle, Inc, Seattle, WA, USA
| | - M Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - M R Abenavoli
- Department AGRARIA, University Mediterranea of Reggio Calabria, Località Feo di Vito, SNC I-89124, Reggio Calabria RC, Italy
| | - Fabrizio Araniti
- Department AGRARIA, University Mediterranea of Reggio Calabria, Località Feo di Vito, SNC I-89124, Reggio Calabria RC, Italy.
| |
Collapse
|
35
|
Pyridoxal 5'-Phosphate-Dependent Enzymes at the Crossroads of Host-Microbe Tryptophan Metabolism. Int J Mol Sci 2020; 21:ijms21165823. [PMID: 32823705 PMCID: PMC7461572 DOI: 10.3390/ijms21165823] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
The chemical processes taking place in humans intersects the myriad of metabolic pathways occurring in commensal microorganisms that colonize the body to generate a complex biochemical network that regulates multiple aspects of human life. The role of tryptophan (Trp) metabolism at the intersection between the host and microbes is increasingly being recognized, and multiple pathways of Trp utilization in either direction have been identified with the production of a wide range of bioactive products. It comes that a dysregulation of Trp metabolism in either the host or the microbes may unbalance the production of metabolites with potential pathological consequences. The ability to redirect the Trp flux to restore a homeostatic production of Trp metabolites may represent a valid therapeutic strategy for a variety of pathological conditions, but identifying metabolic checkpoints that could be exploited to manipulate the Trp metabolic network is still an unmet need. In this review, we put forward the hypothesis that pyridoxal 5′-phosphate (PLP)-dependent enzymes, which regulate multiple pathways of Trp metabolism in both the host and in microbes, might represent critical nodes and that modulating the levels of vitamin B6, from which PLP is derived, might represent a metabolic checkpoint to re-orienteer Trp flux for therapeutic purposes.
Collapse
|
36
|
Sakhrani VV, Hilario E, Caulkins BG, Hatcher-Skeers ME, Fan L, Dunn MF, Mueller LJ. Backbone assignments and conformational dynamics in the S. typhimurium tryptophan synthase α-subunit from solution-state NMR. JOURNAL OF BIOMOLECULAR NMR 2020; 74:341-354. [PMID: 32415580 PMCID: PMC7451264 DOI: 10.1007/s10858-020-00320-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Backbone assignments for the isolated α-subunit of Salmonella typhimurium tryptophan synthase (TS) are reported based on triple resonance solution-state NMR experiments on a uniformly 2H,13C,15N-labeled sample. From the backbone chemical shifts, secondary structure and random coil index order parameters (RCI-S2) are predicted. Titration with the 3-indole-D-glycerol 3'-phosphate analog, N-(4'-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), leads to chemical shift perturbations indicative of conformational changes from which an estimate of the dissociation constant is obtained. Comparisons of the backbone chemical-shifts, RCI-S2 values, and site-specific relaxation times with and without F9 reveal allosteric changes including modulation in secondary structures and loop rigidity induced upon ligand binding. A comparison is made to the X-ray crystal structure of the α-subunit in the full TS αββα bi-enzyme complex and to two new X-ray crystal structures of the isolated TS α-subunit reported in this work.
