1
|
Sharma R, Mishra A, Bhardwaj M, Singh G, Indira Harahap LV, Vanjani S, Pan CH, Nepali K. Medicinal chemistry breakthroughs on ATM, ATR, and DNA-PK inhibitors as prospective cancer therapeutics. J Enzyme Inhib Med Chem 2025; 40:2489720. [PMID: 40256842 PMCID: PMC12013171 DOI: 10.1080/14756366.2025.2489720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
This review discusses the critical roles of Ataxia Telangiectasia Mutated Kinase (ATM), ATM and Rad3-related Kinase (ATR), and DNA-dependent protein kinase (DNA-PK) in the DNA damage response (DDR) and their implications in cancer. Emphasis is placed on the intricate interplay between these kinases, highlighting their collaborative and distinct roles in maintaining genomic integrity and promoting tumour development under dysregulated conditions. Furthermore, the review covers ongoing clinical trials, patent literature, and medicinal chemistry campaigns on ATM/ATR/DNA-PK inhibitors as antitumor agents. Notably, the medicinal chemistry campaigns employed robust drug design strategies and aimed at assembling new structural templates with amplified DDR kinase inhibitory ability, as well as outwitting the pharmacokinetic liabilities of the existing DDR kinase inhibitors. Given the success attained through such endeavours, the clinical pipeline of DNA repair kinase inhibitors is anticipated to be supplemented by a reasonable number of tractable entries (DDR kinase inhibitors) soon.
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Monika Bhardwaj
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | | | - Sakshi Vanjani
- Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Chun Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Bártová E, Stixová L, Svobodová Kovaříková A. N4-acetylcytidine and other RNA modifications in epitranscriptome: insight into DNA repair and cancer development. Epigenomics 2025; 17:411-422. [PMID: 40040517 PMCID: PMC11980489 DOI: 10.1080/17501911.2025.2473308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
N4-acetylcytidine (ac4C) is a post-transcriptional RNA modification that plays a crucial role in the epitranscriptome, influencing gene expression and cellular function. This modification occurs at the cytosine base, where an acetyl group is installed to the nitrogen at the 4th position (N4). This co-transcription modification affects RNA stability, RNA structure, and translation efficiency. Recent studies have uncovered a potential link between RNA modifications and DNA repair mechanisms, suggesting that ac4C-modified or methylated RNAs may interact with factors involved in DNA repair pathways; thus, influencing the cellular response to DNA damage. Dysregulation of modified RNAs, including ac4C RNA, has been implicated in cancer development, where aberrant levels of these RNAs may contribute to oncogenic transformation by altering genome stability and the expression of key genes regulating cell proliferation, cell cycle progression, and apoptosis. Understanding the dynamics of modified RNAs offers promising insights into the role of epitranscriptome in DNA repair processes and cancer treatment.
Collapse
Affiliation(s)
- Eva Bártová
- Department of Cell Biology and Epigenetics, Institute of Biophysics, the Czech Academy of Sciences, Brno, the Czech Republic
| | - Lenka Stixová
- Department of Cell Biology and Epigenetics, Institute of Biophysics, the Czech Academy of Sciences, Brno, the Czech Republic
| | - Alena Svobodová Kovaříková
- Department of Cell Biology and Epigenetics, Institute of Biophysics, the Czech Academy of Sciences, Brno, the Czech Republic
| |
Collapse
|
3
|
Yang T, Zou M, Xie Y, Zhang Y, Wang K, Jiang S, Zou Q. STEAP4 with copper reductase activity suppresses tumorigenesis by regulating the cell cycle in hepatocellular carcinoma cells. Cell Div 2024; 19:35. [PMID: 39719623 DOI: 10.1186/s13008-024-00140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Abnormal expression of six-transmembrane epithelial antigen of prostate 4 (STEAP4) has been implicated in the carcinogenesis of hepatocellular carcinoma (HCC). However, the biological role and regulatory mechanisms of STEAP4 in HCC remain unclear. METHODS AND RESULTS Here, we analyzed STEAP4 expression levels and differentially expressed genes (DEGs) between STEAP4 high- and low-expression groups using multiple databases. Proliferation assays, 5-ethynyl-2'-deoxyuridine (EdU) assays, propidium iodide (PI) flow cytometry, and colony formation assays were conducted to assess the effects of STEAP4 on HCC cell proliferation, cell cycle progression, and clonogenic capacity. STEAP4 was downregulated in HCC tumor tissues, with lower expression associated with poorer overall survival (OS) and disease-free survival (DFS) in patients. Functional network analysis suggested that STEAP4 regulates cell cycle signaling, with tumor sections showing a negative correlation between STEAP4 and cell cycle proteins. Overexpression of STEAP4, combined with non-cytotoxic copper exposure in the HepG2 cell line, reduced proliferation and clonogenicity, induced cell cycle arrest, and downregulated the mRNA and protein levels of cell cycle-regulating genes. A predictive model based on STEAP4 and cell cycle gene demonstrated prognostic value in HCC patients. CONCLUSIONS Our results lay a foundation for further study of the cell cycle regulatory role of STEAP4 with Cu2+ reductase activity in HCC, indicating that STEAP4 may be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Ting Yang
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou, 510630, Guangdong, China
| | - Minhong Zou
- Department of Ultrasonic Diagnosis, Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou, 510630, Guangdong, China
| | - Yujie Xie
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou, 510630, Guangdong, China
| | - Yong Zhang
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou, 510630, Guangdong, China.
| | - Kun Wang
- Department of Joint Surgery and Orthopedic Trauma, Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou, 510630, Guangdong, China.
| | - Shihai Jiang
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103, Leipzig, Germany.
| | - Qiong Zou
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou, 510630, Guangdong, China.
| |
Collapse
|
4
|
Palermo V, Malacaria E, Semproni M, Camerini S, Casella M, Perdichizzi B, Valenzisi P, Sanchez M, Marini F, Pellicioli A, Franchitto A, Pichierri P. Switch-like phosphorylation of WRN integrates end-resection with RAD51 metabolism at collapsed replication forks. Nucleic Acids Res 2024; 52:12334-12350. [PMID: 39315694 PMCID: PMC11551760 DOI: 10.1093/nar/gkae807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Replication-dependent DNA double-strand breaks are harmful lesions preferentially repaired by homologous recombination (HR), a process that requires processing of DNA ends to allow RAD51-mediated strand invasion. End resection and subsequent repair are two intertwined processes, but the mechanism underlying their execution is still poorly appreciated. The WRN helicase is one of the crucial factors for end resection and is instrumental in selecting the proper repair pathway. Here, we reveal that ordered phosphorylation of WRN by the CDK1, ATM and ATR kinases defines a complex regulatory layer essential for correct long-range end resection, connecting it to repair by HR. We establish that long-range end resection requires an ATM-dependent phosphorylation of WRN at Ser1058 and that phosphorylation at Ser1141, together with dephosphorylation at the CDK1 site Ser1133, is needed for the proper metabolism of RAD51 foci and RAD51-dependent repair. Collectively, our findings suggest that regulation of WRN by multiple kinases functions as a molecular switch to allow timely execution of end resection and repair at replication-dependent DNA double-strand breaks.
Collapse
Affiliation(s)
- Valentina Palermo
- Department of Environment and Health, Mechanisms, Biomarkers and Models Section, Genome Stability Group, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eva Malacaria
- Department of Environment and Health, Mechanisms, Biomarkers and Models Section, Genome Stability Group, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maurizio Semproni
- Department of Environment and Health, Mechanisms, Biomarkers and Models Section, Genome Stability Group, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Serena Camerini
- FAST, Core Facilities Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marialuisa Casella
- FAST, Core Facilities Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Benedetta Perdichizzi
- Department of Environment and Health, Mechanisms, Biomarkers and Models Section, Genome Stability Group, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Pasquale Valenzisi
- Department of Environment and Health, Mechanisms, Biomarkers and Models Section, Genome Stability Group, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Massimo Sanchez
- FAST, Core Facilities Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Federica Marini
- Department of Biosciences, Genomic Instability and Human Pathologies Section, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Achille Pellicioli
- Department of Biosciences, Genomic Instability and Human Pathologies Section, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Annapaola Franchitto
- Department of Environment and Health, Mechanisms, Biomarkers and Models Section, Genome Stability Group, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Pietro Pichierri
- Department of Environment and Health, Mechanisms, Biomarkers and Models Section, Genome Stability Group, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d’Oro 305, 00134 Rome, Italy
| |
Collapse
|
5
|
Chen C, Li P, Fan G, Yang E, Jing S, Shi Y, Gong Y, Zhang L, Wang Z. Role of TRIP13 in human cancer development. Mol Biol Rep 2024; 51:1088. [PMID: 39436503 DOI: 10.1007/s11033-024-10012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
As an AAA + ATPase, thyroid hormone receptor interacting protein 13 (TRIP13) primarily functions in DNA double-strand break repair, chromosome recombination, and cell cycle checkpoint regulation; aberrant expression of TRIP13 can result in chromosomal instability (CIN). According to recent research, TRIP13 is aberrantly expressed in a variety of cancers, and a patient's poor prognosis and tumor stage are strongly correlated with high expression of TRIP13. Tumor cell and subcutaneous xenograft growth can be markedly inhibited by TRIP13 knockdown or TRIP13 inhibitor administration. In the initiation and advancement of human malignancies, TRIP13 seems to function as an oncogene. Based on available data, TRIP13 may function as a biological target and biomarker for cancer. The creation of inhibitors that specifically target TRIP13 may present novel approaches to treating cancer.
Collapse
Affiliation(s)
- Chaohu Chen
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Pan Li
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Guangrui Fan
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Enguang Yang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Suoshi Jing
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Yibo Shi
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Yuwen Gong
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Luyang Zhang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Zhiping Wang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China.
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China.
| |
Collapse
|
6
|
Barnieh FM, Morais GR, Loadman PM, Falconer RA, El‐Khamisy SF. Hypoxia-Responsive Prodrug of ATR Inhibitor, AZD6738, Selectively Eradicates Treatment-Resistant Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403831. [PMID: 38976561 PMCID: PMC11425890 DOI: 10.1002/advs.202403831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/31/2024] [Indexed: 07/10/2024]
Abstract
Targeted therapy remains the future of anti-cancer drug development, owing to the lack of specificity of current treatments which lead to damage in healthy normal tissues. ATR inhibitors have in recent times demonstrated promising clinical potential, and are currently being evaluated in the clinic. However, despite the considerable optimism for clinical success of these inhibitors, reports of associated normal tissues toxicities remain a concern and can compromise their utility. Here, ICT10336 is reported, a newly developed hypoxia-responsive prodrug of ATR inhibitor, AZD6738, which is hypoxia-activated and specifically releases AZD6738 only in hypoxic conditions, in vitro. This hypoxia-selective release of AZD6738 inhibited ATR activation (T1989 and S428 phosphorylation) and subsequently abrogated HIF1a-mediated adaptation of hypoxic cancers cells, thus selectively inducing cell death in 2D and 3D cancer models. Importantly, in normal tissues, ICT10336 is demonstrated to be metabolically stable and less toxic to normal cells than its active parent agent, AZD6738. In addition, ICT10336 exhibited a superior and efficient multicellular penetration ability in 3D tumor models, and selectively eradicated cells at the hypoxic core compared to AZD6738. In summary, the preclinical data demonstrate a new strategy of tumor-targeted delivery of ATR inhibitors with significant potential of enhancing the therapeutic index.
