1
|
Xu H, Wu Z, Qin J, Li X, Xu F, Wang W, Zhang H, Yin H, Zhu S, Zhang W, Yang Y, Wei Y, Gao L, Liu J, Gao Y, Zheng MH, Zhou H, Qi T, Chen J, Gao Y, Zuo L, Chen J, Liangpunsakul S, Li J, Wang H. Stressed hepatocyte sustains alcohol-associated hepatitis progression by producing leukocyte cell-derived chemotaxin 2. Gut 2025:gutjnl-2024-334318. [PMID: 40139745 DOI: 10.1136/gutjnl-2024-334318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Neutrophil infiltration and hepatocyte damage are indispensable hallmarks in alcohol-associated hepatitis (AH), yet the underlying crosstalk between neutrophils and hepatocytes and its role in AH pathogenesis remain unclear. OBJECTIVE We investigate the regulatory role of leucocyte cell-derived chemotaxin 2 (LECT2) in hepatocyte-neutrophil interaction and its impact on AH progression. DESIGN We used bulk and single-cell RNA sequencing to identify hepatocyte-secreted factors targeting neutrophils. We analysed serum and liver samples from AH patients and employed genetically modified mice alongside in vitro studies. RESULTS RNA-sequencing analysis identified several neutrophil chemokines that are elevated in hepatocytes from AH patients, including LECT2 whose role in AH remains largely unknown. AH patients exhibited increased levels of LECT2 in hepatocytes, positively correlating with the severity of AH. Ethanol-fed mice also exhibited elevated liver LECT2, which was abolished by inhibiting endoplasmic reticulum stress. Functional studies revealed that ethanol-induced liver injury was ameliorated in Lect2-deficient mice but was exacerbated in mice with hepatic overexpression of Lect2. Furthermore, LECT2 exacerbated ethanol-induced liver injury by promoting reactive oxygen species (ROS) through its interaction with prohibitin 2 (PHB2), a neutrophil membrane protein. By directly binding to PHB2, LECT2 disrupts the stable structure of PHB1/PHB2 heterodimerisation, consequently leading to PHB2 degradation, ROS accumulation, neutrophil activation and neutrophil extracellular trap formation. Moreover, therapeutic intervention of LECT2 via Lect2 shRNA ameliorated ethanol-induced liver injury. CONCLUSION Our studies identified a novel vicious cycle between neutrophils and hepatocytes through the LECT2-PHB2 interaction, presenting a promising therapeutic intervention by targeting LECT2 to mitigate AH in patients.
Collapse
Affiliation(s)
- Honghai Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zihao Wu
- Department of Geriatrics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Key Laboratory of Geriatric Immunology and Nutrition Therapy, Hefei, Anhui, China
| | - Jiangfeng Qin
- Department of Infectious Diseases, the People's Hospital of Xuancheng City, Xuancheng, Anhui, China
| | - Xutong Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Feng Xu
- Department of Intensive Care Unit & Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wei Wang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hui Zhang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
| | - HeHe Yin
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
| | - Shiwei Zhu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenzhe Zhang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Laboratory of Molecular Biology, and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, China
| | - Yuanru Yang
- Department of Blood Transfusion, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, Beijing, China
| | - Yuanyuan Wei
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Long Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiatao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China
| | - Haoxiong Zhou
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tingting Qi
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, Guangdong, China
| | - Jinjun Chen
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, Guangdong, China
- Hepatology Unit, Department of Infectious Diseases, Zengcheng Branch, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Laboratory of Molecular Biology, and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Wang H, Kazaleh M, Gioscia-Ryan R, Millar J, Temprano-Sagrera G, Wood S, Van Den Bergh F, Blin MG, Wragg KM, Luna A, Hawkins RB, Soleimanpour SA, Sabater-Lleal M, Shu C, Beard DA, Ailawadi G, Deng JC, Goldstein DR, Salmon M. Deficiency of mitophagy mediator Parkin in aortic smooth muscle cells exacerbates abdominal aortic aneurysm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.30.621201. [PMID: 39554010 PMCID: PMC11565987 DOI: 10.1101/2024.10.30.621201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Abdominal aortic aneurysms (AAAs) are a degenerative aortic disease and associated with hallmarks of aging, such as mitophagy. Despite this, the exact associations among mitophagy, aging, and AAA progression remain unknown. In our study, gene expression analysis of human AAA tissue revealed downregulation of mitophagy pathways, mitochondrial structure, and function-related proteins. Human proteomic analyses identified decreased levels of mitophagy mediators PINK1 and Parkin. Aged mice and, separately, a murine AAA model showed reduced mitophagy in aortic vascular smooth muscle cells (VSMCs) and PINK1 and Parkin expression. Parkin knockdown in VSMCs aggravated AAA dilation in murine models, with elevated mitochondrial ROS and impaired mitochondrial function. Importantly, inhibiting USP30, an antagonist of the PINK1/Parkin pathway, increased mitophagy in VSMCs, improved mitochondrial function, and reduced AAA incidence and growth. Our study elucidates a critical mechanism that proposes AAAs as an age-associated disease with altered mitophagy, introducing new potential therapeutic approaches.
Collapse
|
3
|
Rose K, Herrmann E, Kakudji E, Lizarrondo J, Celebi AY, Wilfling F, Lewis SC, Hurley JH. In situ cryo-ET visualization of mitochondrial depolarization and mitophagic engulfment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645001. [PMID: 40196634 PMCID: PMC11974748 DOI: 10.1101/2025.03.24.645001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Defective mitochondrial quality control in response to loss of mitochondrial membrane polarization is implicated in Parkinson's disease by mutations in PINK1 and PRKN. Application of in situ cryo-electron tomography (cryo-ET) made it possible to visualize the consequences of mitochondrial depolarization at higher resolution than heretofore attainable. Parkin-expressing U2OS cells were treated with the depolarizing agents oligomycin and antimycin A (OA), subjected to cryo-FIB milling, and mitochondrial structure was characterized by in situ cryo-ET. Phagophores were visualized in association with mitochondrial fragments. Bridge-like lipid transporter (BLTP) densities potentially corresponding to ATG2A were seen connected to mitophagic phagophores. Mitochondria in OA-treated cells were fragmented and devoid of matrix calcium phosphate crystals. The intermembrane gap of cristae was narrowed and the intermembrane volume reduced, and some fragments were devoid of cristae. A subpopulation of ATP synthases re-localized from cristae to the inner boundary membrane (IBM) apposed to the outer membrane (OMM). The structure of the dome-shaped prohibitin complex, a dodecamer of PHB1-PHB2 dimers, was determined in situ by sub-tomogram averaging in untreated and treated cells and found to exist in open and closed conformations, with the closed conformation is enriched by OA treatment. These findings provide a set of native snapshots of the manifold nano-structural consequences of mitochondrial depolarization and provide a baseline for future in situ dissection of Parkin-dependent mitophagy.
Collapse
Affiliation(s)
- Kevin Rose
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Eric Herrmann
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Eve Kakudji
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Javier Lizarrondo
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - A Yasemin Celebi
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Florian Wilfling
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Samantha C Lewis
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - James H Hurley
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
4
|
Fakih Z, Germain H. Implication of ribosomal protein in abiotic and biotic stress. PLANTA 2025; 261:85. [PMID: 40067484 DOI: 10.1007/s00425-025-04665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION This review article explores the intricate role, and regulation of ribosomal protein in response to stress, particularly emphasizing their pivotal role to ameliorate abiotic and biotic stress conditions in crop plants. Plants must coordinate ribosomes production to balance cellular protein synthesis in response to environmental variations and pathogens invasion. Over the past decade, research has revealed ribosome subgroups respond to adverse conditions, suggesting that this tight coordination may be grounded in the induction of ribosome variants resulting in differential translation outcomes. Furthermore, an increasing snumber of studies on plant ribosomes have made it possible to explore the stress-regulated expression pattern of ribosomal protein large subunit (RPL) and ribosomal protein small subunit (RPS) genes. In this perspective, we reviewed the literature linking ribosome heterogeneity to plants' abiotic and biotic stress responses to offer an overview on the expression and biological function of ribosomal components including specialized translation of individual transcripts and its implications for the regulation and expression of important gene regulatory networks, along with phenotypic analysis in ribosomal gene mutations in physiologic and pathologic processes. We also highlight recent advances in understanding the molecular mechanisms behind the transcriptional regulation of ribosomal genes linked to stress events. This review may serve as the foundation of novel strategies to customize cultivars tolerant to challenging environments without the yield penalty.
Collapse
Affiliation(s)
- Zainab Fakih
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec À Trois-Rivières, Trois-Rivières, Québec, G9A 5H9, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec À Trois-Rivières, Trois-Rivières, Québec, G9A 5H9, Canada.
| |
Collapse
|
5
|
Lin R, Elmir E, Reynolds MJ, Johnson AW. In vitro characterization of the yeast DEAH/RHA RNA helicase Dhr1. J Biol Chem 2025; 301:108366. [PMID: 40024476 PMCID: PMC11994318 DOI: 10.1016/j.jbc.2025.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025] Open
Abstract
In eukaryotic ribosome biogenesis, the small subunit (SSU) processome is a metastable intermediate in the assembly of the small (40S) subunit. In the SSU processome, the ribosomal RNA domains are splayed open by the intervention of assembly factors as well as U3 snoRNA. A critical step during the transition from the SSU processome to the nearly mature pre-40S particle is the removal of the U3 snoRNA to allow the formation of the central pseudoknot, a universally conserved structure which connects all domains of the subunit and contributes to its dynamic nature during translation. We previously identified the DEAH/RHA RNA helicase Dhr1 as the enzyme responsible for displacing the U3 snoRNA and the SSU processome factor Utp14 as an activator of Dhr1. Here, we have utilized biochemical and yeast genetic methods to further characterize Dhr1. We show that the N terminus as well as an internal loop within the RecA2 domain are autoinhibitory. We found that Utp14 can activate the ATPase activity of Dhr1 lacking the autoinhibitory N-terminal loop but not full-length Dhr1. We considered the possibility that Utp14 activates Dhr1 by relieving the autoinhibition of the loop within the RecA2 domain. However, our results are more consistent with Utp14 activating Dhr1 by binding to the surface of the RecA1 and RecA2 domains rather than displacing the inhibitory loop. This position of Utp14 is distinct from how G-patch proteins activate other DEXH/RHA helicases and is consistent with our previous conclusion that Utp14 is not a canonical G-patch protein.