Collapse
Affiliation(s)
- Varun V Sakhrani
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Eduardo Hilario
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Bethany G Caulkins
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Mary E Hatcher-Skeers
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Li Fan
- Department of Biochemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Michael F Dunn
- Department of Biochemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Leonard J Mueller
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
37
|
Five enzymes of the Arg/N-degron pathway form a targeting complex: The concept of superchanneling. Proc Natl Acad Sci U S A 2020; 117:10778-10788. [PMID: 32366662 DOI: 10.1073/pnas.2003043117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arg/N-degron pathway targets proteins for degradation by recognizing their N-terminal (Nt) residues. If a substrate bears, for example, Nt-Asn, its targeting involves deamidation of Nt-Asn, arginylation of resulting Nt-Asp, binding of resulting (conjugated) Nt-Arg to the UBR1-RAD6 E3-E2 ubiquitin ligase, ligase-mediated synthesis of a substrate-linked polyubiquitin chain, its capture by the proteasome, and substrate's degradation. We discovered that the human Nt-Asn-specific Nt-amidase NTAN1, Nt-Gln-specific Nt-amidase NTAQ1, arginyltransferase ATE1, and the ubiquitin ligase UBR1-UBE2A/B (or UBR2-UBE2A/B) form a complex in which NTAN1 Nt-amidase binds to NTAQ1, ATE1, and UBR1/UBR2. In addition, NTAQ1 Nt-amidase and ATE1 arginyltransferase also bind to UBR1/UBR2. In the yeast Saccharomyces cerevisiae, the Nt-amidase, arginyltransferase, and the double-E3 ubiquitin ligase UBR1-RAD6/UFD4-UBC4/5 are shown to form an analogous targeting complex. These complexes may enable substrate channeling, in which a substrate bearing, for example, Nt-Asn, would be captured by a complex-bound Nt-amidase, followed by sequential Nt modifications of the substrate and its polyubiquitylation at an internal Lys residue without substrate's dissociation into the bulk solution. At least in yeast, the UBR1/UFD4 ubiquitin ligase interacts with the 26S proteasome, suggesting an even larger Arg/N-degron-targeting complex that contains the proteasome as well. In addition, specific features of protein-sized Arg/N-degron substrates, including their partly sequential and partly nonsequential enzymatic modifications, led us to a verifiable concept termed "superchanneling." In superchanneling, the synthesis of a substrate-linked poly-Ub chain can occur not only after a substrate's sequential Nt modifications, but also before them, through a skipping of either some or all of these modifications within a targeting complex.
Collapse
|
38
|
Han J, Luo P, Wang L, Wu J, Li C, Wang Y. Construction of a Multienzymatic Cascade Reaction System of Coimmobilized Hybrid Nanoflowers for Efficient Conversion of Starch into Gluconic Acid. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15023-15033. [PMID: 32156109 DOI: 10.1021/acsami.9b21511] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Introducing an efficient method for the rapid conversion of starch into gluconic acid is desirable to solve the current problems existing in traditional gluconic acid preparation processes. In this study, a robust and easy-to-use multienzymatic cascade reaction system of coimmobilized GA@GOx hybrid nanoflowers with a specific spatial distribution of enzymes by compartmentalization was constructed and applied to catalyze starch to gluconic acid in one pot. In the preparation processes, the glucose oxidase (GOx) hybrid nanoflowers were first synthesized via a self-assembly mechanism, and then, glucoamylase (GA) was adsorbed on the surface of GOx hybrid nanoflowers through the interaction of Cu2+ and amino acids of GA. The optimum preparation conditions and reaction parameters of the GA@GOx hybrid nanoflowers had been investigated. In addition, the morphology, composition, and crystallization of the GA@GOx hybrid nanoflowers had been fully studied. Based on the lower Km, the GA@GOx hybrid nanoflowers with compartmentalization had a better effect of the substrate channeling on the catalytic efficiency. The final results indicated that the overall enzyme activity of the GA@GOx hybrid nanoflowers increased by 1.5 times, and the conversion efficiency was 92.12% within 80 min significantly superior to the free multienzyme system, which showed the outstanding conversion of starch into gluconic acid in one pot.
Collapse
Affiliation(s)
- Juan Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Peng Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiacong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
39
|
Michalska K, Chang C, Maltseva NI, Jedrzejczak R, Robertson GT, Gusovsky F, McCarren P, Schreiber SL, Nag PP, Joachimiak A. Allosteric inhibitors of Mycobacterium tuberculosis tryptophan synthase. Protein Sci 2020; 29:779-788. [PMID: 31930594 PMCID: PMC7020977 DOI: 10.1002/pro.3825] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Global dispersion of multidrug resistant bacteria is very common and evolution of antibiotic-resistance is occurring at an alarming rate, presenting a formidable challenge for humanity. The development of new therapeuthics with novel molecular targets is urgently needed. Current drugs primarily affect protein, nucleic acid, and cell wall synthesis. Metabolic pathways, including those involved in amino acid biosynthesis, have recently sparked interest in the drug discovery community as potential reservoirs of such novel targets. Tryptophan biosynthesis, utilized by bacteria but absent in humans, represents one of the currently studied processes with a therapeutic focus. It has been shown that tryptophan synthase (TrpAB) is required for survival of Mycobacterium tuberculosis in macrophages and for evading host defense, and therefore is a promising drug target. Here we present crystal structures of TrpAB with two allosteric inhibitors of M. tuberculosis tryptophan synthase that belong to sulfolane and indole-5-sulfonamide chemical scaffolds. We compare our results with previously reported structural and biochemical studies of another, azetidine-containing M. tuberculosis tryptophan synthase inhibitor. This work shows how structurally distinct ligands can occupy the same allosteric site and make specific interactions. It also highlights the potential benefit of targeting more variable allosteric sites of important metabolic enzymes.