Collapse
Affiliation(s)
- Francis M. Barnieh
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Goreti Ribeiro Morais
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Paul M. Loadman
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Robert A. Falconer
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Sherif F. El‐Khamisy
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
- School of Biosciences, the Healthy Lifespan Institute and the Institute of NeuroscienceUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| |
Collapse
|
7
|
Mu A, Okamoto Y, Katsuki Y, Takata M. The role of SLFN11 in DNA replication stress response and its implications for the Fanconi anemia pathway. DNA Repair (Amst) 2024; 141:103733. [PMID: 39096698 DOI: 10.1016/j.dnarep.2024.103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/26/2024] [Accepted: 07/19/2024] [Indexed: 08/05/2024]
Abstract
Fanconi anemia (FA) is a hereditary disorder characterized by a deficiency in the repair of DNA interstrand crosslinks and the response to replication stress. Endogenous DNA damage, most likely caused by aldehydes, severely affects hematopoietic stem cells in FA, resulting in progressive bone marrow failure and the development of leukemia. Recent studies revealed that expression levels of SLFN11 affect the replication stress response and are a strong determinant in cell killing by DNA-damaging cancer chemotherapy. Because SLFN11 is highly expressed in the hematopoietic system, we speculated that SLFN11 may have a significant role in FA pathophysiology. Indeed, we found that DNA damage sensitivity in FA cells is significantly mitigated by the loss of SLFN11 expression. Mechanistically, we demonstrated that SLFN11 destabilizes the nascent DNA strands upon replication fork stalling. In this review, we summarize our work regarding an interplay between SLFN11 and the FA pathway, and the role of SLFN11 in the response to replication stress.
Collapse
Affiliation(s)
- Anfeng Mu
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan.
| | - Yusuke Okamoto
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Katsuki
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan.
| |
Collapse
|
8
|
Li C, Fan S, Li P, Bai Y, Wang Y, Cui Y, Li M, Wang R, Shao Y, Wang Y, Zheng S, Wang R, Gao L, Li M, Zheng Y, Wang F, Gao S, Feng S, Wang J, Qu X, Li X. A sophisticated mechanism governs Pol ζ activity in response to replication stress. Nat Commun 2024; 15:7562. [PMID: 39215012 PMCID: PMC11364643 DOI: 10.1038/s41467-024-52112-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
DNA polymerase ζ (Pol ζ) plays an essential role in replicating damaged DNA templates but contributes to mutagenesis due to its low fidelity. Therefore, ensuring tight control of Pol ζ's activity is critical for continuous and accurate DNA replication, yet the specific mechanisms remain unclear. This study reveals a regulation mechanism of Pol ζ activity in human cells. Under normal conditions, an autoinhibition mechanism keeps the catalytic subunit, REV3L, inactive. Upon encountering replication stress, however, ATR-mediated phosphorylation of REV3L's S279 cluster activates REV3L and triggers its degradation via a caspase-mediated pathway. This regulation confines the activity of Pol ζ, balancing its essential role against its mutations causing potential during replication stress. Overall, our findings elucidate a control scheme that fine tunes the low-fidelity polymerase activity of Pol ζ under challenging replication scenarios.
Collapse
Affiliation(s)
- Chun Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Shuchen Fan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Pan Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuzhen Bai
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ye Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yueyun Cui
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Mengdi Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ruru Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuan Shao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yingying Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Shuo Zheng
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Rong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Lijun Gao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Miaomiao Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuanyuan Zheng
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Fengting Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Sihang Gao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Shiguo Feng
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jianing Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xinqi Qu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xialu Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
9
|
Di Biagi L, Marozzi G, Malacaria E, Honda M, Aiello FA, Valenzisi P, Spies M, Franchitto A, Pichierri P. RAD52 prevents accumulation of Polα -dependent replication gaps at perturbed replication forks in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.12.536536. [PMID: 37090680 PMCID: PMC10120653 DOI: 10.1101/2023.04.12.536536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Replication gaps can arise as a consequence of perturbed DNA replication and their accumulation might undermine the stability of the genome. Loss of RAD52, a protein involved in the regulation of fork reversal, promotes accumulation of parental ssDNA gaps during replication perturbation. Here, we demonstrate that this is due to the engagement of Polα downstream of the extensive degradation of perturbed replication forks after their reversal, and is not dependent on PrimPol. Polα is hyper-recruited at parental ssDNA in the absence of RAD52, and this recruitment is dependent on fork reversal enzymes and RAD51. Of note, we report that the interaction between Polα and RAD51 is stimulated by RAD52 inhibition, and Polα -dependent gap accumulation requires nucleation of RAD51 suggesting that it occurs downstream strand invasion. Altogether, our data indicate that RAD51- Polα -dependent repriming is essential to promote fork restart and limit DNA damage accumulation when RAD52 function is disabled.
Collapse
Affiliation(s)
- Ludovica Di Biagi
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Giorgia Marozzi
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Eva Malacaria
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Masayoshi Honda
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242 (USA)
| | - Francesca Antonella Aiello
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Pasquale Valenzisi
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242 (USA)
| | - Annapaola Franchitto
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
| | - Pietro Pichierri
- Mechanisms, Biomarkers and Models Section, Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy)
- Istituto Nazionale Biostrutture e Biosistemi - Roma Area Research - Via delle Medaglie d’Oro 305, 00136 Rome (Italy)
| |
Collapse
|
10
|
Vijayakumar S, Yesudhason BV, Anandharaj JL, Sathyaraj WV, Selvan Christyraj JRS. Impact of double-strand breaks induced by uv radiation on neuroinflammation and neurodegenerative disorders. Mol Biol Rep 2024; 51:725. [PMID: 38851636 DOI: 10.1007/s11033-024-09693-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Exposure to UV affects the development and growth of a wide range of organisms. Nowadays, researchers are focusing on the impact of UV radiation and its underlying molecular mechanisms, as well as devising strategies to mitigate its harmful effects. Different forms of UV radiation, their typical exposure effects, the impact of UV on DNA integrity, and the deterioration of genetic material are discussed in this review; furthermore, we also review the effects of UV radiation that affect the biological functions of the organisms. Subsequently, we address the processes that aid organisms in navigating the damage in genetic material, neuroinflammation, and neurodegeneration brought on by UV-mediated double-strand breaks. To emphasize the molecular pathways, we conclude the review by going over the animal model studies that highlight the genes and proteins that are impacted by UV radiation.
Collapse
Affiliation(s)
- Srilakshmi Vijayakumar
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Jenif Leo Anandharaj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
11
|
Rasouli S, Dakic A, Wang QE, Mitchell D, Blakaj DM, Putluri N, Li J, Liu X. Noncanonical functions of telomerase and telomeres in viruses-associated cancer. J Med Virol 2024; 96:e29665. [PMID: 38738582 DOI: 10.1002/jmv.29665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The cause of cancer is attributed to the uncontrolled growth and proliferation of cells resulting from genetic changes and alterations in cell behavior, a phenomenon known as epigenetics. Telomeres, protective caps on the ends of chromosomes, regulate both cellular aging and cancer formation. In most cancers, telomerase is upregulated, with the telomerase reverse transcriptase (TERT) enzyme and telomerase RNA component (TERC) RNA element contributing to the maintenance of telomere length. Additionally, it is noteworthy that two viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), utilize telomerase for their replication or persistence in infected cells. Also, TERT and TERC may play major roles in cancer not related to telomere biology. They are involved in the regulation of gene expression, signal transduction pathways, cellular metabolism, or even immune response modulation. Furthermore, the crosstalk between TERT, TERC, RNA-binding proteins, and microRNAs contributes to a greater extent to cancer biology. To understand the multifaceted roles played by TERT and TERC in cancer and viral life cycles, and then to develop effective therapeutic strategies against these diseases, are fundamental for this goal. By investigating deeply, the complicated mechanisms and relationships between TERT and TERC, scientists will open the doors to new therapies. In its analysis, the review emphasizes the significance of gaining insight into the multifaceted roles that TERT and TERC play in cancer pathogenesis, as well as their involvement in the viral life cycle for designing effective anticancer therapy approaches.
Collapse
Affiliation(s)
- Sara Rasouli
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Aleksandra Dakic
- Division of Neuroscience, National Institute of Aging, Bethesda, Maryland, USA
| | - Qi-En Wang
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Darrion Mitchell
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Dukagjin M Blakaj
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Urology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
12
|
Ngoi NYL, Pilié PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 2024; 21:278-293. [PMID: 38378898 DOI: 10.1038/s41571-024-00863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Jiang J, Ruan Y, Liu X, Ma J, Chen H. Ferritinophagy Is Critical for Deoxynivalenol-Induced Liver Injury in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6660-6671. [PMID: 38501926 DOI: 10.1021/acs.jafc.4c00556] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Background: Deoxynivalenol (DON) contamination, pervasive throughout all stages of food production and processing, presents a significant threat to human health. The degradation of ferritin mediated by nuclear receptor coactivator 4 (NCOA4), termed ferritinophagy, plays a crucial role in maintaining iron homeostasis and regulating ferroptosis. Aim: This study aims to elucidate the role of ferritinophagy and ferroptosis in DON-induced liver injury. Methods: Male mice and AML12 cells were subjected to varying doses of DON, serving as in vivo and in vitro models, respectively. Protein expression was assessed by using immunofluorescence and western blot techniques. Co-immunoprecipitation was employed to investigate the protein-protein interactions. Results: Our findings demonstrate that DON triggers hepatocyte ferroptosis in a ferritinophagy-dependent manner. Specifically, DON impedes the activation of the mammalian target of rapamycin complex 1 (mTORC1) by inhibiting RAC1's binding to mTOR, thereby ultimately inducing autophagy. Concurrently, DON amplifies NCOA4's affinity for ferritin by facilitating NCOA4 phosphorylation through the ataxia-telangiectasia mutated kinase (ATM), thus promoting the autophagy-dependent degradation of ferritin. Both autophagy inhibition and NCOA4 expression suppression ameliorate DON-induced ferroptosis. Conclusion: Our study concludes that DON facilitates NCOA4-mediated ferritinophagy via the ATM-NCOA4 pathway, subsequently inducing ferroptosis in the liver.