Collapse
Affiliation(s)
- Ran Lin
- Department of Molecular Biosciences, The University of Texas at Austin Austin, Texas, USA
| | - Ezzeddine Elmir
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin Austin, Texas, USA.
| |
Collapse
|
6
|
Timsit Y. The Expanding Universe of Extensions and Tails: Ribosomal Proteins and Histones in RNA and DNA Complex Signaling and Dynamics. Genes (Basel) 2025; 16:45. [PMID: 39858592 PMCID: PMC11764897 DOI: 10.3390/genes16010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
This short review bridges two biological fields: ribosomes and nucleosomes-two nucleoprotein assemblies that, along with many viruses, share proteins featuring long filamentous segments at their N- or C-termini. A central hypothesis is that these extensions and tails perform analogous functions in both systems. The evolution of these structures appears closely tied to the emergence of regulatory networks and signaling pathways, facilitating increasingly complex roles for ribosomes and nucleosome alike. This review begins by summarizing the structures and functions of ribosomes and nucleosomes, followed by a detailed comparison highlighting their similarities and differences, particularly in light of recent findings on the roles of ribosomal proteins in signaling and ribosome dynamics. The analysis seeks to uncover whether these systems operate based on shared principles and mechanisms. The nucleosome-ribosome analogy may offer valuable insights into unresolved questions in both fields. For instance, new structural insights from ribosomes might shed light on potential motifs formed by histone tails. From an evolutionary perspective, this study revisits the origins of signaling and regulation in ancient nucleoprotein assemblies, suggesting that tails and extensions may represent remnants of the earliest network systems governing signaling and dynamic control.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France;
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
7
|
Verma AK, Roy B, Dwivedi Y. Decoding the molecular script of 2'-O-ribomethylation: Implications across CNS disorders. Heliyon 2024; 10:e39036. [PMID: 39524798 PMCID: PMC11550049 DOI: 10.1016/j.heliyon.2024.e39036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Emerging evidence underscores the critical role of impaired mRNA translation in various neurobiological conditions. Ribosomal RNA (rRNA), essential for protein synthesis, undergoes crucial post-transcriptional modifications such as 2'-O-ribose methylation, pseudouridylation, and base modifications. These modifications, particularly 2'-O-ribose methylation is vital for stabilizing rRNA structures and optimizing translation efficiency by regulating RNA integrity and its interactions with proteins. Concentrated in key regions like decoding sites and the peptidyl transferase center, dysregulation of these modifications can disrupt ribosomal function, contributing to the pathogenesis of diverse neurological conditions, including mental health disorders, developmental abnormalities, and neurodegenerative diseases. Mechanistically, 2'-O-ribose methylation involves interactions between small nucleolar RNAs (snoRNAs), snoRNPs, and fibrillarin, forming a complex regulatory network crucial for maintaining ribosomal integrity and function. Recent research highlights the association of defective ribosome biogenesis with a spectrum of CNS disorders, emphasizing the importance of understanding rRNA mechanisms in disease pathology. This review focuses on the pivotal role of 2'-O-ribose methylation in shaping ribosomal function and its potential implications for unraveling the pathophysiology of CNS disorders. Insights gained from studying these RNA modifications could pave the way for new therapeutic strategies targeting ribosomal dysfunction and associated neuropathological conditions, advancing precision medicine and therapeutic interventions.
Collapse
Affiliation(s)
- Anuj K. Verma
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Adriaenssens E, Schaar S, Cook ASI, Stuke JFM, Sawa-Makarska J, Nguyen TN, Ren X, Schuschnig M, Romanov J, Khuu G, Lazarou M, Hummer G, Hurley JH, Martens S. Reconstitution of BNIP3/NIX-mediated autophagy reveals two pathways and hierarchical flexibility of the initiation machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609967. [PMID: 39253418 PMCID: PMC11383309 DOI: 10.1101/2024.08.28.609967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Selective autophagy is a lysosomal degradation pathway that is critical for maintaining cellular homeostasis by disposing of harmful cellular material. While the mechanisms by which soluble cargo receptors recruit the autophagy machinery are becoming increasingly clear, the principles governing how organelle-localized transmembrane cargo receptors initiate selective autophagy remain poorly understood. Here, we demonstrate that transmembrane cargo receptors can initiate autophagosome biogenesis not only by recruiting the upstream FIP200/ULK1 complex but also via a WIPI-ATG13 complex. This latter pathway is employed by the BNIP3/NIX receptors to trigger mitophagy. Additionally, other transmembrane mitophagy receptors, including FUNDC1 and BCL2L13, exclusively use the FIP200/ULK1 complex, while FKBP8 and the ER-phagy receptor TEX264 are capable of utilizing both pathways to initiate autophagy. Our study defines the molecular rules for initiation by transmembrane cargo receptors, revealing remarkable flexibility in the assembly and activation of the autophagy machinery, with significant implications for therapeutic interventions.
Collapse
|
9
|
Tanoz I, Timsit Y. Protein Fold Usages in Ribosomes: Another Glance to the Past. Int J Mol Sci 2024; 25:8806. [PMID: 39201491 PMCID: PMC11354259 DOI: 10.3390/ijms25168806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
The analysis of protein fold usage, similar to codon usage, offers profound insights into the evolution of biological systems and the origins of modern proteomes. While previous studies have examined fold distribution in modern genomes, our study focuses on the comparative distribution and usage of protein folds in ribosomes across bacteria, archaea, and eukaryotes. We identify the prevalence of certain 'super-ribosome folds,' such as the OB fold in bacteria and the SH3 domain in archaea and eukaryotes. The observed protein fold distribution in the ribosomes announces the future power-law distribution where only a few folds are highly prevalent, and most are rare. Additionally, we highlight the presence of three copies of proto-Rossmann folds in ribosomes across all kingdoms, showing its ancient and fundamental role in ribosomal structure and function. Our study also explores early mechanisms of molecular convergence, where different protein folds bind equivalent ribosomal RNA structures in ribosomes across different kingdoms. This comparative analysis enhances our understanding of ribosomal evolution, particularly the distinct evolutionary paths of the large and small subunits, and underscores the complex interplay between RNA and protein components in the transition from the RNA world to modern cellular life. Transcending the concept of folds also makes it possible to group a large number of ribosomal proteins into five categories of urfolds or metafolds, which could attest to their ancestral character and common origins. This work also demonstrates that the gradual acquisition of extensions by simple but ordered folds constitutes an inexorable evolutionary mechanism. This observation supports the idea that simple but structured ribosomal proteins preceded the development of their disordered extensions.
Collapse
Affiliation(s)
- Inzhu Tanoz
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France;
| | - Youri Timsit
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France;
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 Rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
10
|
Ayers TN, Woolford JL. Putting It All Together: The Roles of Ribosomal Proteins in Nucleolar Stages of 60S Ribosomal Assembly in the Yeast Saccharomyces cerevisiae. Biomolecules 2024; 14:975. [PMID: 39199362 PMCID: PMC11353139 DOI: 10.3390/biom14080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Here we review the functions of ribosomal proteins (RPs) in the nucleolar stages of large ribosomal subunit assembly in the yeast Saccharomyces cerevisiae. We summarize the effects of depleting RPs on pre-rRNA processing and turnover, on the assembly of other RPs, and on the entry and exit of assembly factors (AFs). These results are interpreted in light of recent near-atomic-resolution cryo-EM structures of multiple assembly intermediates. Results are discussed with respect to each neighborhood of RPs and rRNA. We identify several key mechanisms related to RP behavior. Neighborhoods of RPs can assemble in one or more than one step. Entry of RPs can be triggered by molecular switches, in which an AF is replaced by an RP binding to the same site. To drive assembly forward, rRNA structure can be stabilized by RPs, including clamping rRNA structures or forming bridges between rRNA domains.
Collapse
Affiliation(s)
| | - John L. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Yu J, Ramirez LM, Lin Q, Burz DS, Shekhtman A. Ribosome External Electric Field Regulates Metabolic Enzyme Activity: The RAMBO Effect. J Phys Chem B 2024; 128:7002-7021. [PMID: 39012038 DOI: 10.1021/acs.jpcb.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Ribosomes bind to many metabolic enzymes and change their activity. A general mechanism for ribosome-mediated amplification of metabolic enzyme activity, RAMBO, was formulated and elucidated for the glycolytic enzyme triosephosphate isomerase, TPI. The RAMBO effect results from a ribosome-dependent electric field-substrate dipole interaction energy that can increase or decrease the ground state of the reactant and product to regulate catalytic rates. NMR spectroscopy was used to determine the interaction surface of TPI binding to ribosomes and to measure the corresponding kinetic rates in the absence and presence of intact ribosome particles. Chemical cross-linking and mass spectrometry revealed potential ribosomal protein binding partners of TPI. Structural results and related changes in TPI energetics and activity show that the interaction between TPI and ribosomal protein L11 mediate the RAMBO effect.