Collapse
Affiliation(s)
- Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and EngineeringUniversity of ChicagoChicagoIllinois
- Structural Biology Center, X‐ray Science DivisionArgonne National LaboratoryArgonneIllinois
| | - Changsoo Chang
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and EngineeringUniversity of ChicagoChicagoIllinois
- Structural Biology Center, X‐ray Science DivisionArgonne National LaboratoryArgonneIllinois
| | - Natalia I. Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and EngineeringUniversity of ChicagoChicagoIllinois
- Structural Biology Center, X‐ray Science DivisionArgonne National LaboratoryArgonneIllinois
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and EngineeringUniversity of ChicagoChicagoIllinois
- Structural Biology Center, X‐ray Science DivisionArgonne National LaboratoryArgonneIllinois
| | - Gregory T. Robertson
- Colorado State UniversityMycobacteria Research Laboratories, Department of Microbiology, Immunology and PathologyFort CollinsColorado
| | | | | | | | - Partha P. Nag
- Broad Institute of MIT and HarvardCambridgeMassachusetts
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and EngineeringUniversity of ChicagoChicagoIllinois
- Structural Biology Center, X‐ray Science DivisionArgonne National LaboratoryArgonneIllinois
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoIllinois
| |
Collapse
|
40
|
Wang T, Yang N, Liang C, Xu H, An Y, Xiao S, Zheng M, Liu L, Wang G, Nie L. Detecting Protein-Protein Interaction Based on Protein Fragment Complementation Assay. Curr Protein Pept Sci 2020; 21:598-610. [PMID: 32053071 DOI: 10.2174/1389203721666200213102829] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/22/2022]
Abstract
Proteins are the most critical executive molecules by responding to the instructions stored in the genetic materials in any form of life. More frequently, proteins do their jobs by acting as a roleplayer that interacts with other protein(s), which is more evident when the function of a protein is examined in the real context of a cell. Identifying the interactions between (or amongst) proteins is very crucial for the biochemistry investigation of an individual protein and for the attempts aiming to draw a holo-picture for the interacting members at the scale of proteomics (or protein-protein interactions mapping). Here, we introduced the currently available reporting systems that can be used to probe the interaction between candidate protein pairs based on the fragment complementation of some particular proteins. Emphasis was put on the principles and details of experimental design. These systems are dihydrofolate reductase (DHFR), β-lactamase, tobacco etch virus (TEV) protease, luciferase, β- galactosidase, GAL4, horseradish peroxidase (HRP), focal adhesion kinase (FAK), green fluorescent protein (GFP), and ubiquitin.
Collapse
Affiliation(s)
- Tianwen Wang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Ningning Yang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Chen Liang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Hongjv Xu
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Yafei An
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Sha Xiao
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Mengyuan Zheng
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Lu Liu
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Gaozhan Wang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Lei Nie
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
41
|
Michalska K, Kowiel M, Bigelow L, Endres M, Gilski M, Jaskolski M, Joachimiak A. 3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase. Acta Crystallogr D Struct Biol 2020; 76:166-175. [PMID: 32038047 PMCID: PMC7008512 DOI: 10.1107/s2059798320000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/08/2020] [Indexed: 02/10/2023] Open
Abstract
Tryptophan synthase catalyzes the last two steps of tryptophan biosynthesis in plants, fungi and bacteria. It consists of two protein chains, designated α and β, encoded by trpA and trpB genes, that function as an αββα complex. Structural and functional features of tryptophan synthase have been extensively studied, explaining the roles of individual residues in the two active sites in catalysis and allosteric regulation. TrpA serves as a model for protein-folding studies. In 1969, Jackson and Yanofsky observed that the typically monomeric TrpA forms a small population of dimers. Dimerization was postulated to take place through an exchange of structural elements of the monomeric chains, a phenomenon later termed 3D domain swapping. The structural details of the TrpA dimer have remained unknown. Here, the crystal structure of the Streptococcus pneumoniae TrpA homodimer is reported, demonstrating 3D domain swapping in a TIM-barrel fold for the first time. The N-terminal domain comprising the H0-S1-H1-S2 elements is exchanged, while the hinge region corresponds to loop L2 linking strand S2 to helix H2'. The structural elements S2 and L2 carry the catalytic residues Glu52 and Asp63. As the S2 element is part of the swapped domain, the architecture of the catalytic apparatus in the dimer is recreated from two protein chains. The homodimer interface overlaps with the α-β interface of the tryptophan synthase αββα heterotetramer, suggesting that the 3D domain-swapped dimer cannot form a complex with the β subunit. In the crystal, the dimers assemble into a decamer comprising two pentameric rings.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Marcin Kowiel