Collapse
Affiliation(s)
- Junze Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yongbao Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaohui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, P. R. China
| | - Hao Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
14
|
Yang SF, Nelson CB, Wells JK, Fernando M, Lu R, Allen JAM, Malloy L, Lamm N, Murphy VJ, Mackay JP, Deans AJ, Cesare AJ, Sobinoff AP, Pickett HA. ZNF827 is a single-stranded DNA binding protein that regulates the ATR-CHK1 DNA damage response pathway. Nat Commun 2024; 15:2210. [PMID: 38472229 PMCID: PMC10933417 DOI: 10.1038/s41467-024-46578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The ATR-CHK1 DNA damage response pathway becomes activated by the exposure of RPA-coated single-stranded DNA (ssDNA) that forms as an intermediate during DNA damage and repair, and as a part of the replication stress response. Here, we identify ZNF827 as a component of the ATR-CHK1 kinase pathway. We demonstrate that ZNF827 is a ssDNA binding protein that associates with RPA through concurrent binding to ssDNA intermediates. These interactions are dependent on two clusters of C2H2 zinc finger motifs within ZNF827. We find that ZNF827 accumulates at stalled forks and DNA damage sites, where it activates ATR and promotes the engagement of homologous recombination-mediated DNA repair. Additionally, we demonstrate that ZNF827 depletion inhibits replication initiation and sensitizes cancer cells to the topoisomerase inhibitor topotecan, revealing ZNF827 as a therapeutic target within the DNA damage response pathway.
Collapse
Affiliation(s)
- Sile F Yang
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Christopher B Nelson
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Jadon K Wells
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Madushan Fernando
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Robert Lu
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Joshua A M Allen
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Lisa Malloy
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Noa Lamm
- Nuclear Dynamics Group, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Vincent J Murphy
- Genome Stability Unit, St Vincent's Institute, Fitzroy, VIC, 3065, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Andrew J Deans
- Genome Stability Unit, St Vincent's Institute, Fitzroy, VIC, 3065, Australia
- Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|
15
|
Beach C, MacLean D, Majorova D, Melemenidis S, Nambiar DK, Kim RK, Valbuena GN, Guglietta S, Krieg C, Darvish-Damavandi M, Suwa T, Easton A, Hillson LV, McCulloch AK, McMahon RK, Pennel K, Edwards J, O’Cathail SM, Roxburgh CS, Domingo E, Moon EJ, Jiang D, Jiang Y, Zhang Q, Koong AC, Woodruff TM, Graves EE, Maughan T, Buczacki SJ, Stucki M, Le QT, Leedham SJ, Giaccia AJ, Olcina MM. Improving radiotherapy in immunosuppressive microenvironments by targeting complement receptor C5aR1. J Clin Invest 2023; 133:e168277. [PMID: 37824211 PMCID: PMC10688992 DOI: 10.1172/jci168277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
An immunosuppressive microenvironment causes poor tumor T cell infiltration and is associated with reduced patient overall survival in colorectal cancer. How to improve treatment responses in these tumors is still a challenge. Using an integrated screening approach to identify cancer-specific vulnerabilities, we identified complement receptor C5aR1 as a druggable target, which when inhibited improved radiotherapy, even in tumors displaying immunosuppressive features and poor CD8+ T cell infiltration. While C5aR1 is well-known for its role in the immune compartment, we found that C5aR1 is also robustly expressed on malignant epithelial cells, highlighting potential tumor cell-specific functions. C5aR1 targeting resulted in increased NF-κB-dependent apoptosis specifically in tumors and not normal tissues, indicating that, in malignant cells, C5aR1 primarily regulated cell fate. Collectively, these data revealed that increased complement gene expression is part of the stress response mounted by irradiated tumors and that targeting C5aR1 could improve radiotherapy, even in tumors displaying immunosuppressive features.
Collapse
Affiliation(s)
- Callum Beach
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - David MacLean
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Dominika Majorova
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Dhanya K. Nambiar
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Ryan K. Kim
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Gabriel N. Valbuena
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Silvia Guglietta
- Department of Regenerative Medicine and Cell Biology
- Hollings Cancer Center, and
| | - Carsten Krieg
- Hollings Cancer Center, and
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Tatsuya Suwa
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Alistair Easton
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Lily V.S. Hillson
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Ross K. McMahon
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn Pennel
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Joanne Edwards
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sean M. O’Cathail
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Eui Jung Moon
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Dadi Jiang
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanyan Jiang
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Qingyang Zhang
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Albert C. Koong
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Trent M. Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Edward E. Graves
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Tim Maughan
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Simon J.A. Buczacki
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Schlieren, Switzerland
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Simon J. Leedham
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Amato J. Giaccia
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Monica M. Olcina
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
- Department of Gynecology, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
16
|
Jaiswal RK, Lei KH, Chastain M, Wang Y, Shiva O, Li S, You Z, Chi P, Chai W. CaMKK2 and CHK1 phosphorylate human STN1 in response to replication stress to protect stalled forks from aberrant resection. Nat Commun 2023; 14:7882. [PMID: 38036565 PMCID: PMC10689503 DOI: 10.1038/s41467-023-43685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Keeping replication fork stable is essential for safeguarding genome integrity; hence, its protection is highly regulated. The CTC1-STN1-TEN1 (CST) complex protects stalled forks from aberrant MRE11-mediated nascent strand DNA degradation (NSD). However, the activation mechanism for CST at forks is unknown. Here, we report that STN1 is phosphorylated in its intrinsic disordered region. Loss of STN1 phosphorylation reduces the replication stress-induced STN1 localization to stalled forks, elevates NSD, increases MRE11 access to stalled forks, and decreases RAD51 localization at forks, leading to increased genome instability under perturbed DNA replication condition. STN1 is phosphorylated by both the ATR-CHK1 and the calcium-sensing kinase CaMKK2 in response to hydroxyurea/aphidicolin treatment or elevated cytosolic calcium concentration. Cancer-associated STN1 variants impair STN1 phosphorylation, conferring inability of fork protection. Collectively, our study uncovers that CaMKK2 and ATR-CHK1 target STN1 to enable its fork protective function, and suggests an important role of STN1 phosphorylation in cancer development.
Collapse
Affiliation(s)
- Rishi Kumar Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Kai-Hang Lei
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Megan Chastain
- Office of Research, Washington State University, Spokane, WA, USA
| | - Yuan Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Olga Shiva
- Office of Research, Washington State University, Spokane, WA, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
17
|
Torres-Montaner A. Interactions between the DNA Damage Response and the Telomere Complex in Carcinogenesis: A Hypothesis. Curr Issues Mol Biol 2023; 45:7582-7616. [PMID: 37754262 PMCID: PMC10527771 DOI: 10.3390/cimb45090478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Contrary to what was once thought, direct cancer originating from normal stem cells seems to be extremely rare. This is consistent with a preneoplastic period of telomere length reduction/damage in committed cells that becomes stabilized in transformation. Multiple observations suggest that telomere damage is an obligatory step preceding its stabilization. During tissue turnover, the telomeres of cells undergoing differentiation can be damaged as a consequence of defective DNA repair caused by endogenous or exogenous agents. This may result in the emergence of new mechanism of telomere maintenance which is the final outcome of DNA damage and the initial signal that triggers malignant transformation. Instead, transformation of stem cells is directly induced by primary derangement of telomere maintenance mechanisms. The newly modified telomere complex may promote survival of cancer stem cells, independently of telomere maintenance. An inherent resistance of stem cells to transformation may be linked to specific, robust mechanisms that help maintain telomere integrity.
Collapse
Affiliation(s)
- Antonio Torres-Montaner
- Department of Pathology, Queen’s Hospital, Rom Valley Way, Romford, London RM7 OAG, UK;
- Departamento de Bioquímica y Biologia Molecular, Universidad de Cadiz, Puerto Real, 11510 Cadiz, Spain
| |
Collapse
|
18
|
Li Y, Wang F, Li X, Wang L, Yang Z, You Z, Peng A. The ATM-E6AP-MASTL axis mediates DNA damage checkpoint recovery. eLife 2023; 12:RP86976. [PMID: 37672026 PMCID: PMC10482428 DOI: 10.7554/elife.86976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Checkpoint activation after DNA damage causes a transient cell cycle arrest by suppressing cyclin-dependent kinases (CDKs). However, it remains largely elusive how cell cycle recovery is initiated after DNA damage. In this study, we discovered the upregulated protein level of MASTL kinase hours after DNA damage. MASTL promotes cell cycle progression by preventing PP2A/B55-catalyzed dephosphorylation of CDK substrates. DNA damage-induced MASTL upregulation was caused by decreased protein degradation, and was unique among mitotic kinases. We identified E6AP as the E3 ubiquitin ligase that mediated MASTL degradation. MASTL degradation was inhibited upon DNA damage as a result of the dissociation of E6AP from MASTL. E6AP depletion reduced DNA damage signaling, and promoted cell cycle recovery from the DNA damage checkpoint, in a MASTL-dependent manner. Furthermore, we found that E6AP was phosphorylated at Ser-218 by ATM after DNA damage and that this phosphorylation was required for its dissociation from MASTL, the stabilization of MASTL, and the timely recovery of cell cycle progression. Together, our data revealed that ATM/ATR-dependent signaling, while activating the DNA damage checkpoint, also initiates cell cycle recovery from the arrest. Consequently, this results in a timer-like mechanism that ensures the transient nature of the DNA damage checkpoint.
Collapse
Affiliation(s)
- Yanqiu Li
- Department of Oral Biology, University of Nebraska Medical CenterLincolnUnited States
| | - Feifei Wang
- Department of Oral Biology, University of Nebraska Medical CenterLincolnUnited States
| | - Xin Li
- Department of Oral Biology, University of Nebraska Medical CenterLincolnUnited States
| | - Ling Wang
- Department of Oral Biology, University of Nebraska Medical CenterLincolnUnited States
| | - Zheng Yang
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. LouisSt. LouisUnited States
| | - Zhongsheng You
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. LouisSt. LouisUnited States
| | - Aimin Peng
- Department of Oral Biology, University of Nebraska Medical CenterLincolnUnited States
| |
Collapse
|
19
|
Konstantinopoulos PA, Matulonis UA. Clinical and translational advances in ovarian cancer therapy. NATURE CANCER 2023; 4:1239-1257. [PMID: 37653142 DOI: 10.1038/s43018-023-00617-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Ovarian cancer is an aggressive disease that is frequently detected at advanced stages and is initially very responsive to platinum-based chemotherapy. However, the majority of patients relapse following initial surgery and chemotherapy, highlighting the urgent need to develop new therapeutic strategies. In this Review, we outline the main therapeutic principles behind the management of newly diagnosed and recurrent epithelial ovarian cancer and discuss the current landscape of targeted and immune-based approaches.
Collapse
|
20
|
Li Y, Wang F, Li X, Wang L, Yang Z, You Z, Peng A. The ATM-E6AP-MASTL axis mediates DNA damage checkpoint recovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529521. [PMID: 36865136 PMCID: PMC9980089 DOI: 10.1101/2023.02.22.529521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Checkpoint activation after DNA damage causes a transient cell cycle arrest by suppressing CDKs. However, it remains largely elusive how cell cycle recovery is initiated after DNA damage. In this study, we discovered the upregulated protein level of MASTL kinase hours after DNA damage. MASTL promotes cell cycle progression by preventing PP2A/B55-catalyzed dephosphorylation of CDK substrates. DNA damage-induced MASTL upregulation was caused by decreased protein degradation, and was unique among mitotic kinases. We identified E6AP as the E3 ubiquitin ligase that mediated MASTL degradation. MASTL degradation was inhibited upon DNA damage as a result of the dissociation of E6AP from MASTL. E6AP depletion reduced DNA damage signaling, and promoted cell cycle recovery from the DNA damage checkpoint, in a MASTL-dependent manner. Furthermore, we found that E6AP was phosphorylated at Ser-218 by ATM after DNA damage and that this phosphorylation was required for its dissociation from MASTL, the stabilization of MASTL, and the timely recovery of cell cycle progression. Together, our data revealed that ATM/ATR-dependent signaling, while activating the DNA damage checkpoint, also initiates cell cycle recovery from the arrest. Consequently, this results in a timer-like mechanism that ensures the transient nature of the DNA damage checkpoint.