Collapse
Affiliation(s)
- Jianchao Yu
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Lisa M Ramirez
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Qishan Lin
- RNA Epitranscriptomics & Proteomics Resource, University at Albany, State University of New York, Albany, New York 12222, United States
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
12
|
Martín-Villanueva S, Galmozzi CV, Ruger-Herreros C, Kressler D, de la Cruz J. The Beak of Eukaryotic Ribosomes: Life, Work and Miracles. Biomolecules 2024; 14:882. [PMID: 39062596 PMCID: PMC11274626 DOI: 10.3390/biom14070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Ribosomes are not totally globular machines. Instead, they comprise prominent structural protrusions and a myriad of tentacle-like projections, which are frequently made up of ribosomal RNA expansion segments and N- or C-terminal extensions of ribosomal proteins. This is more evident in higher eukaryotic ribosomes. One of the most characteristic protrusions, present in small ribosomal subunits in all three domains of life, is the so-called beak, which is relevant for the function and regulation of the ribosome's activities. During evolution, the beak has transitioned from an all ribosomal RNA structure (helix h33 in 16S rRNA) in bacteria, to an arrangement formed by three ribosomal proteins, eS10, eS12 and eS31, and a smaller h33 ribosomal RNA in eukaryotes. In this review, we describe the different structural and functional properties of the eukaryotic beak. We discuss the state-of-the-art concerning its composition and functional significance, including other processes apparently not related to translation, and the dynamics of its assembly in yeast and human cells. Moreover, we outline the current view about the relevance of the beak's components in human diseases, especially in ribosomopathies and cancer.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carla V. Galmozzi
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carmen Ruger-Herreros
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Dieter Kressler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| |
Collapse
|
13
|
Hwang SP, Denicourt C. The impact of ribosome biogenesis in cancer: from proliferation to metastasis. NAR Cancer 2024; 6:zcae017. [PMID: 38633862 PMCID: PMC11023387 DOI: 10.1093/narcan/zcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The dysregulation of ribosome biogenesis is a hallmark of cancer, facilitating the adaptation to altered translational demands essential for various aspects of tumor progression. This review explores the intricate interplay between ribosome biogenesis and cancer development, highlighting dynamic regulation orchestrated by key oncogenic signaling pathways. Recent studies reveal the multifaceted roles of ribosomes, extending beyond protein factories to include regulatory functions in mRNA translation. Dysregulated ribosome biogenesis not only hampers precise control of global protein production and proliferation but also influences processes such as the maintenance of stem cell-like properties and epithelial-mesenchymal transition, contributing to cancer progression. Interference with ribosome biogenesis, notably through RNA Pol I inhibition, elicits a stress response marked by nucleolar integrity loss, and subsequent G1-cell cycle arrest or cell death. These findings suggest that cancer cells may rely on heightened RNA Pol I transcription, rendering ribosomal RNA synthesis a potential therapeutic vulnerability. The review further explores targeting ribosome biogenesis vulnerabilities as a promising strategy to disrupt global ribosome production, presenting therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
14
|
Wilson ER, Nunes GDF, Shen S, Moore S, Gawron J, Maxwell J, Syed U, Hurley E, Lanka M, Qu J, Desaubry L, Wrabetz L, Poitelon Y, Feltri ML. Loss of prohibitin 2 in Schwann cells dysregulates key transcription factors controlling developmental myelination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585915. [PMID: 38562812 PMCID: PMC10983910 DOI: 10.1101/2024.03.20.585915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Schwann cells are critical for the proper development and function of the peripheral nervous system, where they form a mutually beneficial relationship with axons. Past studies have highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long-term myelin maintenance and axon health, they may also be present at the Schwann cell-axon interface during development. Here, we expand on this work, showing that drug-mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell-specific ablation of prohibitin 2 (Phb2) in vivo results in early and severe defects in peripheral nerve development. Using a proteomic approach in vitro, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on the presence of axonal signals. Furthermore, we show in vivo that loss of Phb2 in mouse Schwann cells causes ineffective proliferation and dysregulation of transcription factors EGR2 (KROX20), POU3F1 (OCT6) and POU3F2 (BRN2) that are necessary for proper Schwann cell maturation. Schwann cell-specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the development defect seen in mice lacking Schwann cell Phb2. This work develops our understanding of Schwann cell biology, revealing that Phb2 may directly or indirectly modulate the timely expression of transcription factors necessary for proper peripheral nervous system development, and proposing candidates that may play a role in PHB2-mediated integration of axon signals in the Schwann cell.
Collapse
Affiliation(s)
- Emma R Wilson
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
| | - Gustavo Della-Flora Nunes
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Seth Moore
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Joseph Gawron
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jessica Maxwell
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Umair Syed
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Edward Hurley
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Meghana Lanka
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Laurent Desaubry
- Center of Research in Biomedicine of Strasbourg, Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, 67000 Strasbourg, France
| | - Lawrence Wrabetz
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - M Laura Feltri
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
15
|
Bulygin KN, Malygin AA, Graifer DM. Functional involvement of a conserved motif in the middle region of the human ribosomal protein eL42 in translation. Biochimie 2024; 218:96-104. [PMID: 37716853 DOI: 10.1016/j.biochi.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Ribosomal protein eL42 (formerly known as L36A), a small protein of the large (60S) subunit of the eukaryotic ribosome, is a component of its exit (E) site. The residue K53 of this protein resides within the motif QSGYGGQTK mainly conserved in eukaryotes, and it is located in the immediate vicinity of the CCA-terminus of the ribosome-bound tRNA in the hybrid P/E state. To examine the role of this eL42 motif in translation, we obtained HEK293T cells producing the wild-type FLAG-tagged protein or its mutant forms with either single substitutions of conserved amino acid residues in the above motif, or simultaneous replacements in positions 45 and 51 or 45 and 53. Examination of the level of exogenous eL42 in fractions of polysome profiles from the target protein-producing cells by the Western blotting revealed that neither single substitution affects the assembly of 60S ribosomal subunits and 80S ribosomes or critically decreases the level of polysomes, but the latter was observed with the double replacements. Analysis of tRNAs bound to 80S ribosomes containing eL42 with double substitutions and examination their peptidyl transferase activity enabled estimation the stage of the elongation cycle, in which amino acid residues of the conserved eL42 motif are involved. We clearly show that cooperative interactions implicating the eL42 residues Q45, Q51, and K53 play a critical role in the ability of the human ribosome to perform properly elongation cycle at the step of deacylated tRNA dissociation from the E site in the human cell.
Collapse
Affiliation(s)
- Konstantin N Bulygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia.
| |
Collapse
|
16
|
Lee YJ, Rio DC. A mutation in the low-complexity domain of splicing factor hnRNPA1 linked to amyotrophic lateral sclerosis disrupts distinct neuronal RNA splicing networks. Genes Dev 2024; 38:11-30. [PMID: 38182429 PMCID: PMC10903937 DOI: 10.1101/gad.351104.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disease characterized by loss of motor neurons. Human genetic studies have linked mutations in RNA-binding proteins as causative for this disease. The hnRNPA1 protein, a known pre-mRNA splicing factor, is mutated in some ALS patients. Here, two human cell models were generated to investigate how a mutation in the C-terminal low-complexity domain (LCD) of hnRNPA1 can cause splicing changes of thousands of transcripts that collectively are linked to the DNA damage response, cilium organization, and translation. We show that the hnRNPA1 D262V mutant protein binds to new binding sites on differentially spliced transcripts from genes that are linked to ALS. We demonstrate that this ALS-linked hnRNPA1 mutation alters normal RNA-dependent protein-protein interactions. Furthermore, cells expressing this hnRNPA1 mutant exhibit a cell aggregation phenotype, markedly reduced growth rates, changes in stress granule kinetics, and aberrant growth of neuronal processes. This study provides insight into how a single amino acid mutation in a splicing factor can alter RNA splicing networks of genes linked to ALS.
Collapse
Affiliation(s)
- Yeon J Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, USA
| | - Donald C Rio
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA;
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
17
|
Saha B, Olsvik H, Williams GL, Oh S, Evjen G, Sjøttem E, Mandell MA. TBK1 is ubiquitinated by TRIM5α to assemble mitophagy machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563195. [PMID: 37905089 PMCID: PMC10614974 DOI: 10.1101/2023.10.19.563195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α. Mitochondrial damage triggers TRIM5α's auto-ubiquitination and its interaction with ubiquitin-binding autophagy adaptors including NDP52, optineurin, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1. TRIM5α with intact ubiquitination function is required for the proper accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Additionally, we show that TRIM5α can directly recruit autophagy initiation machinery to damaged mitochondria. Our data support a model in which TRIM5α provides a self-amplifying, mitochondria-localized, ubiquitin-based, assembly platform for TBK1 and mitophagy adaptors that is ultimately required to recruit the core autophagy machinery.
Collapse
Affiliation(s)
- Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Hallvard Olsvik
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Geneva L Williams
- Biomedical Sciences Graduate Program, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Seeun Oh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Gry Evjen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Eva Sjøttem
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center
| |
Collapse
|
18
|
Kolitsida P, Nolic V, Zhou J, Stumpe M, Niemi NM, Dengjel J, Abeliovich H. The pyruvate dehydrogenase complex regulates mitophagic trafficking and protein phosphorylation. Life Sci Alliance 2023; 6:e202302149. [PMID: 37442609 PMCID: PMC10345312 DOI: 10.26508/lsa.202302149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The mitophagic degradation of mitochondrial matrix proteins in Saccharomyces cerevisiae was previously shown to be selective, reflecting a pre-engulfment sorting step within the mitochondrial network. This selectivity is regulated through phosphorylation of mitochondrial matrix proteins by the matrix kinases Pkp1 and Pkp2, which in turn appear to be regulated by the phosphatase Aup1/Ptc6. However, these same proteins also regulate the phosphorylation status and catalytic activity of the yeast pyruvate dehydrogenase complex, which is critical for mitochondrial metabolism. To understand the relationship between these two functions, we evaluated the role of the pyruvate dehydrogenase complex in mitophagic selectivity. Surprisingly, we identified a novel function of the complex in regulating mitophagic selectivity, which is independent of its enzymatic activity. Our data support a model in which the pyruvate dehydrogenase complex directly regulates the activity of its associated kinases and phosphatases. This regulatory interaction then determines the phosphorylation state of mitochondrial matrix proteins and their mitophagic fates.
Collapse
Affiliation(s)
- Panagiota Kolitsida
- Department of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, Israel
| | - Vladimir Nolic
- Department of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, Israel
| | - Jianwen Zhou
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Natalie M Niemi
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, MO, USA
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Hagai Abeliovich
- Department of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
19
|
Vanden Broeck A, Klinge S. Principles of human pre-60 S biogenesis. Science 2023; 381:eadh3892. [PMID: 37410842 DOI: 10.1126/science.adh3892] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/20/2023] [Indexed: 07/08/2023]
Abstract
During the early stages of human large ribosomal subunit (60S) biogenesis, an ensemble of assembly factors establishes and fine-tunes the essential RNA functional centers of pre-60S particles by an unknown mechanism. Here, we report a series of cryo-electron microscopy structures of human nucleolar and nuclear pre-60S assembly intermediates at resolutions of 2.5 to 3.2 angstroms. These structures show how protein interaction hubs tether assembly factor complexes to nucleolar particles and how guanosine triphosphatases and adenosine triphosphatase couple irreversible nucleotide hydrolysis steps to the installation of functional centers. Nuclear stages highlight how a conserved RNA-processing complex, the rixosome, couples large-scale RNA conformational changes with pre-ribosomal RNA processing by the RNA degradation machinery. Our ensemble of human pre-60S particles provides a rich foundation with which to elucidate the molecular principles of ribosome formation.