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Lance Bigelow
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Michael Endres
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Miroslaw Gilski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
42
|
Saha J, Saha BK, Pal Sarkar M, Roy V, Mandal P, Pal A. Comparative Genomic Analysis of Soil Dwelling Bacteria Utilizing a Combinational Codon Usage and Molecular Phylogenetic Approach Accentuating on Key Housekeeping Genes. Front Microbiol 2019; 10:2896. [PMID: 31921071 PMCID: PMC6928123 DOI: 10.3389/fmicb.2019.02896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/02/2019] [Indexed: 01/02/2023] Open
Abstract
Soil is a diversified and complex ecological niche, home to a myriad of microorganisms particularly bacteria. The physico-chemical complexities of soil results in a plethora of physiological variations to exist within the different types of soil dwelling bacteria, giving rise to a wide variation in genome structure and complexity. This serves as an attractive proposition to analyze and compare the genome of a large number soil bacteria to comprehend their genome complexity and evolution. In this study a combination of codon usage and molecular phylogenetics of the whole genome and key housekeeping genes like infB (translation initiation factor 2), trpB (tryptophan synthase, beta subunit), atpD (ATP synthase, beta subunit), and rpoB (RNA polymerase, beta subunit) of 92 soil bacterial species spread across the entire eubacterial domain and residing in different soil types was performed. The results indicated the direct relationship of genome size with codon bias and coding frequency in the studied bacteria. The codon usage profile demonstrated by the gene trpB was found to be relatively different from the rest of the housekeeping genes with a large number of bacteria having a greater percentage of genes with Nc values less than the Nc of trpB. The results from the overall codon usage bias profile also depicted that the codon usage bias in the key housekeeping genes of soil bacteria was majorly due to selectional pressure and not mutation. The analysis of hydrophobicity of the gene product encoded by the rpoB coding sequences demonstrated tight clustering across all the soil bacteria suggesting conservation of protein structure for maintenance of form and function. The phylogenetic affinities inferred using 16S rRNA gene and the housekeeping genes demonstrated conflicting signals with trpB gene being the noisiest one. The housekeeping gene atpD was found to depict the least amount of evolutionary change in the soil bacteria considered in this study except in two Clostridium species. The phylogenetic and codon usage analysis of the soil bacteria consistently demonstrated the relatedness of Azotobacter chroococcum with different species of the genus Pseudomonas.
Collapse
Affiliation(s)
- Jayanti Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Barnan K. Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Monalisha Pal Sarkar
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Vivek Roy
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Parimal Mandal
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Ayon Pal
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| |
Collapse
|
43
|
Synthetic Protein Scaffolding at Biological Membranes. Trends Biotechnol 2019; 38:432-446. [PMID: 31718802 DOI: 10.1016/j.tibtech.2019.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Protein scaffolding is a natural phenomenon whereby proteins colocalize into macromolecular complexes via specific protein-protein interactions. In the case of metabolic enzymes, protein scaffolding drives metabolic flux through specific pathways by colocalizing enzyme active sites. Synthetic protein scaffolding is increasingly used as a mechanism to improve product specificity and yields in metabolic engineering projects. To date, synthetic scaffolding has focused primarily on soluble enzyme systems, but many metabolic pathways for high-value secondary metabolites depend on membrane-bound enzymes. The compositional diversity of biological membranes and general challenges associated with modifying membrane proteins complicate scaffolding with membrane-requiring enzymes. Several recent studies have introduced new approaches to protein scaffolding at membrane surfaces, with notable success in improving product yields from specific metabolic pathways.