Collapse
Affiliation(s)
- Yanqiu Li
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| | - Feifei Wang
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| | - Xin Li
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| | - Ling Wang
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| | - Zheng Yang
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Aimin Peng
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| |
Collapse
|
21
|
Han Z, Andrš M, Madhavan BK, Kaymak S, Sulaj A, Kender Z, Kopf S, Kihm L, Pepperkok R, Janscak P, Nawroth P, Kumar V. The importance of nuclear RAGE-Mcm2 axis in diabetes or cancer-associated replication stress. Nucleic Acids Res 2023; 51:2298-2318. [PMID: 36807739 PMCID: PMC10018352 DOI: 10.1093/nar/gkad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/23/2023] Open
Abstract
An elevated frequency of DNA replication defects is associated with diabetes and cancer. However, data linking these nuclear perturbations to the onset or progression of organ complications remained unexplored. Here, we report that RAGE (Receptor for Advanced Glycated Endproducts), previously believed to be an extracellular receptor, upon metabolic stress localizes to the damaged forks. There it interacts and stabilizes the minichromosome-maintenance (Mcm2-7) complex. Accordingly, RAGE deficiency leads to slowed fork progression, premature fork collapse, hypersensitivity to replication stress agents and reduction of viability, which was reversed by the reconstitution of RAGE. This was marked by the 53BP1/OPT-domain expression and the presence of micronuclei, premature loss-of-ciliated zones, increased incidences of tubular-karyomegaly, and finally, interstitial fibrosis. More importantly, the RAGE-Mcm2 axis was selectively compromised in cells expressing micronuclei in human biopsies and mouse models of diabetic nephropathy and cancer. Thus, the functional RAGE-Mcm2/7 axis is critical in handling replication stress in vitro and human disease.
Collapse
Affiliation(s)
- Zhe Han
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Martin Andrš
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ-14300 Prague, Czech Republic
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Bindhu K Madhavan
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Serap Kaymak
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Alba Sulaj
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Zoltan Kender
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Stefan Kopf
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Lars Kihm
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Rainer Pepperkok
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Pavel Janscak
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ-14300 Prague, Czech Republic
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- Institute for Immunology, University Hospital of Heidelberg, INF 305, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Varun Kumar
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- Institute for Immunology, University Hospital of Heidelberg, INF 305, Heidelberg, Germany
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
22
|
Ning K, Kuz CA, Cheng F, Feng Z, Yan Z, Qiu J. Adeno-Associated Virus Monoinfection Induces a DNA Damage Response and DNA Repair That Contributes to Viral DNA Replication. mBio 2023; 14:e0352822. [PMID: 36719192 PMCID: PMC9973366 DOI: 10.1128/mbio.03528-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Adeno-associated virus (AAV) belongs to the Dependoparvovirus genus of the Parvoviridae family. AAV replication relies on a helper virus, such as adenovirus (Ad). Co-infection of AAV and Ad induces a DNA damage response (DDR), although its function in AAV DNA replication remains unknown. In this study, monoinfection of AAV2 in HEK293T cells expressing a minimal set of Ad helper genes was used to investigate the role of the DDR solely induced by AAV. We found that AAV2 DNA replication, but not single stranded (ss)DNA genome accumulation and Rep expression only, induced a robust DDR in HEK293T cells. The induced DDR featured the phosphorylation of replication protein A32 (RPA32), histone variant H2AX (H2A histone family member X), and all 3 phosphatidylinositol 3-kinase-related kinases (PIKKs). We also found that the kinase ataxia telangiectasia and Rad3-related protein (ATR) plays a major role in AAV2 DNA replication and that Y family DNA repair DNA polymerases η (Pol η) and Pol κ contribute to AAV2 DNA replication both in vitro and in HEK293T cells. Knockout of Pol η and Pol κ in HEK293T cells significantly decreased wild-type AAV2 replication and recombinant AAV2 production. Thus, our study has proven that AAV2 DNA replication induces a DDR, which in turn initiates a DNA repairing process that partially contributes to the viral genome amplification in HEK293T cells. IMPORTANCE Recombinant AAV (rAAV) has emerged as one of the preferred delivery vectors for clinical gene therapy. rAAV production in HEK293 cells by transfection of a rAAV transgene plasmid, an AAV Rep and Cap expression packaging plasmid, and an Ad helper plasmid remains the popular method. Here, we demonstrated that the high fidelity Y family DNA repair DNA polymerase, Pol η, and Pol κ, plays a significant role in AAV DNA replication and rAAV production in HEK293T cells. Understanding the AAV DNA replication mechanism in HEK293T cells could provide clues to increase rAAV vector yield produced from the transfection method. We also provide evidence that the ATR-mediated DNA repair process through Pol η and Pol κ is one of the mechanisms to amplify AAV genome, which could explain AAV replication and rAAV ssDNA genome conversion in mitotic quiescent cells.
Collapse
Affiliation(s)
- Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Cagla Aksu Kuz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zehua Feng
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
23
|
Lee SY, Kim JJ, Miller KM. Single-Cell Analysis of Histone Acetylation Dynamics at Replication Forks Using PLA and SIRF. Methods Mol Biol 2023; 2589:345-360. [PMID: 36255636 DOI: 10.1007/978-1-0716-2788-4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genome integrity is constantly challenged by various processes including DNA damage, structured DNA, transcription, and DNA-protein crosslinks. During DNA replication, active replication forks that encounter these obstacles can result in their stalling and collapse. Accurate DNA replication requires the ability of forks to navigate these threats, which is aided by DNA repair proteins. Histone acetylation participates in this process through an ability to signal and recruit proteins to regions of replicating DNA. For example, the histone acetyltransferase PCAF promotes the recruitment of the DNA repair factors MRE11 and EXO1 to stalled forks by acetylating histone H4 at lysine 8 (H4K8ac). These highly dynamic processes can be detected and analyzed using a modified proximity ligation assay (PLA) method, known as SIRF (in situ protein interactions with nascent DNA replication forks). This single-cell assay combines PLA with EdU-coupled Click-iT chemistry reactions and fluorescence microscopy to detect these interactions at sites of replicating DNA. Here we provide a detailed protocol utilizing SIRF that detects the HAT PCAF and histone acetylation at replication forks. This technique provides a robust methodology to determine protein recruitment and modifications at the replication fork with single-cell resolution.
Collapse
Affiliation(s)
- Seo Yun Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jae Jin Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
24
|
Hassan M, Trung V, Bedi D, Shaddox S, Gunturu D, Yates C, Datta P, Samuel T. Interference with pathways activated by topoisomerase inhibition alters the surface expression of PD-L1 and MHC I in colon cancer cells. Oncol Lett 2022; 25:41. [PMID: 36589674 PMCID: PMC9773314 DOI: 10.3892/ol.2022.13628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/25/2022] [Indexed: 12/13/2022] Open
Abstract
Topoisomerase inhibitors are clinically used to treat various cancer types, including colorectal cancer. These drugs also activate signaling pathways that modulate cell survival and immune cell functions. Immunotherapy is promising for certain tumors, including microsatellite instable colorectal cancer, but not for microsatellite stable colorectal cancer. The reasons for this lack of responsiveness are largely unknown. Understanding how colorectal cancer cell-surface proteins interact with tumor-resident immune cells may offer an opportunity to identify molecules that, if targeted, may render tumor cells visible to immune cells. The present study used flow cytometry, fluorescent staining and immunoblotting to examine if inhibition of pathways activated by topoisomerase-targeting drugs may modulate the outcomes of treatment through effects on cell cycle arrest and apoptosis, and by altering surface expression levels of programmed death-ligand 1 (PD-L1) or major histocompatibility complex protein I (MHC I). Inhibition of either NF-κB or DNA-damage response (DDR) potently enhanced cell death in combination with topoisomerase inhibition, while only NF-κB inhibition increased MHC I. PD-L1 upregulation was moderately affected by NF-κB or DDR inhibitors, while both topoisomerase inhibitors and DNA damaging agents may enhance the surface expression of MHC I molecules on colon cancer cells. Such enhanced expression of MHC I may be suppressed by inhibitors of ataxia-telangiectasia mutated or checkpoint kinase kinases. Additionally, adaptive tolerance to topoisomerase inhibition caused altered cell cycle response, and reduced the expression levels of both PD-L1 and MHC I on both microsatellite instable and stable colon cancer cell lines. Therefore, targeted modulation of DDR pathways, PD-L1, MHC I or other immune regulators in colon cancer cells may make them more visible to immune cells and enable rational combination of conventional therapy with immunotherapy.
Collapse
Affiliation(s)
- Mohamed Hassan
- Tuskegee University College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL 36088, USA
| | - Vu Trung
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, Birmingham Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Deepa Bedi
- Tuskegee University College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL 36088, USA
| | - Sage Shaddox
- Tuskegee University College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL 36088, USA
| | - Dilip Gunturu
- Tuskegee University College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL 36088, USA
| | - Clayton Yates
- Tuskegee University College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL 36088, USA
| | - Pran Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, Birmingham Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA,Dr Pran Datta, Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, Birmingham Veterans Affairs Medical Center, University of Alabama at Birmingham, 1824 6th Avenue South, WTI 520C, Birmingham, AL 35294, USA, E-mail:
| | - Temesgen Samuel
- Tuskegee University College of Veterinary Medicine and Center for Biomedical Research, Tuskegee, AL 36088, USA,Correspondence to: Dr Temesgen Samuel, Tuskegee University College of Veterinary Medicine and Center for Biomedical Research, 1200 W. Montgomery Road, Tuskegee, AL 36088, USA, E-mail:
| |
Collapse
|
25
|
Wendel SO, Stoltz A, Xu X, Snow JA, Wallace N. HPV 16 E7 alters translesion synthesis signaling. Virol J 2022; 19:165. [PMID: 36266721 DOI: 10.1186/s12985-022-01899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
A subset of human papillomaviruses (HPVs) are the cause of virtually every cervical cancer. These so-called "high-risk" HPVs encode two major oncogenes (HPV E6 and E7) that are necessary for transformation. Among "high-risk" HPVs, HPV16 causes most cervical cancers and is often used as a representative model for oncogenic HPVs. The HPV16 E7 oncogene facilitates the HPV16 lifecycle by binding and destabilizing RB, which ensures the virus has access to cellular replication machinery. RB destabilization increases E2F1-responsive gene expression and causes replication stress. While HPV16 E6 mitigates some of the deleterious effects associated with this replication stress by degrading p53, cells undergo separate adaptations to tolerate the stress. Here, we demonstrate that this includes the activation of the translesion synthesis (TLS) pathway, which prevents replication stress from causing replication fork collapse. We show that significantly elevated TLS gene expression is more common in cervical cancers than 15 out of the 16 the other cancer types that we analyzed. In addition to increased TLS protein abundance, HPV16 E7 expressing cells have a reduced ability to induct a critical TLS factor (POLη) in response to replication stress-inducing agents. Finally, we show that increased expression of at least one TLS gene is associated with improved survival for women with cervical cancer.