Collapse
Affiliation(s)
- Arnaud Vanden Broeck
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Sebastian Klinge
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
20
|
Harris B, Singh DK, Verma M, Fahl SP, Rhodes M, Sprinkle SR, Wang M, Zhang Y, Perrigoue J, Kessel R, Peri S, West J, Giricz O, Boultwood J, Pellagatti A, Ramesh KH, Montagna C, Pradhan K, Tyner JW, Kennedy BK, Holinstat M, Steidl U, Sykes S, Verma A, Wiest DL. Ribosomal protein control of hematopoietic stem cell transformation through direct, non-canonical regulation of metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543132. [PMID: 37398007 PMCID: PMC10312568 DOI: 10.1101/2023.05.31.543132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We report here that expression of the ribosomal protein, RPL22, is frequently reduced in human myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML); reduced RPL22 expression is associated with worse outcomes. Mice null for Rpl22 display characteristics of an MDS-like syndrome and develop leukemia at an accelerated rate. Rpl22-deficient mice also display enhanced hematopoietic stem cell (HSC) self-renewal and obstructed differentiation potential, which arises not from reduced protein synthesis but from increased expression of the Rpl22 target, ALOX12, an upstream regulator of fatty acid oxidation (FAO). The increased FAO mediated by Rpl22-deficiency also persists in leukemia cells and promotes their survival. Altogether, these findings reveal that Rpl22 insufficiency enhances the leukemia potential of HSC via non-canonical de-repression of its target, ALOX12, which enhances FAO, a process that may serve as a therapeutic vulnerability of Rpl22 low MDS and AML leukemia cells. Highlights RPL22 insufficiency is observed in MDS/AML and is associated with reduced survivalRpl22-deficiency produces an MDS-like syndrome and facilitates leukemogenesisRpl22-deficiency does not impair global protein synthesis by HSCRpl22 controls leukemia cell survival by non-canonical regulation of lipid oxidation eTOC: Rpl22 controls the function and transformation potential of hematopoietic stem cells through effects on ALOX12 expression, a regulator of fatty acid oxidation.
Collapse
|
21
|
Broeck AV, Klinge S. Principles of human pre-60 S biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532478. [PMID: 36993238 PMCID: PMC10054963 DOI: 10.1101/2023.03.14.532478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
During early stages of human large ribosomal subunit (60 S ) biogenesis, an ensemble of assembly factors establishes and fine-tunes the essential RNA functional centers of pre-60 S particles by an unknown mechanism. Here, we report a series of cryo-electron microscopy structures of human nucleolar and nuclear pre-60 S assembly intermediates at resolutions of 2.5-3.2 Ã…. These structures show how protein interaction hubs tether assembly factor complexes to nucleolar particles and how GTPases and ATPases couple irreversible nucleotide hydrolysis steps to the installation of functional centers. Nuclear stages highlight how a conserved RNA processing complex, the rixosome, couples large-scale RNA conformational changes to pre-rRNA processing by the RNA degradation machinery. Our ensemble of human pre-60 S particles provides a rich foundation to elucidate the molecular principles of ribosome formation. One-Sentence Summary High-resolution cryo-EM structures of human pre-60S particles reveal new principles of eukaryotic ribosome assembly.
Collapse
|
22
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Lau B, Beine-Golovchuk O, Kornprobst M, Cheng J, Kressler D, Jády B, Kiss T, Beckmann R, Hurt E. Cms1 coordinates stepwise local 90S pre-ribosome assembly with timely snR83 release. Cell Rep 2022; 41:111684. [PMID: 36417864 PMCID: PMC9715914 DOI: 10.1016/j.celrep.2022.111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/01/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
Ribosome synthesis begins in the nucleolus with 90S pre-ribosome construction, but little is known about how the many different snoRNAs that modify the pre-rRNA are timely guided to their target sites. Here, we report a role for Cms1 in such a process. Initially, we discovered CMS1 as a null suppressor of a nop14 mutant impaired in Rrp12-Enp1 factor recruitment to the 90S. Further investigations detected Cms1 at the 18S rRNA 3' major domain of an early 90S that carried H/ACA snR83, which is known to guide pseudouridylation at two target sites within the same subdomain. Cms1 co-precipitates with many 90S factors, but Rrp12-Enp1 encircling the 3' major domain in the mature 90S is decreased. We suggest that Cms1 associates with the 3' major domain during early 90S biogenesis to restrict premature Rrp12-Enp1 binding but allows snR83 to timely perform its modification role before the next 90S assembly steps coupled with Cms1 release take place.
Collapse
Affiliation(s)
- Benjamin Lau
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Olga Beine-Golovchuk
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Markus Kornprobst
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jingdong Cheng
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong’an Road 131, Shanghai 200032, China
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Beáta Jády
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Roland Beckmann
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany,Corresponding author
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany,Corresponding author
| |
Collapse
|
24
|
Datta C, Truesdell SS, Wu KQ, Bukhari SIA, Ngue H, Buchanan B, Le Tonqueze O, Lee S, Kollu S, Granovetter MA, Boukhali M, Kreuzer J, Batool MS, Balaj L, Haas W, Vasudevan S. Ribosome changes reprogram translation for chemosurvival in G0 leukemic cells. SCIENCE ADVANCES 2022; 8:eabo1304. [PMID: 36306353 PMCID: PMC9616492 DOI: 10.1126/sciadv.abo1304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Quiescent leukemic cells survive chemotherapy, with translation changes. Our data reveal that FXR1, a protein amplified in several aggressive cancers, is elevated in quiescent and chemo-treated leukemic cells and promotes chemosurvival. This suggests undiscovered roles for this RNA- and ribosome-associated protein in chemosurvival. We find that FXR1 depletion reduces translation, with altered rRNAs, snoRNAs, and ribosomal proteins (RPs). FXR1 regulates factors that promote transcription and processing of ribosomal genes and snoRNAs. Ribosome changes in FXR1-overexpressing cells, including RPLP0/uL10 levels, activate eIF2α kinases. Accordingly, phospho-eIF2α increases, enabling selective translation of survival and immune regulators in FXR1-overexpressing cells. Overriding these genes or phospho-eIF2α with inhibitors reduces chemosurvival. Thus, elevated FXR1 in quiescent or chemo-treated leukemic cells alters ribosomes that trigger stress signals to redirect translation for chemosurvival.
Collapse
Affiliation(s)
- Chandreyee Datta
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Samuel S. Truesdell
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Keith Q. Wu
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Syed I. A. Bukhari
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Harrison Ngue
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Brienna Buchanan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Olivier Le Tonqueze
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Sooncheol Lee
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Swapna Kollu
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Madeleine A. Granovetter
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Maheen S. Batool
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Corresponding author.
| |
Collapse
|
25
|
Martín-Marcos P, Gil-Hernández Á, Tamame M. Wide mutational analysis to ascertain the functional roles of eL33 in ribosome biogenesis and translation initiation. Curr Genet 2022; 68:619-644. [PMID: 35994100 DOI: 10.1007/s00294-022-01251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/06/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
An extensive mutational analysis of RPL33A, encoding the yeast ribosomal protein L33A (eL33) allowed us to identify several novel rpl33a mutants with different translational phenotypes. Most of the rpl33a mutants are defective in the processing of 35S and 27S pre-rRNA precursors and the production of mature rRNAs, exhibiting reductions in the amounts of ribosomal subunits and altered polysome profiles. Some of the rpl33a mutants exhibit a Gcd- phenotype of constitutive derepression of GCN4 translation and strong slow growth phenotypes at several temperatures. Interestingly, some of the later mutants also show a detectable increase in the UUG/AUG translation initiation ratio that can be suppressed by eIF1 overexpression, suggesting a requirement for eL33 and a correct 60S/40S subunit ratio for the proper recognition of the AUG start codon. In addition to producing differential reductions in the rates of pre-rRNA maturation and perhaps in r-protein assembly, most of the point rpl33a mutations alter specific molecular interactions of eL33 with the rRNAs and other r-proteins in the 60S structure. Thus, rpl33a mutations cause distinctive effects on the abundance and/or functionality of 60S subunits, leading to more or less pronounced defects in the rates and fidelity of mRNA translation.
Collapse
Affiliation(s)
- Pilar Martín-Marcos
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarías González 2, 37007, Salamanca, Spain.
| | - Álvaro Gil-Hernández
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarías González 2, 37007, Salamanca, Spain
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
26
|
Lan T, Xiong W, Chen X, Mo B, Tang G. Plant cytoplasmic ribosomal proteins: an update on classification, nomenclature, evolution and resources. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:292-318. [PMID: 35000252 DOI: 10.1111/tpj.15667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/23/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Standardized naming systems are essential to integrate and unify distinct research fields, and to link multi-species data within and across kingdoms. We conducted a comprehensive survey of cytoplasmic ribosomal proteins (CRPs) in the dicot model Arabidopsis thaliana and the monocot model rice, noting that the standardized naming system has not been widely adopted in the plant community. We generated a database linking the old classical names to their updated and compliant names. We also explored the sequences, molecular evolution, and structural and functional characteristics of all plant CRP families, emphasizing evolutionarily conserved and plant-specific features through cross-kingdom comparisons. Unlike fungal CRP paralogs that were mainly created by whole-genome duplication (WGD) or retroposition under a concerted evolution mode, plant CRP genes evolved primarily through both WGD and tandem duplications in a rapid birth-and-death process. We also provide a web-based resource (http://www.plantcrp.cn/) with the aim of sharing the latest knowledge on plant CRPs and facilitating the continued development of a standardized framework across the entire community.