Collapse
|
44
|
Zhang D, Lazim R. Exploring indole channeling in tryptophan synthase using steered molecular dynamics simulation. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Teixeira CSS, Ramos MJ, Sousa SF, Cerqueira NMFSA. Solving the Catalytic Mechanism of Tryptophan Synthase: an Emergent Drug Target in the Treatment of Tuberculosis. ChemCatChem 2019. [DOI: 10.1002/cctc.201901505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carla S. Silva Teixeira
- UCIBIO@REQUIMTEBioSIMDepartamento de BiomedicinaFaculdade de MedicinaUniversidade do Porto Porto 4200-319 Portugal
| | - Maria J. Ramos
- UCIBIO@REQUIMTEDepartamento de Química e BioquímicaFaculdade de CiênciasUniversidade do Porto Porto 4169-007 Portugal
| | - Sérgio F. Sousa
- UCIBIO@REQUIMTEBioSIMDepartamento de BiomedicinaFaculdade de MedicinaUniversidade do Porto Porto 4200-319 Portugal
| | - Nuno M. F. S. A. Cerqueira
- UCIBIO@REQUIMTEBioSIMDepartamento de BiomedicinaFaculdade de MedicinaUniversidade do Porto Porto 4200-319 Portugal
| |
Collapse
|
46
|
Metagenomic analysis of relationships between the denitrification process and carbon metabolism in a bioaugmented full-scale tannery wastewater treatment plant. World J Microbiol Biotechnol 2019; 35:149. [PMID: 31549239 DOI: 10.1007/s11274-019-2716-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023]
Abstract
The goal of this study was to investigate the relationship between the denitrification process and carbon metabolism in a full-scale tannery wastewater treatment plant bioaugmented with the microbial consortium BM-S-1. The metagenomic analysis of the microbial community showed that Brachymonas denitrificans, a known denitrifier, was present at a high level in the treatment stages of buffering (B), primary aeration (PA), and sludge digestion (SD). The occurrences of the amino acid-degrading enzymes alpha ketoglutarate dehydrogenase (α-KGDH) and tryptophan synthase were highly correlated with the presence of denitrification genes, such as napA, narG, nosZ and norB. The occurrence of glutamate dehydrogenase (GDH) was also highly paralleled with the occurrence of denitrification genes such as napA, narG, and norZ. The denitrification genes (nosZ, narG, napA, norB and nrfA) and amino acid degradation enzymes (tryptophan synthase, α-KGDH and pyridoxal phosphate dependent enzymes) were observed at high levels in B. This indicates that degradation of amino acids and denitrification of nitrate may potentially occur in B. The high concentrations of the fatty acid degradation enzyme groups (enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and β-ketothiolase) were observed together with the denitrification genes, such as napA, narG and nosZ. Phospholipase/carboxylesterase, enoyl-CoA hydratase/isomerase, acyl-CoA dehydrogenase, phenylacetate degradation enzyme and 3-hydroxyacyl-CoA dehydrogenase 2 were also dominant in B. All these results clearly indicate that the denitrification pathways are potentially linked to the degradation pathways of amino acids and fatty acids whose degradation products go through the TCA cycle, generating the NADH that is used as electron donors for denitrification.
Collapse
|
47
|
Romney DK, Sarai NS, Arnold FH. Nitroalkanes as Versatile Nucleophiles for Enzymatic Synthesis of Noncanonical Amino Acids. ACS Catal 2019; 9:8726-8730. [PMID: 33274115 DOI: 10.1021/acscatal.9b02089] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-C bond-forming reactions often require nucleophilic carbon species rarely compatible with aqueous reaction media, thus restricting their appearance in biocatalysis. Here we report the use of nitroalkanes as a structurally versatile class of nucleophilic substrates for C-C bond formation catalyzed by variants of the β-subunit of tryptophan synthase (TrpB). The enzymes accept a wide range of nitroalkanes to form noncanonical amino acids, here the nitro group can serve as a handle for further modification. Using nitroalkane nucleophiles greatly expands the scope of compounds made by TrpB variants and establishes nitroalkanes as a valuable substrate class for biocatalytic C-C bond formation.