Collapse
Affiliation(s)
| | - Avanelle Stoltz
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Xuan Xu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jazmine A Snow
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Nicholas Wallace
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
26
|
Hamidi M, Eriz A, Mitxelena J, Fernandez-Ares L, Aurrekoetxea I, Aspichueta P, Iglesias-Ara A, Zubiaga AM. Targeting E2F Sensitizes Prostate Cancer Cells to Drug-Induced Replication Stress by Promoting Unscheduled CDK1 Activity. Cancers (Basel) 2022; 14:cancers14194952. [PMID: 36230876 PMCID: PMC9564059 DOI: 10.3390/cancers14194952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary E2F1 and E2F2 are highly expressed in many cancer types, but their contribution to malignancy is not well understood. Here we aimed to define the impact of E2F1/E2F2 deregulation in prostate cancer. We show that inhibition of E2F sensitizes prostate cancer cells to drug-induced replication stress and cell death. We found that E2F target genes involved in nucleotide biosynthesis contribute to maintaining genome stability in prostate cancer cells, but their enzymatic activity is insufficient to prevent replication stress after E2F1/E2F2 depletion. Instead, E2F1/E2F2 hinder premature CDK1 activation during S phase, which is key to ensure genome stability and viability of prostate cancer cells. From a therapeutic perspective, inhibiting E2F activity provokes catastrophic levels of replication stress and blunts xenograft growth in combination with drugs targeting nucleotide biosynthesis or DNA repair. Our results highlight the suitability of targeting E2F for the treatment of prostate cancer. Abstract E2F1/E2F2 expression correlates with malignancy in prostate cancer (PCa), but its functional significance remains unresolved. To define the mechanisms governed by E2F in PCa, we analyzed the contribution of E2F target genes to the control of genome integrity, and the impact of modulating E2F activity on PCa progression. We show that silencing or inhibiting E2F1/E2F2 induces DNA damage during S phase and potentiates 5-FU-induced replication stress and cellular toxicity. Inhibition of E2F downregulates the expression of E2F targets involved in nucleotide biosynthesis (TK1, DCK, TYMS), whose expression is upregulated by 5-FU. However, their enzymatic products failed to rescue DNA damage of E2F1/E2F2 knockdown cells, suggesting additional mechanisms for E2F function. Interestingly, targeting E2F1/E2F2 in PCa cells reduced WEE1 expression and resulted in premature CDK1 activation during S phase. Inhibition of CDK1/CDK2 prevented DNA damage induced by E2F loss, suggesting that E2F1/E2F2 safeguard genome integrity by restraining CDK1/CDK2 activity. Importantly, combined inhibition of E2F and ATR boosted replication stress and dramatically reduced tumorigenic capacity of PCa cells in xenografts. Collectively, inhibition of E2F in combination with drugs targeting nucleotide biosynthesis or DNA repair is a promising strategy to provoke catastrophic levels of replication stress that could be applied to PCa treatment.
Collapse
Affiliation(s)
- Mohaddase Hamidi
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Ainhoa Eriz
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Jone Mitxelena
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
- Ikerbasque—Basque Foundation for Science, 48009 Bilbao, Spain
| | - Larraitz Fernandez-Ares
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Igor Aurrekoetxea
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48080 Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48080 Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Ainhoa Iglesias-Ara
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
- Correspondence: (A.I.-A.); (A.M.Z.); Tel.: +34-94-601-5799 (A.I.-A.); +34-94-601-2603 (A.M.Z.); Fax: +34-94-601-3143 (A.M.Z.)
| | - Ana M. Zubiaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
- Correspondence: (A.I.-A.); (A.M.Z.); Tel.: +34-94-601-5799 (A.I.-A.); +34-94-601-2603 (A.M.Z.); Fax: +34-94-601-3143 (A.M.Z.)
| |
Collapse
|
27
|
ASPM promotes ATR-CHK1 activation and stabilizes stalled replication forks in response to replication stress. Proc Natl Acad Sci U S A 2022; 119:e2203783119. [PMID: 36161901 PMCID: PMC9546549 DOI: 10.1073/pnas.2203783119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
ASPM (encoded by MCPH5) is a frequently mutated protein, and such mutations occur in >40% of cases of primary microcephaly (MCPH). Here, we characterize a function of ASPM in DNA replication and the replication stress response. ASPM serves as a scaffold to load stimulators required for ATR-CHK1 checkpoint signaling upon replication stress, which protects stalled replication forks from degradation. ASPM deficiency leads to genomic instability and the sensitization of cancer cells to replication stressors. ASPM is a protein encoded by primary microcephaly 5 (MCPH5) and is responsible for ensuring spindle position during mitosis and the symmetrical division of neural stem cells. We recently reported that ASPM promotes homologous recombination (HR) repair of DNA double strand breaks. However, its potential role in DNA replication and replication stress response remains elusive. Interestingly, we found that ASPM is dispensable for DNA replication under unperturbed conditions. However, ASPM is enriched at stalled replication forks in a RAD17-dependent manner in response to replication stress and promotes RAD9 and TopBP1 loading onto chromatin, facilitating ATR-CHK1 activation. ASPM depletion results in failed fork restart and nuclease MRE11-mediated nascent DNA degradation at the stalled replication fork. The overall consequence is chromosome instability and the sensitization of cancer cells to replication stressors. These data support a role for ASPM in loading RAD17-RAD9/TopBP1 onto chromatin to activate the ATR-CHK1 checkpoint and ultimately ensure genome stability.
Collapse
|
28
|
Nickoloff JA. Targeting Replication Stress Response Pathways to Enhance Genotoxic Chemo- and Radiotherapy. Molecules 2022; 27:4736. [PMID: 35897913 PMCID: PMC9330692 DOI: 10.3390/molecules27154736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Proliferating cells regularly experience replication stress caused by spontaneous DNA damage that results from endogenous reactive oxygen species (ROS), DNA sequences that can assume secondary and tertiary structures, and collisions between opposing transcription and replication machineries. Cancer cells face additional replication stress, including oncogenic stress that results from the dysregulation of fork progression and origin firing, and from DNA damage induced by radiotherapy and most cancer chemotherapeutic agents. Cells respond to such stress by activating a complex network of sensor, signaling and effector pathways that protect genome integrity. These responses include slowing or stopping active replication forks, protecting stalled replication forks from collapse, preventing late origin replication firing, stimulating DNA repair pathways that promote the repair and restart of stalled or collapsed replication forks, and activating dormant origins to rescue adjacent stressed forks. Currently, most cancer patients are treated with genotoxic chemotherapeutics and/or ionizing radiation, and cancer cells can gain resistance to the resulting replication stress by activating pro-survival replication stress pathways. Thus, there has been substantial effort to develop small molecule inhibitors of key replication stress proteins to enhance tumor cell killing by these agents. Replication stress targets include ATR, the master kinase that regulates both normal replication and replication stress responses; the downstream signaling kinase Chk1; nucleases that process stressed replication forks (MUS81, EEPD1, Metnase); the homologous recombination catalyst RAD51; and other factors including ATM, DNA-PKcs, and PARP1. This review provides an overview of replication stress response pathways and discusses recent pre-clinical studies and clinical trials aimed at improving cancer therapy by targeting replication stress response factors.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
29
|
Tatekawa S, Tamari K, Chijimatsu R, Konno M, Motooka D, Mitsufuji S, Akita H, Kobayashi S, Murakumo Y, Doki Y, Eguchi H, Ishii H, Ogawa K. N(6)-methyladenosine methylation-regulated polo-like kinase 1 cell cycle homeostasis as a potential target of radiotherapy in pancreatic adenocarcinoma. Sci Rep 2022; 12:11074. [PMID: 35773310 PMCID: PMC9246847 DOI: 10.1038/s41598-022-15196-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/20/2022] [Indexed: 12/20/2022] Open
Abstract
In pancreatic cancer, methyltransferase-like 3 (METTL3), a N(6)-methyladenosine (m6A) methyltransferase, has a favorable effect on tumors and is a risk factor for patients' prognosis. However, the details of what genes are regulated by METTL3 remain unknown. Several RNAs are methylated, and what genes are favored in pancreatic cancer remains unclear. By epitranscriptomic analysis, we report that polo-like kinase 1 (PLK1) is an important hub gene defining patient prognosis in pancreatic cancer and that RNA methylation is involved in regulating its cell cycle-specific expression. We found that insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) binds to m6A of PLK1 3' untranslated region and is involved in upregulating PLK1 expression and that demethylation of this site activates the ataxia telangiectasia and Rad3-related protein pathway by replicating stress and increasing mitotic catastrophe, resulting in increased radiosensitivity. This suggests that PLK1 methylation is essential for cell cycle maintenance in pancreatic cancer and is a new therapeutic target.
Collapse
Affiliation(s)
- Shotaro Tatekawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Ryota Chijimatsu
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Masamitsu Konno
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
- Division of Tumor Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Suguru Mitsufuji
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
30
|
Pejovic T, Abate PV, Ma H, Thiessen J, Corless CL, Peterson A, Allard-Chamard H, Labrie M. Single-Cell Proteomics Analysis of Recurrent Low-Grade Serous Ovarian Carcinoma and Associated Brain Metastases. Front Oncol 2022; 12:903806. [PMID: 35692807 PMCID: PMC9174542 DOI: 10.3389/fonc.2022.903806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Between 2% and 6% of epithelial ovarian cancer (EOC) patients develop brain metastases (brain mets), which are incurable and invariably result in death. This poor outcome is associated with a lack of established guidelines for the detection and treatment of brain mets in EOC patients. In this study, we characterize an unusual case of low-grade serous ovarian carcinoma (LGSOC) that metastasized to the brain. Using a spatially oriented single-cell proteomics platform, we compared sequential biopsies of a primary tumor with a peritoneal recurrence and brain mets. We identified several targetable oncogenic pathways and immunosuppressive mechanisms that are amplified in the brain mets and could be involved in the progression of LGSOC to the brain. Furthermore, we were able to identify cell populations that are shared between the primary tumor and the brain mets, suggesting that cells that have a propensity for metastasis to the brain could be identified early during the course of disease. Taken together, our findings further a path for personalized therapeutic decisions in LGSOC.