Collapse
Affiliation(s)
- Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei Xiong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Guiliang Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, 49931, MI, USA
| |
Collapse
|
27
|
The Yun/Prohibitin complex regulates adult Drosophila intestinal stem cell proliferation through the transcription factor E2F1. Proc Natl Acad Sci U S A 2022; 119:2111711119. [PMID: 35115400 PMCID: PMC8832997 DOI: 10.1073/pnas.2111711119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 01/02/2023] Open
Abstract
Stem cells maintain tissue homeostasis. We identified a factor, Yun, required for proliferation of normal and transformed intestinal stem cells in adult Drosophila. Yun acts as a scaffold to stabilize the Prohibitin (PHB) complex previously implicated in various cellular and developmental processes and diseases. The Yun/PHB complex acts downstream of EGFR/MAPK signaling and affects the levels of E2F1 to regulate intestinal stem cell proliferation. The role of the PHB complex in cell proliferation is evolutionarily conserved. Our results provide insight into the underlying mechanisms of how stem cell proliferation is properly controlled during tissue homeostasis and tumorigenesis. Stem cells constantly divide and differentiate to maintain adult tissue homeostasis, and uncontrolled stem cell proliferation leads to severe diseases such as cancer. How stem cell proliferation is precisely controlled remains poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Yun, required for proliferation of normal and transformed ISCs. Yun is mainly expressed in progenitors; our genetic and biochemical evidence suggest that it acts as a scaffold to stabilize the Prohibitin (PHB) complex previously implicated in various cellular and developmental processes and diseases. We demonstrate that the Yun/PHB complex is regulated by and acts downstream of EGFR/MAPK signaling. Importantly, the Yun/PHB complex interacts with and positively affects the levels of the transcription factor E2F1 to regulate ISC proliferation. In addition, we find that the role of the PHB complex in cell proliferation is evolutionarily conserved. Thus, our study uncovers a Yun/PHB-E2F1 regulatory axis in stem cell proliferation.
Collapse
|
28
|
Moraleva AA, Deryabin AS, Rubtsov YP, Rubtsova MP, Dontsova OA. Eukaryotic Ribosome Biogenesis: The 40S Subunit. Acta Naturae 2022; 14:14-30. [PMID: 35441050 PMCID: PMC9013438 DOI: 10.32607/actanaturae.11540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
The formation of eukaryotic ribosomes is a sequential process of ribosomal precursors maturation in the nucleolus, nucleoplasm, and cytoplasm. Hundreds of ribosomal biogenesis factors ensure the accurate processing and formation of the ribosomal RNAs' tertiary structure, and they interact with ribosomal proteins. Most of what we know about the ribosome assembly has been derived from yeast cell studies, and the mechanisms of ribosome biogenesis in eukaryotes are considered quite conservative. Although the main stages of ribosome biogenesis are similar across different groups of eukaryotes, this process in humans is much more complicated owing to the larger size of the ribosomes and pre-ribosomes and the emergence of regulatory pathways that affect their assembly and function. Many of the factors involved in the biogenesis of human ribosomes have been identified using genome-wide screening based on RNA interference. This review addresses the key aspects of yeast and human ribosome biogenesis, using the 40S subunit as an example. The mechanisms underlying these differences are still not well understood, because, unlike yeast, there are no effective methods for characterizing pre-ribosomal complexes in humans. Understanding the mechanisms of human ribosome assembly would have an incidence on a growing number of genetic diseases (ribosomopathies) caused by mutations in the genes encoding ribosomal proteins and ribosome biogenesis factors. In addition, there is evidence that ribosome assembly is regulated by oncogenic signaling pathways, and that defects in the ribosome biogenesis are linked to the activation of tumor suppressors.
Collapse
Affiliation(s)
- A. A. Moraleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. S. Deryabin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - Yu. P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. P. Rubtsova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991 Russia
| | - O. A. Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991 Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
29
|
Humphreys IR, Pei J, Baek M, Krishnakumar A, Anishchenko I, Ovchinnikov S, Zhang J, Ness TJ, Banjade S, Bagde SR, Stancheva VG, Li XH, Liu K, Zheng Z, Barrero DJ, Roy U, Kuper J, Femández IS, Szakal B, Branzei D, Rizo J, Kisker C, Greene EC, Biggins S, Keeney S, Miller EA, Fromme JC, Hendrickson TL, Cong Q, Baker D. Computed structures of core eukaryotic protein complexes. Science 2021; 374:eabm4805. [PMID: 34762488 PMCID: PMC7612107 DOI: 10.1126/science.abm4805] [Citation(s) in RCA: 307] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein-protein interactions play critical roles in biology, but the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions not yet identified. We take advantage of advances in proteome-wide amino acid coevolution analysis and deep-learning–based structure modeling to systematically identify and build accurate models of core eukaryotic protein complexes within the Saccharomyces cerevisiae proteome. We use a combination of RoseTTAFold and AlphaFold to screen through paired multiple sequence alignments for 8.3 million pairs of yeast proteins, identify 1505 likely to interact, and build structure models for 106 previously unidentified assemblies and 806 that have not been structurally characterized. These complexes, which have as many as five subunits, play roles in almost all key processes in eukaryotic cells and provide broad insights into biological function.
Collapse
Affiliation(s)
- Ian R. Humphreys
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Minkyung Baek
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Aditya Krishnakumar
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ivan Anishchenko
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sergey Ovchinnikov
- Faculty of Arts and Sciences, Division of Science, Harvard University, Cambridge, MA, USA
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Travis J. Ness
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Sudeep Banjade
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Saket R. Bagde
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | | | - Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhi Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY
| | - Daniel J. Barrero
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Upasana Roy
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Israel S. Femández
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Barnabas Szakal
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - J. Christopher Fromme
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | | | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Klein B, Holmér L, Smith KM, Johnson MM, Swain A, Stolp L, Teufel AI, Kleppe AS. A computational exploration of resilience and evolvability of protein-protein interaction networks. Commun Biol 2021; 4:1352. [PMID: 34857859 PMCID: PMC8639913 DOI: 10.1038/s42003-021-02867-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
Protein-protein interaction (PPI) networks represent complex intra-cellular protein interactions, and the presence or absence of such interactions can lead to biological changes in an organism. Recent network-based approaches have shown that a phenotype's PPI network's resilience to environmental perturbations is related to its placement in the tree of life; though we still do not know how or why certain intra-cellular factors can bring about this resilience. Here, we explore the influence of gene expression and network properties on PPI networks' resilience. We use publicly available data of PPIs for E. coli, S. cerevisiae, and H. sapiens, where we compute changes in network resilience as new nodes (proteins) are added to the networks under three node addition mechanisms-random, degree-based, and gene-expression-based attachments. By calculating the resilience of the resulting networks, we estimate the effectiveness of these node addition mechanisms. We demonstrate that adding nodes with gene-expression-based preferential attachment (as opposed to random or degree-based) preserves and can increase the original resilience of PPI network in all three species, regardless of gene expression distribution or network structure. These findings introduce a general notion of prospective resilience, which highlights the key role of network structures in understanding the evolvability of phenotypic traits.
Collapse
Affiliation(s)
- Brennan Klein
- Network Science Institute, Northeastern University, Boston, MA, USA. .,Laboratory for the Modeling of Biological and Socio-Technical Systems, Northeastern University, Boston, MA, USA.
| | - Ludvig Holmér
- grid.419684.60000 0001 1214 1861Center for Data Analytics, Stockholm School of Economics, Stockholm, Sweden
| | - Keith M. Smith
- grid.12361.370000 0001 0727 0669Department of Physics and Mathematics, Nottingham Trent University, Nottingham, UK
| | - Mackenzie M. Johnson
- grid.89336.370000 0004 1936 9924Department of Integrative Biology, University of Texas at Austin, Austin, TX USA
| | - Anshuman Swain
- grid.164295.d0000 0001 0941 7177Department of Biology, University of Maryland, College Park, MD USA
| | - Laura Stolp
- grid.7177.60000000084992262Graduate School of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Ashley I. Teufel
- grid.89336.370000 0004 1936 9924Department of Integrative Biology, University of Texas at Austin, Austin, TX USA ,grid.209665.e0000 0001 1941 1940Santa Fe Institute, Santa Fe, NM USA ,grid.469272.c0000 0001 0180 5693Texas A&M University, San Antonio, San Antonio, TX USA
| | - April S. Kleppe
- grid.5949.10000 0001 2172 9288Institute for Evolution and Biodiversity, University of Münster, Münster, Germany ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine (MOMA), Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
Pöll G, Pilsl M, Griesenbeck J, Tschochner H, Milkereit P. Analysis of subunit folding contribution of three yeast large ribosomal subunit proteins required for stabilisation and processing of intermediate nuclear rRNA precursors. PLoS One 2021; 16:e0252497. [PMID: 34813592 PMCID: PMC8610266 DOI: 10.1371/journal.pone.0252497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
In yeast and human cells many of the ribosomal proteins (r-proteins) are required for the stabilisation and productive processing of rRNA precursors. Functional coupling of r-protein assembly with the stabilisation and maturation of subunit precursors potentially promotes the production of ribosomes with defined composition. To further decipher mechanisms of such an intrinsic quality control pathway we analysed here the contribution of three yeast large ribosomal subunit r-proteins rpL2 (uL2), rpL25 (uL23) and rpL34 (eL34) for intermediate nuclear subunit folding steps. Structure models obtained from single particle cryo-electron microscopy analyses provided evidence for specific and hierarchic effects on the stable positioning and remodelling of large ribosomal subunit domains. Based on these structural and previous biochemical data we discuss possible mechanisms of r-protein dependent hierarchic domain arrangement and the resulting impact on the stability of misassembled subunits.
Collapse
Affiliation(s)
- Gisela Pöll
- Chair of Biochemistry III, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Michael Pilsl
- Structural Biochemistry Unit, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Joachim Griesenbeck
- Chair of Biochemistry III, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
- * E-mail: (JG); (HT); (PM)
| | - Herbert Tschochner
- Chair of Biochemistry III, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
- * E-mail: (JG); (HT); (PM)
| | - Philipp Milkereit
- Chair of Biochemistry III, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
- * E-mail: (JG); (HT); (PM)
| |
Collapse
|
32
|
Glioma Cells Acquire Stem-like Characters by Extrinsic Ribosome Stimuli. Cells 2021; 10:cells10112970. [PMID: 34831193 PMCID: PMC8616507 DOI: 10.3390/cells10112970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Although glioblastoma (GBM) stem-like cells (GSCs), which retain chemo-radio resistance and recurrence, are key prognostic factors in GBM patients, the molecular mechanisms of GSC development are largely unknown. Recently, several studies revealed that extrinsic ribosome incorporation into somatic cells resulted in stem cell properties and served as a key trigger and factor for the cell reprogramming process. In this study, we aimed to investigate the mechanisms underlying GSCs development by focusing on extrinsic ribosome incorporation into GBM cells. Ribosome-induced cancer cell spheroid (RICCS) formation was significantly upregulated by ribosome incorporation. RICCS showed the stem-like cell characters (number of cell spheroid, stem cell markers, and ability for trans differentiation towards adipocytes and osteocytes). In RICCS, the phosphorylation and protein expression of ribosomal protein S6 (RPS6), an intrinsic ribosomal protein, and STAT3 phosphorylation were upregulated, and involved in the regulation of cell spheroid formation. Consistent with those results, glioma-derived extrinsic ribosome also promoted GBM-RICCS formation through intrinsic RPS6 phosphorylation. Moreover, in glioma patients, RPS6 phosphorylation was dominantly observed in high-grade glioma tissues, and predominantly upregulated in GSCs niches, such as the perinecrosis niche and perivascular niche. Those results indicate the potential biological and clinical significance of extrinsic ribosomal proteins in GSC development.