Collapse
Affiliation(s)
- David K. Romney
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Nicholas S. Sarai
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
48
|
Michalska K, Gale J, Joachimiak G, Chang C, Hatzos-Skintges C, Nocek B, Johnston SE, Bigelow L, Bajrami B, Jedrzejczak RP, Wellington S, Hung DT, Nag PP, Fisher SL, Endres M, Joachimiak A. Conservation of the structure and function of bacterial tryptophan synthases. IUCRJ 2019; 6:649-664. [PMID: 31316809 PMCID: PMC6608616 DOI: 10.1107/s2052252519005955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Tryptophan biosynthesis is one of the most characterized processes in bacteria, in which the enzymes from Salmonella typhimurium and Escherichia coli serve as model systems. Tryptophan synthase (TrpAB) catalyzes the final two steps of tryptophan biosynthesis in plants, fungi and bacteria. This pyridoxal 5'-phosphate (PLP)-dependent enzyme consists of two protein chains, α (TrpA) and β (TrpB), functioning as a linear αββα heterotetrameric complex containing two TrpAB units. The reaction has a complicated, multistep mechanism resulting in the β-replacement of the hydroxyl group of l-serine with an indole moiety. Recent studies have shown that functional TrpAB is required for the survival of pathogenic bacteria in macrophages and for evading host defense. Therefore, TrpAB is a promising target for drug discovery, as its orthologs include enzymes from the important human pathogens Streptococcus pneumoniae, Legionella pneumophila and Francisella tularensis, the causative agents of pneumonia, legionnaires' disease and tularemia, respectively. However, specific biochemical and structural properties of the TrpABs from these organisms have not been investigated. To fill the important phylogenetic gaps in the understanding of TrpABs and to uncover unique features of TrpAB orthologs to spearhead future drug-discovery efforts, the TrpABs from L. pneumophila, F. tularensis and S. pneumoniae have been characterized. In addition to kinetic properties and inhibitor-sensitivity data, structural information gathered using X-ray crystallo-graphy is presented. The enzymes show remarkable structural conservation, but at the same time display local differences in both their catalytic and allosteric sites that may be responsible for the observed differences in catalysis and inhibitor binding. This functional dissimilarity may be exploited in the design of species-specific enzyme inhibitors.
Collapse
Affiliation(s)
- Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Jennifer Gale
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Grazyna Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Changsoo Chang
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Catherine Hatzos-Skintges
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
| | - Boguslaw Nocek
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | - Lance Bigelow
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Besnik Bajrami
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Robert P. Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | - Deborah T. Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Partha P. Nag
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | | | - Michael Endres
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
49
|
Ammonia generation by tryptophan synthase drives a key genetic difference between genital and ocular Chlamydia trachomatis isolates. Proc Natl Acad Sci U S A 2019; 116:12468-12477. [PMID: 31097582 DOI: 10.1073/pnas.1821652116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A striking difference between genital and ocular clinical isolates of Chlamydia trachomatis is that only the former express a functional tryptophan synthase and therefore can synthesize tryptophan by indole salvage. Ocular isolates uniformly cannot use indole due to inactivating mutations within tryptophan synthase, indicating a selection against maintaining this enzyme in the ocular environment. Here, we demonstrate that this selection occurs in two steps. First, specific indole derivatives, produced by the human gut microbiome and present in serum, rapidly induce expression of C. trachomatis tryptophan synthase, even under conditions of tryptophan sufficiency. We demonstrate that these indole derivatives function by acting as de-repressors of C. trachomatis TrpR. Second, trp operon de-repression is profoundly deleterious when infected cells are in an indole-deficient environment, because in the absence of indole, tryptophan synthase deaminates serine to pyruvate and ammonia. We have used biochemical and genetic approaches to demonstrate that expression of wild-type tryptophan synthase is required for the bactericidal production of ammonia. Pertinently, although these indole derivatives de-repress the trpRBA operon of C. trachomatis strains with trpA or trpB mutations, no ammonia is produced, and no deleterious effects are observed. Our studies demonstrate that tryptophan synthase can catalyze the ammonia-generating β-elimination reaction within any live bacterium. Our results also likely explain previous observations demonstrating that the same indole derivatives inhibit the growth of other pathogenic bacterial species, and why high serum levels of these indole derivatives are favorable for the prognosis of diseased conditions associated with bacterial dysbiosis.
Collapse
|
50
|
Affiliation(s)
- Ee Taek Hwang
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Seonbyul Lee
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| |
Collapse
|