Collapse
Affiliation(s)
- Tanja Pejovic
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Pierre-Valérien Abate
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Obstetrics and Gynecology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hongli Ma
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Jaclyn Thiessen
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR, United States
| | - Christopher L Corless
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Abigail Peterson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Hugues Allard-Chamard
- Service of Rheumatology, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marilyne Labrie
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Obstetrics and Gynecology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
31
|
Beauvais DM, Nelson SE, Adams KM, Stueven NA, Jung O, Rapraeger AC. Plasma membrane proteoglycans syndecan-2 and syndecan-4 engage with EGFR and RON kinase to sustain carcinoma cell cycle progression. J Biol Chem 2022; 298:102029. [PMID: 35569509 PMCID: PMC9190016 DOI: 10.1016/j.jbc.2022.102029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is a causal factor in carcinoma, yet many carcinoma patients are resistant to EGFR inhibitors. Potential insight into this resistance stems from prior work that showed EGFR in normal epithelial cells docks to the extracellular domain of the plasma membrane proteoglycan syndecan-4 (Sdc4) engaged with α3β1 and α6β4 integrins. We now report that this receptor complex is modified by the recruitment of syndecan-2 (Sdc2), the Recepteur d'Origine Nantais (RON) tyrosine kinase, and the cellular signaling mediator Abelson murine leukemia viral oncogene homolog 1 (ABL1) in triple-negative breast carcinoma and head and neck squamous cell carcinoma, where it contributes to EGFR kinase-independent proliferation. Treatment with a peptide mimetic of the EGFR docking site in the extracellular domain of Sdc4 (called SSTNEGFR) disrupts the entire complex and causes a rapid, global arrest of the cell cycle. Normal epithelial cells do not recruit these additional receptors to the adhesion mechanism and are not arrested by SSTNEGFR. Although EGFR docking with Sdc4 in the tumor cells is required, cell cycle progression does not depend on EGFR kinase. Instead, progression depends on RON kinase, activated by its incorporation into the complex. RON activates ABL1, which suppresses p38 mitogen-activated protein kinase and prevents a p38-mediated signal that would otherwise arrest the cell cycle. These findings add to the growing list of receptor tyrosine kinases that support tumorigenesis when activated by their association with syndecans at sites of matrix adhesion and identify new potential targets for cancer therapy.
Collapse
Affiliation(s)
- DeannaLee M Beauvais
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott E Nelson
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristin M Adams
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Noah A Stueven
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Oisun Jung
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alan C Rapraeger
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
32
|
Jang SW, Kim JM. The RPA inhibitor HAMNO sensitizes Fanconi anemia pathway-deficient cells. Cell Cycle 2022; 21:1468-1478. [PMID: 35506981 PMCID: PMC9278452 DOI: 10.1080/15384101.2022.2074200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The Fanconi anemia (FA) DNA repair pathway is required for DNA inter-strand crosslink (ICL) repair. Besides its role in ICL repair, FA proteins play a central role in stabilizing stalled replication forks, thereby ensuring genome integrity. We previously demonstrated that depletion of replication protein A (RPA) induces the activation of FA pathway leading to FANCD2 monoubiquitination and FANCD2 foci formation. Thus, we speculated that FA-deficient cells would be more sensitive to RPA inhibition compared to FA-proficient cells. Following treatment with RPA inhibitor HAMNO, we observed significant induction in FANCD2 monoubiquitination and foci formation as observed in RPA depletion. In addition, HAMNO treatment caused increased levels of ϒ-H2AX and S-phase accumulation in FA-deficient cells. Importantly, FA-deficient cells showed more increased sensitivity to HAMNO than FA-proficient cells. Moreover, in combination with cisplatin, HAMNO further enhanced the cytotoxicity of cisplatin in FA-deficient cells, while being less toxic against FA-proficient cells. This result suggests that RPA inhibition might be a potential therapeutic candidate for the treatment of FA pathway-deficient tumors.
Collapse
Affiliation(s)
- Seok-Won Jang
- Department of Pharmacology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Jung Min Kim
- Department of Pharmacology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| |
Collapse
|
33
|
Guo C, Guo L, Peng C, Jia Y, Yang Y, Wang X, Zeng M, Wang D, Liu C, Zhao M, Chen J, Tang Z. p53-driven replication stress in nucleoli of malignant epithelial ovarian cancer. Exp Cell Res 2022; 417:113225. [DOI: 10.1016/j.yexcr.2022.113225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/14/2022] [Accepted: 05/22/2022] [Indexed: 11/30/2022]
|
34
|
Feng W, Qi Z, Dong Z, Liu W, Xu M, Gao M, Liu S. LncRNA MT1DP promotes cadmium-induced DNA replication stress by inhibiting chromatin recruitment of SMARCAL1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151078. [PMID: 34715232 DOI: 10.1016/j.scitotenv.2021.151078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a well-known carcinogenic metal and widespread environmental pollutant. The effect of Cd-induced carcinogenesis is partly due to accumulated DNA damage and chromosomal aberrations, but the exact mechanisms underlying the genotoxicity of Cd have not been clearly understood. Here, we found that one long non-coding RNA MT1DP is participated in Cd-induced DNA damage and replication stress. Through analyzing the residents from Cd-contaminated area in Southern China, we found that blood DNA repair genes are down-regulated in individuals with high urine Cd values compared to those with low urine Cd values, which contrast to the blood MT1DP levels. Through in vitro experiments, we found that MT1DP promotes Cd-induced DNA damage response, genome instability and replication fork stalling. Mechanically, upon Cd treatment, ATR is activated to enhance HIF-1α expression, which in turn promotes the transcription level of MT1DP. Subsequently MT1DP is recruited on the chromatin and binds to SMARCAL1 to competitive inhibit latter's interaction with RPA complexes, finally leading to increased replication stress and DNA damage. In summary, this study provides clear evidence for the role of epigenetic regulation on the genotoxic effect of Cd, and MT1DP-mediated replication stress may represent a novel mechanism for Cd-induced carcinogenesis.
Collapse
Affiliation(s)
- Wenya Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijuan Qi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Marabitti V, Valenzisi P, Lillo G, Malacaria E, Palermo V, Pichierri P, Franchitto A. R-Loop-Associated Genomic Instability and Implication of WRN and WRNIP1. Int J Mol Sci 2022; 23:ijms23031547. [PMID: 35163467 PMCID: PMC8836129 DOI: 10.3390/ijms23031547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Maintenance of genome stability is crucial for cell survival and relies on accurate DNA replication. However, replication fork progression is under constant attack from different exogenous and endogenous factors that can give rise to replication stress, a source of genomic instability and a notable hallmark of pre-cancerous and cancerous cells. Notably, one of the major natural threats for DNA replication is transcription. Encounters or conflicts between replication and transcription are unavoidable, as they compete for the same DNA template, so that collisions occur quite frequently. The main harmful transcription-associated structures are R-loops. These are DNA structures consisting of a DNA–RNA hybrid and a displaced single-stranded DNA, which play important physiological roles. However, if their homeostasis is altered, they become a potent source of replication stress and genome instability giving rise to several human diseases, including cancer. To combat the deleterious consequences of pathological R-loop persistence, cells have evolved multiple mechanisms, and an ever growing number of replication fork protection factors have been implicated in preventing/removing these harmful structures; however, many others are perhaps still unknown. In this review, we report the current knowledge on how aberrant R-loops affect genome integrity and how they are handled, and we discuss our recent findings on the role played by two fork protection factors, the Werner syndrome protein (WRN) and the Werner helicase-interacting protein 1 (WRNIP1) in response to R-loop-induced genome instability.
Collapse
|
36
|
Wei KC, Lai SF, Huang WL, Yang KC, Lai PC, Wei WJ, Chang TH, Huang YC, Tsai YC, Lin SC, Lin SJ, Lin SC. An innovative targeted therapy for fluoroscopy-induced chronic radiation dermatitis. J Mol Med (Berl) 2022; 100:135-146. [PMID: 34689211 PMCID: PMC8724166 DOI: 10.1007/s00109-021-02146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
Fluoroscopy-induced chronic radiation dermatitis (FICRD) is a complication of fluoroscopy-guided intervention. Unlike acute radiation dermatitis, FICRD is different as delayed onset and usually appears without preexisting acute dermatitis. Unfortunately, the chronic and progressive pathology of FICRD makes it difficult to treat, and some patients need to receive wide excision and reconstruction surgery. Due to lack of standard treatment, investigating underlying mechanism is needed in order to develop an effective therapy. Herein, the Hippo pathway is specifically identified using an RNA-seq analysis in mild damaged skin specimens of patients with FICRD. Furthermore, specific increase of the Yes-associated protein (YAP1), an effector of the Hippo pathway, in skin region with mild damage plays a protective role for keratinocytes via positively regulating the numerous downstream genes involved in different biological processes. Interestingly, irradiated-keratinocytes inhibit activation of fibroblasts under TGF-β1 treatment via remote control by an exosome containing YAP1. More importantly, targeting one of YAP1 downstream genes, nuclear receptor subfamily 3 group C member 1 (NR3C1), which encodes glucocorticoid receptor, has revealed its therapeutic potential to treat FICRD by inhibiting fibroblasts activation in vitro and preventing formation of radiation ulcers in a mouse model and in patients with FICRD. Taken together, this translational research demonstrates the critical role of YAP1 in FICRD and identification of a feasible, effective therapy for patients with FICRD. KEY MESSAGES: • YAP1 overexpression in skin specimens of radiation dermatitis from FICRD patient. • Radiation-induced YAP1 expression plays protective roles by promoting DNA damage repair and inhibiting fibrosis via remote control of exosomal YAP1. • YAP1 positively regulates NR3C1 which encodes glucocorticoid receptor expression. • Targeting glucocorticoid receptor by prednisolone has therapeutic potential for FICRD patient.
Collapse
Affiliation(s)
- Kai-Che Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Cosmetic Applications and Management, Yuhing Junior College of Health Care and Management, Kaohsiung, Taiwan
- Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Fan Lai
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wei-Lun Huang
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuo-Chung Yang
- Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Plastic and Reconstructive Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ping-Chin Lai
- The Kidney Institute and Division of Nephrology, China Medical University Hospital, Taichung, Taiwan
| | - Wan-Ju Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tsung-Hsien Chang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yun-Chen Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chuan Tsai
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shin-Chih Lin
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sun-Jang Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
37
|
Ghaleb A, Roa L, Marchenko N. Low-dose but not high-dose γ-irradiation elicits the dominant-negative effect of mutant p53 in vivo. Cancer Lett 2022; 530:128-141. [DOI: 10.1016/j.canlet.2022.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 12/17/2022]
|
38
|
McGrail DJ, Pilié PG, Dai H, Lam TNA, Liang Y, Voorwerk L, Kok M, Zhang XHF, Rosen JM, Heimberger AB, Peterson CB, Jonasch E, Lin SY. Replication stress response defects are associated with response to immune checkpoint blockade in nonhypermutated cancers. Sci Transl Med 2021; 13:eabe6201. [PMID: 34705519 DOI: 10.1126/scitranslmed.abe6201] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Daniel J McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui Dai
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Truong Nguyen Anh Lam
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yulong Liang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Leonie Voorwerk
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Marleen Kok
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.,Department of Medical Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
39
|
Ubogoeva EV, Zemlyanskaya EV, Xu J, Mironova V. Mechanisms of stress response in the root stem cell niche. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6746-6754. [PMID: 34111279 PMCID: PMC8513250 DOI: 10.1093/jxb/erab274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 05/25/2023]
Abstract
As plants are sessile organisms unable to escape from environmental hazards, they need to adapt for survival. The stem cell niche in the root apical meristem is particularly sensitive to DNA damage induced by environmental stresses such as chilling, flooding, wounding, UV, and irradiation. DNA damage has been proven to cause stem cell death, with stele stem cells being the most vulnerable. Stress also induces the division of quiescent center cells. Both reactions disturb the structure and activity of the root stem cell niche temporarily; however, this preserves root meristem integrity and function in the long term. Plants have evolved many mechanisms that ensure stem cell niche maintenance, recovery, and acclimation, allowing them to survive in a changing environment. Here, we provide an overview of the cellular and molecular aspects of stress responses in the root stem cell niche.