Collapse
|
33
|
Vaishali, Dimitrova-Paternoga L, Haubrich K, Sun M, Ephrussi A, Hennig J. Validation and classification of RNA binding proteins identified by mRNA interactome capture. RNA (NEW YORK, N.Y.) 2021; 27:1173-1185. [PMID: 34215685 PMCID: PMC8456996 DOI: 10.1261/rna.078700.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
RNA binding proteins (RBPs) take part in all steps of the RNA life cycle and are often essential for cell viability. Most RBPs have a modular organization and comprise a set of canonical RNA binding domains. However, in recent years a number of high-throughput mRNA interactome studies on yeast, mammalian cell lines, and whole organisms have uncovered a multitude of novel mRNA interacting proteins that lack classical RNA binding domains. Whereas a few have been confirmed to be direct and functionally relevant RNA binders, biochemical and functional validation of RNA binding of most others is lacking. In this study, we used a combination of NMR spectroscopy and biochemical studies to test the RNA binding properties of six putative RBPs. Half of the analyzed proteins showed no interaction, whereas the other half displayed weak chemical shift perturbations upon titration with RNA. One of the candidates we found to interact weakly with RNA in vitro is Drosophila melanogaster end binding protein 1 (EB1), a master regulator of microtubule plus-end dynamics. Further analysis showed that EB1's RNA binding occurs on the same surface as that with which EB1 interacts with microtubules. RNA immunoprecipitation and colocalization experiments suggest that EB1 is a rather nonspecific, opportunistic RNA binder. Our data suggest that care should be taken when embarking on an RNA binding study involving these unconventional, novel RBPs, and we recommend initial and simple in vitro RNA binding experiments.
Collapse
Affiliation(s)
- Vaishali
- Developmental Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
| | - Lyudmila Dimitrova-Paternoga
- Developmental Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
- Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Kevin Haubrich
- Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Mai Sun
- Genome Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
- Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
34
|
Bagatelli FFM, de Luna Vitorino FN, da Cunha JPC, Oliveira CC. The ribosome assembly factor Nop53 has a structural role in the formation of nuclear pre-60S intermediates, affecting late maturation events. Nucleic Acids Res 2021; 49:7053-7074. [PMID: 34125911 PMCID: PMC8266606 DOI: 10.1093/nar/gkab494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic ribosome biogenesis is an elaborate process during which ribosomal proteins assemble with the pre-rRNA while it is being processed and folded. Hundreds of assembly factors (AF) are required and transiently recruited to assist the sequential remodeling events. One of the most intricate ones is the stepwise removal of the internal transcribed spacer 2 (ITS2), between the 5.8S and 25S rRNAs, that constitutes together with five AFs the pre-60S ‘foot’. In the transition from nucleolus to nucleoplasm, Nop53 replaces Erb1 at the basis of the foot and recruits the RNA exosome for the ITS2 cleavage and foot disassembly. Here we comprehensively analyze the impact of Nop53 recruitment on the pre-60S compositional changes. We show that depletion of Nop53, different from nop53 mutants lacking the exosome-interacting motif, not only causes retention of the unprocessed foot in late pre-60S intermediates but also affects the transition from nucleolar state E particle to subsequent nuclear stages. Additionally, we reveal that Nop53 depletion causes the impairment of late maturation events such as Yvh1 recruitment. In light of recently described pre-60S cryo-EM structures, our results provide biochemical evidence for the structural role of Nop53 rearranging and stabilizing the foot interface to assist the Nog2 particle formation.
Collapse
Affiliation(s)
- Felipe F M Bagatelli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Francisca N de Luna Vitorino
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, SP 05503-900, Brazil.,Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Julia P C da Cunha
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, SP 05503-900, Brazil.,Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Carla C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
35
|
Fries SJ, Braun TS, Globisch C, Peter C, Drescher M, Deuerling E. Deciphering molecular details of the RAC-ribosome interaction by EPR spectroscopy. Sci Rep 2021; 11:8681. [PMID: 33883604 PMCID: PMC8060413 DOI: 10.1038/s41598-021-87847-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
The eukaryotic ribosome-associated complex (RAC) plays a significant role in de novo protein folding. Its unique interaction with the ribosome, comprising contacts to both ribosomal subunits, suggests a RAC-mediated coordination between translation elongation and co-translational protein folding. Here, we apply electron paramagnetic resonance (EPR) spectroscopy combined with site-directed spin labeling (SDSL) to gain deeper insights into a RAC-ribosome contact affecting translational accuracy. We identified a local contact point of RAC to the ribosome. The data provide the first experimental evidence for the existence of a four-helix bundle as well as a long α-helix in full-length RAC, in solution as well as on the ribosome. Additionally, we complemented the structural picture of the region mediating this functionally important contact on the 40S ribosomal subunit. In sum, this study constitutes the first application of SDSL-EPR spectroscopy to elucidate the molecular details of the interaction between the 3.3 MDa translation machinery and a chaperone complex.
Collapse
Affiliation(s)
- Sandra J Fries
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany
| | - Theresa S Braun
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany.,Department of Chemistry, Physical and Biophysical Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Christoph Globisch
- Department of Chemistry, Computational and Theoretical Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, Computational and Theoretical Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Malte Drescher
- Department of Chemistry, Physical and Biophysical Chemistry, University of Konstanz, 78457, Konstanz, Germany.
| | - Elke Deuerling
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
36
|
Bertolin G, Alves-Guerra MC, Cheron A, Burel A, Prigent C, Le Borgne R, Tramier M. Mitochondrial Aurora kinase A induces mitophagy by interacting with MAP1LC3 and Prohibitin 2. Life Sci Alliance 2021; 4:4/6/e202000806. [PMID: 33820826 PMCID: PMC8046421 DOI: 10.26508/lsa.202000806] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022] Open
Abstract
The multifunctional Ser/Thr kinase AURKA uses the Inner Mitochondrial Membrane receptor PHB2 and MAP1LC3 as a signalling platform to orchestrate the elimination of dysfunctional mitochondria. Epithelial and haematologic tumours often show the overexpression of the serine/threonine kinase AURKA. Recently, AURKA was shown to localise at mitochondria, where it regulates mitochondrial dynamics and ATP production. Here we define the molecular mechanisms of AURKA in regulating mitochondrial turnover by mitophagy. AURKA triggers the degradation of Inner Mitochondrial Membrane/matrix proteins by interacting with core components of the autophagy pathway. On the inner mitochondrial membrane, the kinase forms a tripartite complex with MAP1LC3 and the mitophagy receptor PHB2, which triggers mitophagy in a PARK2/Parkin–independent manner. The formation of the tripartite complex is induced by the phosphorylation of PHB2 on Ser39, which is required for MAP1LC3 to interact with PHB2. Last, treatment with the PHB2 ligand xanthohumol blocks AURKA-induced mitophagy by destabilising the tripartite complex and restores normal ATP production levels. Altogether, these data provide evidence for a role of AURKA in promoting mitophagy through the interaction with PHB2 and MAP1LC3. This work paves the way to the use of function-specific pharmacological inhibitors to counteract the effects of the overexpression of AURKA in cancer.
Collapse
Affiliation(s)
- Giulia Bertolin
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Marie-Clotilde Alves-Guerra
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), CNRS, Paris, France
| | - Angélique Cheron
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Agnès Burel
- University of Rennes, MRic CNRS, INSERM, Structure Fédérative de Recherche (SFR) Biosit, UMS 3480, Rennes, France
| | - Claude Prigent
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Roland Le Borgne
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Marc Tramier
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| |
Collapse
|
37
|
Takehara Y, Yashiroda H, Matsuo Y, Zhao X, Kamigaki A, Matsuzaki T, Kosako H, Inada T, Murata S. The ubiquitination-deubiquitination cycle on the ribosomal protein eS7A is crucial for efficient translation. iScience 2021; 24:102145. [PMID: 33665564 PMCID: PMC7900223 DOI: 10.1016/j.isci.2021.102145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/02/2020] [Accepted: 02/01/2021] [Indexed: 02/01/2023] Open
Abstract
Ubiquitination is a major post-translational modification of ribosomal proteins. The role of ubiquitination in the regulation of ribosome functions is still being elucidated. However, the importance of ribosome deubiquitination remains unclear. Here, we show that the cycle of ubiquitination and deubiquitination of the 40S ribosome subunit eS7 is important for efficient translation. eS7 ubiquitination at lysine 83 is required for efficient protein translation. We identified Otu2 and Ubp3 as the deubiquitinating enzymes for eS7. An otu2Δubp3Δ mutation caused a defect in protein synthesis. Ubp3 inhibited polyubiquitination of eS7 in polysomes to keep eS7 in a mono-ubiquitinated form, whereas Otu2 was specifically bound to the free 40S ribosome and promoted the dissociation of mRNAs from 40S ribosomes in the recycling step. Our results provide clues for understanding the molecular mechanism of the translation system via a ubiquitination-deubiquitination cycle.