Collapse
Affiliation(s)
| | - Elena V Zemlyanskaya
- Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Jian Xu
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Victoria Mironova
- Institute of Cytology and Genetics, Novosibirsk, Russia
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
40
|
A Replication stress biomarker is associated with response to gemcitabine versus combined gemcitabine and ATR inhibitor therapy in ovarian cancer. Nat Commun 2021; 12:5574. [PMID: 34552099 PMCID: PMC8458434 DOI: 10.1038/s41467-021-25904-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022] Open
Abstract
In a trial of patients with high grade serous ovarian cancer (HGSOC), addition of the ATR inhibitor berzosertib to gemcitabine improved progression free survival (PFS) compared to gemcitabine alone but biomarkers predictive of treatment are lacking. Here we report a candidate biomarker of response to gemcitabine versus combined gemcitabine and ATR inhibitor therapy in HGSOC ovarian cancer. Patients with replication stress (RS)-high tumors (n = 27), defined as harboring at least one genomic RS alteration related to loss of RB pathway regulation and/or oncogene-induced replication stress achieve significantly prolonged PFS (HR = 0.38, 90% CI, 0.17-0.86) on gemcitabine monotherapy compared to those with tumors without such alterations (defined as RS-low, n = 30). However, addition of berzosertib to gemcitabine benefits only patients with RS-low tumors (gemcitabine/berzosertib HR 0.34, 90% CI, 0.13-0.86) and not patients with RS-high tumors (HR 1.11, 90% CI, 0.47-2.62). Our findings support the notion that the exacerbation of RS by gemcitabine monotherapy is adequate for lethality in RS-high tumors. Conversely, for RS-low tumors addition of berzosertib-mediated ATR inhibition to gemcitabine is necessary for lethality to occur. Independent prospective validation of this biomarker is required.
Collapse
|
41
|
St Germain C, Zhao H, Barlow JH. Transcription-Replication Collisions-A Series of Unfortunate Events. Biomolecules 2021; 11:1249. [PMID: 34439915 PMCID: PMC8391903 DOI: 10.3390/biom11081249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Transcription-replication interactions occur when DNA replication encounters genomic regions undergoing transcription. Both replication and transcription are essential for life and use the same DNA template making conflicts unavoidable. R-loops, DNA supercoiling, DNA secondary structure, and chromatin-binding proteins are all potential obstacles for processive replication or transcription and pose an even more potent threat to genome integrity when these processes co-occur. It is critical to maintaining high fidelity and processivity of transcription and replication while navigating through a complex chromatin environment, highlighting the importance of defining cellular pathways regulating transcription-replication interaction formation, evasion, and resolution. Here we discuss how transcription influences replication fork stability, and the safeguards that have evolved to navigate transcription-replication interactions and maintain genome integrity in mammalian cells.
Collapse
Affiliation(s)
- Commodore St Germain
- School of Mathematics and Science, Solano Community College, 4000 Suisun Valley Road, Fairfield, CA 94534, USA
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Jacqueline H. Barlow
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| |
Collapse
|
42
|
Pellicanò G, Al Mamun M, Jurado-Santiago D, Villa-Hernández S, Yin X, Giannattasio M, Lanz MC, Smolka MB, Yeeles J, Shirahige K, García-Díaz M, Bermejo R. Checkpoint-mediated DNA polymerase ε exonuclease activity curbing counteracts resection-driven fork collapse. Mol Cell 2021; 81:2778-2792.e4. [PMID: 33932350 PMCID: PMC7612761 DOI: 10.1016/j.molcel.2021.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/01/2023]
Abstract
DNA polymerase ε (Polε) carries out high-fidelity leading strand synthesis owing to its exonuclease activity. Polε polymerase and exonuclease activities are balanced, because of partitioning of nascent DNA strands between catalytic sites, so that net resection occurs when synthesis is impaired. In vivo, DNA synthesis stalling activates replication checkpoint kinases, which act to preserve the functional integrity of replication forks. We show that stalled Polε drives nascent strand resection causing fork functional collapse, averted via checkpoint-dependent phosphorylation. Polε catalytic subunit Pol2 is phosphorylated on serine 430, influencing partitioning between polymerase and exonuclease active sites. A phosphormimetic S430D change reduces exonucleolysis in vitro and counteracts fork collapse. Conversely, non-phosphorylatable pol2-S430A expression causes resection-driven stressed fork defects. Our findings reveal that checkpoint kinases switch Polε to an exonuclease-safe mode preventing nascent strand resection and stabilizing stalled replication forks. Elective partitioning suppression has implications for the diverse Polε roles in genome integrity maintenance.
Collapse
Affiliation(s)
- Grazia Pellicanò
- Center for Biological Research Margarita Salas (CIB-CSIC), Spanish National Research Council, Madrid, Spain
| | - Mohammed Al Mamun
- Center for Biological Research Margarita Salas (CIB-CSIC), Spanish National Research Council, Madrid, Spain
| | - Dolores Jurado-Santiago
- Center for Biological Research Margarita Salas (CIB-CSIC), Spanish National Research Council, Madrid, Spain
| | - Sara Villa-Hernández
- Center for Biological Research Margarita Salas (CIB-CSIC), Spanish National Research Council, Madrid, Spain
| | - Xingyu Yin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Michele Giannattasio
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Michael C Lanz
- Weill Institute for Cell and Molecular Biology Cornell University, Ithaca, NY, USA
| | - Marcus B Smolka
- Weill Institute for Cell and Molecular Biology Cornell University, Ithaca, NY, USA
| | | | | | - Miguel García-Díaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Rodrigo Bermejo
- Center for Biological Research Margarita Salas (CIB-CSIC), Spanish National Research Council, Madrid, Spain.
| |
Collapse
|
43
|
Mirzaei S, Hushmandi K, Zabolian A, Saleki H, Torabi SMR, Ranjbar A, SeyedSaleh S, Sharifzadeh SO, Khan H, Ashrafizadeh M, Zarrabi A, Ahn KS. Elucidating Role of Reactive Oxygen Species (ROS) in Cisplatin Chemotherapy: A Focus on Molecular Pathways and Possible Therapeutic Strategies. Molecules 2021; 26:2382. [PMID: 33921908 PMCID: PMC8073650 DOI: 10.3390/molecules26082382] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
The failure of chemotherapy is a major challenge nowadays, and in order to ensure effective treatment of cancer patients, it is of great importance to reveal the molecular pathways and mechanisms involved in chemoresistance. Cisplatin (CP) is a platinum-containing drug with anti-tumor activity against different cancers in both pre-clinical and clinical studies. However, drug resistance has restricted its potential in the treatment of cancer patients. CP can promote levels of free radicals, particularly reactive oxygen species (ROS) to induce cell death. Due to the double-edged sword role of ROS in cancer as a pro-survival or pro-death mechanism, ROS can result in CP resistance. In the present review, association of ROS with CP sensitivity/resistance is discussed, and in particular, how molecular pathways, both upstream and downstream targets, can affect the response of cancer cells to CP chemotherapy. Furthermore, anti-tumor compounds, such as curcumin, emodin, chloroquine that regulate ROS and related molecular pathways in increasing CP sensitivity are described. Nanoparticles can provide co-delivery of CP with anti-tumor agents and by mediating photodynamic therapy, and induce ROS overgeneration to trigger CP sensitivity. Genetic tools, such as small interfering RNA (siRNA) can down-regulate molecular pathways such as HIF-1α and Nrf2 to promote ROS levels, leading to CP sensitivity. Considering the relationship between ROS and CP chemotherapy, and translating these findings to clinic can pave the way for effective treatment of cancer patients.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Seyed Mohammad Reza Torabi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Adnan Ranjbar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - SeyedHesam SeyedSaleh
- Student Research Committee, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Kwang-Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
44
|
Gao M, Guo G, Huang J, Hou X, Ham H, Kim W, Zhao F, Tu X, Zhou Q, Zhang C, Zhu Q, Liu J, Yan Y, Xu Z, Yin P, Luo K, Weroha J, Deng M, Billadeau DD, Lou Z. DOCK7 protects against replication stress by promoting RPA stability on chromatin. Nucleic Acids Res 2021; 49:3322-3337. [PMID: 33704464 PMCID: PMC8034614 DOI: 10.1093/nar/gkab134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/21/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023] Open
Abstract
RPA is a critical factor for DNA replication and replication stress response. Surprisingly, we found that chromatin RPA stability is tightly regulated. We report that the GDP/GTP exchange factor DOCK7 acts as a critical replication stress regulator to promote RPA stability on chromatin. DOCK7 is phosphorylated by ATR and then recruited by MDC1 to the chromatin and replication fork during replication stress. DOCK7-mediated Rac1/Cdc42 activation leads to the activation of PAK1, which subsequently phosphorylates RPA1 at S135 and T180 to stabilize chromatin-loaded RPA1 and ensure proper replication stress response. Moreover, DOCK7 is overexpressed in ovarian cancer and depleting DOCK7 sensitizes cancer cells to camptothecin. Taken together, our results highlight a novel role for DOCK7 in regulation of the replication stress response and highlight potential therapeutic targets to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Ming Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Guijie Guo
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinzhou Huang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaonan Hou
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hyoungjun Ham
- Department of Biochemistry and Molecular Biology, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Wootae Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xinyi Tu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Qin Zhou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chao Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Qian Zhu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jiaqi Liu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuanliang Yan
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhijie Xu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ping Yin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kuntian Luo
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - John Weroha
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Min Deng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel D Billadeau
- Department of Biochemistry and Molecular Biology, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
45
|
Mao S, Chaerkady R, Yu W, D'Angelo G, Garcia A, Chen H, Barrett AM, Phipps S, Fleming R, Hess S, Koopmann JO, Dimasi N, Wilson S, Pugh K, Cook K, Masterson LA, Gao C, Wu H, Herbst R, Howard PW, Tice DA, Cobbold M, Harper J. Resistance to Pyrrolobenzodiazepine Dimers Is Associated with SLFN11 Downregulation and Can Be Reversed through Inhibition of ATR. Mol Cancer Ther 2021; 20:541-552. [PMID: 33653945 DOI: 10.1158/1535-7163.mct-20-0351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/01/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
Resistance to antibody-drug conjugates (ADCs) has been observed in both preclinical models and clinical studies. However, mechanisms of resistance to pyrrolobenzodiazepine (PBD)-conjugated ADCs have not been well characterized and thus, this study was designed to investigate development of resistance to PBD dimer warheads and PBD-conjugated ADCs. We established a PBD-resistant cell line, 361-PBDr, by treating human breast cancer MDA-MB-361 cells with gradually increasing concentrations of SG3199, the PBD dimer released from the PBD drug-linker tesirine. 361-PBDr cells were over 20-fold less sensitive to SG3199 compared with parental cells and were cross-resistant to other PBD warhead and ADCs conjugated with PBDs. Proteomic profiling revealed that downregulation of Schlafen family member 11 (SLFN11), a putative DNA/RNA helicase, sensitizing cancer cells to DNA-damaging agents, was associated with PBD resistance. Confirmatory studies demonstrated that siRNA knockdown of SLFN11 in multiple tumor cell lines conferred reduced sensitivity to SG3199 and PBD-conjugated ADCs. Treatment with EPZ011989, an EZH2 inhibitor, derepressed SLFN11 expression in 361-PBDr and other SLFN11-deficient tumor cells, and increased sensitivity to PBD and PBD-conjugated ADCs, indicating that the suppression of SLFN11 expression is associated with histone methylation as reported. Moreover, we demonstrated that combining an ataxia telangiectasia and Rad3-related protein (ATR) inhibitor, AZD6738, with SG3199 or PBD-based ADCs led to synergistic cytotoxicity in either resistant 361-PBDr cells or cells that SLFN11 was knocked down via siRNA. Collectively, these data provide insights into potential development of resistance to PBDs and PBD-conjugated ADCs, and more importantly, inform strategy development to overcome such resistance.
Collapse
Affiliation(s)
- Shenlan Mao
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland.
| | | | - Wen Yu
- Bioinformatics, AstraZeneca, Gaithersburg, Maryland
| | | | - Andrew Garcia
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Hong Chen
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Sandrina Phipps
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Ryan Fleming
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Sonja Hess
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | | | - Nazzareno Dimasi
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Susan Wilson
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | | | - Kimberly Cook
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Changshou Gao
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Herren Wu
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Ronald Herbst
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - David A Tice
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Mark Cobbold
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Jay Harper
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland.
| |
Collapse
|
46
|
Differential Expression of a Panel of Ten CNTN1-Associated Genes during Prostate Cancer Progression and the Predictive Properties of the Panel Towards Prostate Cancer Relapse. Genes (Basel) 2021; 12:genes12020257. [PMID: 33578925 PMCID: PMC7916715 DOI: 10.3390/genes12020257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Contactin 1 (CNTN1) is a new oncogenic protein of prostate cancer (PC); its impact on PC remains incompletely understood. We observed CNTN1 upregulation in LNCaP cell-derived castration-resistant PCs (CRPC) and CNTN1-mediated enhancement of LNCaP cell proliferation. CNTN1 overexpression in LNCaP cells resulted in enrichment of the CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_3 gene set that facilitates endocrine resistance in breast cancer. The leading-edge (LE) genes (n = 10) of this enrichment consist of four genes with limited knowledge on PC and six genes novel to PC. These LE genes display differential expression during PC initiation, metastatic progression, and CRPC development, and they predict PC relapse following curative therapies at hazard ratio (HR) 2.72, 95% confidence interval (CI) 1.96–3.77, and p = 1.77 × 10−9 in The Cancer Genome Atlas (TCGA) PanCancer cohort (n = 492) and HR 2.72, 95% CI 1.84–4.01, and p = 4.99 × 10−7 in Memorial Sloan Kettering Cancer Center (MSKCC) cohort (n = 140). The LE gene panel classifies high-, moderate-, and low-risk of PC relapse in both cohorts. Additionally, the gene panel robustly predicts poor overall survival in clear cell renal cell carcinoma (ccRCC, p = 1.13 × 10−11), consistent with ccRCC and PC both being urogenital cancers. Collectively, we report multiple CNTN1-related genes relevant to PC and their biomarker values in predicting PC relapse.
Collapse
|
47
|
Yeo CT, Stancill JS, Oleson BJ, Schnuck JK, Stafford JD, Naatz A, Hansen PA, Corbett JA. Regulation of ATR-dependent DNA damage response by nitric oxide. J Biol Chem 2021; 296:100388. [PMID: 33567339 PMCID: PMC7967039 DOI: 10.1016/j.jbc.2021.100388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/01/2023] Open
Abstract
We have shown that nitric oxide limits ataxia-telangiectasia mutated signaling by inhibiting mitochondrial oxidative metabolism in a β-cell selective manner. In this study, we examined the actions of nitric oxide on a second DNA damage response transducer kinase, ataxia-telangiectasia and Rad3-related protein (ATR). In β-cells and non-β-cells, nitric oxide activates ATR signaling by inhibiting ribonucleotide reductase; however, when produced at inducible nitric oxide synthase-derived (low micromolar) levels, nitric oxide impairs ATR signaling in a β-cell selective manner. The inhibitory actions of nitric oxide are associated with impaired mitochondrial oxidative metabolism and lack of glycolytic compensation that result in a decrease in β-cell ATP. Like nitric oxide, inhibitors of mitochondrial respiration reduce ATP levels and limit ATR signaling in a β-cell selective manner. When non-β-cells are forced to utilize mitochondrial oxidative metabolism for ATP generation, their response is more like β-cells, as nitric oxide and inhibitors of mitochondrial respiration attenuate ATR signaling. These studies support a dual role for nitric oxide in regulating ATR signaling. Nitric oxide activates ATR in all cell types examined by inhibiting ribonucleotide reductase, and in a β-cell selective manner, inducible nitric oxide synthase-derived levels of nitric oxide limit ATR signaling by attenuating mitochondrial oxidative metabolism and depleting ATP.
Collapse
|
48
|
Barnieh FM, Loadman PM, Falconer RA. Progress towards a clinically-successful ATR inhibitor for cancer therapy. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100017. [PMID: 34909652 PMCID: PMC8663972 DOI: 10.1016/j.crphar.2021.100017] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
The DNA damage response (DDR) is now known to play an important role in both cancer development and its treatment. Targeting proteins such as ATR (Ataxia telangiectasia mutated and Rad3-related) kinase, a major regulator of DDR, has demonstrated significant therapeutic potential in cancer treatment, with ATR inhibitors having shown anti-tumour activity not just as monotherapies, but also in potentiating the effects of conventional chemotherapy, radiotherapy, and immunotherapy. This review focuses on the biology of ATR, its functional role in cancer development and treatment, and the rationale behind inhibition of this target as a therapeutic approach, including evaluation of the progress and current status of development of potent and specific ATR inhibitors that have emerged in recent decades. The current applications of these inhibitors both in preclinical and clinical studies either as single agents or in combinations with chemotherapy, radiotherapy and immunotherapy are also extensively discussed. This review concludes with some insights into the various concerns raised or observed with ATR inhibition in both the preclinical and clinical settings, with some suggested solutions.
Collapse
Affiliation(s)
- Francis M. Barnieh
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Paul M. Loadman
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Robert A. Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| |
Collapse
|
49
|
Kulbay M, Bernier-Parker N, Bernier J. The role of the DFF40/CAD endonuclease in genomic stability. Apoptosis 2021; 26:9-23. [PMID: 33387146 DOI: 10.1007/s10495-020-01649-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
Abstract
Maintenance of genomic stability in cells is primordial for cellular integrity and protection against tumor progression. Many factors such as ultraviolet light, oxidative stress, exposure to chemical reagents, particularly mutagens and radiation, can alter the integrity of the genome. Thus, human cells are equipped with many mechanisms that prevent these irreversible lesions in the genome, as DNA repair pathways, cell cycle checkpoints, and telomeric function. These mechanisms activate cellular apoptosis to maintain DNA stability. Emerging studies have proposed a new protein in the maintenance of genomic stability: the DNA fragmentation factor (DFF). The DFF40 is an endonuclease responsible of the oligonucleosomal fragmentation of the DNA during apoptosis. The lack of DFF in renal carcinoma cells induces apoptosis without oligonucleosomal fragmentation, which poses a threat to genetic information transfer between cancerous and healthy cells. In this review, we expose the link between the DFF and genomic instability as the source of disease development.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS - Centre Armand-Frappier-Santé-Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
- Department of Medicine, Université de Montréal, 2900 Blvd. Edouard Montpetit, Montreal, QC, Canada
| | - Nathan Bernier-Parker
- Toronto Animal Health Partners Emergency and Specialty Hospital, 1 Scarsdale Road, North York, ON, M3B 2R2, Canada
| | - Jacques Bernier
- INRS - Centre Armand-Frappier-Santé-Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
50
|
Lyu X, Lei K, Biak Sang P, Shiva O, Chastain M, Chi P, Chai W. Human CST complex protects stalled replication forks by directly blocking MRE11 degradation of nascent-strand DNA. EMBO J 2021; 40:e103654. [PMID: 33210317 PMCID: PMC7809791 DOI: 10.15252/embj.2019103654] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/07/2020] [Accepted: 10/20/2020] [Indexed: 01/31/2023] Open
Abstract
Degradation and collapse of stalled replication forks are main sources of genomic instability, yet the molecular mechanisms for protecting forks from degradation/collapse are not well understood. Here, we report that human CST (CTC1-STN1-TEN1) proteins, which form a single-stranded DNA-binding complex, localize at stalled forks and protect stalled forks from degradation by the MRE11 nuclease. CST deficiency increases MRE11 binding to stalled forks, leading to nascent-strand degradation at reversed forks and ssDNA accumulation. In addition, purified CST complex binds to 5' DNA overhangs and directly blocks MRE11 degradation in vitro, and the DNA-binding ability of CST is required for blocking MRE11-mediated nascent-strand degradation. Our results suggest that CST inhibits MRE11 binding to reversed forks, thus antagonizing excessive nascent-strand degradation. Finally, we uncover that CST complex inactivation exacerbates genome instability in BRCA2 deficient cells. Collectively, our findings identify the CST complex as an important fork protector that preserves genome integrity under replication perturbation.
Collapse
Affiliation(s)
- Xinxing Lyu
- Department of Cancer BiologyCardinal Bernardin Cancer CenterLoyola University Chicago Stritch School of MedicineMaywoodILUSA
- Department of Biomedical SciencesESF College of MedicineWashington State UniversitySpokaneWAUSA
| | - Kai‐Hang Lei
- Institute of Biochemical SciencesNational Taiwan UniversityTaipeiTaiwan
| | - Pau Biak Sang
- Department of Cancer BiologyCardinal Bernardin Cancer CenterLoyola University Chicago Stritch School of MedicineMaywoodILUSA
| | - Olga Shiva
- Department of Biomedical SciencesESF College of MedicineWashington State UniversitySpokaneWAUSA
| | - Megan Chastain
- Department of Biomedical SciencesESF College of MedicineWashington State UniversitySpokaneWAUSA
| | - Peter Chi
- Institute of Biochemical SciencesNational Taiwan UniversityTaipeiTaiwan
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Weihang Chai
- Department of Cancer BiologyCardinal Bernardin Cancer CenterLoyola University Chicago Stritch School of MedicineMaywoodILUSA
| |
Collapse
|