Collapse
Affiliation(s)
- Yuka Takehara
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideki Yashiroda
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshitaka Matsuo
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Xian Zhao
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akane Kamigaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuo Matsuzaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
- Department of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Corresponding author
| |
Collapse
|
38
|
Abstract
To perform an accurate protein synthesis, ribosomes accomplish complex tasks involving the long-range communication between its functional centres such as the peptidyl transfer centre, the tRNA bindings sites and the peptide exit tunnel. How information is transmitted between these sites remains one of the major challenges in current ribosome research. Many experimental studies have revealed that some r-proteins play essential roles in remote communication and the possible involvement of r-protein networks in these processes have been recently proposed. Our phylogenetic, structural and mathematical study reveals that of the three kingdom's r-protein networks converged towards non-random graphs where r-proteins collectively coevolved to optimize interconnection between functional centres. The massive acquisition of conserved aromatic residues at the interfaces and along the extensions of the newly connected eukaryotic r-proteins also highlights that a strong selective pressure acts on their sequences probably for the formation of new allosteric pathways in the network.
Collapse
|
39
|
Calvet LE, Matviienko S, Ducluzaux P. Network theory of the bacterial ribosome. PLoS One 2020; 15:e0239700. [PMID: 33017414 PMCID: PMC7535068 DOI: 10.1371/journal.pone.0239700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
In the past two decades, research into the biochemical, biophysical and structural properties of the ribosome have revealed many different steps of protein translation. Nevertheless, a complete understanding of how they lead to a rapid and accurate protein synthesis still remains a challenge. Here we consider a coarse network analysis in the bacterial ribosome formed by the connectivity between ribosomal (r) proteins and RNAs at different stages in the elongation cycle. The ribosomal networks are found to be dis-assortative and small world, implying that the structure allows for an efficient exchange of information between distant locations. An analysis of centrality shows that the second and fifth domains of 23S rRNA are the most important elements in all of the networks. Ribosomal protein hubs connect to much fewer nodes but are shown to provide important connectivity within the network (high closeness centrality). A modularity analysis reveals some of the different functional communities, indicating some known and some new possible communication pathways Our mathematical results confirm important communication pathways that have been discussed in previous research, thus verifying the use of this technique for representing the ribosome, and also reveal new insights into the collective function of ribosomal elements.
Collapse
Affiliation(s)
- Laurie E. Calvet
- CNRS, Centre de Nanosciences et Nanotechnologies, Université Paris-Saclay, Palaiseau, France
- * E-mail:
| | - Serhii Matviienko
- CNRS, Centre de Nanosciences et Nanotechnologies, Université Paris-Saclay, Palaiseau, France
| | - Pierre Ducluzaux
- CNRS, Centre de Nanosciences et Nanotechnologies, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
40
|
Bowman JC, Petrov AS, Frenkel-Pinter M, Penev PI, Williams LD. Root of the Tree: The Significance, Evolution, and Origins of the Ribosome. Chem Rev 2020; 120:4848-4878. [PMID: 32374986 DOI: 10.1021/acs.chemrev.9b00742] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ribosome is an ancient molecular fossil that provides a telescope to the origins of life. Made from RNA and protein, the ribosome translates mRNA to coded protein in all living systems. Universality, economy, centrality and antiquity are ingrained in translation. The translation machinery dominates the set of genes that are shared as orthologues across the tree of life. The lineage of the translation system defines the universal tree of life. The function of a ribosome is to build ribosomes; to accomplish this task, ribosomes make ribosomal proteins, polymerases, enzymes, and signaling proteins. Every coded protein ever produced by life on Earth has passed through the exit tunnel, which is the birth canal of biology. During the root phase of the tree of life, before the last common ancestor of life (LUCA), exit tunnel evolution is dominant and unremitting. Protein folding coevolved with evolution of the exit tunnel. The ribosome shows that protein folding initiated with intrinsic disorder, supported through a short, primitive exit tunnel. Folding progressed to thermodynamically stable β-structures and then to kinetically trapped α-structures. The latter were enabled by a long, mature exit tunnel that partially offset the general thermodynamic tendency of all polypeptides to form β-sheets. RNA chaperoned the evolution of protein folding from the very beginning. The universal common core of the ribosome, with a mass of nearly 2 million Daltons, was finalized by LUCA. The ribosome entered stasis after LUCA and remained in that state for billions of years. Bacterial ribosomes never left stasis. Archaeal ribosomes have remained near stasis, except for the superphylum Asgard, which has accreted rRNA post LUCA. Eukaryotic ribosomes in some lineages appear to be logarithmically accreting rRNA over the last billion years. Ribosomal expansion in Asgard and Eukarya has been incremental and iterative, without substantial remodeling of pre-existing basal structures. The ribosome preserves information on its history.
Collapse
Affiliation(s)
- Jessica C Bowman
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anton S Petrov
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Moran Frenkel-Pinter
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petar I Penev
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Loren Dean Williams
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Ghosh A, Williams LD, Pestov DG, Shcherbik N. Proteotoxic stress promotes entrapment of ribosomes and misfolded proteins in a shared cytosolic compartment. Nucleic Acids Res 2020; 48:3888-3905. [PMID: 32030400 PMCID: PMC7144922 DOI: 10.1093/nar/gkaa068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
Cells continuously monitor protein synthesis to prevent accumulation of aberrant polypeptides. Insufficient capacity of cellular degradative systems, chaperone shortage or high levels of mistranslation by ribosomes can result in proteotoxic stress and endanger proteostasis. One of the least explored reasons for mistranslation is the incorrect functioning of the ribosome itself. To understand how cells deal with ribosome malfunction, we introduced mutations in the Expansion Segment 7 (ES7L) of 25S rRNA that allowed the formation of mature, translationally active ribosomes but induced proteotoxic stress and compromised cell viability. The ES7L-mutated ribosomes escaped nonfunctional rRNA Decay (NRD) and remained stable. Remarkably, ES7L-mutated ribosomes showed increased segregation into cytoplasmic foci containing soluble misfolded proteins. This ribosome entrapment pathway, termed TRAP (Translational Relocalization with Aberrant Polypeptides), was generalizable beyond the ES7L mutation, as wild-type ribosomes also showed increased relocalization into the same compartments in cells exposed to proteotoxic stressors. We propose that during TRAP, assembled ribosomes associated with misfolded nascent chains move into cytoplasmic compartments enriched in factors that facilitate protein quality control. In addition, TRAP may help to keep translation at its peak efficiency by preventing malfunctioning ribosomes from active duty in translation.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Dimitri G Pestov
- Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| |
Collapse
|
42
|
Targeting the Human 80S Ribosome in Cancer: From Structure to Function and Drug Design for Innovative Adjuvant Therapeutic Strategies. Cells 2020; 9:cells9030629. [PMID: 32151059 PMCID: PMC7140421 DOI: 10.3390/cells9030629] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
The human 80S ribosome is the cellular nucleoprotein nanomachine in charge of protein synthesis that is profoundly affected during cancer transformation by oncogenic proteins and provides cancerous proliferating cells with proteins and therefore biomass. Indeed, cancer is associated with an increase in ribosome biogenesis and mutations in several ribosomal proteins genes are found in ribosomopathies, which are congenital diseases that display an elevated risk of cancer. Ribosomes and their biogenesis therefore represent attractive anti-cancer targets and several strategies are being developed to identify efficient and specific drugs. Homoharringtonine (HHT) is the only direct ribosome inhibitor currently used in clinics for cancer treatments, although many classical chemotherapeutic drugs also appear to impact on protein synthesis. Here we review the role of the human ribosome as a medical target in cancer, and how functional and structural analysis combined with chemical synthesis of new inhibitors can synergize. The possible existence of oncoribosomes is also discussed. The emerging idea is that targeting the human ribosome could not only allow the interference with cancer cell addiction towards protein synthesis and possibly induce their death but may also be highly valuable to decrease the levels of oncogenic proteins that display a high turnover rate (MYC, MCL1). Cryo-electron microscopy (cryo-EM) is an advanced method that allows the visualization of human ribosome complexes with factors and bound inhibitors to improve our understanding of their functioning mechanisms mode. Cryo-EM structures could greatly assist the foundation phase of a novel drug-design strategy. One goal would be to identify new specific and active molecules targeting the ribosome in cancer such as derivatives of cycloheximide, a well-known ribosome inhibitor.
Collapse
|
43
|
Ebright RY, Lee S, Wittner BS, Niederhoffer KL, Nicholson BT, Bardia A, Truesdell S, Wiley DF, Wesley B, Li S, Mai A, Aceto N, Vincent-Jordan N, Szabolcs A, Chirn B, Kreuzer J, Comaills V, Kalinich M, Haas W, Ting DT, Toner M, Vasudevan S, Haber DA, Maheswaran S, Micalizzi DS. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science 2020; 367:1468-1473. [PMID: 32029688 DOI: 10.1126/science.aay0939] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/01/2019] [Accepted: 01/26/2020] [Indexed: 12/11/2022]
Abstract
Circulating tumor cells (CTCs) are shed into the bloodstream from primary tumors, but only a small subset of these cells generates metastases. We conducted an in vivo genome-wide CRISPR activation screen in CTCs from breast cancer patients to identify genes that promote distant metastasis in mice. Genes coding for ribosomal proteins and regulators of translation were enriched in this screen. Overexpression of RPL15, which encodes a component of the large ribosomal subunit, increased metastatic growth in multiple organs and selectively enhanced translation of other ribosomal proteins and cell cycle regulators. RNA sequencing of freshly isolated CTCs from breast cancer patients revealed a subset with strong ribosome and protein synthesis signatures; these CTCs expressed proliferation and epithelial markers and correlated with poor clinical outcome. Therapies targeting this aggressive subset of CTCs may merit exploration as potential suppressors of metastatic progression.
Collapse
Affiliation(s)
- Richard Y Ebright
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sooncheol Lee
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kira L Niederhoffer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Benjamin T Nicholson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Samuel Truesdell
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Devon F Wiley
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Benjamin Wesley
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Selena Li
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Andy Mai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicola Aceto
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicole Vincent-Jordan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Annamaria Szabolcs
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Brian Chirn
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Valentine Comaills
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mark Kalinich
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mehmet Toner
- Center for Bioengineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Shriners Hospital for Children, Boston, MA 02114, USA.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. .,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. .,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Douglas S Micalizzi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
44
|
Abstract
In the past 25 years, genetic and biochemical analyses of ribosome assembly in yeast have identified most of the factors that participate in this complex pathway and have generated models for the mechanisms driving the assembly. More recently, the publication of numerous cryo-electron microscopy structures of yeast ribosome assembly intermediates has provided near-atomic resolution snapshots of ribosome precursor particles. Satisfyingly, these structural data support the genetic and biochemical models and provide additional mechanistic insight into ribosome assembly. In this Review, we discuss the mechanisms of assembly of the yeast small ribosomal subunit and large ribosomal subunit in the nucleolus, nucleus and cytoplasm. Particular emphasis is placed on concepts such as the mechanisms of RNA compaction, the functions of molecular switches and molecular mimicry, the irreversibility of assembly checkpoints and the roles of structural and functional proofreading of pre-ribosomal particles.
Collapse
|
45
|
Tamm T, Kisly I, Remme J. Functional Interactions of Ribosomal Intersubunit Bridges in Saccharomyces cerevisiae. Genetics 2019; 213:1329-1339. [PMID: 31649153 PMCID: PMC6893367 DOI: 10.1534/genetics.119.302777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023] Open
Abstract
Ribosomes of Archaea and Eukarya share higher homology with each other than with bacterial ribosomes. For example, there is a set of 35 r-proteins that are specific only for archaeal and eukaryotic ribosomes. Three of these proteins-eL19, eL24, and eL41-participate in interactions between ribosomal subunits. The eukaryote-specific extensions of r-proteins eL19 and eL24 form two intersubunit bridges eB12 and eB13, which are present only in eukaryotic ribosomes. The third r-protein, eL41, forms bridge eB14. Notably, eL41 is found in all eukaryotes but only in some Archaea. It has been shown that bridges eB12 and eB13 are needed for efficient translation, while r-protein eL41 plays a minor role in ribosome function. Here, the functional interactions between intersubunit bridges were studied using budding yeast strains lacking different combinations of the abovementioned bridges/proteins. The growth phenotypes, levels of in vivo translation, ribosome-polysome profiles, and in vitro association of ribosomal subunits were analyzed. The results show a genetic interaction between r-protein eL41 and the eB12 bridge-forming region of eL19, and between r-proteins eL41 and eL24. It was possible to construct viable yeast strains with Archaea-like ribosomes lacking two or three eukaryote-specific bridges. These strains display slow growth and a poor translation phenotype. In addition, bridges eB12 and eB13 appear to cooperate during ribosome subunit association. These results indicate that nonessential structural elements of r-proteins become highly important in the context of disturbed subunit interactions. Therefore, eukaryote-specific bridges may contribute to the evolutionary success of eukaryotic translation machinery.
Collapse
Affiliation(s)
- Tiina Tamm
- Department of Molecular Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Estonia
| | - Ivan Kisly
- Department of Molecular Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Estonia
| | - Jaanus Remme
- Department of Molecular Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Estonia
| |
Collapse
|
46
|
Ramos-Sáenz A, González-Álvarez D, Rodríguez-Galán O, Rodríguez-Gil A, Gaspar SG, Villalobo E, Dosil M, de la Cruz J. Pol5 is an essential ribosome biogenesis factor required for 60S ribosomal subunit maturation in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2019; 25:1561-1575. [PMID: 31413149 PMCID: PMC6795146 DOI: 10.1261/rna.072116.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
In Saccharomyces cerevisiae, more than 250 trans-acting factors are involved in the maturation of 40S and 60S ribosomal subunits. The expression of most of these factors is transcriptionally coregulated to ensure correct ribosome production under a wide variety of environmental and intracellular conditions. Here, we identified the essential nucleolar Pol5 protein as a novel trans-acting factor required for the synthesis of 60S ribosomal subunits. Pol5 weakly and/or transiently associates with early to medium pre-60S ribosomal particles. Depletion of and temperature-sensitive mutations in Pol5 result in a deficiency of 60S ribosomal subunits and accumulation of half-mer polysomes. Both processing of 27SB pre-rRNA to mature 25S rRNA and release of pre-60S ribosomal particles from the nucle(ol)us to the cytoplasm are impaired in the Pol5-depleted strain. Moreover, we identified the genes encoding ribosomal proteins uL23 and eL27A as multicopy suppressors of the slow growth of a temperature-sensitive pol5 mutant. These results suggest that Pol5 could function in ensuring the correct folding of 25S rRNA domain III; thus, favoring the correct assembly of these two ribosomal proteins at their respective binding sites into medium pre-60S ribosomal particles. Pol5 is homologous to the human tumor suppressor Myb-binding protein 1A (MYBBP1A). However, expression of MYBBP1A failed to complement the lethal phenotype of a pol5 null mutant strain though interfered with 60S ribosomal subunit biogenesis.
Collapse
Affiliation(s)
- Ana Ramos-Sáenz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Daniel González-Álvarez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
| | - Sonia G Gaspar
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Mercedes Dosil
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, E-37007, Salamanca, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| |
Collapse
|
47
|
Deuerling E, Gamerdinger M, Kreft SG. Chaperone Interactions at the Ribosome. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033977. [PMID: 30833456 DOI: 10.1101/cshperspect.a033977] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The continuous refreshment of the proteome is critical to maintain protein homeostasis and to adapt cells to changing conditions. Thus, de novo protein biogenesis by ribosomes is vitally important to every cellular system. This process is delicate and error-prone and requires, besides cytosolic chaperones, the guidance by a specialized set of molecular chaperones that bind transiently to the translation machinery and the nascent protein to support early folding events and to regulate cotranslational protein transport. These chaperones include the bacterial trigger factor (TF), the archaeal and eukaryotic nascent polypeptide-associated complex (NAC), and the eukaryotic ribosome-associated complex (RAC). This review focuses on the structures, functions, and substrates of these ribosome-associated chaperones and highlights the most recent findings about their potential mechanisms of action.
Collapse
Affiliation(s)
- Elke Deuerling
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Martin Gamerdinger
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Stefan G Kreft
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
48
|
Giannetti CA, Busan S, Weidmann CA, Weeks KM. SHAPE Probing Reveals Human rRNAs Are Largely Unfolded in Solution. Biochemistry 2019; 58:3377-3385. [PMID: 31305988 DOI: 10.1021/acs.biochem.9b00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemical probing experiments, coupled with empirically determined free energy change relationships, can enable accurate modeling of the secondary structures of diverse and complex RNAs. A current frontier lies in modeling large and structurally heterogeneous transcripts, including complex eukaryotic RNAs. To validate and improve on experimentally driven approaches for modeling large transcripts, we obtained high-quality SHAPE data for the protein-free human 18S and 28S ribosomal RNAs (rRNAs). To our surprise, SHAPE-directed structure models for the human rRNAs poorly matched accepted structures. Analysis of predicted rRNA structures based on low-SHAPE and low-entropy (lowSS) metrics revealed that, whereas ∼75% of Escherichia coli rRNA sequences form well-determined lowSS secondary structure, only ∼40% of the human rRNAs do. Critically, regions of the human rRNAs that specifically fold into well-determined lowSS structures were modeled to high accuracy using SHAPE data. This work reveals that eukaryotic rRNAs are more unfolded than are those of prokaryotic rRNAs and indeed are largely unfolded overall, likely reflecting increased protein dependence for eukaryotic ribosome structure. In addition, those regions and substructures that are well-determined can be identified de novo and successfully modeled by SHAPE-directed folding.
Collapse
Affiliation(s)
- Catherine A Giannetti
- Department of Chemistry , The University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Steven Busan
- Department of Chemistry , The University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Chase A Weidmann
- Department of Chemistry , The University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Kevin M Weeks
- Department of Chemistry , The University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| |
Collapse
|
49
|
Timsit Y, Bennequin D. Nervous-Like Circuits in the Ribosome Facts, Hypotheses and Perspectives. Int J Mol Sci 2019; 20:ijms20122911. [PMID: 31207893 PMCID: PMC6627100 DOI: 10.3390/ijms20122911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
In the past few decades, studies on translation have converged towards the metaphor of a “ribosome nanomachine”; they also revealed intriguing ribosome properties challenging this view. Many studies have shown that to perform an accurate protein synthesis in a fluctuating cellular environment, ribosomes sense, transfer information and even make decisions. This complex “behaviour” that goes far beyond the skills of a simple mechanical machine has suggested that the ribosomal protein networks could play a role equivalent to nervous circuits at a molecular scale to enable information transfer and processing during translation. We analyse here the significance of this analogy and establish a preliminary link between two fields: ribosome structure-function studies and the analysis of information processing systems. This cross-disciplinary analysis opens new perspectives about the mechanisms of information transfer and processing in ribosomes and may provide new conceptual frameworks for the understanding of the behaviours of unicellular organisms.
Collapse
Affiliation(s)
- Youri Timsit
- Mediterranean Institute of Oceanography UM 110, Aix-Marseille Université, CNRS, IRD, Campus de Luminy, 13288 Marseille, France.
| | - Daniel Bennequin
- Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG) Université Paris Diderot, bâtiment Sophie-Germain, 8, place Aurélie Nemours, 75013 Paris, France.
| |
Collapse
|
50
|
Communication between RACK1/Asc1 and uS3 (Rps3) is essential for RACK1/Asc1 function in yeast Saccharomyces cerevisiae. Gene 2019; 706:69-76. [PMID: 31054365 DOI: 10.1016/j.gene.2019.04.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023]
Abstract
The receptor for activated c-kinase (RACK1, Asc1 in yeast) is a eukaryotic ribosomal protein located in the head region of the 40S subunit near the mRNA exit channel. This WD-repeat β-propeller protein acts as a signaling molecule and is involved in metabolic regulation, cell cycle progression, and translational control. However, the exact details of the RACK1 recruitment and stable association with the 40S ribosomal subunit remain only partially known. X-ray analyses of the yeast, Saccharomyces cerevisiae, ribosome revealed that the RACK1 propeller blade (4-5) interacts with the eukaryote-specific C-terminal domain (CTD) of ribosomal protein S3 (uS3 family). To check the functional significance of this interaction, we generated mutant yeast strains harboring C-terminal deletions of uS3. We found that deletion of the 20 C-terminal residues (interacting with blade 4-5) from the uS3-CTD abrogates RACK1 binding to the ribosome. Strains with truncated uS3-CTD exhibited compromised cellular growth and protein synthesis similar to that of RACK1Δ strain, thus suggesting that the uS3-CTD is crucial not only for the recruitment and association of RACK1 with the ribosome, but also for its intracellular function. We suggest that eukaryote-specific RACK1-uS3 interaction has evolved to act as a link between the ribosome and the cellular signaling pathways.
Collapse
|